平行四边形的判定练习题(含(答案))
- 格式:doc
- 大小:170.50 KB
- 文档页数:8
20.1 平行四边形的判定一、选择题1.四边形ABCD,从(1)AB∥CD;(2)AB=CD;(3)BC∥AD;(4)BC=AD这四个条件中任选两个,其中能使四边形ABCD是平行四边形的选法有()A.3种 B.4种 C.5种 D.6种2.四边形的四条边长分别是a,b,c,d,其中a,b为一组对边边长,c,d•为另一组对边边长且满足a2+b2+c2+d2=2ab+2cd,则这个四边形是()A.任意四边形 B.平行四边形C.对角线相等的四边形 D.对角线垂直的四边形3.下列说法正确的是()A.若一个四边形的一条对角线平分另一条对角线,则这个四边形是平行四边形B.对角线互相平分的四边形一定是平行四边形C.一组对边相等的四边形是平行四边形D.有两个角相等的四边形是平行四边形二、填空题4.在□ABCD中,点E,F分别是线段AD,BC上的两动点,点E从点A向D运动,点F 从C•向B运动,点E的速度m与点F的速度n满足_______关系时,四边形BFDE为平行四边形.5.如图1所示,平行四边形ABCD中,E,F分别为AD,BC边上的一点,连结EF,若再增加一个条件_______,就可以推出BE=DF.图1 图26.如图2所示,AO=OC,BD=16cm,则当OB=_____cm时,四边形ABCD是平行四边形.三、解答题7.如图所示,四边形ABCD中,对角线BD=4,一边长AB=5,其余各边长用含有未知数x的代数式表示,且AD⊥BD于点D,BD⊥BC于点B.问:四边形ABCD•是平行四边形吗?为什么?四、思考题8.如图所示,在□ABCD中,E,F是对角线AC上的两点,且AF=CE,•则线段DE•与BF的长度相等吗?参考答案一、1.B 点拨:可选择条件(1)(3)或(2)(4)或(1)(2)或(3)(4).故有4种选法.2.B 点拨:a2+b2+c2+d2=2ab+2cd即(a-b)2+(c-d)2=0,即(a-b)2=0且(c-d)2=0.所以a=b,c=d,即两组对边分别相等,所以四边形为平行四边形.3.B 点拨:熟练掌握平行四边形的判定定理是解答这类题目的关键.二、4.相等点拨:利用“一组对边平行且相等的四边形是平行四边形”来确定. 5.AE=CF 点拨:本题答案不惟一,只要增加的条件能使四边形EBFD•是平行四边形即可.6.8 点拨:根据对角线互相平分的四边形为平行四边形来进行判别.三、7.解:如图所示,四边形ABCD是平行四边形.理由如下:在Rt △BCD中,根据勾股定理,得BC2+BD2=DC2,即(x-5)2+42=(x-3)2,解得x=8.所以AD=11-8=3,BC=x-5=3,DC=x-3=8-3=5,所以AD=BC,AB=DC.所以四边形ABCD是平行四边形.点拨:本题主要告诉的是线段的长度,故只要说明AD=BC,AB=DC即可,本题也可在Rt△ABD中求x的值.四、8.解:线段DE与BF的长度相等;连结BD交AC于O点,连结DF,BE,如图所示.在ABCD中,DO=OB,AO=OC,又因为AF=EC,所以AF-AO=CE-OC,即OF=OE,所以四边形DEBF是平行四边形,所以DE=BF.D A CF O E B点拨:本题若用三角形全等,也可以解答,但过程复杂,学了平行四边形性质后,要学会应用.20.2 矩形的判定一、选择题1.矩形具有而一般平行四边形不具有的性质是( )A .对角相等B .对边相等C .对角线相等D .对角线互相垂直2.下列叙述中能判定四边形是矩形的个数是( )①对角线互相平分的四边形;②对角线相等的四边形;③对角线相等的平行四边形;④对角线互相平分且相等的四边形.A .1B .2C .3D .43.下列命题中,正确的是( )A .有一个角是直角的四边形是矩形B .三个角是直角的多边形是矩形C .两条对角线互相垂直且相等的四边形是矩形D .有三个角是直角的四边形是矩形二、填空题4.如图1所示,矩形ABCD 中的两条对角线相交于点O ,∠AOD=120°,AB=4cm ,则矩形的对角线的长为_____.图1 图25.若四边形ABCD 的对角线AC ,BD 相等,且互相平分于点O ,则四边形ABCD•是_____形,若∠AOB=60°,那么AB :AC=______.6.如图2所示,已知矩形ABCD 周长为24cm ,对角线交于点O ,OE⊥DC 于点E , OF⊥AD 于点F ,OF-OE=2cm ,则AB=______,BC=______.三、解答题7.如图所示,□ABCD的四个内角的平分线分别相交于E,F,G,H两点,试说明四边形EFGH是矩形.四、思考题8.如图所示,△ABC中,CE,CF分别平分∠ACB和它的邻补角∠ACD.AE ⊥CE于E,AF⊥CF于F,直线EF分别交AB,AC于M,N两点,则四边形AECF是矩形吗?为什么?参考答案一、1.C 点拨:A与B都是平行四边形的性质,而D是一般矩形与平行四边形都不具有的性质.2.B 点拨:③是矩形的判定定理;④中对角线互相平分的四边形是平行四边形,对角线相等的平行四边形是矩形,故④能判定矩形,应选B.3.D 点拨:选项D是矩形的判定定理.二、4.8cm5.矩;1:2 点拨:利用对角线互相平分来判定此四边形是平行四边形,再根据对角线相等来判定此平行四边形是矩形.由矩形的对角线相等且互相平分,•可知△AOB是等腰三角形,又因为∠AOB=60°,所以AB=AO=12 AC.6.8cm;4cm三、7.解:在□ABCD中,因为AD∥BC,所以∠DAB+∠CBA=180°,又因为∠HAB=12∠DAB,∠HBA=12∠CBA.所以∠HAB+∠HBA=90°,所以∠H=90°.同理可求得∠HEF= ∠F= ∠FGH=90°,所以四边形EFGH是矩形.点拨:由于“两直线平行,同旁内角的平分线互相垂直”,所以很容易求出四边形EFGH 的四个角都是直角,从而求得四边形EFGH是矩形.四、8.解:四边形AECF是矩形.理由:因为CE平分∠ACB,•CF•平分∠ACD,•所以∠ACE=12∠ACB,∠ACF=12∠ACD.所以∠ECF=12(∠ACB+∠ACD)=90°.又因为AE⊥CE,AF⊥CF,•所以∠AEC=∠AFC=90°,所以四边形AECF是矩形.点拨:•本题是通过证四边形中三个角为直角得出结论.还可以通过证其为平行四边形,再证有一个角为直角得出结论.20.3 菱形的判定一、选择题1.下列四边形中不一定为菱形的是()A.对角线相等的平行四边形 B.每条对角线平分一组对角的四边形C.对角线互相垂直的平行四边形 D.用两个全等的等边三角形拼成的四边形2.四个点A,B,C,D在同一平面内,从①AB∥CD;②AB=CD;③AC⊥BD;④AD= BC;⑤AD∥BC.这5个条件中任选三个,能使四边形ABCD是菱形的选法有().A.1种 B.2种 C.3种 D.4种3.菱形的周长为32cm,一个内角的度数是60°,则两条对角线的长分别是()A.8cm和43cm B.4cm和83cm C.8cm和83cm D.4cm和43cm二、填空题4.如图1所示,已知□ABCD,AC,BD相交于点O,•添加一个条件使平行四边形为菱形,添加的条件为________.(只写出符合要求的一个即可)图1 图25.如图2所示,D ,E ,F 分别是△ABC 的边BC ,CA ,AB 上的点,且DE∥AB,DF∥CA,要使四边形AFDE 是菱形,则要增加的条件是________.(只写出符合要求的一个即可)6.菱形ABCD 的周长为48cm ,∠BAD: ∠ABC= 1:•2,•则BD=•_____,•菱形的面积是______.7.在菱形ABCD 中,AB=4,AB 边上的高DE 垂直平分边AB ,则BD=_____,AC=_____.三、解答题8.如图所示,在四边形ABCD 中,AB∥CD,AB=CD=BC ,四边形ABCD 是菱形吗?•说明理由.四、思考题9.如图,矩形ABCD 的对角线相交于点O ,PD∥AC,PC∥BD,PD ,PC 相交于点P ,四边形PCOD 是菱形吗?试说明理由.参考答案一、1.A 点拨:本题用排除法作答.2.D 点拨:根据菱形的判定方法判断,注意不要漏解.3.C 点拨:如图所示,若∠ABC=60°,则△ABC 为等边三角形,•所以AC=AB=14×32=8(cm ),AO=12AC=4cm . 因为AC⊥BD,在Rt△AOB 中,由勾股定理,得OB=222284AB OA -=-=43(cm ),• 所以BD=2OB=83cm .二、4.AB=BC 点拨:还可添加AC⊥BD 或∠ABD=∠CBD 等.5.点D 在∠BAC 的平分线上(或AE=AF )6.12cm ;723cm 2点拨:如图所示,过D 作DE⊥AB 于E ,因为AD∥BC,•所以∠BAD+∠ABC=180°.又因为∠BAD:∠ABC=1:2,所以∠BAD=60°,因为AB=AD ,所以△ABD 是等边三角形,所以BD=AD=12cm .所以AE=6cm .在Rt △AED 中,由勾股定理,得AE 2+ED 2=AD 2,62+ED 2=122,所以ED 2=108, 所以ED=63cm ,所以S 菱形ABCD =12×63=723(cm 2).7.4;43 点拨:如图所示,因为DE 垂直平分AB ,又因为DA=AB ,所以DA=DB=4.所以△ABD 是等边三角形,所以∠BAD=60°,由已知可得AE=2.在Rt△AED 中,•AE 2+DE 2=AD 2,即22+DE 2=42,所以DE 2=12,所以DE=23,因为12AC ·BD=AB ·DE ,即12AC ·4=4×23,所以AC=43.三、8.解:四边形ABCD 是菱形,因为四边形ABCD 中,AB∥CD,且AB=CD ,所以四边形ABCD 是平行四边形,又因为AB=BC ,所以ABCD 是菱形.点拨:根据已知条件,不难得出四边形ABCD 为平行四边形,又AB=BC ,即一组邻边相等,由菱形的定义可以判别该四边形为菱形.四、9.解:四边形PCOD是菱形.理由如下:因为PD∥OC,PC∥OD,•所以四边形PCOD是平行四边形.又因为四边形ABCD是矩形,所以OC=OD,所以平行四边形PCOD是菱形.20.4 正方形的判定一、选择题1.下列命题正确的是()A.两条对角线互相平分且相等的四边形是菱形B.两条对角线互相平分且垂直的四边形是矩形C.两条对角线互相垂直,平分且相等的四边形是正方形D.一组邻边相等的平行四边形是正方形2.矩形四条内角平分线能围成一个()A.平行四边形 B.矩形 C.菱形 D.正方形二、填空题3.已知点D,E,F分别是△ABC的边AB,BC,CA的中点,连结DE,EF,•要使四边形ADEF是正方形,还需要添加条件_______.4.如图1所示,直线L过正方形ABCD的顶点B,点A,C到直线L•的距离分别是1和2,则正方形ABCD的边长是_______.图1 图2 图3D AC F E B5.如图2所示,四边形ABCD 是正方形,点E 在BC 的延长线上,BE=BD 且AB=2cm ,则∠E 的度数是______,BE 的长度为____.6.如图3所示,正方形ABCD 的边长为4,E 为BC 上一点,BE=1,F•为AB•上一点,AF=2,P 为AC 上一动点,则当PF+PE 取最小值时,PF+PE=______.三、解答题7.如图所示,在Rt△ABC 中,CF 为∠ACB 的平分线,FD⊥AC 于D ,FE⊥BC 于点E ,试说明四边形CDFE 是正方形.四、思考题 8.已知如图所示,在正方形ABCD 中,E ,F 分别是AB ,BC 边上的点,且AE=BF ,•请问:(1)AF 与DE 相等吗?为什么?(2)AF 与DE 是否垂直?说明你的理由.参考答案一、1.C 点拨:对角线互相平分的四边形是平行四边形,•对角线互相垂直的平行四边形是菱形,对角线相等的平行四边形是矩形,既是菱形又是矩形的四边形一定是正方形,故选C .2.D 点拨:由题意画出图形后,利用“一组邻边相等的矩形是正方形”来判定.二、3.△ABC 是等腰直角三角形且∠BAC=90°点拨:还可添加△ABC 是等腰三角形且四边形ADEF 是矩形或∠BAC=90°且四边形ADEF 是菱形等条件.4.5 点拨:观察图形易得两直角三角形全等,由全等三角形的性质和勾股定理得正方形的边长为2221+=5.5.67.5°;22cm点拨:因为BD 是正方形ABCD 的对角线,所以∠DBC=45°,AD=•AB=2cm .在Rt△BAD 中,由勾股定理得AD 2+AB 2=BD 2,即22+22=BD 2,所以BD=22cm ,所以BE=BD=22(cm ),又因为BE=BD ,所以∠E=∠EDB=12(180°-45°)=67.5°. 6.17 点拨:如图所示,作F 关于AC 的对称点G .连结EG 交AC 于P ,则PF+•PE=PG+PE=GE 为最短.过E 作EH⊥AD.在Rt △GHE 中,HE=4,HG=AG-AH=AF-BE=1,所以GE=2241+=17,•即PF+PE=17.三、7.解:因为∠FDC=∠FEC=∠BCD=90°,所以四边形CDFE 是矩形,因为CF•平分∠ACB,FE⊥BC,FD⊥AC,所以FE=FD ,所以矩形CDFE 是正方形.点拨:本题先说明四边形是矩形,再求出有一组邻边相等,•还可以先说明其为菱形,再求其一个内角为90°.四、8.解:(1)相等.理由:在△ADE 与△BAF 中,AD=AB ,∠DAE=∠ABF=90°,AE=BF , 所以△ADE≌△BAF(S .A .S .),所以DE=AF .(2)AF 与DE 垂直.理由:如图,设DE 与AF 相交于点O .因为△ADE≌△BAF,•所以∠AED=∠BFA.又因为∠BFA+∠EAF=90°,所以∠AEO+∠EAO=90°,所以∠EOA= 90°,所以DE⊥AF.20.5 等腰梯形的判定一、选择题1.下列结论中,正确的是()A.等腰梯形的两个底角相等 B.两个底角相等的梯形是等腰梯形C.一组对边平行的四边形是梯形 D.两条腰相等的梯形是等腰梯形2.如图所示,等腰梯形ABCD的对角线AC,BD相交于点O,则图中全等三角形有()A.2对 B.3对 C.4对 D.5对3.课外活动课上,•老师让同学们制作了一个对角线互相垂直的等腰梯形形状的风筝,其面积为450cm,则两条对角线所用的竹条长度之和至少为()A.302cm B.30cm C.60cm D.602cm二、填空题4.等腰梯形上底,下底和腰分别为4,•10,•5,•则梯形的高为_____,•对角线为______. 5.一个等腰梯形的上底长为5cm,下底长为12cm,一个底角为60°,则它的腰长为____cm,周长为______cm.6.在四边形ABCD中,AD∥BC,但AD≠BC,若使它成为等腰梯形,则需要添加的条件是__________(填一个正确的条件即可).三、解答题7.如图所示,AD是∠BAC的平分线,DE∥AB,DE=AC,AD≠EC.求证:•四边形ADCE是等腰梯形.四、思考题8.如图所示,四边形ABCD中,有AB=DC,∠B=∠C,且AD<BC,四边形ABCD是等腰梯形吗?为什么?参考答案一、1.D 点拨:梯形的底角分为上底上的角和下底上的角,•因此在等腰梯形的性质和判别方法中必须强调同一底上的两个内角(•指上底上的两个内角或下底上的两个内角),否则就会出现错误,因此A,B选项都不正确,而C选项中漏掉了限制条件另外一组对边不平行,若平行该四边形就形成了平行四边形了,因此应选D.2.B 点拨:因为△ABC≌△DCB,△BAD≌△CDA,△AOB≌△DOC,所以共有3对全等的三角形.3.C 点拨:设该等腰梯形对角线长为Lcm,因为两条对角线互相垂直,•所以梯形面积为12L2=450,解得L=30,所以所用竹条长度之和至少为2L=2×30=60(cm).二、4.4:65点拨:如图所示,连结BD,过A,D分别作AE⊥BC,DF⊥BC,垂足分别为E,F.易知△BAE≌△CDF,在四边形AEFD为矩形,所以BE=CF=3,AD=EF=4.在Rt△CDF中,FC2+DF2=CD2,即32+DF2=52,所以DF=4,在Rt△BFD中,BF2+DF2=BD2,即72+42=BD2,所以BD=65.5.7;31点拨:如图所示,过点D作DE∥AB交BC于E.因为AD∥BC,AB ∥DE,所以四边形ABED是平行四边形.所以BE=AD=5(cm),AB=DE.又因为AB=CD,所以DE=•DC,又因为∠C=60°,所以△DEC是等边三角形,所以DE=DC=EC=7(cm),所以周长为5+•12+7+7=31(cm).6.AB=CD(或∠A=∠D,或∠B=∠C,或AC=BD,或∠A+∠C=180°,或∠B+∠D=180°)三、7.证明:因为AB∥ED,所以∠BAD=∠ADE.又因为AD是∠BAC的平分线,所以∠BAD=∠CAD,所以∠CAD=∠ADE,所以OA=OD.又因为AC=DE,所以AC-OA=DE-OD即OC=OE,•所以∠OCE=∠OEC,又因为∠AOD=∠COE,所以∠CAD=∠OCE.所以AD∥CE,而AD≠CE,故四边形ADCE是梯形.又因为∠CAD=∠ADE,AD=DA,AC=DE,所以△DAC≌△ADE,所以DC=•AE,所以四边形ADCE是等腰梯形.点拨:证明一个四边形是等腰梯形时,应先证其是梯形而后再证两腰相等或同一底上的FBE D CA HF ED CBA两个角相等.四、8.解:四边形ABCD 是等腰梯形.理由:延长BA ,CD ,相交于点E ,如图所示,由∠B=∠C,可得EB=EC . 又AB=DC ,所以EB-AB=EC-DC ,即AE=DE ,所以∠EAD= ∠EDA. 因为∠E+∠EAD+∠EDA=180°,∠E+∠B+∠C=180°,所以∠EAD=∠B. 故AD∥BC.•又AD<BC ,所以四边形ABCD 是梯形. 又AB=DC ,所以四边形ABCD 是等腰梯形.点拨:由题意可知,只要推出AD∥BC,再由AD<BC 就可知四边形ABCD 为梯形,再由AB=DC ,即可求得此四边形是等腰梯形,由∠B=∠C 联想到延长BA ,CD ,即可得到等腰三角形,从而使AD∥BC.华东师大版数学八年级(下)第20章 平行四边形的判定测试(答卷时间:90分钟,全卷满分:100分)姓名 得分____________一、认认真真选,沉着应战!(每小题3分,共30分) 1. 正方形具有菱形不一定具有的性质是 ( )(A )对角线互相垂直 (B )对角线互相平分 (C )对角线相等 (D )对角线平分一组对角2. 如图(1),EF 过矩形ABCD 对角线的交点O ,且分别交AB 、CD 于E 、F ,那么阴影部分的面积是矩形ABCD 的面积的( ) (A )51 (B )41 (C )31 (D )103)1CBA(1) (2) (3) 3.在梯形ABCD 中,AD ∥BC ,那么:::A B C D ∠∠∠∠可以等于( )(A )4:5:6:3 (B )6:5:4:3 (C )6:4:5:3 (D )3:4:5:6 4.如图(2),平行四边形ABCD 中,DE ⊥AB 于E ,DF ⊥BC 于F ,若A B C D 的周长为48,DE =5,DF =10,则ABCD 的面积等于( )(A )87.5 (B )80 (C )75 (D )72.55. A 、B 、C 、D 在同一平面内,从①AB ∥CD; ②AB=CD; ③BC ∥AD; ④BC=AD 这四个条件中任选两个,能使四边形ABCD 是平行四边形的选法有( )(A )3种 (B )4种 (C )5种 (D )6种6.如图(3),D 、E 、F 分别是ABC 各边的中点,AH 是高,如果5ED cm =,那么HF 的长为( )(A )5cm (B )6cm (C )4cm (D )不能确定 7. 如图(4):E 是边长为1的正方形ABCD 的对角线BD 上一点,且BE =BC ,P 为CE 上任意一点,PQ ⊥BC 于点Q ,PR ⊥BE 于点R ,则PQ +PR 的值是( ) (A )22 (B )21 (C )32 (D )238.如图(5),在梯形ABCD 中,AD ∥BC ,AB CD =,60C ∠=︒,BD 平分ABC ∠,如果这个梯形的周长为30,则AB 的长 ( )(A )4 (B )5 (C )6 (D )79.右图是一个利用四边形的不稳定性制作的菱形晾衣架. 已知其中每个菱形的边长为20cm ,墙上悬挂晾衣架的两 个铁钉A 、B 之间的距离为203cm ,则∠1等于( )(A )90° (B)60° (C)45° (D)30° 10.某校数学课外活动探究小组,在老师的引导下进一步研究了完全平方公式.结合实数的性质发现以下规律:对于任意正数a 、b , 都有a+b ≥2ab 成立.某同学在做一个面积为3 600cm 2,对角线相互垂直的四边形风筝时,运用上述规律,求得用来做对角线用的竹条至少需要准备x cm . 则x 的值是( )(A) 1202 (B) 602 (C) 120 (D) 60ED CB A R QP(4) DCB A (5)A B C Dl N M D C BA 二、仔仔细细填,记录自信!(每小题2分,共20分)11.一个四边形四条边顺次是a 、b 、c 、d ,且bd ac d c b a 222222+=+++,则这个四边形是_______________.12.在四边形ABCD 中,对角线AC 、BD 交于点O ,从(1)AB CD =;(2)AB CD ∥;(3)OA OC =;(4)OB OD =;(5)AC BD ⊥;(6)AC 平分BAD ∠这六个条件中,选取三个推出四边形ABCD 是菱形.如(1)(2)(5)⇒ABCD 是菱形,再写出符合要求的两个: ⇒A B C D 是菱形; ⇒A B C D是菱形. 13. 如图,已知直线l 把ABCD 分成两部分,要使这两部分的面积相等,直线l 所在位置需满足的条件是____________________.(只需填上一个你认为合适的条件)(第13题) (第16题)14. 梯形的上底长为6cm ,过上底的一顶点引一腰的平行线,与下底相交,所构成的三角形周长为21cm ,那么梯形的周长为_________cm 。
