连杆加工工艺
- 格式:docx
- 大小:17.25 KB
- 文档页数:8
发动机连杆的加工工艺发动机连杆是发动机中的重要部件之一,主要起到将活塞与曲轴连接起来的作用。
它通常由高强度铸铁或铸钢制成,具有承载高压力和高温的能力。
以下是发动机连杆的加工工艺的详细介绍。
1. 材料选择:发动机连杆通常使用高强度材料制造,如铸铁或铸钢。
这些材料具有良好的机械性能和耐热性能,能够承受高温、高压和高转速的要求。
2. 铸造:连杆的制造通常通过铸造工艺来完成。
首先,根据连杆的设计要求制作模具,然后将熔化的铁水或钢水倒入模具中,待其凝固后取出,得到初步的连杆毛坯。
3. 精加工:铸造得到的连杆毛坯需要进行进一步的精加工来满足工艺要求。
包括以下几个步骤:a. 磨削:使用砂轮或切削工具对连杆进行磨削,以去除表面的毛刺和不平整,并使其具有规定的尺寸和形状。
b. 铣削:通过铣削工艺对连杆进行加工,以产生平整的表面和规定的孔径。
铣削还可用于加工连杆上的齿轮或平面。
c. 凿破孔:可以使用钻削工具钻孔或采用冲击方式凿破连杆上的孔。
这些孔通常用于安装连杆螺栓和机油喷嘴等部件。
d. 热处理:连杆在精加工之前需要进行热处理,以提高其硬度和强度。
通常采用淬火和回火工艺来完成。
淬火可以使材料达到较高的硬度,而回火则可以消除过多的脆性。
e. 平衡:连杆在装配到发动机中之前需要进行平衡。
这是为了保证连杆在高速旋转时不会产生过大的振动和失重现象。
平衡通常通过动、静平衡仪来进行。
4. 检查和测试:完成精加工之后,连杆需要进行严格的质量检查和性能测试。
这包括尺寸测量、硬度测试、金相组织观察、磁粉检测等。
还需要在实际的发动机中进行试车和试验,以验证连杆的性能和可靠性。
总结起来,发动机连杆的加工工艺包括材料选择、铸造、精加工、热处理、平衡、检查和测试等几个关键步骤。
每个步骤都需要严格控制和操作,以确保连杆具有良好的性能和可靠性。
加工过程中还需要注意环保要求,采取适当的防护措施,以减少对环境的污染。
通过科学严谨的加工工艺,可以有效提高发动机连杆的质量和性能,进一步提高发动机的整体性能和可靠性。
连杆的机械加工工艺分析简介连杆是一种重要的机械零件,常用于内燃机、汽车发动机等机械设备中。
其作用是将来自活塞的运动转化为旋转运动,从而驱动其他部件工作。
为了确保连杆的质量和性能,需要经过精细的机械加工工艺。
本文将对连杆的机械加工工艺进行分析,包括工艺流程、加工方法、加工工具等方面的内容。
通过对机械加工工艺的详细分析,可以更好地理解和掌握连杆的加工过程,提高加工效率和产品质量。
工艺流程连杆的机械加工工艺流程大致包括以下几个步骤:1.材料准备:选择合适的连杆材料,并对其进行切割,得到合适尺寸的工件。
2.粗加工:使用车床等设备进行粗加工,包括车削和钻孔等操作。
车削是将连杆材料切削成所需形状和尺寸的工艺,钻孔是在工件上钻孔,以便后续操作。
3.热处理:对粗加工后的工件进行热处理,以提高其硬度和强度。
常用的热处理方法包括淬火、回火等。
4.精加工:在热处理后,使用磨床等设备进行精加工。
磨床可以对工件进行精确的研磨和修整,以获取高精度的表面和尺寸。
5.总检和装配:对精加工后的工件进行检验,确保其质量达到要求。
然后进行组装,将连杆与其他零件连接,组成完整的机械装置。
加工方法连杆的加工方法主要包括车削、铣削、钻削、磨削等。
车削车削是将材料切削成所需形状和尺寸的加工方法。
在连杆的加工中,常用的车削方法有以下几种:•面车削:将工件放置在车床上,使用车刀从工件的外表面切削,得到所需的外形和尺寸。
•长孔车削:通过在车床上旋转工件,并使用特制刀具将长孔切削出来。
•内孔车削:通过在车床上旋转工件,并使用特制刀具将内孔切削出来。
铣削是通过刀具在工件上进行旋转和移动,将工件上的材料切削下来,从而得到所需形状和尺寸的加工方法。
在连杆的加工中,铣削常用于切削连杆的端面和孔口。
钻削钻削是通过钻头在工件上旋转并推进,将工件上的材料切削下来,从而得到所需孔形和尺寸的加工方法。
在连杆的加工中,钻削主要用于加工连杆上的孔。
磨削磨削是利用磨料颗粒切削工件的加工方法。
连杆螺栓加工工艺
粗磨上下端面:首先进行连杆上下端面的粗磨,以保证两平面有均匀的加工余量。
钻、拉小头孔:然后进行小头孔的钻孔和拉孔,以便后续的加工。
拉侧面:接着进行连杆侧面的拉削,以保证侧面的精度。
切开:然后将连杆切开,以便进行后续的加工。
拉半圆孔、接合面、螺栓孔:接着进行半圆孔、接合面和螺栓孔的拉削,以保证这些部位的精度。
配对加工螺栓孔:然后进行螺栓孔的配对加工,以保证螺栓孔的精度。
装成合件:接着将连杆装成合件,以便进行后续的加工。
精加工合件:然后进行合件的精加工,以保证合件的精度。
大小头孔光整加工:最后进行大小头孔的光整加工,以保证孔的精度。
