高考数学专题复习测试 第12单元《复数、算法初步》
- 格式:doc
- 大小:1013.00 KB
- 文档页数:12
第十二章复数、算法、推理与证明第一节 数系的扩充与复数的引入一、基础知识1.复数的有关概念 (1)复数的概念:形如a +b i(a ,b ∈R )的数叫复数,其中a ,b 分别是它的实部和虚部.若b =0,则a +b i 为实数;若b ≠0,则a +b i 为虚数;若a =0且b ≠0,则a +b i 为纯虚数.一个复数为纯虚数,不仅要求实部为0,还需要求虚部不为0.(2)复数相等:a +b i =c +d i ⇔a =c 且b =d (a ,b ,c ,d ∈R ). (3)共轭复数:a +b i 与c +d i 共轭⇔a =c ,b =-d (a ,b ,c ,d ∈R ). (4)复数的模:向量OZ ―→的模r 叫做复数z =a +b i(a ,b ∈R )的模,记作|z |或|a +b i|,即|z |=|a +b i|=a 2+b 2. 2.复数的几何意义 (1)复数z =a +b i复平面内的点Z (a ,b )(a ,b ∈R ).复数z =a +b i (a ,b ∈R )的对应点的坐标为(a ,b ),而不是(a ,b i ).(2)复数z =a +b i(a ,b ∈R ) 平面向量OZ ―→.3.复数的运算(1)复数的加、减、乘、除运算法则设z 1=a +b i ,z 2=c +d i(a ,b ,c ,d ∈R ),则 ①加法:z 1+z 2=(a +b i)+(c +d i)=(a +c )+(b +d )i ; ②减法:z 1-z 2=(a +b i)-(c +d i)=(a -c )+(b -d )i ; ③乘法:z 1·z 2=(a +b i)·(c +d i)=(ac -bd )+(ad +bc )i ;④除法:z 1z 2=a +b i c +d i =(a +b i )(c -d i )(c +d i )(c -d i )=ac +bd c 2+d 2+bc -ad c 2+d 2i(c +d i ≠0).(2)复数加法的运算定律设z 1,z 2,z 3∈C ,则复数加法满足以下运算律:①交换律:z 1+z 2=z 2+z 1;②结合律:(z 1+z 2)+z 3=z 1+(z 2+z 3).二、常用结论(1)(1±i)2=±2i ,1+i 1-i =i ,1-i1+i=-i. (2)-b +a i =i(a +b i).(3)i 4n =1,i 4n +1=i ,i 4n +2=-1,i 4n +3=-i(n ∈N *);i 4n +i 4n +1+i 4n +2+i 4n +3=0(n ∈N *). (4)z ·z =|z |2=|z |2,|z 1·z 2|=|z 1|·|z 2|,⎪⎪⎪⎪z 1z 2=|z 1||z 2|,|z n |=|z |n.考点一 复数的四则运算[典例] (1)(2017·山东高考)已知i 是虚数单位,若复数z 满足z i =1+i ,则z 2=( ) A .-2i B .2i C .-2D .2(2)(2019·山东师大附中模拟)计算:(2+i )(1-i )21-2i =( )A .2B .-2C .2iD .-2i[解析] (1)∵z i =1+i , ∴z =1+i i =1i +1=1-i.∴z 2=(1-i)2=1+i 2-2i =-2i.(2)(2+i )(1-i )21-2i =-(2+i )2i 1-2i =2-4i1-2i =2,故选A.[答案] (1)A (2)A[解题技法] 复数代数形式运算问题的解题策略(1)复数的加法、减法、乘法运算可以类比多项式的运算,可将含有虚数单位i 的看作一类同类项,不含i 的看作另一类同类项,分别合并即可.(2)复数的除法运算是分子、分母同乘以分母的共轭复数,即分母实数化,解题中要注意把i 的幂写成最简形式.[题组训练]1.(2019·合肥质检)已知i 为虚数单位,则(2+i )(3-4i )2-i =( )A .5B .5iC .-75-125iD .-75+125i解析:选A 法一:(2+i )(3-4i )2-i =10-5i2-i =5,故选A.法二:(2+i )(3-4i )2-i =(2+i )2(3-4i )(2+i )(2-i )=(3+4i )(3-4i )5=5,故选A.2.(2018·济南外国语学校模块考试)已知(1-i )2z =1+i(i 为虚数单位),则复数z 等于( )A .1+iB .1-iC .-1+iD .