平行四边形证明练习题一.解答题1.如图所示,已知在平行四边形ABCD 中,中,BE=DF BE=DF BE=DF.求证:∠DAE=∠BCF..求证:∠DAE=∠BCF.2.在▱ABCD 中,中,E E ,F 分别是BC BC、、AD 上的点,且BE=DF BE=DF.求证:.求证:.求证:AE=CF AE=CF AE=CF..3.如图,四边形ABCD 是平行四边形,是平行四边形,E E 、F 分别是BC BC..AD 上的点,∠1=∠2求证:△ABE≌△CDF.4.如图,已知:平行四边形ABCD 中,中,E E 是CD 边的中点,连接BE 并延长与AD 的延长线相交于F 点.求证:点.求证:BC=DF BC=DF BC=DF..5.如图,在▱ABCD 中,中,AC AC 交BD 于点O ,点E 、点F 分别是OA OA、、OC 的中点,请判断线段BE BE、、DF 的关系,并证明你的结论.6.已知:如图,▱ABCD 中,中,E E 、F 是对角线AC 上的点,且AE=CF AE=CF.求证:△ABE≌△CDF..求证:△ABE≌△CDF.8.如图,在等腰梯形ABCD 中,AD∥BC,中,AD∥BC,AB=CD=AE AB=CD=AE AB=CD=AE.四边形.四边形AECD 是平行四边形吗?为什么?9.如图,.如图,E E 、F 是平行四边形ABCD 的对角线AC 上的两点,上的两点,AE=CF AE=CF AE=CF.求证:.求证:.求证:DE=BF DE=BF DE=BF..1010.如图,四边形.如图,四边形ABCD 中,中,AD=BC AD=BC AD=BC,AE⊥BD,CF⊥BD,垂足为,AE⊥BD,CF⊥BD,垂足为E 、F ,AE=CF AE=CF,求证:四边形,求证:四边形ABCD 是平行四边形.1111.如图,在△ABC .如图,在△ABC 中,中,AD AD 是中线,点E 是AD 的中点,过A 点作BC 的平行线交CE 的延长线于点F ,连接BF BF.. 求证:四边形AFBD 是平行四边形.1212.如图,在等腰梯形.如图,在等腰梯形ABCD 中,AD∥BC,中,AD∥BC,AB=DC AB=DC AB=DC,DE∥AB,,DE∥AB,,DE∥AB,AD+DC=BC AD+DC=BC AD+DC=BC..求证:(1)DE=DC DE=DC;;(2)△DEC 是等边三角形.1313.已知:如图,.已知:如图,.已知:如图,E E 、F 是平行四边形ABCD 的对角线AC 上的两点,上的两点,AE=CF AE=CF AE=CF..求证:(1)△ADF≌△CBE;1414.如图,平行四边形.如图,平行四边形ABCD 中,点E 、F 、G 、H 分别在AB AB、、BC BC、、CD CD、、AD 边上且AE=CG AE=CG,,AH=CF AH=CF..求证:四边形EFGH 是平行四边形.1515.如图,在平行四边形.如图,在平行四边形ABCD 中,中,E E 、F 是对角线AC 上的点,且AE=CF AE=CF..(1)猜想探究:)猜想探究:BE BE 与DF 之间的关系: _________(2)请证明你的猜想.1616.如图,.如图,.如图,E E 、F 是平行四边形ABCD 对角线AC 上的两点,且BE∥DF.求证:∠1=∠2.1717.如图,已知.如图,已知E ,F 分别是▱ABCD 的边AB AB,,CD 的中点.求证:的中点.求证:ED=BF ED=BF ED=BF..1818.如图,.如图,.如图,BD BD 是▱ABCD 的对角线,∠ABD 的平分线BE 交AD 于点E ,∠CDB 的平分线DF 交BC 于点F .求证:四边形DEBF 为平行四边形.1919.如图,在.如图,在▱ABCD 中,对角线AC 与BD 交于点O ,已知点E 、F 分别为AO AO、、OC 的中点,证明:四边形BFDE 是平2020.如图所示,.如图所示,.如图所示,A A ,E ,F ,C 在一条直线上,在一条直线上,AE=CF AE=CF AE=CF,过,过E ,F 分别作DE⊥AC,BF⊥AC,若AB=CD AB=CD,可以得到,可以得到BD 平分EF EF,为什么?说明理由.,为什么?说明理由.2121.如图,△ABC .如图,△ABC 的中线BD BD、、CE 交于点O ,F 、G 分别是OB OB、、OC 的中点.求证:求证:EF=DG EF=DG 且EF∥DG.2222.已知如图所示,.已知如图所示,▱ABCD 的对角线AC AC、、BD 交于O ,GH 过点O ,分别交AD AD、、BC 于G 、H ,E 、F 在AC 上且AE=CF AE=CF,,求证:四边形EHFG 是平行四边形.平行四边形证明练习题参考答案与试题解析一.解答题(共22小题)1.如图所示,已知在平行四边形ABCD 中,中,BE=DF BE=DF BE=DF.求证:∠DAE=∠BCF..求证:∠DAE=∠BCF.考点: 平行四边形的性质;平行线的性质;全等三角形的判定与性质.分析: 根据平行四边形性质求出AD∥BC,且AD=BC AD=BC,推出∠ADE=∠CBF,求出,推出∠ADE=∠CBF,求出DE=BF DE=BF,证△ADE≌△CBF,推出,证△ADE≌△CBF,推出∠DAE=∠BCF 即可.解答: 证明:∵四边形ABCD 为平行四边形,∴AD∥BC,且AD=BC AD=BC,,∴∠ADE=∠CBF又∵BE=DF,∴BF=DE,∵在△ADE 和△CBF 中,∴△ADE≌△CBF,∴∠DAE=∠BCF.点评: 本题考查了平行四边形性质,平行线性质,全等三角形的性质和判定的应用,关键是求出证出△ADE 和△CBF全等的三个条件,主要考查学生的推理能力.2.在▱ABCD 中,中,E E ,F 分别是BC BC、、AD 上的点,且BE=DF BE=DF.求证:.求证:.求证:AE=CF AE=CF AE=CF..考点: 平行四边形的性质;全等三角形的判定与性质.分析: 根据平行四边形的性质得出AB=CD AB=CD,∠B=∠D,根据,∠B=∠D,根据SAS 证出△ABE≌△CDF 即可推出答案.解答: 证明:∵四边形ABCD 是平行四边形,∴AB=CD,∠B=∠D,∵BE=DF,∴△ABE≌△CDF,∴AE=CF.点评: 本题主要考查对平行四边形的性质,全等三角形的性质和判定等知识点的理解和掌握,能根据性质证出△ABE≌△CDF 是证此题的关键.求证:△ABE≌△CDF.考点: 平行四边形的性质;全等三角形的判定.分析: 利用平行四边形的性质和题目提供的相等的角可以为证明三角形全等提供足够的条件.解答: 证明:∵四边形ABCD 是平行四边形,∴∠B=∠D,∴∠B=∠D,AB=CD AB=CD AB=CD,,∴在:△ABE 与△CDF 中,∴△ABE≌△CDF(∴△ABE≌△CDF(ASA ASA ASA))点评: 本题考查了平行四边形的性质及全等三角形的判定,根据平行四边形找到证明全等三角形足够的条件是解决本题的关键.4.如图,已知:平行四边形ABCD 中,中,E E 是CD 边的中点,连接BE 并延长与AD 的延长线相交于F 点.求证:点.求证:BC=DF BC=DF BC=DF..考点: 平行四边形的性质;全等三角形的判定与性质.分析: 由四边形ABCD 是平行四边形,可得AD∥BC,根据平行线的性质即可求得∠EBC=∠F,∠C=∠EDF,又由E是CD 边的中点,根据AAS 即可求得△EBC≌△EFD,则问题得证.解答: 证明:∵四边形ABCD 是平行四边形,∴AD∥BC,∴∠EBC=∠F,∠C=∠EDF,又∵EC=ED,∴△EBC≌△EFD(∴△EBC≌△EFD(AAS AAS AAS)), ∴BC=DF.点评: 此题考查了平行四边形的性质以及全等三角形的判定与性质.此题难度不大,解题的关键是要注意数形结合思想的应用.5.(2013•莒南县二模)如图,在▱ABCD 中,中,AC AC 交BD 于点O ,点E 、点F 分别是OA OA、、OC 的中点,请判断线段BE BE、、DF 的关系,并证明你的结论.边形的判定定理“对角线互相平分的四边形是平行四边形”判定BFDE 是平行四边形,从而得出BE=DF BE=DF,,BE∥DF.解答: 解:由题意得:解:由题意得:BE=DF BE=DF BE=DF,BE∥DF.理由如下:,BE∥DF.理由如下:连接DE DE、、BF BF..∵ABCD 是平行四边形,∴OA=OC,∴OA=OC,OB=OD OB=OD OB=OD,,∵E,∵E,F F 分别是OA OA,,OC 的中点,∴OE=OF,∴BFDE 是平行四边形,∴BE=DF,BE∥DF.点评: 本题考查了平行四边形的基本性质和判定定理的运用.性质:①平行四边形两组对边分别平行;②平行四边形的两组对边分别相等;③平行四边形的两组对角分别相等;④平行四边形的对角线互相平分.判定:①两组对边分别平行的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形;③两组对角分别相等的四边形是平行四边形;④对角线互相平分的四边形是平行四边形;⑤一组对边平行且相等的四边形是平行四边形.6.已知:如图,▱ABCD 中,中,E E 、F 是对角线AC 上的点,且AE=CF AE=CF..求证:△ABE≌△CDF.考点: 平行四边形的性质;平行线的性质;全等三角形的判定.分析: 根据平行四边形的性质得出AB∥DC,AB∥DC,AB=CD AB=CD AB=CD,根据平行线的性质推出∠BAC=∠DCF,根据,根据平行线的性质推出∠BAC=∠DCF,根据SAS 证出即可. 解答: 证明:∵四边形ABCD 是平行四边形,∴AB∥DC,∴AB∥DC,AB=CD AB=CD AB=CD,,∴∠BAC=∠DCF,∵AE=CF,∴△ABE≌△CDF.点评: 本题主要考查对平行四边形的性质,全等三角形的判定,平行线的性质等知识点的理解和掌握,能推出证△ABE≌△CDF 的三个条件是解此题的关键.7.如图,已知在▱ABCD 中,过AC 中点的直线交CD CD,,AB 于点E ,F .求证:.求证:DE=BF DE=BF DE=BF..考点: 平行四边形的性质;平行线的性质;全等三角形的判定与性质.解答: 证明:∵四边形ABCD ABCD 是平行四边形,是平行四边形,∴DC=AB,DC∥AB,∴∠ECA=∠BAC,∠CEO=∠AFO,∵OA=OC,∴△AOF≌△COE,∴CE=AF,∵DC=AB,∴DE=BF.点评: 本题主要考查对平行四边形的性质,平行线的性质,全等三角形的性质和判定等知识点的理解和掌握,解此题的关键是根据平行四边形的性质证出△AOF 和△COE 全等.8.如图,在等腰梯形ABCD 中,AD∥BC,中,AD∥BC,AB=CD=AE AB=CD=AE AB=CD=AE.四边形.四边形AECD 是平行四边形吗?为什么?考点: 等腰梯形的性质;平行线的判定与性质;等腰三角形的性质;平行四边形的判定.分析: 根据等腰三角形性质求出∠B=∠C,根据等腰三角形性质推出∠AEC=∠B=∠C,推出AE∥CD,根据平行四边形的判定推出即可.解答: 解:是平行四边形,理由:∵四边形ABCD 是等腰梯形,AD∥BC,∴AB=DC,∠B=∠C,∵AB=AE,∴∠AEB=∠B,∴∠AEB=∠C,∴AE∥DC,又∵AD∥BC,∴四边形AECD 是平行四边形.点评: 本题考查了等腰三角形的性质,等腰梯形的性质,平行线的性质和判定,平行四边形的判定等知识点的应用,关键是根据题意推出AE∥CD,培养了学生分析问题和解决问题的能力,题目较好,综合性比较强.9.如图,.如图,E E 、F 是平行四边形ABCD 的对角线AC 上的两点,上的两点,AE=CF AE=CF AE=CF.求证:.求证:.求证:DE=BF DE=BF DE=BF..考点: 平行四边形的性质;全等三角形的判定与性质;平行四边形的判定.分析: 连接BE BE,,DF DF,,BD BD,,BD 交AC 于O ,根据平行四边形性质求出OA=OC OA=OC,,OD=OB OD=OB,推出,推出OE=OF OE=OF,根据平行四边形的,根据平行四边形的判定推出四边形BEDF 是平行四边形即可.解答: 证明:连接BE BE,,DF DF,,BD BD,,BD 交AC 于O ,∵四边形ABCD 是平行四边形,∴OA=OC,∴OA=OC,OD=OB OD=OB OD=OB,,∴四边形BEDF 是平行四边形,∴DE=BF.点评: 本题考查了平行四边形的性质和判定等应用,关键是能熟练地运用平行四边形的性质和判定进行推理,此题的证明方法二是证△AED≌△CFB,推出DE=BF DE=BF..1010.如图,四边形.如图,四边形ABCD 中,中,AD=BC AD=BC AD=BC,AE⊥BD,CF⊥BD,垂足为,AE⊥BD,CF⊥BD,垂足为E 、F ,AE=CF AE=CF,求证:四边形,求证:四边形ABCD 是平行四边形.考点: 平行四边形的判定;平行线的性质;全等三角形的判定与性质.分析: 求出∠AED=∠CFB=90°,根据HL 证Rt△AED≌Rt△CFB,推出∠ADE=∠CBD,得到AD∥BC,根据平行四边形的判定判断即可.解答: 证明:∵AE⊥BD,CF⊥BD,∴∠AED=∠CFB=90°,在Rt△AED 和Rt△CFB 中,∴Rt△AED≌Rt△CFB(∴Rt△AED≌Rt△CFB(HL HL HL)), ∴∠ADE=∠CBD,∴AD∥BC,∵AD=BC,∴四边形ABCD 是平行四边形.点评: 本题考查了平行四边形的判定,平行线的性质,全等三角形的性质和判定等知识点的应用,关键是推出AD∥BC,主要考查学生运用性质进行推理的能力.1111.如图,在△ABC .如图,在△ABC 中,中,AD AD 是中线,点E 是AD 的中点,过A 点作BC 的平行线交CE 的延长线于点F ,连接BF BF.. 求证:四边形AFBD 是平行四边形.考点: 平行四边形的判定;全等三角形的判定与性质.专题: 证明题.分析: 求出AE=DE AE=DE,∠AFE=∠DCE,证△AEF≌△CED,推出,∠AFE=∠DCE,证△AEF≌△CED,推出AF=DC AF=DC,得出,得出AF∥BD,AF∥BD,AF=BD AF=BD AF=BD,根据平行四边形的判定推,根据平行四边形的判定推出即可.解答: 证明:∵E 为AD 中点,∴∠AFE=∠DCE,在△AEF 和△CED 中∵,∴△AEF≌△CED(∴△AEF≌△CED(AAS AAS AAS)), ∴AF=DC,∵AD 是△ABC 的中线,∴BD=DC,∴AF=BD,即AF∥BD,AF∥BD,AF=BD AF=BD AF=BD,,故四边形AFBD 是平行四边形.点评: 本题考查了平行四边形的性质和判定,全等三角形的性质和判定,关键是推出AF=DC=BD AF=DC=BD..1212.如图,在等腰梯形.如图,在等腰梯形ABCD 中,AD∥BC,中,AD∥BC,AB=DC AB=DC AB=DC,DE∥AB,,DE∥AB,,DE∥AB,AD+DC=BC AD+DC=BC AD+DC=BC..求证:(1)DE=DC DE=DC;;(2)△DEC 是等边三角形.考点: 等腰梯形的性质;等边三角形的判定;平行四边形的判定与性质.分析: (1)证出平行四边形ABED ABED,,推出DE=AB DE=AB,,即可推出答案;(2)根据BE=AD BE=AD,,AD+DC=BC AD+DC=BC,,BE+EC=BC BE+EC=BC,,推出DC=EC 即可证出答案.解答: 证明:(1)∵AD∥BC,DE∥AB,∴四边形ABED 是平行四边形,∴DE=AB,∵AB=DC,∴DE=DC.(2)证明:∵BE=AD,)证明:∵BE=AD,AD+DC=BC AD+DC=BC AD+DC=BC,,BE+EC=BC BE+EC=BC,,∴DC=EC,由(由(11)知:)知:DE=DC DE=DC DE=DC,,∴DE=DC=EC,∴△DEC 是等边三角形.点评: 本题主要考查对等腰梯形的性质,平行四边形的性质和判定,等边三角形的判定等知识点的理解和掌握,证出平行四边形ABED 和DC=EC 是解此题的关键.1313.已知:如图,.已知:如图,.已知:如图,E E 、F 是平行四边形ABCD 的对角线AC 上的两点,上的两点,AE=CF AE=CF AE=CF..求证:(1)△ADF≌△CBE;(2)连接DE DE、、BF BF,试判断四边形,试判断四边形DEBF 的形状,并说明理由.分析: (1)根据平行四边形的性质对边平行且相等得到AD 与BC 平行且相等,由AD 与BC 平行得到内错角∠DAF与∠BCA 相等,再由已知的AE=CF AE=CF,根据“SAS”得到△ADF ,根据“SAS”得到△ADF 与△CBE 全等;(2)由()由(11)证出的全等,根据全等三角形的性质得到DF 与EB 相等且∠DFA 与∠BEC 相等,由内错角相等两直线平行得到DF 与BE 平行,根据一组对边平行且相等的四边形为平行四边形即可得到四边形DEBF 的形状.解答: 证明:(1)∵ABCD 是平行四边形,∴AD=BC,AD∥BC(∴AD=BC,AD∥BC(11分)∴∠DAF=∠BCA(∴∠DAF=∠BCA(22分),∵AE=CF, ∴AE+EF=CF+EF,即AF=CE AF=CE((3分)∴△ADF≌△CBE(∴△ADF≌△CBE(44分)(2)四边形DEBF 是平行四边形(是平行四边形(55分)∵△ADF≌△CBE,∴∠DFA=∠BEC,∴∠DFA=∠BEC,DF=BE DF=BE DF=BE,,∴DF∥BE,∴四边形DEBF 是平行四边形(是平行四边形(66分)点评: 本题综合考查了全等三角形的判断与性质,以及平行四边形的判断与性质.其中第2问是一道先试验猜想,再探索证明的新型题,其目的是考查学生提出问题,解决问题的能力,这类几何试题将成为今后中考的热点试题.1414.如图,平行四边形.如图,平行四边形ABCD 中,点E 、F 、G 、H 分别在AB AB、、BC BC、、CD CD、、AD 边上且AE=CG AE=CG,,AH=CF AH=CF..求证:四边形EFGH 是平行四边形.考点: 平行四边形的判定与性质;全等三角形的判定与性质.分析: 易证得△AEH≌△CGF,从而证得对应边BE=DG BE=DG、、DH=BF DH=BF.故有△BEF≌△DGH,根据两组对边分别相等的四边.故有△BEF≌△DGH,根据两组对边分别相等的四边形是平行四边形而得证.解答: 证明:在平行四边形ABCD 中,∠A=∠C(平行四边形的对边相等);又∵AE=CG,又∵AE=CG,AH=CF AH=CF AH=CF(已知)(已知), ∴△AEH≌△CGF(∴△AEH≌△CGF(SAS SAS SAS)), ∴EH=GF(全等三角形的对应边相等);在平行四边形ABCD 中,中,AB=CD AB=CD AB=CD,,AD=BC AD=BC(平行四边形的对边相等)(平行四边形的对边相等), ∴AB﹣∴AB﹣AE=CD AE=CD AE=CD﹣﹣CG CG,,AD AD﹣﹣AH=BC AH=BC﹣﹣CF CF,,即BE=DG BE=DG,,DH=BF DH=BF..又∵在平行四边形ABCD 中,∠B=∠D,∴△BEF≌△DGH;∴GH=EF(全等三角形的对应边相等);∴四边形EFGH 是平行四边形(两组对边分别相等的四边形是平行四边形).点评: 本题考查了平行四边形的判定和性质、全等三角形的判定和性质.平行四边形的判定方法共有五种,应用时要认真领会它们之间的联系与区别,同时要根据条件合理、灵活地选择方法.1515.如图,在平行四边形.如图,在平行四边形ABCD 中,中,E E 、F 是对角线AC 上的点,且AE=CF AE=CF..(1)猜想探究:)猜想探究:BE BE 与DF 之间的关系: 平行且相等(2)请证明你的猜想.考点: 平行四边形的判定与性质.分析: (1)BE 平行且等于DF DF;;(2)连接BD 交AC 于O ,根据平行四边形的性质得出OA=OC OA=OC,,OD=OB OD=OB,推出,推出OE=OF OE=OF,得出平行四边形,得出平行四边形BEDF即可.解答: (1)解:)解:BE BE 和DF 的关系是:的关系是:BE=DF BE=DF BE=DF,BE∥DF,,BE∥DF,故答案为:平行且相等.(2)证明:连接BD 交AC 于O ,∵ABCD 是平行四边形,∴OA=OC,∴OA=OC,OB=OD OB=OD OB=OD,,∵AE=CF,∴OE=OF,∴BFDE 是平行四边形,∴BE=DF,BE∥DF.点评: 本题考查了平行四边形的性质和判定的应用,主要检查学生能否熟练地运用平行四边形的性质和判定进行推理,题型较好,通过此题培养了学生分析问题和解决问题的能力,同时培养了学生的观察能力和猜想能力.1616.如图,.如图,.如图,E E 、F 是平行四边形ABCD 对角线AC 上的两点,且BE∥DF.求证:∠1=∠2.考点: 平行四边形的判定与性质;全等三角形的判定与性质.分析: 由三角形全等(△ABE≌△CDF)得到BE=DF BE=DF,所以四边形,所以四边形BFDE 是平行四边形,根据对角相等即可得证. 解答: 证明:∵四边形ABCD 是平行四边形(已知),∴AB=CD,AB∥CD(平行四边形的对边平行且相等),∴∠BAE=∠DCF(两直线平行,内错角相等);∵BE∥DF(已知),∴∠BEF=∠DFE(两直线平行,内错角相等),∴∠AEB=∠CFD(等量代换),∴△ABE≌△CDF(∴△ABE≌△CDF(AAS AAS AAS)); ∴BE=DF(全等三角形的对应边相等),∵BE∥DF,∴四边形BEDF 是平行四边形(对边平行且相等的四边形是平行四边形),∴∠1=∠2(平行四边形的对角相等).点评: 本题主要考查平行四边形的性质和三角形全等的判定,需要熟练掌握并灵活运用.平行四边形的判定定理:对边平行且相等的四边形是平行四边形.1717.如图,已知.如图,已知E ,F 分别是▱ABCD 的边AB AB,,CD 的中点.求证:的中点.求证:ED=BF ED=BF ED=BF..考点: 平行四边形的判定与性质.分析: 根据平行四边形的性质得到AB∥CD,AB=CD AB=CD,,根据线段的中点的定义得到EB=AB AB,,DF=CD CD,,即BE=DF BE=DF,,BE∥DF,得到平行四边形EBFD EBFD,根据平行四边形的性质即可得到答案.,根据平行四边形的性质即可得到答案.解答: 证明:∵四边形ABCD 是平行四边形,∴AB∥CD,∴AB∥CD,AB=CD AB=CD AB=CD,,∵E,∵E,F F 分别是▱ABCD 的边AB AB,,CD 的中点,∴EB=AB AB,,DF=CD CD,,∴BE=DF,∵BE∥DF,∴四边形EBFD 是平行四边形,∴ED=BF.点评: 本题主要考查对平行四边形的性质和判定的理解和掌握,能灵活运用平行四边形的性质和判定进行证明是解此题的关键.1818.如图,.如图,.如图,BD BD 是▱ABCD 的对角线,∠ABD 的平分线BE 交AD 于点E ,∠CDB 的平分线DF 交BC 于点F .求证:四边形DEBF 为平行四边形.考点: 平行四边形的判定与性质;角平分线的定义.分析: 根据平行四边形性质和角平分线定义求出∠FDB=∠EBD,推出DF∥BE,根据平行四边形的判定判断即可. 解答: 解:∵四边形ABCD 是平行四边形,∴AD∥BC,AB∥CD,∴∠CDB=∠ABD,∵DF 平分∠CDB,平分∠CDB,BE BE 平分∠ABD,∴∠FDB=∠CDB,∠EBD=∠ABD,∴∠FDB=∠EBD,∴DF∥BE,∵AD∥BC,即ED∥BF,∴四边形DEBF 是平行四边形.点评: 本题考查了角平分线定义,平行四边形的性质和判定等的应用,关键是推出DF∥BE,主要检查学生能否运用定理进行推理,题型较好,难度适中.1919.如图,在.如图,在▱ABCD 中,对角线AC 与BD 交于点O ,已知点E 、F 分别为AO AO、、OC 的中点,证明:四边形BFDE 是平行四边形.考点: 平行四边形的判定与性质;全等三角形的判定与性质.分析: 利用“平行四边形的对角线互相平分”的性质推知OA=OC OA=OC,,OB=OD OB=OD;然后由已知条件“点;然后由已知条件“点E 、F 分别为AO AO、、OC 的中点”可以证得OE=OF OE=OF;最后根据平行四边形的判定定理“对角线相互平分的四边形为平行四边形”;最后根据平行四边形的判定定理“对角线相互平分的四边形为平行四边形”即可证得结论.解答: 证明:∵四边形ABCD 是平行四边形,∴OA=OC,∴OA=OC,OB=OD OB=OD OB=OD(平行四边形的对角线互相平分)(平行四边形的对角线互相平分). 又∵点E 、F 分别为AO AO、、OC 的中点,∴OE=OF.∴四边形BFDE 是平行四边形(对角线相互平分的四边形为平行四边形).点评: 本题考查了平行四边形的判定与性质.平行四边形的判定方法共有五种,应用时要认真领会它们之间的联系与区别,同时要根据条件合理、灵活地选择方法.2020.如图所示,.如图所示,.如图所示,A A ,E ,F ,C 在一条直线上,在一条直线上,AE=CF AE=CF AE=CF,过,过E ,F 分别作DE⊥AC,BF⊥AC,若AB=CD AB=CD,可以得到,可以得到BD 平分EF EF,为什么?说明理由.,为什么?说明理由.考点: 全等三角形的判定与性质;垂线;直角三角形全等的判定;平行四边形的判定与性质.分析: 求出∠AFB=∠CED=90°,DE∥BF,推出AF=CE AF=CE,连接,连接BE BE、、DF DF,根据,根据HL 证Rt△ABF≌Rt△CDE,推出DE=BF DE=BF,,得出平行四边形DEBF DEBF,根据平行四边形的性质推出即可.,根据平行四边形的性质推出即可.解答: 解:解:BD BD 平分EF EF,理由是:,理由是:证法一、连接BE BE、、DF DF..∵DE⊥AC,BF⊥AC,∴∠AFB=∠CED=90°,DE∥BF,∵AE=CF,∴AE+EF=CF+EF,即AF=CE AF=CE,,在Rt△ABF 和Rt△CDE 中,∴Rt△ABF≌Rt△CDE,∴DE=BF,∵DE∥BF,∴四边形DEBF 是平行四边形,∴BD 平分EF EF;;证法二、∵DE⊥AC,BF⊥AC,∴∠AFB=∠CED=90°,DE∥BF,∵AE=CF,∴AE+EF=CF+EF,即AF=CE AF=CE,,在Rt△ABF 和Rt△CDE 中,∴Rt△ABF≌Rt△CDE,∴DE=BF,∵在△BFG 和△DEG 中,∴△BFG≌△DEG(∴△BFG≌△DEG(AAS AAS AAS)), ∴EG=FG,即BD 平分EF EF..点评: 本题考查了平行四边形的性质和判定,垂线,全等三角形的性质和判定等知识点的运用,关键是得出平行四边形DEBF DEBF,题目比较好,难度适中.,题目比较好,难度适中.2121.如图,△ABC .如图,△ABC 的中线BD BD、、CE 交于点O ,F 、G 分别是OB OB、、OC 的中点.求证:求证:EF=DG EF=DG 且EF∥DG.考点: 三角形中位线定理;三角形的角平分线、中线和高;平行四边形的判定与性质.分析: 根据三角形的中位线推出DE∥BC,DE∥BC,DE=DE=BC BC,,GF∥BC,GF∥BC,GF=GF=BC BC,,推出GF=DE GF=DE,,GF∥DE,GF∥DE,得出平行四边形得出平行四边形DEFG DEFG,,根据平行四边形的性推出即可.解答: 证明:∵BD、证明:∵BD、CE CE 是△ABC 的中线,∴DE∥BC,∴DE∥BC,DE=DE=BC BC,,同理:GF∥BC,同理:GF∥BC,GF=GF=BC BC,,∴GF=DE,GF∥DE,∴四边形DEFG 是平行四边形,∴EF=DG,EF∥DG.点评: 本题考查了平行四边形的性质和判定,三角形的中位线,三角形的中线等知识点,主要检查学生能否熟练的运用性质进行推理,题目比较典型,难度适中,通过做此题培养了学生分析问题和解决问题的能力.考点: 平行四边形的判定与性质.分析: 根据平行四边形性质得出OA=OC OA=OC,,AD∥BC,推出OE=OF OE=OF,,∠GAO=∠HCO,∠AGO=∠CHO,根据AAS 证△AGO≌△CHO,推出OG=OH OG=OH,根据平行四边形的判定推出即可.,根据平行四边形的判定推出即可.解答: 证明:∵四边形ABCD 是平行四边形,∴OA=OC,AD∥BC,∵AE=CF,∴OE=OF,∵AD∥BC,∴∠GAO=∠HCO,∠AGO=∠CHO,在△AGO 和△CHO 中,∴△AGO≌△CHO(∴△AGO≌△CHO(AAS AAS AAS)), ∴OG=OH,∵OE=OF,∴四边形EHFG 是平行四边形.点评: 本题考查了全等三角形的性质和判定,平行线的性质,平行四边形的性质和判定等知识点,注意:平行四边形的对角线互相平分,对角线互相平分的四边形是平行四边形.。