在选择粗基准时,应满足以下要求:连杆大小端孔圆柱面及两端面应与杆身纵向中心线对称;连杆大小端孔及两端面应有足够而且尽量均匀的加工余量;连杆大小端外形分别与大小端孔中心线对称。
在安排工艺过程时,应把各主要表面的粗、精加工工序分开。
这样,粗加工产生的变形就可以在半精加工中得到修正。
半精加工中产生的变形可以在精加工中得到修正,最后达到零件的技术要求。
连杆的主要加工表面为大小头孔、两端面、连杆盖与连杆体的接合面和螺栓等。
次要表面为油孔、锁口槽等。
还有称重去重、检验、清洗和去毛刺等工序。
连杆加工的工艺流程连杆加工的工艺流程是:拉大小头两端面——粗磨大小头两端面→拉连杆大小头侧定位面→拉连杆盖两端面及杆两端面倒角→拉小头两斜面→粗拉螺栓座面,拉配对打字面、去重凸台面及盖定位侧面→粗镗杆身下半圆、倒角及小头孔→粗镗杆身上半圆、小头孔及大小头孔倒角→清洗零件→零件探伤、退磁→精铣螺栓座面及R5圆弧→铣断杆、盖→小头孔两斜端面上倒角→精磨连杆杆身两端面→加工螺栓孔→拉杆、盖结合面及倒角→去配对杆盖毛刺→清洗配对杆盖→检测配对杆盖结合面精度→人工装配→扭紧螺栓→打印杆盖配对标记号→粗镗大头孔及两侧倒角→半精镗大头孔及精镗小头衬套底孔→检查大头孔及精镗小头衬套底孔精度→压入小头孔衬套→称重去重→精镗大头孔、小头衬套孔→清洗→最终检查→成品防锈。
连杆的工艺特点(1)连杆体和盖厚度不一样,改善了加工工艺性。
连杆盖厚度为31mm,比连杆杆厚度单边小3.8mm,盖两端面精度产品要求不高,可一次加工而成。
由于加工面小,冷却条件好,使加工振动和磨削烧伤不易产生。
连杆杆和盖装配后不存在端面不一致的问题,故连杆两端面的精磨不需要在装配后进行,可在螺栓孔加工之前。
螺栓孔、轴瓦对端面的位置精度可由加工精度直接保证,而不会受精磨加工精度的影响。
(2)连杆小头两端面由斜面和一段窄平面组成。
这种楔形结构的设计可增大其承压面积,以提高活塞的强度和刚性。
在加工方面,与一般连杆相比,增加了斜面加工和小头孔两斜面上倒角工序;用提高零件定位及压头导向精度来避免衬套压偏现象的发生,但却增加了压衬套工序加工的难度。
(3)带止口斜结合面。
连杆结合面结构种类较多,有平切口和斜切口,还有键槽形、锯齿形和带止口的。
该连杆为带止口斜结合面.精加工基准采用了无间隙定位方法,在产品设计出定位基准面。
在连杆杆和总成的加工中,采用杆端面、小头顶面和侧面、大头侧面的加工定位方式;在螺栓孔至止口斜结合面加工工序的连杆盖加工中,采用了以其端面、螺栓两座面、一螺栓座面的侧面的加工定位方法。
二、连杆加工工艺流程连杆加工的主要工艺流程是:拉大小头两端面——粗磨大小头两端面→拉连杆大小头侧定位面→拉连杆盖两端面及杆两端面倒角→拉小头两斜面→粗拉螺栓座面,拉配对打字面、去重凸台面及盖定位侧面→粗镗杆身下半圆、倒角及小头孔→粗镗杆身上半圆、小头孔及大小头孔倒角→清洗零件→零件探伤、退磁→精铣螺栓座面及R5圆弧→铣断杆、盖→小头孔两斜端面上倒角→精磨连杆杆身两端面→加工螺栓孔→拉杆、盖结合面及倒角→去配对杆盖毛刺→清洗配对杆盖→检测配对杆盖结合面精度→人工装配→扭紧螺栓→打印杆盖配对标记号→粗镗大头孔及两侧倒角→半精镗大头孔及精镗小头衬套底孔→检查大头孔及精镗小头衬套底孔精度→压入小头孔衬套→称重去重→精镗大头孔、小头衬套孔→清洗→最终检查→成品防锈。
三、连杆的工艺特点 (1)连杆体和盖厚度不一样,改善了加工工艺性。
连杆盖厚度为31mm,比连杆杆厚度单边小3.8mm,盖两端面精度产品要求不高,可一次加工而成。
由于加工面小,冷却条件好,使加工振动和磨削烧伤不易产生。
连杆杆和盖装配后不存在端面不一致的问题,故连杆两端面的精磨不需要在装配后进行,可在螺栓孔加工之前。
螺栓孔、轴瓦对端面的位置精度可由加工精度直接保证,而不会受精磨加工精度的影响。
(2)连杆小头两端面由斜面和一段窄平面组成。
这种楔形结构的设计可增大其承压面积,以提高活塞的强度和刚性。
在加工方面,与一般连杆相比,增加了斜面加工和小头孔两斜面上倒角工序;用提高零件定位及压头导向精度来避免衬套压偏现象的发生,但却增加了压衬套工序加工的难度。
(3)带止口斜结合面。
连杆结合面结构种类较多,有平切口和斜切口,还有键槽形、锯齿形和带止口的。
该连杆为带止口斜结合面.精加工基准采用了无间隙定位方法,在产品设计出定位基准面。
在连杆杆和总成的加工中,采用杆端面、小头顶面和侧面、大头侧面的加工定位方式;在螺栓孔至止口斜结合面加工工序的连杆盖加工中,采用了以其端面、螺栓两座面、一螺栓座面的侧面的加工定位方法。
连杆零件的机械加工工艺规程和专用夹具设计一、前言连杆是发动机中重要的零件之一,其作用是将活塞的上下运动转化为曲轴的旋转运动。
因此,连杆的质量和加工精度直接影响发动机的性能和寿命。
本文将介绍连杆零件的机械加工工艺规程和专用夹具设计。
二、工艺流程1. 材料准备选用高强度合金钢作为连杆零件的材料。
在进行机械加工之前,需要对原材料进行热处理,以提高其硬度和强度。