-1-i解析:选D 由题意,得z =(1-i )21+i =-2i1+i =-1-i ,故选D.3.已知复数z =i +i 2+i 3+…+i 2 0181+i ,则复数z =________.解析:因为i 4n +1+i 4n +2+i 4n +3+i 4n +4=i +i 2+i 3+i 4=0, 而2 018=4×504+2,所以z =i +i 2+i 3+…+i 2 0181+i =i +i 21+i =-1+i 1+i =(-1+i )(1-i )(1+i )(1-i )=2i2=i.答案:i考点二 复数的有关概念[典例] (1)(2019·湘东五校联考)已知i 为虚数单位,若复数z =a1-2i +i(a ∈R )的实部与虚部互为相反数,则a =( )A .-5B .-1C .-13D .-53(2)(2018·全国卷Ⅰ)设z =1-i1+i +2i ,则|z |=( )A .0 B.12 C .1D. 2[解析] (1)z =a 1-2i +i =a (1+2i )(1-2i )(1+2i )+i =a 5+2a +55i ,∵复数z =a1-2i +i(a ∈R )的实部与虚部互为相反数,∴-a 5=2a +55,解得a =-53.故选D.(2)∵z =1-i 1+i +2i =(1-i )2(1+i )(1-i )+2i = -2i 2+2i =i ,∴|z |=1.故选C. [答案] (1)D (2)C[解题技法] 紧扣定义解决复数概念、共轭复数问题(1)求一个复数的实部与虚部,只需将已知的复数化为代数形式z =a +b i(a ,b ∈R ),则该复数的实部为a ,虚部为b .(2)求一个复数的共轭复数,只需将此复数整理成标准的代数形式,实部不变,虚部变为相反数,即得原复数的共轭复数.复数z 1=a +b i 与z 2=c +d i 共轭⇔a =c ,b =-d (a ,b ,c ,d ∈R ).[题组训练]1.(2019·山西八校第一次联考)已知a ,b ∈R ,i 为虚数单位,若3-4i 3=2-b ia +i ,则a +b 等于( )A .-9B .5C .13D .9解析:选A 由3-4i 3=2-b i a +i ,得3+4i =2-b ia +i,即(a +i)(3+4i)=2-b i ,(3a -4)+(4a +3)i =2-b i ,则⎩⎪⎨⎪⎧ 3a -4=2,4a +3=-b ,解得⎩⎪⎨⎪⎧a =2,b =-11,故a +b =-9.故选A. 2.(2019·贵阳适应性考试)设z 是复数z 的共轭复数,满足z =4i1+i,则|z |=( ) A .2 B .2 2 C.22D.12解析:选B 法一:由z =4i1+i =4i (1-i )(1+i )(1-i )=2+2i ,得|z |=|z |=22+22=22,故选B.法二:由模的性质,得|z |=|z |=⎪⎪⎪⎪4i 1+i =|4i||1+i|=42=2 2.故选B.3.若复数z =a 2-a -2+(a +1)i 为纯虚数(i 为虚数单位),则实数a 的值是________. 解析:由于z =a 2-a -2+(a +1)i 为纯虚数,因此a 2-a -2=0且a +1≠0,解得a =2. 答案:2考点三 复数的几何意义[典例] (1)如图,在复平面内,复数z 1,z 2对应的向量分别是OA ―→,OB ―→,若zz 2=z 1,则z 的共轭复数z =( )A.12+32i B.12-32i C .-12+32iD .-12-32i(2)复数z =4i 2 018-5i1+2i (其中i 为虚数单位)在复平面内对应的点在( )A .第一象限B .第二象限C .第三象限D .第四象限[解析] (1)由题意知z 1=1+2i ,z 2=-1+i ,故z (-1+i)=1+2i , 即z =1+2i -1+i =(1+2i )(1+i )(-1+i )(1+i )=1-3i 2=12-32i ,z =12+32i ,故选A.(2)z =4i 2 018-5i1+2i =4×i 2 016·i 2-5i (1-2i )(1+2i )(1-2i )=-4-5(2+i )5=-6-i ,故z 在复平面内对应的点在第三象限. [答案] (1)A (2)C[解题技法] 对复数几何意义的再理解(1)复数z 、复平面上的点Z 及向量OZ ―→相互联系,即z =a +b i(a ,b ∈R )⇔Z (a ,b )⇔OZ ―→.(2)由于复数、点、向量之间建立了一一对应的关系,因此可把复数、向量与解析几何联系在一起,解题时可运用数形结合的方法,使问题的解决更加直观.