平行四边形的判定一.选择题(共15小题)1.如图,▱ABCD的对角线AC,BD交于点O,若AC=6,BD=8,则AB的长可能是()A.10B.8C.7D.62.如图,平行四边形ABCD的对角线AC,BD相交于点O,下列结论错误的是()A.OA=OC B.AB=CD C.AD=BC D.∠ABD=∠CBD 3.如图,平行四边形OABC的顶点A,B坐标分别为(﹣6,0),(﹣8,2),则点C的坐标是()A.(1,2)B.(﹣1,2)C.(2,2)D.(﹣2,2)4.如图,在平行四边形ABCD中,AC、BD相交于点O,AB⊥AC,若AB=4,AC=6,则△COD的周长是()A.8B.10C.12D.165.如图,四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定这个四边形是平行四边形的是()A.AB∥DC,AD∥BC B.AB=DC,AD=BCC.AO=CO,BO=DO D.AB=DC,AD∥BC6.如图,在四边形ABCD中,对角线AC和BD相交于点O,下列条件不能判断四边形ABCD 是平行四边形的是()A.AB∥DC,AD∥BC B.AB=DC,AD=BCC.AB∥DC,AD=BC D.OA=OC,OB=OD7.如图,四边形ABCD的对角线AC,BD交于点O,则不能判断四边形ABCD是平行四边形的是()A.∠ABD=∠BDC,OA=OC B.∠ABC=∠ADC,AB=CDC.∠ABC=∠ADC,AD∥BC D.∠ABD=∠BDC,∠BAD=∠DCB 8.满足下列条件的四边形,不一定是平行四边形的是()A.两组对边分别平行B.两组对边分别相等C.一组对边平行且相等D.一组对边平行,另一组对边相等9.下列四个选项中,能判断四边形ABCD是平行四边形的是()A.AB=CD,AC=BD B.∠A=∠B,∠B=∠CC.AB=CD,AD∥BC D.AB∥CD,∠A=∠C10.从①AB∥CD;②AB=CD;③BC∥AD;④BC=AD,这四个条件中选取两个,使四边形ABCD成为平行四边形,下面不能说明是平行四边形的是()A.①②B.①③C.②④D.①④11.在下列条件中,能判定四边形为平行四边形的是()A.两组邻边相等B.一组对边平行且另一组对边相等C.两组对边分别平行D.对角线互相垂直12.不能判定四边形ABCD为平行四边形的条件是()A.AB∥CD,AD=BC B.AB∥CD,∠A=∠CC.AD∥BC,AD=BC D.∠A=∠C,∠B=∠D13.如图,在四边形ABCD中,AB∥CD,要使四边形ABCD是平行四边形,下列可添加的条件不正确的是()A.AD=BC B.AB=CD C.AD∥BC D.∠A=∠C 14.下列给出的条件中,能判断四边形ABCD是平行四边形的是()A.AB∥CD,AD=BC B.∠B=∠C;∠A=∠DC.AB=CD,CB=AD D.AB=AD,CD=BC15.下列条件中,能判定四边形ABCD为平行四边形的个数是()①AB∥CD,AD=BC;②AB=CD,AD=BC;③∠A=∠B,∠C=∠D;④AB=AD,CB=CDA.1个B.2个C.3个D.4个二.解答题(共15小题)16.如图,点B,E,C,F在一条直线上,AB=DE,AC=DF,BE=CF.(1)求证:△ABC≌△DEF;(2)连接AD,求证:四边形ABED是平行四边形.17.如图,在四边形ABCD中,AB=CD,DE⊥AC于点E,BF⊥AC于点F,且DE=BF.求证:四边形ABCD是平行四边形.18.已知:如图,在四边形ABCD中,∠BAC=∠ACD=90°,AB=CD,点E是CD的中点.(1)求证:四边形ABCE是平行四边形;(2)若AC=4,AD=4,求四边形ABCE的面积.19.如图,四边形ABCD的对角线AC、BD相交于点O,BO=DO,点E、F分别在AO,CO上,且BE∥DF,AE=CF.求证:四边形ABCD为平行四边形.20.如图:已知∠B=∠E=90°,点B、C、F、E在一条直线上AC=DF,BF=EC.求证四边形ACDF是平行四边形.21.如图,在四边形ABCD中,AD∥BC且AD=9cm,BC=6cm,点P、Q分别从点A、C 同时出发,点P以1cm/s的速度由A向D运动,点Q以2cm/s的速度由C向B运动.问几秒后直线PQ将四边形ABCD截出一个平行四边形?22.已知:如图,A,B,C,D在同一直线上,且AB=CD,AE=DF,AE∥DF.求证:四边形EBFC是平行四边形.23.如图,已知△ABC是等边三角形,E为AC上一点,连接BE.将AC绕点E旋转,使点C落在BC上的点D处,点A落在BC上方的点F处,连接AF.求证:四边形ABDF是平行四边形.24.如图,已知,AE⊥BD于E点,CF⊥BD于F点,∠1=∠2,BE=DF,连接AB,CD.求证:四边形ABCD是平行四边形.25.如图,点B、E、C、F在一条直线上,AB=DF,AC=DE,BE=FC.连接AF、BD,求证:四边形ABDF是平行四边形.26.如图,AD是△ABC边BC上的中线,AE∥BC,BE交AD于点F,F是BE的中点,连结CE.求证:四边形ADCE是平行四边形.27.如图,D是△ABC的边AB上一点,CE∥AB,DE交AC于点F,若F A=FC.求证:四边形ADCE是平行四边形;28.如图,在四边形ABCD中,AB=CD,DE⊥AC,BF⊥AC,垂足分别为E,F,且DE =BF.求证:(1)AE=CF;(2)四边形ABCD是平行四边形.29.如图,已知△ABC是等边三角形,点D在BC边上,△ADF是以AD为边的等边三角形,过点F作BC的平行线交线段AC于点E,连接BF.求证:(1)△AFB≌△ADC;(2)四边形BCEF是平行四边形.30.如图,点B、E、C、F在一条直线上,AB∥DF,AC∥DE,BE=FC,连接BD、AF.求证:四边形ABDF是平行四边形.平行四边形的判定参考答案与试题解析一.选择题(共15小题)1.如图,▱ABCD的对角线AC,BD交于点O,若AC=6,BD=8,则AB的长可能是()A.10B.8C.7D.6解:∵四边形ABCD是平行四边形,∴OA=AC=3,OB=BD=4,在△AOB中:4﹣3<AB<4+3,即1<AB<7,∴AB的长可能为6.故选:D.2.如图,平行四边形ABCD的对角线AC,BD相交于点O,下列结论错误的是()A.OA=OC B.AB=CD C.AD=BC D.∠ABD=∠CBD 解:A、∵平行四边形ABCD的对角线AC、BD相交于点O,∴OA=OC,故此选项不符合题意;B、∵四边形ABCD是平行四边形,∴AB=CD,故此选项不符合题意;C、∵四边形ABCD是平行四边形,∴AD=BC,故此选项不符合题意;D、当四边形ABCD是菱形时,∠ABD=∠CBD,故此选项符合题意;故选:D.3.如图,平行四边形OABC的顶点A,B坐标分别为(﹣6,0),(﹣8,2),则点C的坐标是()A.(1,2)B.(﹣1,2)C.(2,2)D.(﹣2,2)解:∵A(﹣6,0),∴OA=6,∵四边形OABC是平行四边形,∴BC∥OA,BC=OA=6,∵B(﹣8,2),∴C(﹣2,2),故选:D.4.如图,在平行四边形ABCD中,AC、BD相交于点O,AB⊥AC,若AB=4,AC=6,则△COD的周长是()A.8B.10C.12D.16解:∵在平行四边形ABCD中,AC、BD相交于点O,AB⊥AC,若AB=4,AC=6,∴BO=,∴BD=10,∴△COD的周长=OD+OC+CD=5+3+4=12,故选:C.5.如图,四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定这个四边形是平行四边形的是()A.AB∥DC,AD∥BC B.AB=DC,AD=BCC.AO=CO,BO=DO D.AB=DC,AD∥BC解:A、∵AB∥CD,AD∥BC,∴四边形ABCD是平行四边形,故此选项不符合题意;B、∵AB=DC,AD=BC,∴四边形ABCD是平行四边形,故此选项不符合题意;C、∵AO=CO,BO=DO,∴四边形ABCD是平行四边形,故此选项不符合题意;D、AB=DC,AD∥BC无法得出四边形ABCD是平行四边形,故此选项符合题意;故选:D.6.如图,在四边形ABCD中,对角线AC和BD相交于点O,下列条件不能判断四边形ABCD 是平行四边形的是()A.AB∥DC,AD∥BC B.AB=DC,AD=BCC.AB∥DC,AD=BC D.OA=OC,OB=OD解:∵AB∥DC,AD∥BC,∴四边形ABCD是平行四边形,故选项A中条件可以判定四边形ABCD是平行四边形;∵AB=DC,AD=BC,∴四边形ABCD是平行四边形,故选项B中条件可以判定四边形ABCD是平行四边形;∵AB∥DC,AD=BC,则无法判断四边形ABCD是平行四边形,故选项C中的条件,不能判断四边形ABCD是平行四边形;∵OA=OC,OB=OD,∴四边形ABCD是平行四边形,故选项D中条件可以判定四边形ABCD是平行四边形;故选:C.7.如图,四边形ABCD的对角线AC,BD交于点O,则不能判断四边形ABCD是平行四边形的是()A.∠ABD=∠BDC,OA=OC B.∠ABC=∠ADC,AB=CDC.∠ABC=∠ADC,AD∥BC D.∠ABD=∠BDC,∠BAD=∠DCB 解:A、∵∠ABD=∠BDC,OA=OC,又∠AOB=∠COD,∴△AOB≌△COD,∴DO=BO,∴四边形ABCD是平行四边形,故此选项不合题意;B、∠ABC=∠ADC,AB=CD不能判断四边形ABCD是平行四边形,故此选项符合题意;C、∵AD∥BC,∴∠ABC+∠BAD=180°,∵∠ABC=∠ADC,∴∠ADC+∠BAD=180°,∴AB∥CD,∴四边形ABCD是平行四边形,故此选项不合题意;D、∵∠ABD=∠BDC,∠BAD=∠DCB,∴∠ADB=∠CBD,∴AD∥CB,∵∠ABD=∠BDC,∴AD∥CB,∴四边形ABCD是平行四边形,故此选项不合题意;故选:B.8.满足下列条件的四边形,不一定是平行四边形的是()A.两组对边分别平行B.两组对边分别相等C.一组对边平行且相等D.一组对边平行,另一组对边相等解:A、∵两组对边分别平行的四边形是平行四边形,∴选项A不符合题意;B、∵两组对边分别相等的四边形是平行四边形,∴选项B不符合题意;C、∵一组对边平行且相等的四边形是平行四边形,∴选项C不符合题意;D、∵一组对边平行,另一组对边相等的四边形可能是等腰梯形或平行四边形,∴选项D符合题意;故选:D.9.下列四个选项中,能判断四边形ABCD是平行四边形的是()A.AB=CD,AC=BD B.∠A=∠B,∠B=∠CC.AB=CD,AD∥BC D.AB∥CD,∠A=∠C解:A、AB=CD,AC=BD不能判定四边形ABCD是平行四边形,故此选项错误;B、∠A=∠B,∠B=∠C不能判定四边形ABCD是平行四边形,故此选项错误;C、AB=CD,AD∥BC不能判定四边形ABCD是平行四边形,故此选项错误;D、∵AB∥CD,∴∠A+∠D=∠B+∠C=180°,∵∠A=∠C,∴∠B=∠D,∴四边形ABCD是平行四边形,故此选项正确;故选:D.10.从①AB∥CD;②AB=CD;③BC∥AD;④BC=AD,这四个条件中选取两个,使四边形ABCD成为平行四边形,下面不能说明是平行四边形的是()A.①②B.①③C.②④D.①④解:根据平行四边形的判定,符合条件的有4种,分别是:①②、③④、①③、②④.故选:D.11.在下列条件中,能判定四边形为平行四边形的是()A.两组邻边相等B.一组对边平行且另一组对边相等C.两组对边分别平行D.对角线互相垂直解:A、两组邻边相等的四边形是筝形,故本选项不符合题意;B、一组对边平行且另一组对边相等的四边形可能是等腰梯形或平行四边形,故本选项不符合题意;C、两组对边分别平行的四边形是平行四边形,故本选项符合题意;D、对角线互相平分的四边形才是平行四边形,故本选项不符合题意;故选:C.12.不能判定四边形ABCD为平行四边形的条件是()A.AB∥CD,AD=BC B.AB∥CD,∠A=∠CC.AD∥BC,AD=BC D.∠A=∠C,∠B=∠D解:A、AB∥CD,AD=BC,不能判定四边形ABCD为平行四边形,错误;B、∵AB∥CD,∴∠A+∠D=180°,∵∠A=∠C,∴∠C+∠D=180°,∴AD∥BC,∴四边形ABCD为平行四边形,正确;C、∵AD∥BC,AD=BC,∴四边形ABCD为平行四边形,正确;D、∵∠A=∠C,∠B=∠D,∴∠A+∠D=∠C+∠D=180°,∴AD∥BC,AB∥CD,∴四边形ABCD为平行四边形,正确;故选:A.13.如图,在四边形ABCD中,AB∥CD,要使四边形ABCD是平行四边形,下列可添加的条件不正确的是()A.AD=BC B.AB=CD C.AD∥BC D.∠A=∠C解:D、当AB∥CD,AD=BC时,四边形ABCD可能为等腰梯形,所以不能证明四边形ABCD为平行四边形;B、AB∥CD,AB=DC,一组对边分别平行且相等,可证明四边形ABCD为平行四边形;C、AB∥CD,AD∥BC,两组对边分别平行,可证明四边形ABCD为平行四边形;D、∵AB∥CD,∴∠A+∠D=180°,∵∠A=∠C,∴∠C+∠D=180°,∴AD∥BC,∴四边形ABCD为平行四边形;故选:A.14.下列给出的条件中,能判断四边形ABCD是平行四边形的是()A.AB∥CD,AD=BC B.∠B=∠C;∠A=∠DC.AB=CD,CB=AD D.AB=AD,CD=BC解:A、根据AD∥CD,AD=BC不能判断四边形ABCD是平行四边形,故本选项错误;B、根据∠B=∠C,∠A=∠D不能判断四边形ABCD是平行四边形,故本选项错误;C、根据AB=CD,AD=BC,得出四边形ABCD是平行四边形,故本选项正确;D、根据AB=AD,BC=CD,不能判断四边形ABCD是平行四边形,故本选项错误;故选:C.15.下列条件中,能判定四边形ABCD为平行四边形的个数是()①AB∥CD,AD=BC;②AB=CD,AD=BC;③∠A=∠B,∠C=∠D;④AB=AD,CB=CDA.1个B.2个C.3个D.4个解:①AB∥CD,AD=BC,不能判定四边形ABCD为平行四边形;②AB=CD,AD=BC;能判定四边形ABCD为平行四边形;③∠A=∠B,∠C=∠D;不能判定四边形ABCD为平行四边形;④AB=AD,CB=CD;不能判定四边形ABCD为平行四边形;能判定四边形ABCD为平行四边形的个数有1个,故选:A.二.解答题(共15小题)16.如图,点B,E,C,F在一条直线上,AB=DE,AC=DF,BE=CF.(1)求证:△ABC≌△DEF;(2)连接AD,求证:四边形ABED是平行四边形.(1)证明:∵BE=CF,∴BE+EC=CF+EC,∴BC=EF,在△ABC和△DEF中,,∴△ABC≌△DEF(SSS);(2)证明:由(1)得:△ABC≌△DEF,∴∠B=∠DEF,∴AB∥DE,又∵AB=DE,∴四边形ABED是平行四边形.17.如图,在四边形ABCD中,AB=CD,DE⊥AC于点E,BF⊥AC于点F,且DE=BF.求证:四边形ABCD是平行四边形.证明:∵DE⊥AC于点E,BF⊥AC于点F,∴∠DEC=∠BF A=90°,在Rt△ABF和Rt△CDE中,∴Rt△ABF≌Rt△CDE(HL),∴∠DCE=∠BAF,∴AB∥CD,又∵AB=CD,∴四边形ABCD是平行四边形.18.已知:如图,在四边形ABCD中,∠BAC=∠ACD=90°,AB=CD,点E是CD的中点.(1)求证:四边形ABCE是平行四边形;(2)若AC=4,AD=4,求四边形ABCE的面积.(1)证明:∵∠BAC=∠ACD=90°,∴AB∥EC,∵点E是CD的中点,∴,∵,∴AB=EC,∴四边形ABCE是平行四边形;(2)解:∵∠ACD=90°,AC=4,,∴,∵,∴AB=2,∴S平行四边形ABCE=AB•AC=2×4=8.19.如图,四边形ABCD的对角线AC、BD相交于点O,BO=DO,点E、F分别在AO,CO上,且BE∥DF,AE=CF.求证:四边形ABCD为平行四边形.证明:∵BE∥DF,∴∠BEO=∠DFO,在△BEO与△DFO中,,∴△BEO≌△DFO(ASA),∴EO=FO,∵AE=CF,∴AE+EO=CF+FO,即AO=CO,∵BO=DO,∴四边形ABCD为平行四边形.20.如图:已知∠B=∠E=90°,点B、C、F、E在一条直线上AC=DF,BF=EC.求证四边形ACDF是平行四边形.证明:∵BF=EC,∴BF﹣CF=EC﹣CF,即BC=EF,在Rt△ABC和Rt△DEF中,,∴Rt△ABC≌Rt△DEF(HL),∴∠ACB=∠DFE,∴∠ACF=∠DFC,∴AC∥DF,又∵AC=DF,∴四边形ACDF是平行四边形.21.如图,在四边形ABCD中,AD∥BC且AD=9cm,BC=6cm,点P、Q分别从点A、C 同时出发,点P以1cm/s的速度由A向D运动,点Q以2cm/s的速度由C向B运动.问几秒后直线PQ将四边形ABCD截出一个平行四边形?解:设点P,Q运动的时间为ts.依题意得:CQ=2t,BQ=6﹣2t,AP=t,PD=9﹣t.①当BQ=AP时,四边形APQB是平行四边形.即6﹣2t=t,解得t=2.②当CQ=PD时,四边形CQPD是平行四边形,即2t=9﹣t,解得:t=3.所以经过2或3秒后,直线PQ将四边形ABCD截出一个平行四边形.22.已知:如图,A,B,C,D在同一直线上,且AB=CD,AE=DF,AE∥DF.求证:四边形EBFC是平行四边形.证明:连接AF,ED,EF,EF交AD于O.∵AE=DF,AE∥DF.∴四边形AEDF为平行四边形,∴EO=FO,AO=DO,又∵AB=CD,∴AO﹣AB=DO﹣CD,∴BO=CO,又∵EO=FO,∴四边形EBFC是平行四边形.23.如图,已知△ABC是等边三角形,E为AC上一点,连接BE.将AC绕点E旋转,使点C落在BC上的点D处,点A落在BC上方的点F处,连接AF.求证:四边形ABDF是平行四边形.证明:∵△ABC是等边三角形,∴AC=BC=AB,∠ACB=60°;∵将AC绕点E旋转∴ED=CE,EF=AE∴△EDC是等边三角形,∴DE=CD=CE,∠DCE=∠EDC=60°,∴FD=AC=BC,∴△ABC、△AEF、△DCE均为等边三角形,∴∠CDE=∠ABC=∠EF A=60°,∴AB∥FD,BD∥AF,∴四边形ABDF是平行四边形.24.如图,已知,AE⊥BD于E点,CF⊥BD于F点,∠1=∠2,BE=DF,连接AB,CD.求证:四边形ABCD是平行四边形.证明:∵AE⊥BD于E点,CF⊥BD于F点,∴∠AED=∠BFC=90°,∵BE=DF,∴BE+EF=DF+EF,即:BF=DE又∵∠1=∠2,∴△ADE≌△CBF(ASA),∴AD=BC,又∵∠1=∠2,∴AD∥BC,∴四边形ABCD是平行四边形.25.如图,点B、E、C、F在一条直线上,AB=DF,AC=DE,BE=FC.连接AF、BD,求证:四边形ABDF是平行四边形.解:∵BE=FC,∴BE+EC=FC+EC,∴BC=FE,在△ABC和△DFE中,,∴△ABC≌△DFE(SSS),∴∠ABC=∠DFE,∴AB∥DF,又∵AB=DF,∴四边形ABDF是平行四边形.26.如图,AD是△ABC边BC上的中线,AE∥BC,BE交AD于点F,F是BE的中点,连结CE.求证:四边形ADCE是平行四边形.证明:∵AD是△ABC边BC上的中线,F是BE的中点,∴BF=EF,BD=CD,∴DF∥CE,∴AD∥CE,∵AE∥BC,∴四边形ADCE是平行四边形.27.如图,D是△ABC的边AB上一点,CE∥AB,DE交AC于点F,若F A=FC.求证:四边形ADCE是平行四边形;证明:∵CE∥AB,∴∠BAC=∠ECA,在△DAF和△ECF中,∴△DAF≌△ECF(ASA),∴CE=AD,∴四边形ADCE是平行四边形;28.如图,在四边形ABCD中,AB=CD,DE⊥AC,BF⊥AC,垂足分别为E,F,且DE =BF.求证:(1)AE=CF;(2)四边形ABCD是平行四边形.证明:(1)∵DE⊥AC,BF⊥AC,∴∠DEC=∠BFC=90°,在Rt△DEC和Rt△BFC中,,∴Rt△DEC≌Rt△BFC(HL),∴EC=AF,∴EC﹣EF=AF﹣EF即AE=FC;(2)∵Rt△DEC≌Rt△BFC,∴∠DCE=∠BAF,∴AB∥DC,又∵AB=DC,∴四边形ABCD是平行四边形.29.如图,已知△ABC是等边三角形,点D在BC边上,△ADF是以AD为边的等边三角形,过点F作BC的平行线交线段AC于点E,连接BF.求证:(1)△AFB≌△ADC;(2)四边形BCEF是平行四边形.证明:(1)∵△ABC和△ADF都是等边三角形,∴AF=AD,AB=AC,∠F AD=∠BAC=60°,又∵∠F AB=∠F AD﹣∠BAD,∠DAC=∠BAC﹣∠BAD,∴∠F AB=∠DAC,且AF=AD,AB=AC∴△AFB≌△ADC(SAS);(2)∵△AFB≌△ADC,∴∠ABF=∠C=60°.又∵∠BAC=∠C=60°,∴∠ABF=∠BAC,∴FB∥AC,又∵BC∥EF,∴四边形BCEF是平行四边形;30.如图,点B、E、C、F在一条直线上,AB∥DF,AC∥DE,BE=FC,连接BD、AF.求证:四边形ABDF是平行四边形.证明:∵BE=FC,∴BE+CE=FC+CE,即BC=FE,∵AB∥DF,AC∥DE,∴∠ABC=∠DFE,∠ACB=∠DEF,在△ABC和△DFE中,,∴△ABC≌△DFE(ASA),∴AB=DF,∵AB∥DF,∴四边形ABDF是平行四边形.。
第一部分 平行四边形的性质练习题 例题1、平行四边形得周长为50cm ,两邻边之差为5cm,求各边长。
变题1.平行四边形ABCD 的周长为40cm,两邻边AB 、AC 之比为2:3,则AB=_______,BC=________. 变题2.四边形ABCD 是平行四边形,∠BAC=90°,AB=3,AC=4,求AD 的长。