2. 粗加工(1)锯切将原材料锯成长度略大于实际尺寸的毛坯。
(2)车削采用车床进行粗加工,先将毛坯两端面加工成平行面,然后进行外圆柱面、内孔等基本形状的车削。
(3)铣削采用立式铣床进行粗加工,主要是对连杆头部进行铣削,并开出油孔等结构。
3. 精密加工(1)磨削采用平面磨床和圆柱磨床对外圆柱面、内孔和连杆头等进行精密加工。
(2)钻孔采用钻床对油孔等细小结构进行加工。
(3)拉削采用拉床对轴向槽、键槽等进行加工。
4. 热处理将加工好的连杆零件进行热处理,以提高其硬度和强度。
通常采用淬火和回火的方式进行处理。
5. 组装将经过热处理的连杆零件组装到曲轴上,并进行调整,以确保其与其他零件的配合精度和运动平稳性。
三、专用夹具设计为了保证连杆零件在机械加工过程中的精度和稳定性,需要设计专用夹具。
下面介绍一种常见的夹具设计方案:1. 夹具整体结构该夹具主要由夹紧块、支撑块、定位块、压板等组成。
其中,夹紧块负责固定毛坯,支撑块负责支撑毛坯,在车削时起到了很好的辅助作用;定位块则是为了确保毛坯在夹具中的位置准确;压板则是为了防止毛坯在车削时发生移动。
2. 夹具夹紧方式该夹具采用机械夹紧的方式,通过螺旋压板来实现对毛坯的夹紧。
在进行车削等加工时,需要根据不同工序进行调整,以确保毛坯的稳定性和精度。
3. 夹具使用注意事项在使用该夹具时,需要注意以下几点:(1)夹具的各个部位需要经常清洗和润滑,以保证其正常运作。
(2)在进行车削等加工时,需要根据不同工序进行调整,并且要保证毛坯与夹具之间的接触面积充分。
连杆的加工工艺流程
连杆是一种常见的机械零件,其加工工艺流程主要有以下几个步骤:
1. 材料准备:根据设计要求,选择合适的材料进行加工。
常见的连杆材料有钢、铝合金等。
2. 切割:将所选材料根据设计要求的尺寸进行切割。
可采用锯床、割炬等工具进行切割。
3. 粗加工:使用车床等加工设备进行粗加工,将连杆初步成型。
包括车削、铣削等操作。
4. 热处理:对连杆进行热处理,以提高其材料的力学性能。
常见的热处理方式包括淬火、回火等。
5. 精加工:利用车床、磨床等设备进行精加工,使连杆达到设计要求的精度和表面光洁度。
包括车削、铣削、磨削等操作。
6. 组装:将经过加工的连杆与其他零部件进行组装,组成完整的机械装置。
7. 检测:对已组装的连杆进行质量检测,检查其尺寸、形状和表面质量等是否符合要求。
8. 表面处理:根据需要,对连杆的表面进行处理,如镀铬、喷涂等。
以提高其耐腐蚀性和美观度。
9. 包装:对加工完成的连杆进行包装,以保护其不受损坏。
常见的包装方式有木箱、铁皮盒等。
以上是连杆的一般加工工艺流程,具体的加工过程和工艺参数会根据连杆的设计要求、材料特性和制造工艺的不同而有所不同。
汽车连杆的加工工艺流程
一、施工前准备工作:
1. 检查机床是否能正常运转,加工设备是否齐全可用。
2. 根据产品图纸和工艺参数准备好所需的原材料。
3. 洁净加工区域,确保环境清洁。
二、主要加工工艺:
1. 原材料粗采型:采用锤冲模具对原材料进行粗型采样,得到近似的尺寸。
2. 磨削:采用车削机对粗采型的零件进行精磨,得到尺寸公差为±0.02的制成品。
3. 冷焊:将两个零部件进行冷焊,形成连杆主体。
4. 橡胶缓冲装配:在连杆两端安装橡胶缓冲装置。
5. 表面处理:采用砂纸擦亮连杆表面,进行除锈和脱油处理。
6. 集成测试:对加工好的连杆进行机能性能测试。
7. 包装运输:对合格的产品进行塑料或纸包装,便于运输。
三、库存管理:按产品数量和时间要求及时补充原材料,合格品按产品
需求分类存储。
连杆机械加工工艺流程及工艺装备设计方案1. 引言连杆是机械工程中常用的零件之一,用于将转动运动转变为往复运动。
为了保证连杆的准确性和可靠性,需要进行机械加工。
本文将介绍连杆机械加工的工艺流程,并提出相应的工艺装备设计方案。
2. 加工工艺流程连杆的加工工艺流程通常包括以下几个步骤:2.1 材料准备首先需要根据设计要求选择合适的材料,常见的连杆材料有铸铁、钢材等。
在材料准备阶段,需要对材料进行检验,确保材料的质量符合要求。
2.2 车削加工车削加工是连杆加工的主要工艺之一。
在车削加工中,需要使用车床进行加工,在加工过程中,根据设计要求进行车削操作,将连杆的外形和尺寸加工到合适的精度。
2.3 钻孔加工除了车削加工外,还需要进行钻孔加工,以便安装其他零件。
钻孔加工可以使用钻床进行,根据设计要求进行钻孔操作,并确保钻孔的位置和尺寸的准确性。
2.4 磨削加工磨削加工可以提高连杆的精度和表面质量。
磨削加工可以使用磨床进行,根据设计要求进行磨削操作,将连杆的表面磨削到合适的精度和光洁度。
2.5 组装与调试加工完成后,需要进行连杆的组装与调试。
在组装过程中,需要根据装配要求进行部件的安装,确保各部件的相互配合良好。
完成组装后,需要进行调试,验证连杆的性能和可靠性。