[题组训练]1.(2019·安徽知名示范高中联考)已知复数z 满足(2-i)z =i +i 2,则z 在复平面内对应的点位于( ) A .第一象限 B .第二象限 C .第三象限D .第四象限解析:选B z =i +i 22-i =-1+i 2-i =(-1+i )(2+i )(2-i )(2+i )=-3+i 5=-35+15i ,则复数z 在复平面内对应的点为⎝⎛⎭⎫-35,15,该点位于第二象限.故选B.2.若复数z 满足|z -i|≤2(i 为虚数单位),则z 在复平面内所对应的图形的面积为________. 解析:设z =x +y i(x ,y ∈R ),由|z -i|≤2得|x +(y -1)i|≤2,所以x 2+(y -1)2≤ 2,所以x 2+(y -1)2≤2,所以z 在复平面内所对应的图形是以点(0,1)为圆心,以2为半径的圆及其内部,它的面积为2π.答案:2π3.已知复数z =2+a i1+2i ,其中a 为整数,且z 在复平面内对应的点在第四象限,则a 的最大值为________.解析:因为z =2+a i 1+2i =(2+a i )(1-2i )(1+2i )(1-2i )=2+2a +(a -4)i5,所以z 在复平面内对应的点为⎝⎛⎭⎫2+2a 5,a -45,所以⎩⎨⎧2+2a5>0,a -45<0,解得-1<a <4,又a 为整数,所以a 的最大值为3.答案:3[课时跟踪检测]1.(2019·广州五校联考)1+2i(1-i )2=( )A .-1-12iB .1+12iC .-1+12iD .1-12i解析:选C1+2i (1-i )2=1+2i -2i=(1+2i )i 2=-2+i 2=-1+12i ,选C.2.(2018·洛阳第一次统考)已知a ∈R ,i 为虚数单位,若a -i1+i 为纯虚数,则a 的值为( )A .-1B .0C .1D .2解析:选C ∵a -i 1+i =(a -i )(1-i )(1+i )(1-i )=a -12-a +12i 为纯虚数,∴a -12=0且a +12≠0,解得a =1,故选C.3.(2018·甘肃诊断性考试)如图所示,向量OZ 1―→,OZ 2―→所对应的复数分别为z 1,z 2,则z 1·z 2=( )A .4+2iB .2+iC .2+2iD .3+i解析:选A 由图可知,z 1=1+i ,z 2=3-i ,则z 1·z 2=(1+i)(3-i)=4+2i ,故选A.4.若复数z 1=4+29i ,z 2=6+9i ,其中i 是虚数单位,则复数(z 1-z 2)i 的实部为( ) A .-20 B .-2 C .4D .6解析:选A 因为(z 1-z 2)i =(-2+20i)i =-20-2i ,所以复数(z 1-z 2)i 的实部为-20.5.(2019·太原模拟)若复数z =1+m i1+i 在复平面内对应的点在第四象限,则实数m 的取值范围是( )A .(-1,1)B .(-1,0)C .(1,+∞)D .(-∞,-1)解析:选A 法一:因为z =1+m i 1+i =(1+m i )(1-i )(1+i )(1-i )=1+m 2+m -12i 在复平面内对应的点为⎝⎛⎭⎫1+m 2,m -12,且在第四象限,所以⎩⎨⎧1+m2>0,m -12<0,解得-1<m <1,故选A.法二:当m =0时,z =11+i =1-i (1+i )(1-i )=12-12i ,在复平面内对应的点在第四象限,所以排除选项B 、C 、D ,故选A.6.(2018·昆明高三摸底)设复数z 满足(1+i)z =i ,则z 的共轭复数 z =( ) A.12+12i B.12-12i C .-12+12iD .-12-12i解析:选B 法一:∵(1+i)z =i ,∴z =i1+i =i (1-i )(1+i )(1-i )=1+i 2=12+12i ,∴复数z 的共轭复数z =12-12i ,故选B.法二:∵(1+i)z =i ,∴z =i 1+i =2i2(1+i )=(1+i )22(1+i )=1+i 2=12+12i ,∴复数z 的共轭复数z =12-12i ,故选B.法三:设z =a +b i(a ,b ∈R ),∵(1+i)z =i ,∴(1+i)(a +b i)=i ,∴(a -b )+(a +b )i =i ,由复数相等的条件得⎩⎪⎨⎪⎧a -b =0,a +b =1,解得a =b =12,∴z =12+12i ,∴复数z 的共轭复数z =12-12i ,故选B.7.