例题2.平行四边形ABCD 中,∠A-∠B=20°,求平行四边形各内角的度数。
变题3.平行四边形ABCD 中,AE 平分∠DAB, ∠DEA=20°,则∠C=_________,∠B_________. 变题4.如图,在平行四边形ABCD 中,∠BAC=34°, ∠ACB=26°,求∠DAC 与∠D 的度数。
例题3.如图,在平行四边形ABCD 中,CE ⊥AD,CF ⊥BA 交BA 的延长线于F ,∠FBC=30°,CE=3cm,CF=5cm,求平行四边形ABCD 的周长。
变题5.如图,平行四边形ABCD 的周长为50,其中AB=15,∠ABC=60°,求平行四边形面积。
1、如图,四边形ABCD 是平行四边形,AB=6cm,BC=8cm ,∠B=70°,则AD=________,CD=______,∠D=_______,∠A=______,∠C=_______.2、平行四边形ABCD 的周长为40cm,两邻边AB 、AC 之比为2:3,则AB=_______,BC=________.3、平行四边形得周长为50cm ,两邻边之差为5cm,则长边是________ ,短边是__________.4、平行四边形ABCD 中,∠A-∠B=20°, 则∠A=_______ ∠B=________5、.平行四边形ABCD 中,AE 平分∠DAB, ∠DEA=20°,则∠C=____,∠B_____.6、平行四边形 ABCD 中,∠A+∠C=200°.则:∠A= _______,∠B= _________ .7、如图,平行四边形ABCD 的周长为50,其中AB=15,∠ABC=60°,求平行四边形面积。
平行四边形的判定练习题(含答案)(1)因为AD∥BC,AB=CD,所以ABCD是平行四边形.()(2)因为AB∥CD,AD=BC,所以ABCD是平行四边形.()(3)因为AD∥BC,AD=BC,所以ABCD是平行四边形.()(4)因为AB∥CD,AD∥BC,所以ABCD是平行四边形.()(5)因为AB=CD,AD=BC,所以ABCD是平行四边形.()(6)因为AD=CD,AB=AC,所以ABCD是平行四边形.()5.已知AD∥BC,要使四边形ABCD为平行四边形,需要增加条件________.6.如图所示,∠1=∠2,∠3=∠4,问四边形ABCD是不是平行四边形.7.如图所示,在四边形ABCD中,AB=CD,BC=AD,E,F 为对角线AC上的点,且AE=CF,求证:BE=DF.8.如图所示,D为△ABC的边AB上一点,DF交AC于点E,且AE=CE,FC∥AB.求证:CD=AF.9.如图所示,已知四边形ABCD是平行四边形,在AB 的延长线上截取BE=•AB,BF=BD,连接CE,DF,相交于点M.求证:CD=CM.10.如图所示,在四边形ABCD中,DC∥AB,以AD,AC为边作□ACED,延长DC•交EB于F,求证:EF=FB.知能点2 三角形的中位□线11.如图所示,已知E为□ABCD中DC边的延长线上的一点,且CE=DC,连接AE,分别交BC,BD于点F,G,连接AC交BD于点O,连接OF,求证:AB=2OF.12.如图所示,在ABCD中,EF∥AB且交BC于点E,交AD于点F,连接AE,BF•交于点M,连接CF,DE交AD.于点N,求证:MN∥AD且MN=1213.如图所示,DE是△ABC的中位线,BC=8,则DE=_______.14.如图所示,在□ABCD中,对角线AC,BD交于点O,OE∥BC交CD•于E,•若OE=3cm,则AD的长为(). A.3cm B.6cm C.9cm D.12cm 15.如图所示,在四边形ABCD中,E,F,G,H分别是AB,BC,CD,AD的中点,•则四边形EFGH是平行四边形吗?为什么?16.如图所示,在△ABC中,AC=6cm,BC=8cm,AB=10cm,D,E,F分别是AB,BC,CA的中点,求△DEF的面积.规律方法应用17.如图所示,A,B两点被池塘隔开,在A,B外选一点C,连接AC和BC,•并分别找出AC和BC的中点M,N,如果测得MN=20m,那么A,B两点间的距离是多少?18.如图所示,在□ABCD中,AB=2AD,∠A=60°,E,F 分别为AB,CD的中点,EF=1cm,那么对角线BD的长度是多少?你是怎样得到的?19.如图所示,在△ABC中,E为AB的中点,CD平分∠ACB,AD⊥CD于点D.•(BC-AC).试说明:(1)DE∥BC.(2)DE=12开放探索创新20.如图所示,在△ABC中,∠BAC=90°,AD⊥BC于D,BE平分∠ABC交AD•于E,EF∥BC交AC于F,那么AE与CF相等吗?请验证你的结论.中考真题实战21.(长沙)如下左图所示,在四边形ABCD中,AB∥CD,要使四边形ABCD•为平行四边形,则应添加的条件是________.(添加一个即可)22.(呼和浩特)如上右图所示,已知E,F,G,H是四边形ABCD各边的中点,•则S四边形EFGH :S四边形ABCD的值是_________.23.(南京)已知如图19-1-55所示,在Y ABCD中,E,F分别是AB,CD的中点.求证:(1) △AFD≌△CEB.(2)四边形AECF是平行四边形.答案:1.C 2.C 3.D4.(1)× (2)× (3)∨ (4)∨ (5)∨ (6)×5.AD=BC或AB∥CD6.解:∵∠1=∠2,∴AD∥BC.又∵∠3=∠4,∴AB∥CD.∴四边形ABCD是平行四边形.7.证明:∵AB=CD,BC=AD,∴四边形ABCD是平行四边形.∴AB∥CD,∴∠BAE=∠DCF.又∵AE=CE,∴△ABE≌△CDF(SAS),∴BE=EF.8.证明:∵FC∥AB,∴∠DAC=∠ACF,∠ADF=∠DFC.又∵AE=CE,∴△ADE≌△CFE(AAS),∴DE=EF.∵AE=CE,∴四边形ADCF为平行四边形.∴CD=AF.9.证明:∵四边形ABCD是平行四边形.∴AB//DC.又∵BE=AB,∴BE//DC,∴四边形BDCE是平行四边形.∵DC∥BF,∴∠CDF=∠F.同理,∠BDM=∠DMC.∵BD=BF,∴∠BDF=∠F.∴∠CDF=∠CMD,∴CD=CM.10.证明:过点B作BG∥AD,交DC的延长线于G,连接EG.∵DC∥AB,∴ABGD是平行四边形,∴BG// AD.在□ACED中,AD//CE,∴CE//BG.∴四边形BCEG为平行四边形,∴EF=FB.11.证明:∵四边形ABCD是平行四边形,∴AB//CD,AD=BC.∵CE=CD,∴AB//CE,∴四边形ABEC为平行四边形.∴BF=FC,∴OF//1AB,即AB=2OF.212.证明:∵四边形ABCD是平行四边形,∴AB∥CD,AD∥BC.又∵EF∥AB,∴EF∥CD.∴四边形ABEF,ECDF均为平行四边形.又∵M,N分别为Y ABEF和Y ECDF对角线的交点.∴M为AE的中点,N为DE的中点,即MN为△AED的中位线.∴MN∥AD且MN=12AD.13.4 14.B15.解:EFGH是平行四边形,连接AC,在△ABC中,∵EF是中位线,∴EF//12AC.同理,GH//12AC.∴EF//GH,∴四边形EFGH为平行四边形.16.解:∵EF,DE,DF是△ABC的中位线,∴EF=12AB,DE=12AC,DF=12BC.又∵AB=10cm,BC=8cm,AC=6cm,∴EF=5cm,DE=3cm,DF=4cm,而32+42=25=52,即DE2+DF2=EF2.∴△EDF为直角三角形.∴S△EDF =12DE·DF=12×3×4=6(cm2).17.解:∵M,N分别是AC,BC的中点.∴MN是△ABC的中位线,∴MN=12AB.∴AB=2MN=2×20=40(m).故A,B两点间的距离是40m.18.解:连接DE.∵四边形ABCD是平行四边形,∴AB//CD.∵DF=12CD,AE=12AB,∴DF//AE.∴四边形ADFE是平行四边形.∴EF=AD=1cm.∵AB=2AD,∴AB=2cm.∵AB=2AD,∴AB=2AE,∴AD=AE.∴∠1=∠4.∵∠A=60°,∠1+∠4+∠A=180°,∴∠1=∠A=∠4=60°.∴△ADE是等边三角形,∴DE=AE.∵AE=BE,∴DE=BE,∴∠2=∠3.∵∠1=∠2+∠3,∠1=60°,∴∠2=∠3=30°.∴∠ADB=∠3+∠4=90°.=cm).19.解:延长AD交BC于F.(1)∵AD⊥CD,∴∠ADC=∠FDC=90°.∵CD平分∠ACB,∴∠ACD=∠FCD.在△ACD与△FCD中,∠ADC=∠FDC,DC=DC,∠ACD=∠FCD.∴△ACD≌△FCD,∴AC=FC,AD=DF.又∵E为AB的中点,∴DE∥BF,即DE∥BC.(2)由(1)知AC=FC,DE=12BF.∴DE=12(BC-FC)=12(BC-AC).20.解:AE=CF.理由:过E作EG∥CF交BC于G,∴∠3=∠C.∵∠BAC=90°,AD⊥BC,∴∠ABC+∠C=90°,∠ABD+∠BAD=90°.∴∠C=∠BAD,∴∠3=∠BAD.又∵∠1=∠2,BE=BE,∴△ABE≌△GBE(AAS),∴AE=GE.∵EF∥BC,EG∥CF,∴四边形EGCF是平行四边形,∴GE=CF,∴AE=CF.21.答案不唯一,如AB=CD或AD∥BC.22.1223.解:(1)在□ABCD中,AD=CB,AB=CD,∠D=∠B.∵E,F分别为AB,CD的中点,∴DF=12CD,BE=12AB,∴DF=BE,∴△AFD≌△CEB.(2)在□ABCD中,AB=CD,AB∥CD.由(1)得BE=DF,∴AE=CE,∴四边形AECF是平行四边形.。
一、选择题<共14小题)1、<2003•广西)如图所示,在△ABC中,AB=AC=5,D是BC上的点,DE∥AB交AC于点E,DF∥AC交AB于点F,那么四边形AFDE的周长是< )A、5B、10C、15D、202、在四边形ABCD中,AB∥CD,若ABCD不是梯形,则∠A:∠B:∠C:∠D可能为< )A、2:3:6:7B、3:4:5:6C、3:5:7:9D、4:5:4:53、<2006•佛山)如图,平面上两颗不同高度、笔直的小树,同一时刻在太阳光线照射下形成的影子分别是AB、DC,则< )b5E2RGbCAPA、四边形ABCD是平行四边形B、四边形ABCD是梯形C、线段AB与线段CD相交D、以上三个选项均有可能4、<2005•柳州)不能判断四边形ABCD是平行四边形的是< )A、AB=CD,AD=BCB、AB=CD,AB∥CDC、AB=CD,AD∥BCD、AB∥CD,AD∥BC5、<2004•聊城)如图,有两块全等的含30°角的三角板拼成形状不同的平行四边形,最多可以拼成< )p1EanqFDPwA、1个B、2个C、3个D、4个6、<2002•山西)A,B,C,D在同一平面内,从①AB∥CD,②AB=CD,③BC∥AD,④BC=AD这四个中任选两个作为条件,能使四边形ABCD为平行四边形的选法有< )DXDiTa9E3dA、6种B、5种C、4种D、3种7、<1998•内江)能判定四边形是平行四边形的条件是< )A、一组对边平行,另一组对边相等B、一组对边相等,一组邻角相等C、一组对边平行,一组邻角相等D、一组对边平行,一组对角相等8、已知四边形ABCD,AC与BD相交于点O,如果给出条件AB∥CD,那么还不能判定四边形ABCD为平行四边形,以下四种说法正确的是< )RTCrpUDGiT①如果再加上条件BC=AD,那么四边形ABCD一定是平行四边形;②如果再加上条件∠BAD=∠BCD,那么四边形ABCD一定是平行四边形;③如果再加上条件AO=CO,那么四边形ABCD一定是平行四边形;④如果再加上条件∠DBA=∠CAB,那么四边形ABCD一定是平行四边形.A、①②B、①③④C、②③D、②③④9、已知四边形ABCD的对角线相交于O,给出下列5个条件①AB∥CD;②AD∥BC;③AB=CD;④∠BAD=∠DCB.从以上4个条件中任选2个条件为一组,能推出四边形ABCD为平行四边形的有< )5PCzVD7HxAA、6组B、5组C、4组D、3组10、在四边形ABCD中,从①AB∥CD;②AB=CD;③BC∥AD;④BC=AD中任选两个使四边形ABCD为平行四边形的选法有jLBHrnAILg< )A、3B、4C、5D、611、四边形ABCD中,AD∥BC,当满足下列< )条件时,四边形ABCD是平行四边形.A、∠A+∠C=180°B、∠B+∠D=180°C、∠A+∠B=180°D、∠A+∠D=180°12、以不在同一直线上的三个点为顶点作平行四边形,最多能作< )A、4个B、3个C、2个D、1个13、在下列给出的条件中,能判定四边形ABCD为平行四边形的是< )A、AB=BC,CD=DAB、AB∥CD,AD=BCC、AB∥CD,∠A=∠CD、∠A=∠B,∠C=∠D14、下列哪组条件能判别四边形ABCD是平行四边形< )A、AB∥CD,AD=BCB、AB=CD,AD=BCC、∠A=∠B,∠C=∠DD、AB=AD,CB=CD二、填空题<共4小题)15、<2018•常德)如图,四边形ABCD中,AB∥CD,要使四边形ABCD为平行四边形,则应添加的条件是_________.<添加一个条件即可,不添加其它的点和线).xHAQX74J0X16、<2009•郴州)如图,在四边形ABCD中,已知AB=CD,再添加一个条件_________ <写出一个即可),则四边形ABCD是平行四边形.<图形中不再添加辅助线)LDAYtRyKfE17、如图,△ABC、△ACE、△ECD都是等边三角形,则图中的平行四边形有哪些_________ _________ .Zzz6ZB2Ltk18、把边长为3,5,7的两个全等三角形拼成四边形,一共能拼成_________ 种不同的四边形,其中有_________ 个平行四边形.dvzfvkwMI1三、解答题<共8小题)19、<2018•贵阳)如图,E,F是四边形ABCD的对角线AC上两点,AF=CE,DF=BE,DF∥BE.rqyn14ZNXI求证:<1)△AFD≌△CEB;<2)四边形ABCD是平行四边形.20、<2018•本溪)我们给出如下定义:若一个四边形的两条对角线相等,则称这个四边形为等对角线四边形.请解答下列问题:EmxvxOtOco<1)写出你所学过的特殊四边形中是等对角线四边形的两种图形的名称;<2)探究:当等对角线四边形中两条对角线所夹锐角为60°时,这对60°角所对的两边之和与其中一条对角线的大小关系,并证明你的结论.SixE2yXPq521、<2006•镇江)已知:如图,在四边形ABCD中,AC与BD相交于点O,AB∥CD,AO=CO.6ewMyirQFL求证:四边形ABCD是平行四边形.22、<2004•万州区)已知:如图,已知:D是△ABC的边AB上一点,CN∥AB,DN交AC于,若MA=MC,求证:CD=AN.kavU42VRUs23、如图,在△ABC中,D是BC边的中点,F、E分别是AD及其延长线上的点,CF∥BE.<1)求证:△BDE≌△CDF;<2)请连接BF,CE,试判断四边形BECF是何种特殊四边形,并说明理由.24、如图,F、C是线段AD上的两点,AB∥DE,BC∥EF,AF=DC,连接AE、BD,求证:四边形ABDE是平行四边形.y6v3ALoS8925、<2006•泰安)已知:如图,以△ABC的边AB为直径的⊙O交边AC于点D,且过点D的切线DE平分边BC.M2ub6vSTnP<1)BC与⊙O是否相切?请说明理由;<2)当△ABC满足什么条件时,以点O,B,E,D为顶点的四边形是平行四边形?并说明理由.26、<2007•南宁)如图,在△ABC中,点D,E分别是AB,AC边的中点,若把△ADE绕着点E顺时针旋转180°得到△CFE.0YujCfmUCw<1)请指出图中哪些线段与线段CF相等;<2)试判断四边形DBCF是怎样的四边形,证明你的结论.答案与评分标准一、选择题<共14小题)1、<2003•广西)如图所示,在△ABC中,AB=AC=5,D是BC上的点,DE∥AB交AC于点E,DF∥AC交AB于点F,那么四边形AFDE的周长是< )eUts8ZQVRdA、5B、10C、15D、20考点:平行四边形的性质;等腰三角形的性质;平行四边形的判定。
八年级数学下册平行四边形的性质练习题(含答案解析)学校:___________姓名:___________班级:___________一、填空题1.在平行四边形ABCD 中,AB =3,BC =4,则平行四边形ABCD 的周长等于 _____.2.如图,等腰△ABC 中,△BAC =120°,点D 在边BC 上,等腰△ADE 绕点A 顺时针旋转30°后,点D 落在边AB 上,点E 落在边AC 上,若AE =2cm ,则四边形ABDE 的面积是__________.3.定义:一个三角形的一边长是另一边长的2倍,这样的三角形叫做“倍长三角形”.若等腰△ABC 是“倍长三角形”,底边BC 的长为3,则腰AB 的长为______.4.如图,已知DG △BC ,AC △BC ,CD △AB ,EF △AB ,则DG 与AC 间的距离是线段________的长,CD 与EF 间的距离是线段________的长.5.如图,平行四边形的中心在原点,AD BC ∥,D (3,2),C (1,﹣2),则A 点的坐标为________,B 点的坐标为________.6.如图,在平面直角坐标系中,点()1,2A -,4OC =,将平行四边形OABC 绕点O 旋转90°后,点B 的对应点B '坐标是______.7.如图,菱形ABCD 中,∠ABD=30°,AC=4,则BD的长为_______.8.如图,在直角坐标系中,平行四边形ABCD的BC边在x轴上,点A(0,3),B(−1,0),若直线y=−2x+4恰好平分平行四边形ABCD的面积,则点D的坐标是______.二、单选题9.如图,在△ABC中,已知点D,E,F分别为边BC,AD,CE中点,且△ABC的面积等于4cm2,则阴影部分图形面积等于().A.1cm2B.2cm2C.0.5cm2D.1.5cm210.已知三角形的三边长分别为2、x、8,则x的值可能是()A.4B.6C.9D.1011.已知A、B、C三点不在同一条直线上,则以这三点为顶点的平行四边形共有()A .1个B .2个C .3个D .4个12.已知某点阵的第△△△个图如图所示,按此规律第( )个点阵图中,点的个数为2022个.A .1009B .2018C .2022D .2048三、解答题13.如图,PBD △和PAC △都是直角三角形,90DBP CAP ∠=∠=︒.(1)如图1,PA ,PB 与直线MN 重合,若45BDP ∠=︒,30ACP ∠=︒,求DPC ∠的度数;(2)如图2,若45BDP ∠=︒,30ACP ∠=︒,PBD △保持不动,PAC △绕点P 逆时针旋转一周.在旋转过程中,当PC BD ∥时,求APN ∠的度数;(3)如图3,()90180BPA a α∠=︒<<︒,点E 、F 分别是线段BD 、AC 上一动点,当PEF 周长最小时,直接写出EPF ∠的度数(用含α的代数式表示).14.在四边形ABCD 中,BAD ∠的平分线AF 交BC 于F ,延长AB 到E 使BE FC =,G 是AF 的中点,GE 交BC 于O ,连接GD .(1)当四边形ABCD 是矩形时,如图,求证:△GE GD =;△BO GD GO FC ⋅=⋅.(2)当四边形ABCD 是平行四边形时,如图,(1)中的结论都成立,请给出结论△的证明.15.如图,已知,AF DE AE FD ==,点B 、C 在AD 上,AB CD =,BF CE =.(1)图中共有__________对全等三角形;分别是__________;(2)我会说明__________≌△__________.(写出证明过程)参考答案:1.14【分析】由平行四边形的对边相等即可求得其周长.【详解】解:△四边形ABCD是平行四边形,△AB=CD,BC=AD,△平行四边形的周长为=2(AB+BC)=2×(3+4)=14,故答案为:14.【点睛】本题考查平行四边形的性质,熟知平行四边形的对边相等是解答的关键.22.【分析】如图,作AH△BC于H.证明四边形ABDE是平行四边形即可解决问题.【详解】解:如图,作AH△BC于H.由题意得:△EAD=△BAC=120°,△EAC=△C=30°,△AE△BC,△△ADH=△B+△BAD,△B=△BAD=30°,△△ADH=60°,BD=AD=AE=2cm,△AHcm),△BD=AE,BD△AE,△四边形ABDE是平行四边形,△SABCD=BD•AH cm2).2.故答案为【点睛】本题考查旋转变换,等腰三角形的性质,平行四边形的判定和性质等知识,解题的关键是学会添加常用辅助线,灵活运用所学知识解决问题.3.6【分析】分类讨论:AB =AC =2BC 或BC =2AB =2AC ,然后根据三角形三边关系即可得出结果.【详解】解:△△ABC 是等腰三角形,底边BC =3△AB =AC当AB =AC =2BC 时,△ABC 是“倍长三角形”;当BC =2AB =2AC 时,AB +AC =BC ,根据三角形三边关系,此时A 、B 、C 不构成三角形,不符合题意; 所以当等腰△ABC 是“倍长三角形”,底边BC 的长为3,则腰AB 的长为6.故答案为6.【点睛】本题考查等腰三角形,三角形的三边关系,涉及分类讨论思想,结合三角形三边关系,灵活运用分类讨论思想是解题的关键.4. CG DE【分析】根据平行线间的距离等于平行线间任意一条垂线段的长度即可解题.【详解】解:由题可知:DG△AC,CD△EF,△DG 与AC 间的距离是线段CG ,CD 与EF 间的距离是线段DE.【点睛】本题考查了平行线之间的距离,属于简单题,找到平行线之间的垂线段是解题关键.5. (﹣1,2) (﹣3,﹣2)【分析】根据“关于原点对称的点横坐标互为相反数,纵坐标也互为相反数”即可解答.【详解】解:因为平行四边形是中心对称图形,而平行四边形的中心在原点,则A 点的坐标为(﹣1,2),B 点的坐标为(﹣3,﹣2).故答案为:(﹣1,2),(﹣3,﹣2).【点睛】本题主要考查了关于原点对称的点的坐标特征,熟练掌握关于原点对称的点横坐标互为相反数,纵坐标也互为相反数是解题的关键.6.()2,3-或()2,3-【分析】根据旋转可得: BM = B 1M 1 = B 2M 2 = 3,△AOA 1 =△AOA 2 = 90°,可得B 1和B 2的坐标,即是B '的坐标.【详解】解:△A (-1,2), OC = 4,△ C (4,0),B (3,2),M (0,2), BM = 3,AB//x轴,BM= 3.将平行四边形OABC绕点O分别顺时针、逆时针旋转90°后,由旋转得:OM=OM1=OM2=2,△AOA1=△AOA2=90°BM=B1M1=B2M2=3,A1B1△x轴,A2B2△x轴,△B1和B2的坐标分别为:(-2,3),(2,-3),△B'即是图中的B1和B2,坐标就是,B' (-2,3),(2,-3),故答案为:(-2,3)或(2,-3).【点睛】本题考查了平行四边形的性质,坐标与图形的性质,旋转的性质,正确的识别图形是解题的关键.7.【分析】根据菱形的性质可得△ABO=30°,AO=12AC=2,根据含30°角的直角三角形的性质及勾股定理即可求得BO的长,从而得到结果.【详解】如图:在菱形ABCD中,AC、BD是对角线,设相交于O点,△ABD=30°,AC=4,△AC△BD,AO=12AC=2,△AB=2AO=4,△BO,22BD BO∴==⨯=故答案为:【点睛】本题考查的是菱形的性质,解答本题的关键是熟练掌握菱形的对角线互相垂直平分,对角线平分对角.8.(72,3)【分析】连接BD,设D(m,3),BD的中点为T.求出点T的坐标,利用的待定系数法,可得结论.【详解】解:连接BD,设D(m,3),BD的中点为T.△B(−1,0),△T(12m-,32),△直线y=−2x+4平分平行四边形ABCD的面积,△直线y=−2x+4经过点T,△32=−2×12m-+4,△m=72,△D(72,3),故答案为:(72,3).【点睛】本题考查中心对称,平行四边形的性质,一次函数的性质等知识,解题关键是理解题意,灵活运用所学知识解决问题.9.A【分析】根据三角形中线的性质可得S△EBC=12S△ABC,1124BEF BEC ABCS S S==,结合已知条件即可求解.