3. 工艺装备设计方案为了确保连杆的加工工艺顺利进行,需要设计相应的工艺装备。
以下是连杆机械加工工艺装备的设计方案:3.1 车床车床是连杆机械加工中不可缺少的工艺装备之一。
选择合适的车床可以实现对连杆进行精确的车削加工。
根据连杆的尺寸和材料,可以选择合适的车床类型,如平面车床、立式车床等。
3.2 钻床钻床主要用于连杆的钻孔加工。
选择合适的钻床可以实现对连杆钻孔的准确性和效率。
根据连杆的钻孔要求,可以选择合适的钻床类型,如立式钻床、卧式钻床等。
3.3 磨床磨床可以提高连杆的加工精度和表面质量。
选择合适的磨床可以实现对连杆的磨削加工。
根据连杆的磨削要求,可以选择合适的磨床类型,如平面磨床、圆柱磨床等。
连杆合件之一连杆体加工工艺
连杆是一种常用的机械传动元件,它将两个旋转的轴线连接在一起,是发动机下行部分重要的传动支撑组件。
在连杆合件中,连杆体
是最关键的部分之一。
本文将介绍连杆体的加工工艺。
一、材料选择
连杆体通常使用高强度的合金钢来制造,选择合适的材料有利于
提高连杆体的强度和抗疲劳性能,从而延长其使用寿命。
二、加工精度要求
由于连杆体是作为动力传递装置的关键组件之一,因此在其加工
过程中,尤其需要注意加工精度,以确保连杆体的几何形状和定位精度。
三、加工工艺
1.铸造法
在铸造法中,先制造成型芯,再在焊接后进行浇注,此方法适合
于中小型的连杆体,其优点是生产效率高,缺点是精度较低。
2.锻造法
常用锻造工艺包括了预形锻、坯模锻和精锻等,其优点是强度高,管道净,缺点是生产效率低。
3.机械加工法
在机械加工法中,常用的加工方式有车削、铣削和磨削等,其优点是制造精度高,缺点是生产成本高。
四、加工注意事项
1.连杆体的加工过程中,需要特别注意其表面质量和形状精度,以确保其组装后的运转平稳。
2.在加工过程中,需要采用安全生产措施,保证操作人员的人身安全。
3.加工过程中需要保持加工液温度稳定,以确保加工精度和工件表面光滑度。
总之,连杆体加工工艺是连杆合件制造中的重要环节,需要严格执行工艺规范,确保产品质量,以满足发动机等动力装置对于连杆体高精度和高强度的要求。
连杆的机械加工工艺分析连杆作为内燃机传动机构中的重要零部件,主要承受着往复运动的冲击负载。
因此,在其机械加工过程中,需要采用较高的精度和质量要求,以保证其强度、耐疲劳性和使用寿命。
本文将从连杆的工艺流程、加工方法和注意事项等方面,就连杆的机械加工工艺进行深入分析。
一、工艺流程1.材料准备:连杆一般采用中碳钢或合金钢制作,需要对材料进行筛选,以保证其化学成分符合要求,并且无气孔、坯身无裂纹等缺陷。
2.毛坯制备:根据所需的连杆规格和尺寸在毛坯上进行标记,然后采用锯床或切割机对毛坯进行切割,使其留有一定余量。
3.车削加工:在车床上对毛坯进行车削加工,主要包括:粗车削、精车削、端面和孔的车削等工序。
4.粗磨:通过粗磨机对加工好的连杆进行研磨,以达到所需的粗度和尺度要求。
5.精磨:采用精磨机对研磨后的连杆进行细致的精磨,以实现更高水平的加工质量和精度。
6.平衡校验:在完成精磨后,需对连杆进行平衡校验,以保证其运转平稳、无振动和噪声等问题。
7.表面处理:经过以上工艺后,连杆可进行表面强化或陶瓷涂层等表面处理,以提高其抗疲劳性和使用寿命。
二、加工方法1.车削加工:车削加工是连杆加工中最基本和常用的方法,可使加工件的外形尺寸、粗糙度、轮廓和孔的尺寸和位置精度满足要求。
在车削加工过程中,需要采用合适的刀具切削参数和设备工艺参数,以确保车削加工的精度和质量。
2.研磨加工:研磨加工可使精密零件的尺寸公差、表面粗糙度、圆度、直线度等质量指标得到进一步提高。
在研磨过程中,需选用合适的磨粒种类和磨粒粒度,与磨削液流量和磨削压力等相匹配,以达到所需的加工效果。
3.抛光加工:抛光加工是对已经磨好的工件进行表面光洁度提高的一种特殊方法。
抛光加工可使工件表面粗糙度降至Ra 0.1me比,增加表面光泽。
在抛光加工中,需选用合适的研磨研磨轮或砂轮,采用适当的研磨液和研磨压力,保证抛光加工的效果和质量。
三、注意事项1.优化工艺流程:在连杆加工过程中,需区分不同工序的加工要求和加工精度,为每个工序设计出最佳的工艺流程和方法,以确保加工质量和效率。
连杆加工工艺详解工艺特点:(1)大头孔加工。
传统工艺一般是切断后对大头孔进行拉削,或者在切断前将它加工成椭圆形,因为是断续加工,振动大、刀具磨损快、刀具消耗大。
而涨断工艺将大头孔加工成圆形。
(2)连杆体、盖分离。
传统工艺采用拉断(或铣断、锯断)法,而涨断工艺是在螺栓孔加工之后涨断。
采用涨断工艺后,连杆与连杆盖的分离面完全啮合,改善了连杆盖与连杆分离面的结合质量,所以分离面不需要进行拉削加工和磨削加工。
由于分离面完全啮合,将连杆与连杆盖装配时,也不需要增加额外的定位,如螺栓孔定位(或定位环孔),只要两枚螺栓拧紧即可,这样可省去螺栓孔的精加工。
(3)结合面的加工。
传统工艺是在拉断后还要磨削结合面,且连杆体/盖的装配定位靠两个螺栓孔中的定位孔和螺栓的定位部分配合来定位,所以对螺栓孔与其分离面的垂直度和两螺栓孔的中心距尺寸都有严格的要求。
尺寸误差导致连杆与连杆盖装配后有残余应力留在连杆总成。
(4)螺栓孔加工。
涨断工艺加工的连杆体/盖的装配定位是以涨断断面作定位,而传统工艺加土的连杆体/盖的装配定位靠两个螺栓孔中的定位孔和螺栓的定位部分配合来定位,所以对螺栓孔和螺栓的精度要求都很高。
采用涨断工艺加工连杆时,精度要求大大降低,两个螺栓孔可不同时加工,这样为多品种加工创造了便利条件。
连杆大头孔采用涨断工艺后,它们的分离面是***完全的啮合,所以没有分离面及螺栓孔加工误差等影响。
(5)螺栓装配。
通过带振动式储料器的螺栓进料装置、分离装置以及带导管和气嘴的进料器,将螺栓进料、安装,并用安装在齿条式安装支架及液压驱动垂直滑台上.的快速BOSCH拧紧机进行预拧紧,当拧紧至某一设定扭矩处时,通过设有等待功能的装置松开螺栓,清理结合面,***后拧紧螺栓至要求。
连杆涨断技术在连杆加工发展史上,涨断工艺的发明具有划时代的意义。
目前,连杆涨断加工工艺在国内已被广泛使用。
上海大众、一汽大众、、华晨和奇瑞等厂家均采用此种连杆工艺,一些专业的连杆制造厂家也开始采用此工艺。
连杆的加工工艺流程
一、前言
连杆作为内燃机的重要部件,其加工工艺流程是非常重要的。
本文将介绍连杆的加工工艺流程,包括原材料选用、粗加工、精加工、表面处理等环节。
二、原材料选用
1. 材料选择:一般情况下,连杆的材料采用高强度合金钢或铸铁等。
根据不同的要求,选择不同的材料。
2. 材料检验:对选定的原材料进行化学成分分析、物理性能测试等检验,确保其质量符合标准要求。
三、粗加工
1. 坯料切割:将原材料按照设计要求切割成适当大小的坯料。
2. 粗车车削:采用车床对坯料进行粗加工车削,使其达到设计尺寸和形状。
3. 钻孔:在坯料上钻孔,并进行倒角处理。
四、精加工
1. 精车车削:采用高精度数控车床对已经进行了粗加工的连杆进行精密车削。
2. 磨削:采用磨床对已经进行了精车车削的连杆进行磨削,使其表面光洁度达到要求。
3. 镗孔:对连杆上的孔进行镗孔,保证其尺寸和形状精度。
五、表面处理
1. 热处理:将已经进行了精加工的连杆进行热处理,提高其硬度和强度。
2. 抛光:对已经进行了精加工和磨削的连杆进行抛光处理,提高其表面光洁度。
3. 镀层:根据需要,在连杆表面进行镀层处理,提高其耐腐蚀性能。
六、总结
以上就是连杆的加工工艺流程,其中每个环节都是非常重要的。
只有严格按照工艺流程要求进行操作,才能保证生产出符合标准要求的优质产品。
连杆生产工艺连杆是一种连接汽车发动机曲轴和活塞的重要零部件,承受着巨大的压力和负荷。
因此,其生产工艺对于连杆的质量和性能起着至关重要的影响。
下面将介绍连杆的生产工艺。
1. 材料选择:连杆的主要材料一般为高强度合金钢,如50CrMo4,40CrNiMoA等。
这些材料具有良好的强度、韧性和抗疲劳性能,能够满足连杆在高温、高压和高速运转条件下的使用要求。
2. 锻造:连杆的制造一般采用热锻造工艺。
首先,将预制的钢坯加热到适当的温度,使其变成可塑性较好的状态,然后将其放入锻造机械中进行锻造。
通过锻造,连杆的内部组织得到了重新排列和调整,提高了连杆的强度和韧性。
3. 模锻和精修:在锻造过程中,连杆的毛坯形状基本得到了确定,但还需要进行模锻和精修来得到最终的形状和尺寸。
模锻是通过在模具中施加压力来使连杆毛坯形成所需形状的一种加工方法。
而精修则是利用机床和刀具对模锻得到的连杆进行切削和修整,使其达到所要求的精度和表面质量。
4. 热处理:连杆的热处理是为了提高其硬度、强度和韧性。
常用的热处理方法包括淬火和回火。
淬火是将连杆加热到临界温度后迅速冷却,使其内部产生马氏体组织,提高硬度和强度。
而回火则是将淬火后的连杆重新加热到一定温度,保温一段时间后冷却,以减轻淬火带来的内应力,提高韧性。
5. 机加工:连杆的机加工包括车削、铣削、钻孔等工序。
通过机床和刀具的加工,使连杆的各个轴向尺寸和孔径达到设计要求,同时提供平整的连接面和良好的表面质量。
这一过程需要控制好切削刀具的选用、加工参数和工艺流程,以确保连杆的精度和表面质量。
6. 组装和测试:最后,将加工好的连杆与其他发动机零部件进行组装,并进行相关的测试和检验。
包括尺寸测量、动平衡、硬度测试、动态加载测试等。
只有通过各项指标和测试的检验,连杆才能够符合要求,并投入使用。
通过以上步骤,连杆的生产工艺就得到了完善的实施。
这个工艺流程是有严格要求的,需要高精度的设备和技术,以确保连杆的质量和性能。
连杆加工工艺技术连杆加工工艺技术是指对连杆进行加工、制造的工艺流程和技术方法。
连杆是发动机等机械设备的重要组成部分,直接影响了机械设备的工作效率和寿命。