【详解】解:△点D ,E 分别为边BC , AD 中点, 111,,222ABD ABC BED ABD CED ABD SS S S S S ∴===, 12BED DEC BEC ABC S S S S ∴+==,△F 是EC 的中点, 12BEF BEC S S =, 14BEF ABCS S ∴=, △ABC 的面积等于4cm 2,△S △BEF =1cm 2,即阴影部分的面积为1cm 2,故选:A .【点睛】本题主要考查了三角形的中线的性质,掌握三角形的中线的性质是解题的关键.10.C【分析】根据三角形任意两边的和大于第三边,进而得出答案.【详解】解:三角形三边长分别为2,8,x ,8282x ∴-<<+,即:610x <<,只有9符合,故选:C .【点睛】此题主要考查了三角形三边关系,解题的关键是正确把握三角形三边关系定理.11.C【详解】分析:由已知条件可知,顺次连接A 、B 、C 三点可得△ABC ,在分别以AB 、BC 和AC 为对角线各作出一个以点A 、B 、C 为顶点的平行四边形,如下图,由此即可得到本题答案了.详解:△点A 、B 、C 不在同一条直线上时,△顺次连接A 、B 、C 三点可得△ABC ,△分别以AB 、BC 和AC 为对角线各作出一个以点A 、B 、C 为顶点的平行四边形,如下图所示:△当A 、B 、C 三点不在同一条直线上,则以这三点为顶点的平行四边形共有3个.故选C.点睛:知道以三角形的每一条边为一条对角线都可以画出一个以该三角形的三个顶点为顶点的平行四边形,是解答本题的关键.12.A【分析】仔细观察图形变化,找到图形变化的规律,利用规律求解.【详解】解:第1个图里有6个点,6=4+2;第2个图有8个点,8=4+2×2;第3个有10个点,10=4+3×2;…则第n 个图中点的个数为4+2n ,令4+2n =2022, 解得n =1009.故选:A .【点睛】本题主要考查图形的变化规律,解题的关键是根据图形得出每往后一个图形,点的个数相应增加2个.13.(1)75DPC ∠=︒(2)30APN ∠=︒或150︒(3)2180α-︒【分析】(1)先算出9045DPB BDP ∠=︒-∠=︒,9060CPA ACP ∠=︒-∠=︒,然后根据平角的定义,求出75DPC ∠=︒即可;(2)分点C 在MN 上方和点C 在MN 下方两种情况进行讨论,根据平行线的性质,求出结果即可;(3)延长PB 截取BG =PB ,在MN 上截取AH =AP ,连接GH ,交BD 于点E ,交AC 于点F ,连接PE 、PF ,此时△PEF 的周长最小,根据三角形外角的性质和垂直平分线的性质,求出EPF ∠的度数即可.(1)解:△90DBP CAP ∠=∠=︒,45BDP ∠=︒,30ACP ∠=︒,△9045DPB BDP ∠=︒-∠=︒,9060CPA ACP ∠=︒-∠=︒,△PA ,PB 与直线MN 重合,△18075DPC DPB CPA ∠=︒-∠-∠=︒.(2)当点C 在MN 上方时,如图所示:PC BD ∥,45BDP ∠=︒,△45CDP BDP ∠=∠=︒,△45DPB ∠=︒,60CPA ∠=︒,△18030APN BPD CPD CPA ∠=︒-∠-∠-∠=︒;当点C 在MN 下方时,如图所示:△PC BD ∥,90DBP ∠=︒,△90BPC DBP ∠=∠=︒,18090CPN BPC ∴∠=︒-∠=︒,△6090150APN APC CPN ∠=∠+∠=︒+︒=︒;综上分析可知,30APN ∠=︒或150︒.(3)延长PB 截取BG =PB ,在MN 上截取AH =AP ,连接GH ,交BD 于点E ,交AC 于点F ,连接PE 、PF ,此时△PEF 的周长最小,如图所示:△90DBP CAP ∠=∠=︒,△DB GP ⊥,CA PH ⊥,△DB 垂直平分PG ,CA 垂直平分PH ,△EG =EP ,FP =FH ,△EGP EPG ∠=∠,PHF HPF ∠=∠,△△MPG 是△PGH 的外角,△MPG EGP PHF EPG FPH ∠=∠+∠=∠+∠,180MPG α∠=︒-,△180EPG FPH MPG α∠+∠=∠=︒-,△()EPF APB EPG FPH ∠=∠-∠+∠()180αα=-︒-2180α=-︒【点睛】本题主要考查了平行线的性质,垂直平分线的性质,等腰三角形的性质,直角三角形两锐角互余,根据题意作出图形,并进行分类讨论,是解题的关键.14.(1)证明见详解(2)证明见详解【分析】(1)△证明ADG AEG ≌△即可;△连接BG ,CG ,证明ADG BCG ≌△,BOE GOC ∽△△即可证明;(2)△的结论和(1)中证明一样,证明ADG AEG ≌△即可;△的结论,作DM BC GM ⊥,连接,证明BOE GOM ∽△△即可.(1)证明:△证明过程:四边形ABCD 为矩形,90ABC BAD ∴∠=∠=︒AF 平分BAD ∠45BAF DAF ∴∠=∠=︒ABF ∴为等腰直角三角形AB BF ∴=BE FC =AB BE BF CF AE BC AD ∴+=+==,即AG AG =∴ADG AEG ≌△∴GE GD =△证明:连接BG ,CG ,G 为AF 的中点,四边形ABCD 为矩形,90ABC BAD AD BC ∴∠=∠=︒=,BG AG FG ∴==AF 平分BAD ABF ∠,为等腰直角三角形,45BAF DAF ABG CBG ∴∠=∠=︒=∠=∠∴ADG BCG ≌△∴ADG BCG ∠=∠ADG AEG ≌△E ADG ∴∠=∠E BCG ∴∠=∠BOE GOC ∠=∠BOE GOC ∴∽△△BO GO GO BOBE GC GD CF ∴===∴BO GD GO FC ⋅=⋅(2)作DM BC BC M GM GN DM DM N ⊥⊥交于,连接,作交于点,如图所示90DMB GNM GND DMC ∴∠=︒=∠=∠=∠由(1)同理可证:ADG AEG ≌△E ADG ∴∠=∠四边形ABCD 为平行四边形AD BC ∴∥90ADM DMC ∴∠=∠=︒BC GN AD ∴∥∥G 为AF 的中点,由平行线分线段成比例可得DN MN =DG MG ∴=,,GDM GMDADG BMG EBOE GOM ∠=∠BOE GOM ∴∽△△BO GO GO BO BE GM GD CF∴=== ∴BO GD GO FC ⋅=⋅【点睛】本题考查了以矩形与平行四边形为桥梁,涉及全等三角形的证明,相似三角形的证明,正确作出辅助线并由此得到相应的全等三角形和相似三角形是解题的关键.15.(1)3对;,,AED DFA AEC DFB AFB DEC ≌≌≌;(2)AED DFA ≌,证明见解析.【分析】根据已知条件,结合三角形全等的判定定理,推理即可得到正确答案.【详解】解:(1)3对;,,AED DFA AEC DFB AFB DEC ≌≌≌;(2)我会说明AED DFA ≌.证明:在AED 和DFA 中,△,,,DE AF DA AD AE DF =⎧⎪=⎨⎪=⎩△()AED DFA SSS ≌.【点睛】本题考查三角形全等的判定定理,根据定理内容找到全等条件是解题关键.。
八年级数学平行四边形30道经典题(含答案和解析)1.如图,平行四边形ABCD中,AB=3,BC=5,AE平分∠BAD交BC于点E,则CE的长为().A.1B.2C.3D.4答案:B.解析:∵平行四边形ABCD,AE平分∠BAD交BC于点E.∴∠BAE=∠EAD,∠EAD=∠AEB.∴∠BAE=∠AEB.∴AB=BE=3.∴EC=2.所以答案为B.考点:三角形——全等三角形——角平分线的性质定理.四边形——平行四边形——平行四边形的性质.2.如图,在平行四边形ABCD中,∠BAD的平分线交BC于点E,∠ABC的平分线交AD于点F,若BF=12,AB=10,则AB的长为().A.13B.14C.15D.16答案:D解析:∵平行四边形ABCD,∠BAD的平分线交BC于点E,∠ABC的平分线交AD于点F.∴四边形ABEF为平行四边形.∴∠FAB+∠ABE=180°,∠FAE=∠EAB,∠ABF=∠FBE. ∴∠BAE+∠ABF=90°,AE⊥BF.∴四边形ABEF为菱形.设AE,BF交点为点O,则点O平分线段AE,BF.在△ABO中,AO2+BO2=AB2,(12AE)2+(12BF)2=AB2.∵BF=12,AB=10.解得AE=16.所以答案为D.考点:三角形——直角三角形——勾股定理.四边形——平行四边形——平行四边形的性质.四边形——菱形——菱形的判定.3.如图,已知平行四边形纸片ABCD的周长为20,将纸片沿某条直线折叠,使点D与点B重合,折痕交AD于点E,交BC于点F,连接BE,则△ABE的周长为.答案:10.解析:依题可知,翻折轴对称BE=DE,△ABE的周长=AB+AE+BE=AB+AD=10.考点:四边形——平行四边形.几何变换——图形的对称——翻折变换(折叠问题).4.下列条件中,不能判断四边形是平行四边形的是().A. AB∥CD,AD∥BCB. AB=CD,AD∥BCC. AB∥CD,AB=CDD. ∠A=∠C,∠B=∠D答案:B.解析:如图:A选项,∵AB∥CD,AD∥BC .∴四边形ABCD是平行四边形,正确,故本选项错误.B选项,根据AB=CD和AD∥BC 可以是等腰梯形,错误,故本选项正确.C选项,∵AB∥CD,AB=CD.∴四边形ABCD是平行四边形,正确,故本选项错误.D选项,∵∠A=∠C,∠B=∠D.∴四边形ABCD是平行四边形,正确,故本选项错误.故选B.考点:四边形——平行四边形——平行四边形的判定.5.阅读下面材料:在数学课上,老师提出如下问题:尺规作图:过直线外一点作已知直线的平行线.已知:直线l及其外一点A.求作:l的平行线,使它经过点A.小云的作法如下:(1)在直线l上任取一点B,以点B为圆心,任意长为半径作弧,交直线l于点C.(2)分别以A,C为圆心,以BC,AB的长为半径作弧,两弧相交于点D.(3)作直线AD.所以直线AD即为所求.老师说:“小云的作法正确.”请回答:小云的作图依据是.答案:两组对边分别相等的四边形是平行四边形;平行四边形对边平行;两点确定一条直线. 解析:两组对边分别相等的四边形是平行四边形;平行四边形对边平行;两点确定一条直线.考点:四边形——平行四边形——平行四边形的判定.尺规作图——过一点作已知直线的平行线.6.如图所示,平行四边形ABCD中,∠ABC=60°,点E,F分别在CD和BC的延长线上,AE∥BD,EF⊥BC,CF=√3.(1)求证:四边形ABDE是平行四边形.(2)求AB的长.答案:(1)证明见解析.(2)AB=√3.解析:(1)∵四边形ABCD是平行四边形.∴AB∥DC,AB=CD.∵AE∥BD.∴四边形ABDE是平行四边形.(2)由(1)知,AB=DE=CD.即D为CE中点.∵EF⊥BC.∴∠EFC=90°.∵AB∥CD.∴∠DCF=∠ABC=60°.∴∠CEF=30°.∴CE=2CF=2√3.∴AB=CD=√3.考点:三角形——直角三角形——含30°角的直角三角形.四边形——平行四边形——平行四边形的性质——平行四边形的判定.7.如图,在矩形ABCD中,E是BC边的中点,沿直线AE翻折△ABE,使B点落在点F处,连结CF并延长交AD于G点.(1)依题意补全图形.(2)连接BF 交AE 于点O ,判断四边形AECG 的形状并证明.(3)若BC =10,AB =203,求CF 的长.答案:(1)画图见解析. (2)四边形AECG 是平行四边形,证明见解析.(3)CF =6.解析:(1)依题意补全图形,如图:(2)依翻折的性质可知,点O 是BF 中点.∵E 是BC 边的中点. ∴EO ∥CG. ∵AG ∥CE.∴四边形AECG 是平行四边形.(3)在Rt △ABE 中.∵BE =12BC =5,AB =203.∴AE =253.∵S △BAE =12AB×BE =12AE×BO.∴BO =4. ∴BF =2BO =8. ∵BF ⊥AE ,AE ∥CG. ∴∠BFC =90°. ∴CF =6.考点:三角形——直角三角形——勾股定理.四边形——平行四边形——平行四边形的判定.几何变换——图形的对称——作图:轴对称变换.8.如图,平行四边形ABCD的周长为40,△BOC的周长比△AOB的周长多10,则AB为().A.20B.15C.10D.5答案:D.解析:∵平行四边形的周长为40.∴AB+BC=20.又∵△BOC的周长比△AOB的周长多10.∴BC-AB=10.解得:AB=5,BC=15.故答案为:D.考点:四边形——平行四边形——平行四边形的性质.9.如图,将矩形ABCD沿对角线BD所在直线折叠,点C落在同一平面内,落点记为C′和B C′与AD交于点E,若AB=3,BC=4,则DE的长为.答案:25.8解析:由折叠得,∠CBD=∠EBD.由AD∥BC得,∠CBD=∠EDB.∴∠EDB=∠EBD.∴DE=BE.设DE=BE=x,则AE=4-x.在Rt△ABE中.AE2+AB2=BE2.(4−x)2+32=x2..解得x=258∴DE的长为25.8考点:三角形——直角三角形——勾股定理.四边形——矩形——矩形的性质.几何变换——图形的对称——翻折变换(折叠问题).10.如图,矩形ABCD的对角线AC,BD交于点O,DE∥AC交BA的延长线于点E,点F在BC上,BF=BO,且AE=6,AD=8.(1)求BF的长.(2)求四边形OFCD的面积.答案:(1)BF=5..(2)S四边形OFCD=332解析:(1)∵四边形ABCD是矩形.∴∠BAD=90°.∴∠EAD=180°-∠BAD=90°.∵在Rt△EAD中,AE=6,AD=8.∴DE=√AE2+AD2=10.∵DE∥AC,AB∥CD.∴四边形ACDE 是平行四边形. ∴AC =DE =6.在Rt △ABC 中,∠ABC =90°. ∵OA =OC. ∴BO =12AC =5.∵BF =BO. ∴BF =5. (2)取BC 中点为O.∴BG =CG.∵四边形ABCD 是矩形.∴OB =OD ,∠BCD =90°,CD ⊥BC . ∴OG 是△BCD 的中位线. ∴OG ∥CD .由(1)知,四边形ACDE 是平行四边形,AE =6. ∴CD =AE =6. ∴OG =12CD =3.∵AD =8. ∴BC =AD =8.∴S △BCD =12BC×CD =24,S △BOF =12BF×OG =152. ∴S 四边形OFCD =S △BCD -S △BOF =332.考点:三角形——三角形基础——三角形中位线定理.直角三角形——勾股定理.四边形——平行四边形——平行四边形的性质——平行四边形的判定. 矩形——矩形的性质. 四边形基础——四边形面积.11. 如图,在菱形ABCD 中,∠B =60°,AB =1,延长AD 到点E ,使DE =AD ,延长CD 到点F ,使DF =CD ,连接AC 、CE 、EF 、AF .(1)求证:四边形ACEF是矩形.(2)求四边形ACEF的周长.答案:(1)证明见解析.(2)四边形ACEF的周长为:2+2√3.解析:(1)∵DE=AD,DF=CD.∴四边形ACEF是平行四边形.∵四边形ABCD为菱形.∴AD=CD.∴AE=CF.∴四边形ACEF是矩形.(2)∵△ACD是等边三角形.∴AC=1.∴EF=AC=1.过点D作DG⊥AF于点G,则AG=FG=AD×cos30°=√3.2∴AF=CE=2AG=√3.∴四边形ACEF的周长为:AC+CE+EF+AF=1+√3+1+√3=2+2√3.考点:三角形——等腰三角形——等边三角形的判定.锐角三角函数——解直角三角形.四边形——平行四边形——平行四边形的判定.矩形——矩形的判定.菱形——菱形的性质.四边形基础——四边形周长.12.如图,矩形ABCD的对角线AC,BD相交于点O,点E,F,M,N分别是OA,OB,OC,OD的中点,连接EF,FM,MN,NE.(1)依题意,补全图形. (2)求证:四边形EFMN 是矩形.(3)连接DM ,若DM ⊥AC 于点M ,ON =3,求矩形ABCD 的面积.答案:(1)答案见解析. (2)证明见解析.(3)36√3.解析:(1)(2)∵点 E ,F 分别为OA ,OB 的中点.∴EF ∥AB ,EF =12AB .同理,NM ∥DC ,NM =12DC .∵四边形ABCD 是矩形. ∴AB ∥DC ,AB =DC ,AC =BD. ∴EF ∥NM ,EF =NM.∴四边形EFMN 是平行四边形.∵点E ,F ,M ,N 分别OA ,OB ,OC ,OD 的中点. ∴OE =12OA ,OM =12OC . 在矩形ABCD 中.OA =OC =12AC ,OB =OD =12BD.∴EM =OE +OM =12AC . 同理可证FN =12BD . ∴EM =FN .∴四边形EFMN 是矩形.(3)∵DM ⊥AC 于点M.由(2)可知,OM =12OC. ∴OD =CD . 在矩形ABCD 中.OA =OC =12AC ,OB =OD =12BD ,AC =BD. ∴OA =OB =OC =OD. ∴△COD 是等边三角形. ∴∠ODC =60°. ∵NM ∥DC.∴∠FNM =∠ODC =60°. 在矩形EFMN 中,∠FMN =90°. ∴∠NFM =90°-∠FNM =30°. ∵ON =3.∴FN =2ON =6,FM =3√3,MN =3. ∵点F ,M 分别OB ,OC 的中点. ∴BC =2FM =6√3.∴矩形ABCD 的面积为BC×CD =36√3.考点:直线、射线、线段——直线、射线、线段的基本概念——线段中点、等分点.三角形——三角形基础——三角形中位线定理. 直角三角形——含30°角的直角三角形——勾股定理. 四边形——矩形——矩形的性质——矩形的判定.13. 如图,在平面直角坐标系xOy 中,若菱形ABCD 的顶点A ,B 的坐标分别为(-3,0) ,(2,0),点D 在y 轴正半轴上,则点C 的坐标是 .答案:(5,4).解析:由题意及菱形性质,得:AO=3,AD=AB=DC=5.根据勾股定理,得DO=√AD2−AO2=√52−32=4.∴点C的坐标是(5,4).考点:三角形——直角三角形——勾股定理的应用.四边形——菱形——菱形的性质.14.如图,在矩形ABCD中,边AB的长为3,点E,F分别在AD,BC上,连接BE,DF,EF,BD.若四边形BFDE是菱形,且EF=AE+FC,则边BC的长为().√3A. 2√3B.3√3C. 6√3D.92答案:B.解析:∵四边形ABCD是矩形.∴∠A=90°,AD=BC,AB=DC=3.∵四边形BEDF是菱形.∴EF⊥BD,∠EBO=∠DBF,ED=BE=BF.∴AD-DE=BC-BF,即AE=CF.∵EF=AE+FC,EO=FO.∴AE=EO=CF=FO.∴△ABE≌△OBE.∴AB=BO=3,∠ABE=∠EBO.∴∠ABE=∠EBD=∠DBC=30°.∴在Rt△BCD中,BD=2DC=6.∴BC=√BD2−DC2=3√3.考点:三角形——直角三角形——勾股定理.四边形——矩形——矩形的性质.菱形——菱形的性质.15.如图,在给定的一张平行四边形纸片上作一个菱形.小米的作法是:连接AC,作AC的垂直平分线MN分别交AD,AC,BC于M,O,N,连接AN,CM,则四边形ANCM 是菱形.则小米的依据是.答案:一组对边平行且相等的四边形是平行四边形;对角线互相垂直的平行四边形是菱形.解析:根据平行四边形定义可知,一组对边平行且相等的四边形是平行四边形;根据菱形的定义可知对角线互相垂直的平行四边形是菱形,所以答案为一组对边平行且相等的四边形是平行四边形;对角线互相垂直的平行四边形是菱形.考点:四边形——平行四边形——平行四边形的判定.菱形——菱形的判定.16.在数学课上,老师提出如下问题:如图1:将锐角三角形纸片ABC(BC>AC)经过两次折叠,得到边AB,BC,CA上的点D,E,F.使得四边形DECF恰好为菱形.小明的折叠方法如下:如图2:(1)AC边向BC边折叠,使AC边落在BC边上,得到折痕交AB于D.(2)c点向AB边折叠,使C点与D点重合,得到折痕交BC边于E,交AC边于F.老师说:“小明的作法正确.”请回答:小明这样折叠得到菱形的依据是.答案:CD和EF是四边形DECF对角线,而CD和EF互相垂直且平分(答案不唯一).解析:如图,连接DF、DE.根据折叠的性质知,CD⊥EF,且OD=OC,OE=OF.则四边形DECF恰为菱形.考点:四边形——菱形——菱形的判定.几何变换——图形的对称——翻折变换(折叠问题).17.如图,在平行四边形ABCD中,点E,M分别在边AB,CD上,且AE=CM.点F,N分别在边BC,AD上,且DN=BF.(1)求证:△AEN≌△CMF.(2)连接EM,FN,若EM⊥FN,求证:四边形EFMN是菱形.答案:(1)证明见解析.(2)证明见解析.解析:(1)∵四边形ABCD是平行四边形.∴AD=BC,∠A=∠C.∵ND=BF.∴AD-ND=BC-BF.即AN=CF.在△AEN和△CMF中.{AN=CM ∠A=∠C AN=CF.∴△AEN ≌△CMF.(2)由(1)△AEN ≌△CMF.∴EN=FM.同理可证:△EBF ≌△MDB.∴EF=MN.∵EN=FM,EF=MN.∴四边形EFMN是平行四边形.∵EM⊥FN.∴四边形EFMN是菱形.考点:三角形——全等三角形——全等三角形的判定.四边形——平行四边形——平行四边形的性质.菱形——菱形的判定.18.如图,Rt△ABC中,∠ACB=90°,CD是斜边AB上的中线,分别过点A,C作AE∥DC和CE∥AB,两线交于点E.(1)求证:四边形AECD是菱形.(2)若∠B=60°,BC=2,求四边形AECD的面积.答案:(1)证明见解析.(2)S菱形AECD=2√3.解析:(1)∵AE∥DC,CE∥AB.∴四边形AECD是平行四边形.∵Rt△ABC中,∠ACB=90°,CD是斜边AB上的中线.∴CD=AD.∴四边形AECD是菱形.(2)连结DE.∵∠ACB=90°,∠B=60°.∴∠BAC=30°.∴AB=4,AC=2√3.∵四边形AECD是菱形.∴EC=AD=DB.又∵CE∥DB.∴四边形ECBD是平行四边形. ∴ED=CB=2.∴S菱形AECD=AC×ED2=2√3×22=2√3.考点:四边形——平行四边形——平行四边形的性质——平行四边形的判定.菱形——菱形的性质——菱形的判定.四边形基础——四边形面积.19.如图,正方形ABCD的面积是2,E,F,P分别是AB,BC,AC上的动点,PE+PF的最小值等于.答案:√2.解析:∵线段AC是正方形ABCD的对角线.∴F对线段AC的对称点永远落在线段DC上.如图所示,做F对线段AC的对称点于F’,连接EF’,EF’的长就是PE+PF的值.根据两平行线的距离定义,从一条平行线上的任意一点到另外一条直线做垂线,垂线段的长度叫两条平行线之间的距离.∴PE+PF的最小值等于垂线段EH的长度.根据平行线间的距离处处相等,可知EH=AD.∵正方形ABCD的面积是2.∴AD=EH=√2.所以答案为√2.考点:几何变换——图形的对称——轴对称与几何最值.20.如图,正方形ABCD的边长为2,点E在AB边上,四边形EFGB也为正方形,设△AFC的面积为S,则().A. S=2B. S=2.4C. S=4D. S随BE长度的变化而变化答案:A.解析:法一:∵AC∥BF.∴S△AFC=S△ABC=2.法二:∵S△AFC=S正方形ABCD+S正方形EFGB+S△AEF-S△FGC-S△ADC.∴设正方形EFGB的边长为a.∴S△AFC=2×2+a2+12a(2−a)−12(2+a)a−12×2×2.=4+a2+a−12a2−a−12a2−2.=2.考点:三角形——三角形基础——三角形面积及等积变换.四边形——正方形.21.将正方形A的一个顶点与正方形的对角线交点重合,如图1位置,则阴影部分面积是正方形A面积的18,将正方形A与B按图2放置,则阴影部分面积是正方形B面积的.(几分之几)答案:12.解析:在图1中,∠GBF +∠DBF =∠CBD +∠DBF =90°.∴∠GBF =∠CBD ,∠BGF =∠CDB =45°,BD =BG. ∴ △FBG ≌△CBD.∴阴影部分的面积等于△DGB 的面积,且是小正方形的面积的14,是大正方形面积的18.设小正方形的边长为x ,大正方形的边长为y. 