合理的连杆加工工艺技术可以提高连杆的加工精度和使用性能,提高机械设备的整体效能。
下面将详细介绍连杆加工工艺技术的主要内容。
连杆加工工艺技术包括连杆的设计、加工工艺流程、主要加工方法以及加工设备和工具的选择等方面。
首先,连杆的设计是决定加工工艺的基础。
在连杆的设计中,需要考虑到连杆的材料、尺寸、结构等因素,以确保连杆在使用过程中的强度和刚度等要求。
同时,设计中还需要充分考虑到加工工艺的要求,以便实施相应的加工工艺。
其次,连杆的加工工艺流程是按照一定的顺序和步骤进行的。
一般情况下,连杆的加工工艺流程分为:锻造、热处理、车、铣、刨、钻、镗、铰、磨等步骤。
在进行加工时,需要严格按照工艺流程和相应的工艺参数进行操作,确保连杆的加工质量和加工精度。
在连杆的加工过程中,主要采用车削加工、铣削加工、钻削加工等方法。
车削加工是指通过旋转刀具对连杆进行切削去材加工。
铣削加工是指通过旋转刀具对连杆进行切削去材加工。
钻削加工是指通过旋转刀具对连杆进行切削加工。
在进行加工时,需要根据连杆的形状和尺寸选择相应的加工方法,并合理选择刀具和切削参数,以保证加工质量和加工效率。
同时,连杆的加工还需要配备相应的加工设备和工具。
加工设备包括车床、铣床、钻床、刨床、磨床等,工具包括车刀、铣刀、钻头、镗刀、磨具等。
在选择加工设备和工具时,需要根据连杆的加工要求和加工量选择合适的设备和工具,以满足加工需求。
在连杆加工过程中,还需要进行质量控制和检验。
质量控制是指在加工过程中对工艺参数、加工质量等进行控制和检验。
质量检验是指对加工后的连杆进行检测和评估,以确保连杆的加工质量和使用性能。
总的来说,连杆加工工艺技术是指对连杆进行加工、制造的工艺流程和技术方法。
通过合理的连杆加工工艺技术,可以提高连杆的加工精度和使用性能,提高机械设备的整体效能。
连杆的加工工艺流程
《连杆的加工工艺流程》
连杆是一种机械传动件,通常用于连接两个运动机构,并且在发动机、汽车等领域中得到广泛应用。
其加工工艺流程是非常重要的,下面将介绍一般的加工工艺流程。
首先,连杆的加工通常从原材料的选取开始。
常用的原材料有铸铁、铝合金、钢等,根据要求选择不同的原材料。
然后进行锻造、铸造或者铣削等初步成型工艺,将原材料加工成具有一定形状和尺寸的初步毛坯。
接下来,对初步毛坯进行精加工。
首先进行粗车工艺,将其表面进行车削,使其具有较高的精度和表面质量。
然后,进行精密磨削,将其进行内外圆磨削等加工,使得其表面更加平整光滑。
在精加工结束后,需要进行热处理工艺。
这一步非常重要,通过热处理可以提高连杆的硬度和强度,同时改善其耐磨性和韧性,增加使用寿命。
最后,进行涂装和组装工艺。
将经过热处理的连杆进行表面处理,如镀镍、喷漆等,提高其抗腐蚀能力。
然后进行组装,将其与其他部件组装在一起,形成最终的机械传动装置。
总的来说,连杆的加工工艺流程包括原材料选取、初步成型、精加工、热处理、涂装和组装等多个环节。
每一步工艺都至关
重要,需要进行精准控制和严格管理,以确保最终的产品质量和性能达到要求。
二、连杆的加工工艺1、连杆的功用、结构特点、工作条件及工艺特点连杆是汽车发动机主要的传动机构之一,它将活塞与曲轴连接起来,把作用于活塞顶部的膨胀气体压力传给曲轴,使活塞的往复直线运动可逆的转化为曲轴的回转运动,以输出功率.以下均已实习所见4125B型柴油发动机连杆为例.连杆是一种细长的变截面非圆杆件.由从大头到小头逐步变小的工字型截面的连杆体及连杆盖、螺栓、螺母等组成.基本上都由活塞销孔端小头、曲柄销孔端大头及杆身三部分组成.为了便于安装,大头孔设计成两半,然后用连杆螺栓连接.连杆在工作中主要承受以下三种动载荷:①汽缸内的燃烧压力连杆受压;②活塞连杆组的往复运动惯性力连杆受拉;③连杆高速摆动时产生的横向惯性力连杆受弯曲应力;连杆的工艺特点:外形复杂,不易定位;连杆的大小头是由细长的杆身连接,故刚性差,易弯曲、变形;尺寸精度、形位精度和表面质量要求高.2、主要加工表面和技术要求连杆的主要加工表面有:大小头孔、大小头端面、大头剖分面以及连杆螺栓孔等.1大小端孔的精度:小头孔尺寸精度IT7,Ra≤1.6um,圆柱度公差0.015mm;小头铜套孔尺寸精度IT6,Ra≤0.4um,圆柱度公差0.005mm;大头孔尺寸精度IT6,Ra≤0.8um,圆柱度公差0.012mm.2大小端孔中心线在两个互相垂直方向的平行度:在垂直面平行度公差0.04mm,在水平面内平行度公差0.06mm.3大小端孔的中心距:孔中心距极限偏差±0.05mm4大端孔两端面对大端孔轴线的垂直度:垂直度公差0.1mm,Ra≤3.2um.5连杆螺栓孔:螺栓孔中心线对盖体结合面与螺栓及螺母座面的不垂直,会增加连杆螺栓的弯曲变形和扭转变形,并影响螺栓伸长量而削弱螺栓强度.6两螺栓孔中心线对连杆大头孔剖分面的垂直度公差为0.15mm,用两个尺寸为的检验心轴插入连杆体和连杆盖的孔中时,剖分面的间隙应小于0.05mm.3、连杆的机械加工工艺分析①连杆的材料和毛坯连杆的材料大多采用高强度的45钢、40Dr钢等,并经调质处理以改善切削性能和提高抗冲击能力,硬度要求45钢为HB217~293,40Dr为HB223~280.也有采用球墨铸铁和粉末冶金技术的,可降低毛坯成本.钢制连杆的毛坯一般都是锻造生产,其毛坯形式有两种:一种是体、盖分开锻造;另一种是将体、盖锻成一体,在加工过程中再切开或采用胀断工艺将其胀断.另外,为避免毛坯出现缺陷疲劳源,要求对其进行100%的硬度测量和探伤.实习中毛坯采用45钢并调制处理,采用整体模锻,分模面在工字型腰部的母线上,其短剑的主要技术要求为:热处理:调制217~289HBS,连杆杆身壁厚差不大于2mm,R42.5处的定位面上不允许有凹凸,错差:纵向不大于1mm横向不大于0.75mm,杆体弯曲不大于1mm.②基准的选择粗基准:第一道工序为粗磨两平面,为保证两平面有均匀的加工余量,采用互为基准.先选取没有凸起标记一侧的端面为粗基准来加工另一个端面,然后以加工过的端面为基准加工没有凸起标记一侧的端面,并在以后的大部分工序中以此端面作为精基准来定位.在加工连杆小端孔时以其外表面定位,这样可以保证加工后的孔与其外表面的同轴度误差较小,壁厚均匀.精基准:由于大、小端端面面积大、精度高、定位准确、夹紧可靠,所以大部分工序选用其一个指定的端面消除三个自由度和小端孔消除两个自由度,以及大端孔处指定的一个侧面作为精基准.这不仅使基准统一,而且还减少了定位误差基准重合.③连杆的工艺过程工序号工序名称设备5粗铣连杆大小头两端平面四轴龙门铣床10精铣连杆大小头两端平面四轴龙门铣床15扩连杆小头孔四轴立式钻床三工位20连杆小头孔倒角立式钻床25拉连杆小头孔卧式拉床30铣连杆大头定位凸台和连杆小头凸台龙门铣床35自连杆上切下连杆盖专用卧式铣床40锪连杆盖上装螺母的凸台立式钻床45粗扩、半精扩连杆大头孔四轴立式组合钻床三工位50磨连杆大头剖分平面平面磨床55钻扩铰连杆两个螺栓孔十轴立式组合钻床六工位60锪连杆装螺栓头部的凸台立式钻床65扩连杆螺栓孔立式钻床70在连杆盖和连杆螺栓孔上倒角D0.5立式钻床75钻连杆两个定位销孔立式钻床80拉连杆两个螺栓孔立式拉床85锪连杆装螺栓的头部和装螺母的支承平面立式钻床90去毛刺和清洗清洗机95检验检验台100装配连杆和连杆盖装螺母机105磨连杆大头端平面平面磨床110精镗连杆大头孔两轴立式镗床115连杆大头孔倒角立式钻床120车连杆大头侧面的凸台普通车床125拧紧螺母、打字、去毛刺钳工台、螺母扳手机、去毛刺机130金刚镗连杆大头孔两面四轴金刚镗床135珩磨连杆大头孔单轴珩磨机140金刚镗连杆小头孔两面四轴金刚镗床145检验检验台150压入铜套液压机155连杆小头铣3.5圆弧槽卧式铣床160金刚镗连杆小头铜套孔单面两轴金刚镗床165清洗和吹净油孔清洗机170检验检验台175拆开连杆和连杆盖螺母扳手机、钳工台180铣连杆和连杆盖上的轴瓦槽及Φ16孔壁的缺口卧式铣床185清理、去毛刺钳工台190清洗、吹净和称重量清洗机及称重仪195检验检验台200连杆体和连杆盖配对钳工台205装配连杆和连杆盖钳工台连杆小头孔的加工方法:15序,扩连杆小头孔;25序,拉连杆小头孔;140序,金刚镗连杆小头孔连杆大头孔的加工方法:45序,粗扩、半精扩连杆大头孔;110序,精镗连杆大头孔;130序,金刚镗连杆大头孔;135序,珩磨连杆大头孔定位分析130序,金刚镗连杆大头孔:定位基准:连杆大头端面,连杆小头孔,连杆侧面工艺凸台定位简图:限制自由度:大头端面限制x轴方向移动y轴方向转动z轴方向转动,小头孔限制y 轴方向移动z轴方向移动,工艺凸台限制x轴方向转动.三、缸体的加工工艺1、缸体的功用、结构特点及工作条件缸体是发动机的基础零件和骨架,同时是发动机总装配时的基准零件.作用是支撑和保护活塞、连杆、曲轴等各运动部件工作时的准确位置,保证发动机的换气、冷却和润滑,提供各种辅助系统、部件及发动机的安装基面.以下均以4125B型柴油发动机缸体为例.气缸体为一整体铸造结构,形状结构复杂,加工的平面孔多,内部形成空腔,壁厚不均,刚度低,加工精度要求高,属于典型的箱体类加工零件.发动机工作时,气缸体承受着各种大小方向呈周期性变化的气体压力、惯性力及力矩的作用.2、缸体的主要加工表面和技术要求气缸体主要加工表面有气缸体顶面、主轴承座侧面、气缸孔、主轴承座及凸轮轴轴承孔等,其加工精度直接影响发动装配精度和工作性能,主要设备精度、工夹具的可靠性和加工工艺的正确合理来保证.主要技术要求如下:技术要求精度和表面粗糙度主轴承孔的精度与粗糙度,Ra1.6主轴承孔的圆度0.02气缸孔的精度和表面粗糙度底孔,Ra6.3气缸孔中心线对曲轴中心线的对称度0.05第二三四主轴承孔对第一五主轴承孔的同轴度0.02各凸轮轴承孔同轴度0.03曲轴中心线对凸轮轴中心平行度0.10顶面的平行度和表面粗糙度,Ra3.23、缸体的机械加工工艺分析①缸体的材料和毛坯气缸体采用的材料一般是灰铸铁HT150,HT200和HT250,但也有采用铸铝或钢板.