则有14X 2=18y 2. ∴y =√2x .同上,在图2中,阴影部分的面积是大正方形的面积的14,为14y 2=12x 2.∴阴影部分的面积是正方形B 面积的12.考点:三角形——全等三角形——全等三角形的性质——全等三角形的判定.四边形——正方形——正方形的性质.22. 如图,正方形 的对角线交于O ,OE ⊥AB ,EF ⊥OB ,FG ⊥EB .若△BGF 的面积为1,则正方形ABCD 的面积为 .答案:32.解析:∵两条对角线将正方形分成四个全等的等腰直角三角形.且OE ⊥AB 于点E ,EF ⊥OB 于点F ,FG ⊥EB 于点G. ∴E 为AB 的中点,F 为BO 的中点,G 为EB 的中点. ∴AB =EB =EO =12AB ,EF =BF =FO ,GF =BG =EG =12EB .∴BGAB =14.∴S△BGFS△BAD =(BGAB)2=116.∴S△BAD=16.∴S正方形ABCD=2S△ABD=32.故答案为32.考点:三角形——相似三角形——相似三角形的性质.四边形——正方形——正方形的性质.23.在数学兴趣小组活动中,小明进行数学探究活动.将边长为2的正方形ABCD与边长为3的正方形AEFG按图1位置放置,AD与AE在同一条直线上,AB与AG在同一条直线上.(1)小明发现DG=BE且DG⊥BE,请你给出证明.(2)如图2,小明将正方形ABCD绕点A逆时针旋转,当点B恰好落在线段DG上时,请你帮他求出此时△ADG的面积.答案:(1)证明见解析.(2)1+12√14.解析:(1)如图1,延长EB交DG于点H.∵四边形ABCD与四边形AEFG是正方形.∴AD=AB,∠DAG=∠BAE=90°,AG=AE.∴△ABC≌△ABE(SAS).∴∠AGD=∠AEB,DG=BE.∵△ADG中,∠AGD+∠ADG=90°.∴∠AEB+∠ADG=90°.∴△DEH中,∠AEB+∠ADG+∠DHE=180°.∴∠DHE=90°.∴DG⊥BE.(2)如图2,过点A作AM⊥DG交DG于点M.∴∠AMD=∠AMG=90°.∵BD是正方形ABCD的对角线.∴∠MDA=45°.在Rt△AMD中.∵∠MDA=45°,AD=2.∴AM=DM=√2.在Rt△AMG中.∵AM2+GM2=AG2.∴GM=√7.∵DG=DM+GM=√2+√7.∴S△ADG=12×DG×AM=12×(√2+√7)×√2=1+12√14.考点:三角形——全等三角形——全等三角形的性质——全等三角形的判定.直角三角形——勾股定理.四边形——正方形——正方形的性质.24.如图,DE为△ABC的中位线,点F在DE上,且∠AFB=90°.若AB=5,BC=8,则EF的长为.答案:32.解析:∵DE 为△ABC 的中位线.∴DE =12BC =4,点D 是线段AB 的中点. 又∵∠AFB =90°. ∴DF =12AB =52. ∴EF =DE −DF =32.所以答案为32.考点:三角形——三角形基础——三角形中位线定理.直角三角形——直角三角形斜边上的中线.25. 如图,在四边形ABCD 中,对角线AC ⊥BD ,点E 、F 、G 、H 分别为AB 、BC 、CD 、DA的中点.若AC =8,BD =6,则四边形EFGH 的面积为( ).A. 14B. 12C. 24D.48 答案:B解析:∵点E 、F 、G 、H 分别为AB 、BC 、CD 、DA 的中点.∴EF =HG =12AC =4,FG =EH =12BD =3,EF ∥HG ,FG ∥EH. ∴四边形EFGH 是平行四边形.∵AC⊥BD.∴EF⊥FG.∴四边形EFGH是矩形.∴四边形EFGH的面积为3×4=12.考点:三角形——三角形基础——三角形中位线定理.四边形——矩形——矩形的判定.四边形基础——四边形面积.26.如图,在Rt△ABC中,∠ACB=90°,D,E,F分别是AB、BC、CA的中点,若CD=6cm,则EF=cm .答案:6.解析:由题意,得:EFAB =12.在Rt△ABC中,D是AB的中点.∴CD=EF=12AB.又∵CD=6.∴EF=CD=6cm.考点:三角形——三角形基础——三角形中位线定理.直角三角形——直角三角形斜边上的中线.27.如图,正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,H是AF的中点.那么CH的长是.答案:√5.解析:∵正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3.∴AB=BC=1,CE=EF=3,∠E=90°.延长AD交EF于M,连接AC、CF.则AM=BC+CE=1+3=4,FM=EF-AB=3-1=2.∵四边形ABCD和四边形GCEF是正方形.∴∠ACD=∠GCF=45°.∴∠ACF=90°.∵H为AF的中点.AF.∴CH=12在Rt△AMF中,由勾股定理得:AF=√AM2+FM2=√42+22=2√5.∴CH=√5.故答案为:√5.考点:三角形——直角三角形——直角三角形斜边上的中线——勾股定理.四边形——正方形——正方形的性质.28.用两个全等的直角三角形无缝隙不重叠地拼下列图形:①矩形;②菱形;③正方形;④等腰三角形;⑤等边三角形.一定能够拼成的图形是(填序号).答案:①④.解析:由于菱形和正方形中都有四边相等的特点,而直角三角形不一定有两边相等,故两个全等的直角三角形不一定能拼成菱形和正方形.由于等边三角形三个角均为60°,而直角三角形不一定含60°角,故个全等的直角三角形不一定能拼成等边三角形.两个全等的直角三角形一定能拼成矩形和等腰三角形,如图.考点:三角形——等腰三角形——等腰三角形的判定——等边三角形的判定.四边形——矩形——矩形的判定.菱形——菱形的判定——正方形——正方形的判定.29. 边长为a 的菱形是由边长为a 的正方形“形变”得到的,若这个菱形一组对边之间的距离为h ,则称ah 为这个菱形的“形变度”.(1)一个“形变度”为3的菱形与其“形变”前的正方形的面积之比为 . (2)如图,A 、B 、C 为菱形网格(每个小菱形的边长为1,“形变度”为98)中的格点,则△ABC 的面积为 .答案:(1)1:3.(2)12. 解析:(1)如图所示.∵“形变度”为3. ∴ah =3,即h =13a .∴一个“形变度”为3的菱形与其“形变”前的正方形的面积之比为aℎa 2=ℎa =13. (2)在正方形网格中,△ABC 的面积为:6×6−12×3×3-12×3×6−12×3×6=272.由(1)可得,在菱形网格中,△ABC的面积为89×272=12.考点:式——探究规律——定义新运算.三角形——三角形基础——三角形面积及等积变换.四边形——菱形——菱形的性质.30.有这样一个问题:如图,在四边形ABCD中,AB=AD,CB=CD,我们把这种两组邻边分别相等的四边形叫做筝形.请探究筝形的性质与判定方法.小南根据学习四边形的经验,对筝形的性质和判定方法进行了探究.下面是小南的探究过程:(1)由筝形的定义可知,筝形的边的性质是:筝形的两组邻边分别相等,关于筝形的角的性质,通过测量,折纸的方法,猜想:筝形有一组对角相等,请将下面证明此猜想的过程补充完整.已知:如图,在筝形ABCD中,AB=AD,CB=CD.求证:___________________________.证明:由以上证明可得,筝形的角的性质是:筝形有一组对角相等.(2)连接筝形的两条对角线,探究发现筝形的另一条性质:筝形的一条对角线平分另一条对角线.结合图形,写出筝形的其他性质(一条即可):.(3)筝形的定义是判定一个四边形为筝形的方法之一.试判断命题“一组对角相等,一条对角线平分另一条对角线的四边形是筝形”是否成立,如果成立,请给出证明:如果不成立,请举出一个反例,画出图形,并加以说明.答案:(1)求证:∠B=∠D.证明见解析.(2)筝形的两条对角线互相垂直.(3)不成立.解析:(1)求证:∠B =∠D .已知:如图,筝形ABCD 中,AB =AD ,CB =CD .求证:∠B =∠D . 证明:连接AC ,如图. 在△ABC 和△ADC 中.{AB =AD CB =CD AC =AC.∴△ABC ≌△ADC . ∴∠B =∠D .(2)筝形的其他性质.①筝形的两条对角线互相垂直. ②筝形的一条对角线平分一组对角. ③筝形是轴对称图形.(3)不成立.反例如图2所示.在平行四边形ABCD 中,AB≠AD ,对角线AC ,BD 相交于点O .由平行四边形性质可知此图形满足∠ABC =∠ADC ,AC 平分BD ,但该四边形不是筝形.考点:四边形——平行四边形.。
平行四边形判定1.如图:四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定这个四边形是平行四边形的是()A.AB//DC,AD//BC B.AB//DC,AD=BCC.AO=CO,BO=DO D.AB=DC,AD=BC2.下列条件中,能判定四边形是平行四边形的是()A.一组对边相等B.对角线互相平分C.一组对角相等D.对角线互相垂直3.在四边形ABCD中,AB=CD,请添加一个条件,使得四边形ABCD是平行四边形.4.如图,四边形ABCD的对角线交于点O,下列哪组条件不能判断四边形ABCD是平行四边形()A.OA=OC,OB=ODB.∠BAD=∠BCD,AB//CDC.AD//BC,AD=BCD.AB=CD,AO=CO5.如图,在四边形ABCD中,∠DAC=∠ACB,要使四边形ABCD成为平行四边形,则应增加的条件不能是()A.AD=BCB.OA=OCC.AB=CDD.∠ABC+∠BCD=180∘6.已知,在四边形ABCD中AB//CD,则下列所给条件中,不能判断四边形ABCD为平行四边形的是()A.AD//BC B.AB=CD C.∠A=∠C D.∠B=∠C7.如图,已知平行四边形ABCD , 点MN分别在边AD和边BC上,点EF在线段BD上,且AM=CN , DF=BE .(1) 求证:∠DFM=∠BEN(2) 求证:四边形MENF是平行四边形8.如图,在△ABC中,∠ACB=90∘,BC的垂直平分线DE交BC于D,交AB于E,F在DE的延长线上,且AF=CE=AE.求证:四边形ACEF是平行四边形;9.如图,在平行四边形ABCD中,DE⊥AC,BF⊥AC,垂足分别为点E,F(1) 求证:四边形BEDF是平行四边形.(2) 若AB=13,AD=20,DE=12,求平行四边形BEDF的面积.BC,连接DE,CF.10.如图,在平行四边形ABCD中,F是AD的中点,延长BC到点E,使CE=12(1) 求证:四边形CEDF是平行四边形;(2) 若AB=4,AD=6,∠B=60°,求DE的长.11.如图,在四边形ABCD中,AB//DC,∠A=∠C.求证:四边形ABCD是平行四边形,写出两种证明方法.12.如图,点B、E、C、F在同一直线上,AB=DE,∠B=∠DEF,BE=CF.(1) △ABC≅△DEF吗?为什么?(2) 判断四边形ACFD的形状,并说明理由.13.已知:如图,梯形ABCD中,AD//BC,点E是CD的中点,BE的延长线与AD的延长线相交于点F.(1) 求证:△BCE≅△FDE.(2) 连接BD,CF,判断四边形BCFD的形状,并证明你的结论.14.如图,已知AB//DC,且AB=CD,BF=DE,试说明AF//CE.15.如图,E,F是四边形ABCD对角线AC上的两点,AD//BC,DF//BE,AE=CF.求证:(1) △AFD≅△CEB;(2) 四边形ABCD是平行四边形.平行四边形判定1.【答案】B【解析】A项:两组对边分别平行的四边形是平行四边形,可以判定四边形ABCD是平行四边形;B项:一组对边平行,另一组对边相等的四边形可以是平行四边形,也可以是等腰梯形。
平行四边形性质及判定练习题及答案1、如下图,在中,分别是边的中点,已知,则的长为()A.3 B.4 C.5 D.62、如图,在平行四边形ABCD中,AE⊥BC,垂足为E,AF⊥CD,垂足为F,若AE:AF=2 :3,平行四边形ABCD的周长为40,则AB的长为( )A.12 B.9 C.8 D.6 3、如图,在△ABC中,E,D,F分别是AB,BC,CA的中点,AB=6,AC=4,则四边形AEDF•的周长是()A.10 B.20 C.30 D.404、下列四个命题:(1)两组对边分别相等的四边形是平行四边形;(2)两组对角分别相等的四边形是平行四边形;(3)对角线互相平分的四边形是平行四边形;(4)一组对边平行且相等的四边形是平行四边形.其中正确的命题个数有()A. 4个 B.3个 C.2个 D. 1个5、如图,在平行四边形ABCD中,AB=3cm,BC=5cm,对角线AC,BD相交于点O,则OA的取值范围是()A.1cm<OA<4cm B.2cm<OA<8cm C.2cm<OA<5cm D.3cm<OA<8cm6、如图,在▱ABCD中,BD为对角线,E、F分别是AD、BD的中点,连接EF.若EF=3,则CD的长为()A.3 B.6 C.8 D.127、如图,在平行四边形ABCD中,AD=2AB,CE平分∠BCD交AD边于点E,且AE=3,则AB的长为()A.4 B.3 C.2.5 D.28、如图,□ABCD中,对角线AC、BD交于点O,点E是BC的中点.若OE=3 cm,则AB的长为( )A.3 cm B.6 cm C.9 cm D.12 cm9、如图,平行四边形ABCD的对角线AC、BD相交于点O,下列结论不正确的是()10、A.DC∥AB B.OA=OC C.AD=BC D.DB平分∠ADC10、如图,将ABCD沿对角线AC折叠,使点B落在点B’处.若∠1=∠2=44°,则∠B为( )A. 124° B.114° C. 104° D.6611、在四边形ABCD中,对角线AC、BD相交于点O,给出下列四组条件:①AB∥CD,A D∥BC;②AB=CD,AD=BC;③AO=CO,BO=DO;④AB∥CD,AD=BC.其中,一定能判定四边形ABCD是平行四边形的条件共有。
八年级数学(下)第十八章《平行四边形的判定》同步练习(含答案)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.如图,DE是△ABC的中位线,且△ADE的周长为20,则△ABC的周长为A.30 B.40C.50 D.无法计算【答案】B2.如图,在四边形ABCD中,AB=CD,BC=AD,若∠D=120°,则∠C的度数为A.60°B.70°C.80°D.90°【答案】A【解析】∵AB=CD,BC=AD,∴四边形ABCD是平行四边形,∴AD∥BC,∴∠C+∠D=180°,∵∠D=120°,∴∠C=60°.故选A.3.四边形ABCD中,从∠A,∠B,∠C,∠D的度数之比中,能判定四边形ABCD是平行四边形的是A.1∶2∶3∶4 B.2∶3∶2∶3C.2∶2∶3∶3 D.1∶2∶2∶3【答案】B【解析】根据对角相等的四边形是平行四边形,A.1∶2∶3∶4,对角不相等,不能;B.2∶3∶2∶3,对角相等,能;C.2∶2∶3∶3,对角不相等,不能;D.1∶2∶2∶3,对角不相等,不能,故选B.4.依次连接任意四边形各边的中点,得到一个特殊图形,则这个图形一定是A.平行四边形B.矩形C.菱形D.梯形【答案】A【解析】如图,连接AC,∵四边形ABCD各边中点是E、F、G、H,∴HG∥AC,HG=12AC,EF∥AC,EF=12AC,∴EF=GH,EF∥GH,∴四边形EFGH是平行四边形.故选A.5.如图,在四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定四边形ABCD为平行四边形的是A.AB∥CD,AD∥BC B.OA=OC,OB=ODC.AD=BC,AB∥CD D.AB=CD,AD=BC【答案】C6.如图,ABCD的对角线AC,BD相交于点O,E是AB中点,且AE+EO=4,则ABCD的周长为A.20 B.16 C.12 D.8【答案】B【解析】∵四边形ABCD是平行四边形,∴OA=OC,∵AE=EB,∴OE =12BC,∵AE+EO=4,∴2AE+2EO=8,∴AB+BC=8,∴平行四边形ABCD的周长=2×8=16,故选B.7.如图,在ABCD中,对角线AC,BD相交于点O,E,F是对角线AC上的两点,当E,F满足下列哪个条件时,四边形DEBF不一定是平行四边形A.AE=CF B.DE=BFC.∠ADE=∠CBF D.∠AED=∠CFB【答案】BD选项:∵∠AED=∠CFB,∴∠DEO=∠BFO ,∴DE∥BF,在△DOE和△BOF中,DOE BOF DEO BFO OD OB∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△DOE≌△BOF,∴DE=BF,∴四边形DEBF是平行四边形.故选项正确.故选B.8.如图,E,F分别是□ABCD的边AB,CD的中点,则图中平行四边形的个数共有A.2个B.3个C.4个D.5个【答案】C【解析】∵四边形ABCD是平行四边形,∴DC∥AB,DC=AB,∵E、F分别是边AB、CD的中点,∴DF=FC=12DC,AE=EB=12AB,∵DC=AB,∴DF=FC=AE=EB,∴四边形DFBE和CFAE都是平行四边形,∴DE∥FB,AF∥CE,∴四边形FHEG是平行四边形,故选C.二、填空题:请将答案填在题中横线上.9.如图,A、B两点被池塘隔开,在AB外选一点C,连接AC、BC,取AC、BC的中点D、E,量出DE=a,则AB=2a,它的根据是__________.【答案】三角形的中位线等于第三边的一半10.如图,在四边形ABCD中,AD∥BC,点E是BC边的中点,连接DE并延长,交AB的延长线于F点.已知AB=4,∠F=∠CDE,则BF的长为__________.【答案】4【解析】因为∠F=∠CDE,所以AB∥CD,因为AD∥BC,所以四边形ABCD是平行四边形,所以AB=CD,因为点E是BC边的中点,所以ED=EF,又因为∠F=∠CDE,∠DEC=∠FEB,所以△ECD≌△EBF,所以BF=CD,所以BF=AB,因为AB=4,所以BF=4,故答案为:4.11.如图,四边形ABCD中,AD∥BC,E是DC上一点,连接BE并延长交AD的延长线于点F,连接CF,BD,请你只添加一个条件:__________,使得四边形BDFC为平行四边形.【答案】DE=EC(答案不唯一)【解析】答案不唯一,比如:BD∥CF,构成两组对边分别平行的四边形是平行四边形;DF=BC,构成一组对边平行且相等的四边形是平行四边形;DE=EC,可以证明BE=EF,构成对角线相互平分的四边形是平行四边形,等等.故答案:DE=EC(答案不唯一).12.如图,在平行四边形ABCD中,对角线交于点O,点E、F在直线AC上(不同于A、C),当E、F的位置满足__________的条件时,四边形DEBF是平行四边形.【答案】AE=CF(答案不唯一)三、解答题:解答应写出文字说明、证明过程或演算步骤.13.如图,已知D、E、F分别是△ABC各边的中点,求证:AE与DF互相平分.【解析】∵D、E、F分别是△ABC各边的中点,根据中位线定理知:DE∥AC,DE=AF,EF∥AB,EF=AD,∴四边形ADEF为平行四边形,故AE与DF互相平分.14.如图,ABCD中,E、F分别是AB、CD上的点,AE=CF,M、N分别是DE、BF的中点.求证:四边形ENFM是平行四边形.【解析】∵四边形ABCD是平行四边形,∴AB∥CD.∵AE=CF,∴FD=EB,∴四边形DEBF是平行四边形,∴DE∥FB,DE=FB.∵M、N分别是DE、BF的中点,∴EM=FN.∵DE∥FB,∴四边形MENF是平行四边形.15.如图,点M,N在线段AC上,AM=CN,AB∥CD,AB=CD.求证:∠1=∠2.16.如图1,平行四边形ABCD中,对角线BD、AC交于点O.将直线AC绕点O顺时针旋转分别交BC、AD于点E、F.(1)在旋转过程中,线段AF与CE的数量关系是__________.⊥,当旋转角至少为__________︒时,四边形ABEF是平行四边形,并证明(2)如图2,若AB AC此时的四边形是ABEF是平行四边形.【解析】(1)相等,理由如下: 如图,在ABCD 中,AD ∥BC ,OA =OC ,∴∠1=∠2,在△AOF 和△COE 中,1234OA OC ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△AOF ≌△COE (ASA ), ∴AF =CE .(2)当旋转角为90︒时,90COE ∠=︒,如图,又∵AB ⊥AC , ∴∠BAO =90°, ∠AOF =90°, ∴∠BAO =∠AOF , ∴AB ∥EF ,∵四边形ABCD 是平行四边形, ∴AD ∥BC , 即:AF ∥BE , ∵AB ∥EF ,AF ∥BE ,∴四边形ABEF 是平行四边形.。
中考数学模拟题汇总《平行四边形的判定与证明》专项练习(附答案解析)一、综合题1.如图,在Rt△ABC中,∠ACB=90°,点D、E分别是AB、BC的中点,点F在AC的延长线上,∠FEC=∠B.(1)求证:DE=CF;(2)若AC=6cm,AB=10cm,求四边形DCFE的面积.2.已知△ABC内接于⊙O,AB是⊙O的直径,OD∥AC,AD=OC.(1)求证:四边形OCAD是平行四边形;(2)若AD与⊙O相切,求∠B.3.已知:如图,点D在ΔABC的边AB上,CF//AB,DF交AC于E,EA=EC.(1)如图1,求证:CD=AF;(2)如图2,若AD=BD,请直接写出和ΔBDC面积相等的三角形.4.如图,在四边形ABCD中,点E和点F是对角线AC上的两点,AE=CF,DF=BE,且DF//BE,过点C作CG⊥AB交AB的延长线于点G.(1)求证:四边形ABCD是平行四边形;(2)若tan∠CAB=25,∠CBG=45°,BC=4√2,则▱ABCD的面积是.5.已知,如图,E、F是四边形ABCD的对角线AC上的两点,AF=CE,DF=BE,DF∥BE.(1)求证:△AFD≌△CEB;(2)四边形ABCD是平行四边形吗?请说明理由.6.如图,▱ABCD中,AC,BD相交于点O,E,F分别是OA,OC的中点.(1)求证:BE=DF;(2)设ACBD=k,当k为何值时,四边形DEBF是矩形?请说明理由.7.如图,在ΔABC中,点D、E、F分别在AB、AC、BC上,DE // BC,EF // AB.(1)求证:ΔADE∽ΔEFC;(2)如果AB=6,AD=4,求SΔADESΔEFC的值.8.如图,已知平行四边形ABCD,过A点作AM⊥BC于M,交BD于E,过C点作CN⊥AD于N,交BD于F,连接AF、CE.(1)求证:四边形AECF为平行四边形;(2)当AECF为菱形,M点为BC的中点时,求AB:AE的值.BC,9.如图,等边△ABC的边长是4,D、E分别为AB、AC的中点,延长BC至点F,使CF=12连接CD和EF .(1)求证:DE=CF;(2)求EF的长.10.如图,在四边形ABCD中,AB∥CD,且AB=2CD,E,F分别是AB,BC的中点,EF与BD交于点H.(1)求证:四边形DEBC是平行四边形;(2)若BD=9,求DH的长.11.已知锐角△ABC内接于⊙O,AD⊥BC于点D,连接AO.(1)如图1,求证:∠BAO=∠CAD;(2)如图2,CE⊥AB于点E,交AD于点F,过点O作OH⊥BC于点H,求证:AF=2OH;,BC=2√15,求AC的长.(3)如图3,在(2)的条件下,若AF=AO,tan∠BAO=1312.如图,抛物线y=x2+bx+c与x轴交于点A(−1,0),B(5,0),与y轴交于点C.(1)求抛物线的解析式和顶点D的坐标.(2)连结AD,点E是对称轴与x轴的交点,过E作EF∥AD交抛物线于点F(F在E的右侧),过点F作FG∥x轴交ED于点H,交AD于点G,求HF的长.13.如图,CD是⊙O的直径,点A是⊙O外一点,AD与⊙O相切于点D,点B是⊙O上一点(点B不与点C,D重合),连接AO,AB,BC .(1)当BC与AO满足什么位置关系时,AB是⊙O的切线?请说明理由;(2)在(1)的条件下,当∠DAO=度时,四边形AOCB是平行四边形.(x>0)的图象经过点A、B,点B的坐标为(2,2).过点A作AC⊥x轴,垂足14.如图,已知函数y= kx为C,过点B作BD⊥y轴,垂足为D,AC与BD交于点F.一次函数y=ax+b的图象经过点A、D,与x轴的负半轴交于点EOD,求a、b的值;(1)若AC= 32(2)若BC∥AE,求BC的长.15.如图,在四边形ABCD中,AB=CD,BF=DE,AE⊥BD,CF⊥BD,垂足分别为E,F.(1)求证:△ABE≌△CDF;(2)若AC与BD交于点O,求证:AO=CO.16.如图.在一次数学研究性学习中,小华将两个全等的直角三角形纸片Rt△ABC和Rt△DEF拼在一起,使点A与点F重合,点C与点D重合(如图),其中∠ACB=∠DFE=90°,发现四边形ABDE是平行四边形.如图,小华继续将图中的纸片Rt△DEF沿AC方向平移,连结AE,BD,当点F与点C重合时停止平移.(1)请问:四边形ABDE是平行四边形吗?说明理由.cm时,请判断四边形ABDE的形(2)如图,若BC=EF=6cm,AC=DF=8cm,当AF=92状,并说明理由.参考答案与解析1.【答案】(1)证明:在△CDE 和△ECF 中,∵∠ACB=∠ECF=90°,点D 、E 是分别是AB 、BC 的中点.∴CD=BD=AD ,∴∠B=∠DCE ,∠CED=∠ECF=90°, 又∵∠FEC=∠B ..∠FEC=∠DCE ,又∵CE=EC .∴△CDE ≌△ECF (ASA ),∴DE=CF ;(2)解:在Rt △ABC 中,∵∠ACB=90°,∴BC=√AB 2−AC 2=√102−62=8cm , ∵点D 、E 分别是AB 、BC 的中点,∴DE ∥CF ,又DE=CF , ∴四边形DCFE 是平行四边形,∴DE=12AC=12×6=3cm ,CE=12BC=12×8=4cm , ∴S 四边形DCFE =DE ×CE=3×4=12cm . 2.【答案】(1)证明:∵OA =OC =AD , ∴∠OCA =∠OAC ,∠AOD =∠ADO , ∵OD ∥AC , ∴∠OAC =∠AOD ,∴180°﹣∠OCA ﹣∠OAC =180°﹣∠AOD ﹣∠ADO , 即∠AOC =∠OAD , ∴OC ∥AD , ∵OD ∥AC ,∴四边形OCAD 是平行四边形;(2)解:∵AD 与⊙O 相切,OA 是半径, ∴∠OAD =90°, ∵OA =OC =AD , ∴∠AOD =∠ADO =45°,∵OD∥AC,∴∠OAC=∠AOD=45°,∵AB是⊙O的直径,∴∠ACB=90°,∴∠B=45°.3.【答案】(1)证明:∵CF//AB∴∠DFC=∠ADF,∠DAC=∠ACF又∵EA=EC∴ΔADE≌ΔCFE(AAS)∴CF=AD又∵CF//AD∴四边形ADCF为平行四边形∴DC=AF(有一组对边平行且相等的四边形为平行四边形)(2)解:ΔADC,ΔADF,ΔCFD,ΔCFA∵AD=BD,∴SΔADC=SΔBDC (等底等高面积相等)∵四边形ADCF是平行四边形,∴SΔADC=SΔCDF=SΔADF=SΔACFF (等底等高面积相等) .故与ΔBDC面积相等的三角形为:ΔADC,ΔADF,ΔCFD,ΔCFA.4.【答案】(1)证明:∵AE=CF,∴AE+EF=CF+EF,即AF=CE,∵DF//BE,∴∠DFA=∠BEC,∵DF=BE,∴ΔADF≅ΔCBE(SAS),∴AD=CB,∠DAF=∠BCE,∴AD//CB,四边形ABCD是平行四边形(2)245.【答案】(1)证明:∵DF∥BE,∴∠DFA=∠BEC,在△ADF和△CBE中{DF=BE∠DFA=∠BECAF=CE,∴△AFD≌△CEB(SAS).(2)解:四边形ABCD是平行四边形,理由如下:∵△AFD≌△CEB,∴AD=CB,∠DAF=∠BCE,∴AD∥BC,∴四边形ABCD是平行四边形.6.【答案】(1)证明:如图,连接DE,BF,∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵E,F分别是OA,OC的中点,∴OE=12OA=12OC=OF,∴四边形DEBF是平行四边形,∴BE=DF .(2)解:由(1)已证:四边形DEBF是平行四边形,要使平行四边形DEBF是矩形,则BD=EF,∵OE=12OA=12OC=OF,∴EF=OE+OF=12OA+12OC=OA=12AC,即AC=2EF,∴k=ACBD =2EFEF=2,故当k=2时,四边形DEBF是矩形. 7.【答案】(1)证明:∵DE//BC,EF//AB,∴∠A=∠CEF,∠AED=∠C,∴△ADE∽△EFC.(2)解:∵AB=6,AD=4,∴DB=6-4=2,∵DE//BC,EF//AB,∴四边形DBFE是平行四边形,∴EF=DB=2,∵△ADE∽△EFC,SΔADE SΔEFC =(ADEF)2=(42)2=4.8.【答案】(1)证明∵四边形ABCD是平行四边形(已知),∴BC∥AD(平行四边形的对边相互平行)。
平行四边形的判定单元测试卷一、选择题1.在等腰梯形、菱形、等腰三角形、圆、正六边形这五个图形中,既是轴对称图形又是中心对称图形的有( )A .1个B .2个C .3个 D.4个 2.下列说法中错误的是( )A .两条对角线互相平分的四边形是平行四边形;B .两条对角线相等的四边形是矩形C .两条对角线互相垂直的矩形是正方形;D .两条对角线相等的菱形是正方形 3.已知平行四边形一边长为10,一条对角线长为6,则它的另一条对角线α的取值范围为( )A .4<α<16 B.14<α<26 C.12<α<20 D.以上答案都不正确 4.正方形具有而菱形不具有的性质是( )A.对角线互相平分B.对角线互相垂直C.对角线相等D.对角线平分一组对角 5.如图, ABCD 中,∠BAD 的平分线交BC 于E ,且A E﹦BE,则∠BCD 的度数为( )A.30° B .60°或120° C.60° D.120°6.在四边形ABCD 中,AB ∥CD,若ABCD 不是梯形,则∠A ﹕∠B ﹕∠C ﹕∠D 为( )A.2﹕3﹕6﹕7B.3﹕4﹕5﹕6C.3﹕5﹕7﹕9D.4﹕5﹕4﹕57.已知ABCD 是平行四边形,下列结论中,不一定正确的是( )A.AB ﹦CDB.AC ﹦BDC.当AC ⊥BD 时,它是菱形D.当∠ABC ﹦90°时,它是矩形 8.E 是正方形ABCD 内一点,且△EAB 是等边三角形,则∠ADE 的度数是( ) A.70° B.72.5° C.75° D.77.5°9.菱形的周长等于高的8倍,则此菱形较大内角是( ) A.60° B.90° C.120° D.150°10.矩形一个内角的平分线把矩形的一边分成3㎝和5㎝,则矩形的周长为( ) A.16㎝ B.22㎝或16㎝ C.26㎝ D.以上都不对二、填空题11.在平行四边形ABCD 中,∠A ﹦100°,则∠B________.12.在菱形ABCD 中,对角线AC 、BD 交于O 点,AC=12㎝,BD=9㎝,则菱形的面积是___________. 13.梯形ABCD 中,两底分别是3,5,一腰为3,另一腰χ的取值范围是___________. 14.已知梯形ABCD 中,AD ∥BC,AC ⊥BD,AC 与BD 交于点O,AC ﹦4,BD ﹦6,则梯形ABCD 的面D C B AE D CB A积是__________.15.如图,AB ﹦AC,BD ﹦BC,AD ﹦DE ﹦BE,则∠A ﹦______________.E DCBA I O DCBADCBA(第15题) (第16题) (第18题) 16.顺次连结矩形各边中点所得四边形是____________.17.如图,直线是四边形ABCD 的对称轴,若AB ﹦CD,有下面的结论:①AB ∥CD;②AC ⊥BD;③AO ﹦OC;④AB ⊥BC,其中正确的结论有___________.18.如图4,若将四根木条钉成的矩形木框变形为平行四边形ABCD 的形状,并使其面积为矩形的面积的一半,则这个平行四边形的一个最小内角的值等于__________.三、解答题19.如图,□ABCD 中,AE ⊥BD,CF ⊥BD,垂足分别为E 、F,⑴写出图中每一对你认为全等的三角形;⑵选择⑴中任意一对全等三角形进行证明.F EDCBA20.如图,铁路路基横断面为等腰梯形ABCD,斜坡BC 的坡度ⅰ﹦3﹕4(ⅰ﹦BF CF),路基高BF ﹦3米,底CD 宽为18米,求路基顶AB 的宽.FDCB A21.如图,在矩形ABCD 中,AB ﹦16㎝,AD ﹦6㎝,动点P 、Q 分别从A 、C 同时出发,点P 以每秒3㎝的速度向B 移动,一直达到B 止,点Q 以每秒2㎝的速度向D 移动.⑴P 、Q 两点出发后多少秒时,为四边形PBCQ 的面积为36㎝2?⑵是否存在某一时刻,使PBCQ 为正方形,若存在,求出该时刻,若不存在说明理由.QDCPBA22.(1)如图,等腰梯形ABCD 中,A D ∥ BC ,E 是底BC 的中点,EF ∥CD 交BD 于F ,EG ∥AB 交AC 于G ,求证:EF+EG=AB .(2)如图,若E 为BC 上任一点(中点除外)其他条件不变,上述结论还成立吗?若成立,请给出证明;若不成立,请说明理由.GFEDCBA。
平行四边形的判定及中位线知能点1 平行四边形的判定方法1.能够判定四边形ABCD是平行四边形的题设是().A.AB∥CD,AD=BC B.∠A=∠B,∠C=∠DC.AB=CD,AD=BC D.AB=AD,CB=CD2.具备下列条件的四边形中,不能确定是平行四边形的为().A.相邻的角互补 B.两组对角分别相等C.一组对边平行,另一组对边相等 D.对角线交点是两对角线中点3.如下左图所示,四边形ABCD的对角线AC和BD相交于点O,下列判断正确的是().A.若AO=OC,则ABCD是平行四边形;B.若AC=BD,则ABCD是平行四边形;C.若AO=BO,CO=DO,则ABCD是平行四边形;D.若AO=OC,BO=OD,则ABCD是平行四边形4.如上右图所示,对四边形ABCD是平行四边形的下列判断,正确的打“∨”,错误的打“×”.(1)因为AD∥BC,AB=CD,所以ABCD是平行四边形.()(2)因为AB∥CD,AD=BC,所以ABCD是平行四边形.()(3)因为AD∥BC,AD=BC,所以ABCD是平行四边形.()(4)因为AB∥CD,AD∥BC,所以ABCD是平行四边形.()(5)因为AB=CD,AD=BC,所以ABCD是平行四边形.()(6)因为AD=CD,AB=AC,所以ABCD是平行四边形.()5.已知AD∥BC,要使四边形ABCD为平行四边形,需要增加条件________.6.如图所示,∠1=∠2,∠3=∠4,问四边形ABCD是不是平行四边形.7.如图所示,在四边形ABCD中,AB=CD,BC=AD,E,F为对角线AC上的点,且AE=CF,求证:BE=DF.8.如图所示,D为△ABC的边AB上一点,DF交AC于点E,且AE=CE,FC∥AB.求证:CD=AF.9.如图所示,已知四边形ABCD是平行四边形,在AB的延长线上截取BE=•AB,BF=BD,连接CE,DF,相交于点M.求证:CD=CM.10.如图所示,在四边形ABCD中,DC∥AB,以AD,AC为边作□ACED,延长DC•交EB于F,求证:EF=FB.知能点2 三角形的中位□线11.如图所示,已知E 为□ABCD 中DC 边的延长线上的一点,且CE=DC ,连接AE ,分别交BC ,BD 于点F ,G ,连接AC 交BD 于点O ,连接OF ,求证:AB=2OF .12.如图所示,在ABCD 中,EF ∥AB 且交BC 于点E ,交AD 于点F ,连接AE ,BF•交于点M ,连接CF ,DE 交于点N ,求证:MN ∥AD 且MN=12AD .13.如图所示,DE 是△ABC 的中位线,BC=8,则DE=_______.14.如图所示,在□ABCD 中,对角线AC ,BD 交于点O ,OE ∥BC 交CD•于E ,•若OE=3cm ,则AD 的长为( ). A .3cm B .6cm C .9cm D .12cm15.如图所示,在四边形ABCD 中,E ,F ,G ,H 分别是AB ,BC ,CD ,AD 的中点,•则四边形EFGH 是平行四边形吗?为什么?16.如图所示,在△ABC 中,AC=6cm ,BC=8cm ,AB=10cm ,D ,E ,F 分别是AB ,BC ,CA 的中点,求△DEF 的面积.规律方法应用17.如图所示,A ,B 两点被池塘隔开,在A ,B 外选一点C ,连接AC 和BC ,•并分别找出AC 和BC 的中点M ,N ,如果测得MN=20m ,那么A ,B 两点间的距离是多少?18.如图所示,在□ABCD 中,AB=2AD ,∠A=60°,E ,F 分别为AB ,CD 的中点,EF=1cm ,那么对角线BD 的长度是多少?你是怎样得到的?19.如图所示,在△ABC 中,E 为AB 的中点,CD 平分∠ACB ,AD ⊥CD 于点D .• 试说明:(1)DE ∥BC .(2)DE=12(BC-AC ).开放探索创新20.如图所示,在△ABC中,∠BAC=90°,AD⊥BC于D,BE平分∠ABC交AD•于E,EF∥BC交AC于F,那么AE与CF相等吗?请验证你的结论.中考真题实战21.(长沙)如下左图所示,在四边形ABCD中,AB∥CD,要使四边形ABCD•为平行四边形,则应添加的条件是________.(添加一个即可)22.(呼和浩特)如上右图所示,已知E,F,G,H是四边形ABCD各边的中点,•则S四边形EFGH:S四边形ABCD的值是_________.23.(南京)已知如图19-1-55所示,在ABCD中,E,F分别是AB,CD的中点.求证:(1)•△AFD≌△CEB.(2)四边形AECF是平行四边形.答案:1.C 2.C 3.D4.(1)×(2)×(3)∨(4)∨(5)∨(6)× 5.AD=BC或AB∥CD6.解:∵∠1=∠2,∴AD∥BC.又∵∠3=∠4,∴AB∥CD.∴四边形ABCD是平行四边形.7.证明:∵AB=CD,BC=AD,∴四边形ABCD是平行四边形.∴AB∥CD,∴∠BAE=∠DCF.又∵AE=CE,∴△ABE≌△CDF(SAS),∴BE=EF.8.证明:∵FC∥AB,∴∠DAC=∠ACF,∠ADF=∠DFC.又∵AE=CE,∴△ADE≌△CFE(AAS),∴DE=EF.∵AE=CE,∴四边形ADCF为平行四边形.∴CD=AF.9.证明:∵四边形ABCD是平行四边形.∴AB//DC.又∵BE=AB,∴BE//DC,∴四边形BDCE是平行四边形.∵DC∥BF,∴∠CDF=∠F.同理,∠BDM=∠DMC.∵BD=BF,∴∠BDF=∠F.∴∠CDF=∠CMD,∴CD=CM.10.证明:过点B作BG∥AD,交DC的延长线于G,连接EG.∵DC∥AB,∴ABGD是平行四边形,∴BG// AD.在□ACED中,AD//CE,∴CE//BG.∴四边形BCEG为平行四边形,∴EF=FB.11.证明:∵四边形ABCD是平行四边形,∴AB//CD,AD=BC.∵CE=CD,∴AB//CE,∴四边形ABEC为平行四边形.∴BF=FC,∴OF//12AB,即AB=2OF.12.证明:∵四边形ABCD是平行四边形,∴AB ∥CD ,AD ∥BC . 又∵EF ∥AB ,∴EF ∥CD .∴四边形ABEF ,ECDF 均为平行四边形.又∵M ,N 分别为ABEF 和ECDF 对角线的交点. ∴M 为AE 的中点,N 为DE 的中点, 即MN 为△AED 的中位线. ∴MN ∥AD 且MN=12AD . 13.4 14.B15.解:EFGH 是平行四边形,连接AC ,在△ABC 中,∵EF 是中位线,∴EF //12AC . 同理,GH //12AC . ∴EF //GH ,∴四边形EFGH 为平行四边形. 16.解:∵EF ,DE ,DF 是△ABC 的中位线, ∴EF=12AB ,DE=12AC ,DF=12BC . 又∵AB=10cm ,BC=8cm ,AC=6cm ,∴EF=5cm ,DE=3cm ,DF=4cm ,而32+42=25=52,即DE 2+DF 2=EF 2. ∴△EDF 为直角三角形. ∴S △EDF =12DE ·DF=12×3×4=6(cm 2). 17.解:∵M ,N 分别是AC ,BC 的中点. ∴MN 是△ABC 的中位线,∴MN=12AB . ∴AB=2MN=2×20=40(m ).故A ,B 两点间的距离是40m . 18.解:连接DE .∵四边形ABCD 是平行四边形, ∴AB //CD . ∵DF=12CD ,AE=12AB , ∴DF //AE .∴四边形ADFE 是平行四边形.∴EF=AD=1cm .∵AB=2AD ,∴AB=2cm .∵AB=2AD ,∴AB=2AE ,∴AD=AE . ∴∠1=∠4.∵∠A=60°,∠1+∠4+∠A=180°, ∴∠1=∠A=∠4=60°.∴△ADE 是等边三角形,∴DE=AE . ∵AE=BE ,∴DE=BE ,∴∠2=∠3.∵∠1=∠2+∠3,∠1=60°,∴∠2=∠3=30°. ∴∠ADB=∠3+∠4=90°. ∴BD=222221AB AD -=-=3(cm ).19.解:延长AD 交BC 于F .(1)∵AD ⊥CD ,∴∠ADC=∠FDC=90°.∵CD 平分∠ACB ,∴∠ACD=∠FCD . 在△ACD 与△FCD 中,∠ADC=∠FDC ,DC=DC ,∠ACD=∠FCD . ∴△ACD ≌△FCD ,∴AC=FC ,AD=DF .又∵E 为AB 的中点,∴DE ∥BF ,即DE ∥BC .(2)由(1)知AC=FC ,DE=12BF . ∴DE=12(BC-FC )=12(BC-AC ). 20.解:AE=CF .理由:过E 作EG ∥CF 交BC 于G , ∴∠3=∠C .∵∠BAC=90°,AD ⊥BC ,∴∠ABC+∠C=90°,∠ABD+∠BAD=90°. ∴∠C=∠BAD ,∴∠3=∠BAD . 又∵∠1=∠2,BE=BE , ∴△ABE ≌△GBE (AAS ),∴AE=GE . ∵EF ∥BC ,EG ∥CF ,∴四边形EGCF 是平行四边形,∴GE=CF , ∴AE=CF .21.答案不唯一,如AB=CD 或AD ∥BC . 22.1223.解:(1)在□ABCD 中,AD=CB ,AB=CD ,∠D=∠B . ∵E ,F 分别为AB ,CD 的中点, ∴DF=12CD ,BE=12AB ,∴DF=BE , ∴△AFD ≌△CEB .(2)在□ABCD 中,AB=CD ,AB ∥CD . 由(1)得BE=DF ,∴AE=CE ,∴四边形AECF 是平行四边形.。
平行四边形的判定专题练习题1.在四边形ABCD中,AB=3 cm,BC=5 cm,那么当DC=______,AD=______时,四边形ABCD是平行四边形.2.如图,以△ABC的顶点A为圆心,以BC长为半径作弧,再以顶点C为圆心,以AB长为半径作弧,两弧交于点D,连接AD,CD.若∠B=65°,则∠ADC的大小为______.3.若∠A,∠B,∠C,∠D为四边形ABCD的四个内角,下列给出的是这四个内角的比值,其中能使四边形ABCD是平行四边形的是()A.2∶3∶2∶3 B.2∶3∶3∶2 C.1∶2∶3∶4 D.2∶2∶3∶34.如图,已知∠B=∠D,要使四边形ABCD成为平行四边形,需要添加一个条件是_______________.5.小玲的爸爸在钉制平行四边形框架时,采用了一种方法:如图,将两根木条AC,BD的中点重叠,并用钉子固定,则四边形ABCD就是平行四边形,这种方法的依据是()A.对角线互相平分的四边形是平行四边形B.两组对角分别相等的四边形是平行四边形C.两组对边分别相等的四边形是平行四边形D.两组对边分别平行的四边形是平行四边形6. 如图,在▱ABCD中,点E,F在对角线BD上,且BE=DF,求证:四边形AECF是平行四边形.7.在四边形ABCD中,AD=BC,若四边形ABCD是平行四边形,则还应满足() A.∠A+∠C=180°B.∠B+∠D=180°C.∠A+∠B=180°D.∠A+∠D=180°8.如图,在四边形ABCD中,AD∥BC,AE⊥AD交BD于点E,CF⊥BC交BD于点F,且AE=CF.求证:四边形ABCD是平行四边形.9.下列条件不能判定四边形ABCD是平行四边形的是()A.AB∥CD,AD∥BC B.∠A=∠C,∠B=∠DC.AB=CD,AD=BC D.AB∥CD,AD=BC10.如图,在▱ABCD中,对角线AC,BD相交于点O,E,F是对角线AC上的两点,当E,F满足下列哪个条件时,四边形DEBF不一定是平行四边形()A.AE=CF B.DE=BF C.∠ADE=∠CBF D.∠AED=∠CFB11.如图,四边形ABCD的对角线相交于点O,若AB∥CD,请添加一个条件_____________(写一个即可),使四边形ABCD是平行四边形.12.一个四边形的四条边长依次是a,b,c,d,且满足a2+b2+c2+d2=2ac+2bd,则这个四边形一定是____________,依据是____________________________________.13.如图,在四边形ABCD中,AB∥CD,∠B=∠D,BC=6,AB=3,求四边形ABCD的周长.14.如图,AB,CD相交于点O,AC∥DB,AO=BO,E,F分别是OC,OD的中点.求证:四边形AFBE是平行四边形.15.如图,在▱ABCD中,过点A作AM⊥BC于点M,交BD于点E,过点C作CN⊥AD于点N,交BD于点F,连接AF,CE.求证:四边形AECF为平行四边形.16.如图,以△ABC的三边为边在BC的同一侧作等边△ABP,等边△ACQ,等边△BCR,那么四边形AQRP是平行四边形吗?若是,请证明;若不是,请说明理由.方法技能:1.平行四边形的判定方法有五种,从边看有三种,从角看有一种,从对角线看有一种,解题时应仔细观察题目条件,灵活选择适合题目的判定方法.2.应用平行四边形的判定和性质时要注意它们的区别和联系.3.一组对边相等,另一组对边平行的四边形不一定是平行四边形.易错提示:不能正确选用平行四边形的判定定理而导致判断错误.答案:1. 3 cm 5 cm2. 65°3. A4. ∠A=∠C等5 A6. 解:连接AC,交BD于点O,∵四边形ABCD 是平行四边形,∴AO=OC,BO=DO,又∵BE=DF,∴BO-BE=DO-DF,即EO=OF,∴四边形AECF是平行四边形7. C8. 解:∵AD∥BC,∴∠ADE=∠CBF,∵AE⊥AD,CF⊥BC,∴∠EAD=∠FCB=90°,又∵AE=CF,∴△ADE≌△CBF(AAS),∴AD=BC,∴四边形ABCD是平行四边形9. D10. B11. 答案不唯一,如AD∥BC,OA=OC等12. 平行四边形两组对边分别相等的四边形是平行四边形13. 解:∵AB∥CD,∴∠B+∠C=180°,又∵∠B=∠D,∴∠D+∠C=180°,∴AD∥BC,∴四边形ABCD为平行四边形,∴AB=CD,BC=AD,又∵BC=6,AB=3,∴四边形ABCD 的周长为(6+3)×2=1814. 解:∵AC∥DB,∴∠CAB=∠DBA,又∵AO=BO,∠AOC=∠BOD,∴△AOC≌△BOD(ASA),∴CO=DO,∵E,F分别为OC,OD的中点,∴OE=OF,∴四边形AFBE 是平行四边形15. 解:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∠ABC=∠ADC,∴∠ABD =∠CDB,又∵AM⊥BC,CN⊥AD,∴∠BAM=∠DCN,∴△ABE≌△CDF(ASA),∴AE =CF,∠AEB=∠CFD,∴∠AEF=∠CFE,∴AE∥CF,∴四边形AECF为平行四边形16. 解:四边形AQRP是平行四边形.证明:由SAS可证△ABC≌△PBR,得AC=PR,又∵AC=AQ,∴AQ=PR,同理PA=RQ,∴四边形AQRP是平行四边形。