气缸体因其在发动机中的特殊地位,造型相当复杂,在大批量生产中都采用金属模机造型,造型位置为卧式,流水线生产.本例采用材料为灰铸铁HT150,金属模机机器造型,分型面选在主轴承孔的对称平面上,造型方式为卧式,轴轴承孔、凸轮轴轴承孔和缸套孔均铸出,螺栓底孔、主油道孔和工艺孔均不预先铸出.气缸体在加工前需时效处理,以消除铸件内应力和改善毛坯的力学性能.②基准的选择粗基准:第一、四气缸孔和气缸体底面.能保证在重要加工表面均有加工余量的前提下,重要孔的加工余量均匀,装入气缸体的气缸套与气缸体内壁各表面间有足够的间隙此外,还应能保证定位,夹紧可靠.精基准:气缸体左侧面的基平面和凸台.③缸体的工艺过程工序号工序名称设备5铣气缸体左侧面四块基平面和三个凸台面双轴卧式铣床10粗铣气缸体顶面、底面和右侧放水阀平面三轴龙门铣床15在气缸体底面钻、铰两个定位孔钻、铰定位孔机床20精铣气缸体底面单轴龙门铣床25粗、精铣气缸体前后端面、固定水泵法兰和起动机进水管的法兰鼓形铣床30粗镗气缸体五个半圆主轴承孔、三个凸轮轴孔,钻一个惰轮轴孔三轴卧式镗床35粗镗气缸体四个气缸套孔四轴立式镗床40铣气缸体燃油精滤器安装面和两个水管平面卧式铣床45铣气缸体主轴承座的分开面特种铣床50铣气缸体主轴承座端面和轴瓦固定槽特种两面卧式铣床55拉气缸体主轴承座的分开面卧式拉床60精铣气缸体顶面和左侧面两个长方块双轴龙门铣床65在气缸体顶面和前后端面上钻孔和倒角三面组合钻床70在气缸体顶面和前后端面上攻螺纹专用三面攻丝机75钻气缸体润滑主油道孔三面三轴钻床80在气缸体顶面和右侧面上钻孔两面组合钻床85在气缸体底面和左侧面上钻孔两面组合钻床90钻十个润滑支油道孔两面组合钻床95钻十个固定主轴承盖的螺栓底孔和一个油孔,并在左侧面钻油标尺孔底孔十一轴立式组合钻床100在气缸体第一主轴承座上钻斜油孔单轴机械头105攻气缸体固定主轴承盖的十个螺栓孔和一个油标尺螺孔特种十轴攻螺纹机110在气缸体底面和左右侧面上攻螺纹三面组合攻螺纹机115钻气缸体八个挺杆导管底孔八轴立式钻床120扩、铰气缸体八个挺杆导管底孔八轴立式钻床125精镗气缸体四个气缸套孔立式四轴镗床130精锪气缸体四个气缸套筒座的端面专用单轴立式镗床135在气缸体四个气缸套孔内镗阻水阀槽专用单轴立式镗床140清洗和吹净气缸体清洗机145去毛刺、清除切屑、倒角等辊道150检验辊道155在气缸体上安装是个双头螺栓摇臂钻床160安装气缸体主轴承盖上螺母机165在气缸体前后端面主油道孔上扩孔、攻螺纹、并在前端面钻孔摇臂钻床170半精镗气缸体五个曲轴主轴承孔、三个凸轮轴轴孔和一个惰轮轴孔摇臂钻床三轴卧式镗床175在气缸体第五曲轴主轴承座的两端镗端面卧式镗床180精镗气缸体五个曲轴主轴承孔、三个凸轮轴孔和一个惰轮轴孔三轴卧式镗床185压入气缸体八个挺杆导管八轴立式压床190在气缸体底面的后端面和左右侧面上钻孔四面组合钻床195在气缸体后端面和左右侧面上铰孔和攻螺纹,并铰八个挺杆导管孔四面组合钻床200珩磨气缸体五个曲轴主轴承孔特种立式珩磨机205清洗并吹净气缸体清洗机210清洗并吹净气缸体全部油道孔清洗机215压入气缸体三个凸轮轴衬套液压压床220铰气缸体三个凸轮轴衬套孔,并铰惰轮轴孔卧式镗床225准备移交检验辊道230检验辊道235清洗并吹净气缸体清洗机气缸体四个气缸套筒座的端面加工方法:10序,粗铣气缸体顶面;60序,精铣气缸体顶面;130序,精锪气缸体四个气缸套筒座的端面定位分析20序,精铣气缸体底面:定位基准:气缸体顶面,第一四气缸孔定位简图:限制自由度:顶面限制x轴方向转动y轴方向转动z轴方向移动,第一气缸孔锥销限制y轴方向移动x轴方向移动,第四气缸孔削边销限制z轴方向转动. 四、典型机床夹具分析1、钻床夹具如钻、扩、铰连杆螺栓孔工序55所用夹具.夹具定位部分是菱形销1、支承钉5和侧面支承板18.夹紧方式为电动夹紧.其夹紧过程为:转动螺钉6使连杆体和连杆盖的剖分平面靠紧,电动扳手使螺母12顺时针转动,一方面使活节螺栓11外移,带动连杆8绕圆柱销9顺时针转动,通过推板15向左推动连杆,使连杆大头侧面定位凸台靠紧在侧面支承板18上;另一方面使压板13绕支座10上的销轴逆时针转动,通过浮动压块16夹紧连杆. 2、铣床夹具如粗铣气缸体顶面、底面和右侧放水阀平面工序10所用夹具.夹具定位分别为支承板9和11两个,支承钉5两个.夹具的夹紧方式采用四套单独驱动的摆动式压板杠杆结构.夹紧过程是:设置在夹具底座中的气缸驱动勾头压板1,在夹紧缸体前摆入缸体左侧面上的孔中,对缸体有水平推力,使其紧贴在定位支承钉5上;四个垂直安装的气缸驱动缸体右侧两端的四块摆动压板8、10、12和13,将气缸体夹紧.夹具两侧内壁上分别固定有两条预定位板2;夹具底部有导向键7,使其在机床工作台上定位.。