19.1.2 平行四边形的判定一、选择题1.不能判断四边形ABCD是平行四边形的是( )A.AB=CD,AD=BCB.AB=CD,AB∥CDC.AB=CD,AD∥BCD.AB∥CD,AD∥BC2.下列给出的条件中,能判定四边形ABCD是平行四边形的是( )A.AB∥CD,AD=BCB.AB=AD,CB=CDC.AB=CD,AD=BCD.∠B=∠C,∠A=∠D3.如图1,已知AD∥BC,要使四边形ABCD为平行四边形,需添加一个条件为______________.图1 图2 图34.如图2,在△ABC中,D、E分别是AB、AC边的中点,且DE=6 cm,则BC=____________.二、填空题1.如图3,在ABCD中,对角线AC、BD相交于点O,E、F是对角线AC上的两点,当E、F满足下列哪个条件时,四边形DEBF不一定是平行四边形( )A.AE=CFB.DE=BFC.∠ADE=∠CBFD.∠AED=∠CFB2.如图4,AB DC,DC=EF=10,DE=CF=8,则图中的平行四边形有_________________,理由分别是_________________、____________________.图4 图5 图63.如图5,E、F是平行四边形ABCD对角线BD上的两点,请你添加一个适当的条件:__________,使四边形AECF是平行四边形.4.如图6,AD=BC,要使四边形ABCD是平行四边形,还需补充的一个条件是:______ ________.5.如图,在ABCD中,已知M和N分别是边AB、DC的中点,试说明四边形BMDN也是平行四边形.三、综合题1.以不在同一直线上的三个点为顶点作平行四边形最多能作( )A.4个B.3个C.2个D.1个2.下面给出了四边形ABCD中∠A、∠B、∠C、∠D的度数之比,其中能判定四边形ABCD 是平行四边形的是( )A.1∶2∶3∶4B.2∶2∶3∶3C.2∶3∶3∶2D.2∶3∶2∶33.九根火柴棒排成如右图形状,图中_____个平行四边形,你判断的根据是________________.4.已知四边形ABCD的对角线AC、BD相交于点O,给出下列5个条件:①AB∥CD;②OA=OC;③AB=CD;④∠BAD=∠DCB;⑤AD∥BC.(1)从以上5个条件中任意选取2个条件,能推出四边形ABCD是平行四边形的有(用序号表示):_____________________________;(2)对由以上5个条件中任意选取2个条件,不能推出四边形ABCD是平行四边形的,请选取一种情形举出反例说明.5.若三条线段的长分别为20 cm,14 cm,16 cm,以其中两条为对角线,另一条为一边,是否可以画平行四边形?6.如图,E 、F 是四边形ABCD 的对角线AC 上的两点,AF=CE ,DF=BE ,DF ∥BE.求证:(1)△AFD ≌△CEB; (2)四边形ABCD 是平行四边形.7.如图,已知DC ∥AB ,且DC=21AB ,E 为AB 的中点. (1)求证:△AED ≌△EBC ;(2)观察图形,在不添加辅助线的情况下,除△EBC 外,请再写出两个与△AED 的面积相等的三角形(直接写出结果,不要求证明):______________________________.8.如图,已知ABCD中DE⊥AC,BF⊥AC,证明四边形DEBF为平行四边形.9.如图,已知ABCD中,E、F分别是AB、CD的中点.求证:(1)△AFD≌△CEB;(2)四边形AECF是平行四边形.参考答案一、课前预习(5分钟训练)1.不能判断四边形ABCD是平行四边形的是( )A.AB=CD,AD=BCB.AB=CD,AB∥CDC.AB=CD,AD∥BCD.AB∥CD,AD∥BC答案:C2.下列给出的条件中,能判定四边形ABCD是平行四边形的是( )A.AB∥CD,AD=BCB.AB=AD,CB=CDC.AB=CD,AD=BCD.∠B=∠C,∠A=∠D答案:C3.如图,已知AD∥BC,要使四边形ABCD为平行四边形,需添加一个条件为______________.答案:提示:添加AB∥DC,AD=BC等都可以.4.如图,在△ABC中,D、E分别是AB、AC边的中点,且DE=6 cm,则BC=____________.解析:根据三角形的中位线平行于第三边,并且等于第三边的一半,可知BC=2DE=12 cm.答案:12 cm二、课中强化(10分钟训练)1.如图,在ABCD中,对角线AC、BD相交于点O,E、F是对角线AC上的两点,当E、F 满足下列哪个条件时,四边形DEBF不一定是平行四边形( )A.AE=CFB.DE=BFC.∠ADE=∠CBFD.∠AED=∠CFB解析:当E、F满足AE=CF时,由平行四边形的对角线相等知OB=OD,OA=OC,故OE=OF.可知四边形DEBF是平行四边形.当E、F满足∠ADE=∠CBF时,因为AD∥BC,所以∠DAE=∠BCF.又AD=BC,可证出△ADE≌△CBF,所以DE=BF,∠DEA=∠BFC.故∠DEF=∠BFE.因此DE∥BF,可知四边形DEBF是平行四边形.类似地可说明D也可以.答案:B2.如图,AB DC,DC=EF=10,DE=CF=8,则图中的平行四边形有_________________,理由分别是_________________、____________________.解析:因为AB DC,根据一组对边平行且相等的四边形是平行四边形可判定四边形ABCD是平行四边形;DC=EF,DE=CF,根据两组对边分别相等的四边形是平行四边形可判定四边形CDEF是平行四边形.答案:四边形ABCD,四边形CDEF 一组对边平行且相等的四边形是平行四边形两组对边分别相等的四边形是平行四边形3.如图,E、F是平行四边形ABCD对角线BD上的两点,请你添加一个适当的条件:__________,使四边形AECF是平行四边形.解析:根据平行四边形的定义和判定方法可填BE=DF;∠BAE=∠CDF等.答案:BE=DF或∠BAE=∠CDF等任何一个均可4.如图,AD=BC,要使四边形ABCD是平行四边形,还需补充的一个条件是:______ ________.解析:根据平行四边形的判定定理,知可填①AD ∥BC,②AB=CD,③∠A+∠B=180°,④∠C+∠D=180°等. 答案:不唯一,以上几个均可. 5.如图,在ABCD 中,已知M 和N 分别是边AB 、DC 的中点,试说明四边形BMDN 也是平行四边形.答案:证明:∵ABCD,∴AB CD.∵M 、N 是中点, ∴BM=21AB,DN=21CD. ∴BM DN.∴四边形BMDN 也是平行四边形. 三、课后巩固(30分钟训练)1.以不在同一直线上的三个点为顶点作平行四边形最多能作( )A.4个B.3个C.2个D.1个解析:要求最多能作几个,只要连结起三个顶点后构成三角形,分别以其中一边作为对角线,另两边作为平行四边形的邻边作图,即可得出三种. 答案:B2.下面给出了四边形ABCD 中∠A 、∠B 、∠C 、∠D 的度数之比,其中能判定四边形ABCD 是平行四边形的是( )A.1∶2∶3∶4B.2∶2∶3∶3C.2∶3∶3∶2D.2∶3∶2∶3 解析:由两组对角分别相等的四边形是平行四边形易知,要使四边形ABCD 是平行四边形需满足∠A=∠C ,∠B=∠D ,因此∠A 与∠C ,∠B 与∠D 所占的份数分别相等. 答案:D3.九根火柴棒排成如右图形状,图中_____个平行四边形,你判断的根据是________________.答案:有3 两组对边分别相等的四边形是平行四边形4.已知四边形ABCD 的对角线AC 、BD 相交于点O ,给出下列5个条件:①AB ∥CD ;②OA=OC ;③AB=CD ;④∠BAD=∠DCB ;⑤AD ∥BC.(1)从以上5个条件中任意选取2个条件,能推出四边形ABCD是平行四边形的有(用序号表示):_____________________________;(2)对由以上5个条件中任意选取2个条件,不能推出四边形ABCD是平行四边形的,请选取一种情形举出反例说明.解析:本题是条件开放性试题,要使四边形ABCD是平行四边形,从边、角、对角线上考虑共有5种判定方法,因此只需将任意两个条件组合加以评砼卸?答案:(1)①与②;①与③;①与④;①与⑤;②与⑤;④与⑤(2)③与⑤两个条件不能推出四边形ABCD是平行四边形.如图,AB=CD且AD∥BC,而四边形ABCD不是平行四边形.5.若三条线段的长分别为20 cm,14 cm,16 cm,以其中两条为对角线,另一条为一边,是否可以画平行四边形?解析:由平行四边形对角线互相平分,能否画平行四边形,应以任两条的一半和第三边为三边,看是否能构成三角形即可.20,16或20,14为对角线,另一条为一边可画平行四边形.6.如图,E、F是四边形ABCD的对角线AC上的两点,AF=CE,DF=BE,DF∥BE.求证:(1)△AFD≌△CEB;(2)四边形ABCD是平行四边形.答案:证明:(1)∵DF∥BE,∴∠AFD=∠CEB.又∵AF=CE,DF=BE,∴△AFD≌△CEB.(2)由(1)△AFD≌△CEB知AD=BC,∠DAF=∠BCE,∴AD∥BC.∴四边形ABCD是平行四边形.7.如图,已知DC ∥AB ,且DC=21AB ,E 为AB 的中点. (1)求证:△AED ≌△EBC ;(2)观察图形,在不添加辅助线的情况下,除△EBC 外,请再写出两个与△AED 的面积相等的三角形(直接写出结果,不要求证明):______________________________.答案:证明:(1)∵E 为AB 的中点, ∴AE=EB=21AB. ∵DC=21AB ,DC ∥AB , ∴AE DC ,EB DC.∴四边形AECD 和四边形EBCD 都是平行四边形. ∴AD=EC ,ED=BC. 又∵AE=BE , ∴△AED ≌△EBC.(2)△ACD ,△ACE ,△CDE(写出其中两个三角形即可) 8.如图,已知ABCD 中DE ⊥AC,BF ⊥AC,证明四边形DEBF 为平行四边形.答案:证明:在ABCD 中,AD=BC,AD ∥BC,∴∠DAC=∠BCA. 又∵∠DEA=∠BFC=90°, ∴Rt △ADE ≌Rt △CBF. ∴DE=BF. 同理,可证DF=BE.∴四边形DEBF 为平行四边形. 9.(2010江苏南京模拟,19)如图,已知ABCD 中,E 、F 分别是AB 、CD 的中点.求证:(1)△AFD ≌△CEB;(2)四边形AECF 是平行四边形.答案:证明:(1)在ABCD 中,AD=CB,AB=CD,∠D=∠B.∵E 、F 分别是AB 、CD 的中点, ∴DF=21CD,BE=21AB. ∴DF=BE. ∴△AFD ≌△CEB. (2)在ABCD 中,AB=CD,AB ∥CD.由(1)得BE=DF,∴AE=CF. ∴四边形AECF 是平行四边形.。
平行四边形的判定单元测试卷一、选择题1. 在平行四边形ABCD 中,∠A :∠B :∠C :∠D 的值可以是( )(A )1:2:3:4 (B ) 3:4:4:3 (C ) 3:3:4:4 (D ) 3:4:3:42. 下面给出了四边形ABCD中∠A,∠B,∠C,∠D的度数之比,其中能判定四边形ABCD是平行四边形的是 ( )(A )1:2:3:4 (B )2:2:3:3 (C )2;3:2:3 (D )2:3:3:23. 下列叙述中,正确的是 ( )(A ) 只有一组对边平行的四边形是梯形; (B )矩形可以看作是一种特殊的梯形 (C )梯形有两个内角是锐角,其余两个角是钝角; (D )形的对角互补4. 小明用两根同样长的竹棒做对角线,制作四边形的风筝,则该风筝的形状一定是( ) (A ) 矩形 (B ) 正方形 (C ) 等腰梯形 (D ) 无法确定5. 如图1,宽为50 cm 的矩形图案由10个全等的小长方形 成,其中一个小长方形的面积为 ( )(A )400 cm 2(B )500 cm 2(C ) 600 cm 2(D )4000 cm 2 6. 将一矩形纸片对折后再对折,如图2(1)、(2),然后沿图(3)中的虚线剪下,得到①、②两部分,将①展开后得到的平面图形一定是( )B )矩形(C )菱形 (D )正方形7. 如图3,某正方形园地是由边长为1的四个小正方形组成的,现在园地上建一个花园(即每个图中的阴影部分),使花坛面积是园地面积的一半,以下图中的设计不合要求的是 ( )② 图(3) 图(2) ①图2 图18. 如图4,矩形ABCD 的边长AB =6,BC =8,将矩形沿EF 折叠,使C 点与A 点重合,则折痕EF 的长是( )(A )7.5 (B ) 6 (C ) 10 (D ) 59. 如图5:矩形花园ABCD 中, AB=a , AD=b ,花园中建有一条矩形道路LMPQ 及一条平行四边形道路RSTK 。
平行四边形的性质和判定1..已知平行四边形的周长是100cm , AB :BC =4 : 1,则AB 的长是_____.2.平行四边形ABCD 的周长32, 5AB =3BC ,则对角线AC 的取值范围为_______3.已知平行四边形的面积是144,相邻两边上的高分别为8和9,则它的周长是______.4.在平行四边形ABCD 中,AB =3,BC =5,∠B 的平分线BE 交AD 于点E ,则DE 的长为 .5. 平行四边形ABCD 的周长为22,两条对角线相交于O ,△AOB 的周长比△BOC 的周长大5,则AD 的边长为 .6.在平行四边形ABCD 中,∠A : ∠B =3:2,则∠C =_____ 度,∠D =___度.7.在平行四边形ABCD 中,∠B -∠A =20°,则∠D 的度数是_______8.由等腰三角形底边上任一点(端点除外)作两腰的平行线,则所成的平行四边形的周长等于等腰三角形的( )A .周长B . 一腰的长C .周长的一半D . 两腰的和9.以长为5cm , 4cm , 7cm 的三条线段中的的两条为边,另一条为对角线画平行四边形,可以画出形状不同的平行四边形的个数是( )A. 1 B . 2 C . 3 D . 410.如图,平行四边形ABCD 中,AE =CG , DH =BF ,连结E ,F ,G ,H ,E ,则四边形EFGH 是_____. H G F EDC B A11.如图,平行四边形ABCD 中,E ,F 是对角线AC 上的两点,且AE =CF ,连结B ,F ,D ,E ,B 则四边形BEDF 是___________.GFED C B A12.有公共顶点的两个全等三角形,其中一个三角形绕公共顶点旋转180°后与另一个重合,那么不共点的四个顶点的连线构成__________形.练习题:1. 在平行四边形ABCD 中,∠A +∠C =270°,则∠B =___,∠C =____.2. 平行四边形的周长等于56 cm ,两邻边长的比为3∶1,那么这个平行四边形较长的边长为____.3. 平行四边形的两条对角线把它分成全等三角形的对数是( )A .2B .4C .6D .84. 如图,平行四边形ABCD 中,对角线AC 、BD 交于点O ,过点O 的直线分别交AD 、BC 于E 、F ,则图中的全等三角形共有___对.5. 关于四边形ABCD :①两组对边分别平行②两组对边分别相等③有两组角相等④对角线AC 和BD 相等.以上四个条件中,可以判定四边形ABCD 是平行四边形的有______个平行四边形的性质与判定(四边形性质探索)基础练习试卷简介:全卷共3个选择题,14个填空题,分值100分,测试时间60分钟。
平行四边形的判定及中位线知能点1 平行四边形的判定方法1.能够判定四边形ABCD是平行四边形的题设是().A.AB∥CD,AD=BC B.∠A=∠B,∠C=∠DC.AB=CD,AD=BC D.AB=AD,CB=CD2.具备下列条件的四边形中,不能确定是平行四边形的为().A.相邻的角互补 B.两组对角分别相等C.一组对边平行,另一组对边相等 D.对角线交点是两对角线中点3.如下左图所示,四边形ABCD的对角线AC和BD相交于点O,下列判断正确的是().A.若AO=OC,则ABCD是平行四边形;B.若AC=BD,则ABCD是平行四边形;C.若AO=BO,CO=DO,则ABCD是平行四边形;D.若AO=OC,BO=OD,则ABCD是平行四边形4.如上右图所示,对四边形ABCD是平行四边形的下列判断,正确的打“∨”,错误的打“×”.(1)因为AD∥BC,AB=CD,所以ABCD是平行四边形.()(2)因为AB∥CD,AD=BC,所以ABCD是平行四边形.()(3)因为AD∥BC,AD=BC,所以ABCD是平行四边形.()(4)因为AB∥CD,AD∥BC,所以ABCD是平行四边形.()(5)因为AB=CD,AD=BC,所以ABCD是平行四边形.()(6)因为AD=CD,AB=AC,所以ABCD是平行四边形.()5.已知AD∥BC,要使四边形ABCD为平行四边形,需要增加条件________.6.如图所示,∠1=∠2,∠3=∠4,问四边形ABCD是不是平行四边形.7.如图所示,在四边形ABCD中,AB=CD,BC=AD,E,F为对角线AC上的点,且AE=CF,求证:BE=DF.8.如图所示,D为△ABC的边AB上一点,DF交AC于点E,且AE=CE,FC∥AB.求证:CD=AF.9.如图所示,已知四边形ABCD是平行四边形,在AB的延长线上截取BE=•AB,BF=BD,连接CE,DF,相交于点M.求证:CD=CM.10.如图所示,在四边形ABCD中,DC∥AB,以AD,AC为边作□ACED,延长DC•交EB于F,求证:EF=FB.知能点2 三角形的中位□线11.如图所示,已知E 为□ABCD 中DC 边的延长线上的一点,且CE=DC ,连接AE ,分别交BC ,BD 于点F ,G ,连接AC 交BD 于点O ,连接OF ,求证:AB=2OF .12.如图所示,在ABCD 中,EF ∥AB 且交BC 于点E ,交AD 于点F ,连接AE ,BF•交于点M ,连接CF ,DE 交于点N ,求证:MN ∥AD 且MN=12AD .13.如图所示,DE 是△ABC 的中位线,BC=8,则DE=_______.14.如图所示,在□ABCD 中,对角线AC ,BD 交于点O ,OE ∥BC 交CD•于E ,•若OE=3cm ,则AD 的长为( ). A .3cm B .6cm C .9cm D .12cm15.如图所示,在四边形ABCD 中,E ,F ,G ,H 分别是AB ,BC ,CD ,AD 的中点,•则四边形EFGH 是平行四边形吗?为什么?16.如图所示,在△ABC 中,AC=6cm ,BC=8cm ,AB=10cm ,D ,E ,F 分别是AB ,BC ,CA 的中点,求△DEF 的面积.规律方法应用17.如图所示,A ,B 两点被池塘隔开,在A ,B 外选一点C ,连接AC 和BC ,•并分别找出AC 和BC 的中点M ,N ,如果测得MN=20m ,那么A ,B 两点间的距离是多少?18.如图所示,在□ABCD 中,AB=2AD ,∠A=60°,E ,F 分别为AB ,CD 的中点,EF=1cm ,那么对角线BD 的长度是多少?你是怎样得到的?19.如图所示,在△ABC 中,E 为AB 的中点,CD 平分∠ACB ,AD ⊥CD 于点D .• 试说明:(1)DE ∥BC .(2)DE=12(BC-AC ).开放探索创新20.如图所示,在△ABC中,∠BAC=90°,AD⊥BC于D,BE平分∠ABC交AD•于E,EF∥BC交AC于F,那么AE与CF相等吗?请验证你的结论.中考真题实战21.(长沙)如下左图所示,在四边形ABCD中,AB∥CD,要使四边形ABCD•为平行四边形,则应添加的条件是________.(添加一个即可)22.(呼和浩特)如上右图所示,已知E,F,G,H是四边形ABCD各边的中点,•则S四边形EFGH:S四边形ABCD的值是_________.23.(南京)已知如图19-1-55所示,在ABCD中,E,F分别是AB,CD的中点.求证:(1)•△AFD≌△CEB.(2)四边形AECF是平行四边形.答案:1.C 2.C 3.D4.(1)×(2)×(3)∨(4)∨(5)∨(6)× 5.AD=BC或AB∥CD6.解:∵∠1=∠2,∴AD∥BC.又∵∠3=∠4,∴AB∥CD.∴四边形ABCD是平行四边形.7.证明:∵AB=CD,BC=AD,∴四边形ABCD是平行四边形.∴AB∥CD,∴∠BAE=∠DCF.又∵AE=CE,∴△ABE≌△CDF(SAS),∴BE=EF.8.证明:∵FC∥AB,∴∠DAC=∠ACF,∠ADF=∠DFC.又∵AE=CE,∴△ADE≌△CFE(AAS),∴DE=EF.∵AE=CE,∴四边形ADCF为平行四边形.∴CD=AF.9.证明:∵四边形ABCD是平行四边形.∴AB//DC.又∵BE=AB,∴BE//DC,∴四边形BDCE是平行四边形.∵DC∥BF,∴∠CDF=∠F.同理,∠BDM=∠DMC.∵BD=BF,∴∠BDF=∠F.∴∠CDF=∠CMD,∴CD=CM.10.证明:过点B作BG∥AD,交DC的延长线于G,连接EG.∵DC∥AB,∴ABGD是平行四边形,∴BG// AD.在□ACED中,AD//CE,∴CE//BG.∴四边形BCEG为平行四边形,∴EF=FB.11.证明:∵四边形ABCD是平行四边形,∴AB//CD,AD=BC.∵CE=CD,∴AB//CE,∴四边形ABEC为平行四边形.∴BF=FC,∴OF//12AB,即AB=2OF.12.证明:∵四边形ABCD是平行四边形,∴AB ∥CD ,AD ∥BC . 又∵EF ∥AB ,∴EF ∥CD .∴四边形ABEF ,ECDF 均为平行四边形.又∵M ,N 分别为ABEF 和ECDF 对角线的交点. ∴M 为AE 的中点,N 为DE 的中点, 即MN 为△AED 的中位线. ∴MN ∥AD 且MN=12AD . 13.4 14.B15.解:EFGH 是平行四边形,连接AC ,在△ABC 中,∵EF 是中位线,∴EF //12AC . 同理,GH //12AC . ∴EF //GH ,∴四边形EFGH 为平行四边形. 16.解:∵EF ,DE ,DF 是△ABC 的中位线, ∴EF=12AB ,DE=12AC ,DF=12BC . 又∵AB=10cm ,BC=8cm ,AC=6cm ,∴EF=5cm ,DE=3cm ,DF=4cm ,而32+42=25=52,即DE 2+DF 2=EF 2. ∴△EDF 为直角三角形. ∴S △EDF =12DE ·DF=12×3×4=6(cm 2). 17.解:∵M ,N 分别是AC ,BC 的中点. ∴MN 是△ABC 的中位线,∴MN=12AB . ∴AB=2MN=2×20=40(m ).故A ,B 两点间的距离是40m . 18.解:连接DE .∵四边形ABCD 是平行四边形, ∴AB //CD . ∵DF=12CD ,AE=12AB , ∴DF //AE .∴四边形ADFE 是平行四边形.∴EF=AD=1cm .∵AB=2AD ,∴AB=2cm .∵AB=2AD ,∴AB=2AE ,∴AD=AE . ∴∠1=∠4.∵∠A=60°,∠1+∠4+∠A=180°, ∴∠1=∠A=∠4=60°.∴△ADE 是等边三角形,∴DE=AE . ∵AE=BE ,∴DE=BE ,∴∠2=∠3.∵∠1=∠2+∠3,∠1=60°,∴∠2=∠3=30°. ∴∠ADB=∠3+∠4=90°. ∴BD=222221AB AD -=-=3(cm ).19.解:延长AD 交BC 于F .(1)∵AD ⊥CD ,∴∠ADC=∠FDC=90°.∵CD 平分∠ACB ,∴∠ACD=∠FCD . 在△ACD 与△FCD 中,∠ADC=∠FDC ,DC=DC ,∠ACD=∠FCD . ∴△ACD ≌△FCD ,∴AC=FC ,AD=DF .又∵E 为AB 的中点,∴DE ∥BF ,即DE ∥BC .(2)由(1)知AC=FC ,DE=12BF . ∴DE=12(BC-FC )=12(BC-AC ). 20.解:AE=CF .理由:过E 作EG ∥CF 交BC 于G , ∴∠3=∠C .∵∠BAC=90°,AD ⊥BC ,∴∠ABC+∠C=90°,∠ABD+∠BAD=90°. ∴∠C=∠BAD ,∴∠3=∠BAD . 又∵∠1=∠2,BE=BE , ∴△ABE ≌△GBE (AAS ),∴AE=GE . ∵EF ∥BC ,EG ∥CF ,∴四边形EGCF 是平行四边形,∴GE=CF , ∴AE=CF .21.答案不唯一,如AB=CD 或AD ∥BC . 22.1223.解:(1)在□ABCD 中,AD=CB ,AB=CD ,∠D=∠B . ∵E ,F 分别为AB ,CD 的中点, ∴DF=12CD ,BE=12AB ,∴DF=BE , ∴△AFD ≌△CEB .(2)在□ABCD 中,AB=CD ,AB ∥CD . 由(1)得BE=DF ,∴AE=CE ,∴四边形AECF 是平行四边形.。