设复数z 满足i(z +1)=-3+2i(i 是虚数单位),则复数z 对应的点位于复平面内( ) A .第一象限 B .第二象限 C .第三象限D .第四象限解析:选A 由i(z +1)=-3+2i ,得z =-3+2i i -1=3i 2+2ii -1=2+3i -1=1+3i ,它在复平面内对应的点为(1,3),位于第一象限.8.已知复数z =m i1+i ,z ·z =1,则正数m 的值为( )A. 2 B .2 C.22D.12解析:选A 法一:z =m i 1+i =m i (1-i )(1+i )(1-i )=m 2+m 2i ,z =m 2-m 2i ,z ·z =m 22=1,则正数m =2,故选A.法二:由题意知|z |=|m i||1+i|=|m |2,由z ·z =|z |2,得m 22=1,则正数m =2,故选A.9.已知a ,b ∈R ,i 是虚数单位,若(1+i)(1-b i)=a ,则ab 的值为________.解析:因为(1+i)(1-b i)=1+b +(1-b )i =a ,所以⎩⎪⎨⎪⎧ 1+b =a ,1-b =0.解得⎩⎪⎨⎪⎧b =1,a =2,所以a b =2.答案:210.复数|1+2i|+⎝ ⎛⎭⎪⎫1-3i 1+i 2=________.解析:原式=12+(2)2+(1-3i )2(1+i )2=3+-2-23i2i =3+i -3=i.答案:i11.(2019·重庆调研)已知i 为虚数单位,复数z =1+3i2+i ,复数|z |=________.解析:法一:因为z =1+3i 2+i =(1+3i )(2-i )(2+i )(2-i )=5+5i5=1+i ,所以|z |=12+12= 2.法二:|z |=⎪⎪⎪⎪⎪⎪1+3i 2+i =|1+3i||2+i|=105= 2.答案: 212.已知复数z =3+i(1-3i )2,z 是z 的共轭复数,则z ·z =________.解析:∵z =3+i (1-3i )2=3+i-2-23i=3+i -2(1+3i )=(3+i )(1-3i )-2(1+3i )(1-3i )=23-2i -8=-34+14i ,∴z ·z =|z |2=316+116=14. 答案:1413.计算:(1)(-1+i )(2+i )i 3;(2)(1+2i )2+3(1-i )2+i ;(3)1-i (1+i )2+1+i (1-i )2; (4)1-3i (3+i )2. 解:(1)(-1+i )(2+i )i 3=-3+i-i=-1-3i.(2)(1+2i )2+3(1-i )2+i =-3+4i +3-3i 2+i =i2+i =i (2-i )5=15+25i.(3)1-i (1+i )2+1+i (1-i )2=1-i 2i +1+i -2i =1+i -2+-1+i2=-1.(4)1-3i (3+i )2=(3+i )(-i )(3+i )2=-i 3+i=(-i )(3-i )4=-14-34i.第二节 算法与程序框图一、基础知识1.算法(1)算法通常是指按照一定规则解决某一类问题的明确和有限的步骤.(2)应用:算法通常可以编成计算机程序,让计算机执行并解决问题.2.程序框图程序框图又称流程图,是一种用程序框、流程线及文字说明来表示算法的图形.3.三种基本逻辑结构(1)顺序结构定义由若干个依次执行的步骤组成程序框图(2)条件结构定义算法的流程根据条件是否成立有不同的流向,条件结构就是处理这种过程的结构程序框图(3)循环结构定义从算法某处开始,按照一定的条件反复执行某些步骤,反复执行的步骤称为循环体程序框图直到型循环结构先循环,后判断,条件满足时终止循环.当型循环结构先判断,后循环,条件满足时执行循环.三种基本逻辑结构的适用情境(1)顺序结构:要解决的问题不需要分类讨论.(2)条件结构:要解决的问题需要分类讨论.(3)循环结构:要解决的问题要进行许多重复的步骤,且这些步骤之间有相同的规律.考点一顺序结构和条件结构[例1](2019·沈阳质检)已知一个算法的程序框图如图所示,当输出的结果为0时,输入的实数x的值为()A.-3 B.-3或9C.3或-9 D.-3或-9[解析]当x≤0时,y=⎝⎛⎭⎫1x-8=0,x=-3;当x>0时,y=2-log3x=0,x=9.故x=-3或x=9,选2B.[答案] B[例2]某程序框图如图所示,现输入如下四个函数,则可以输出的函数为()A .f (x )=cos x x ⎝⎛⎭⎫-π2<x <π2,且x ≠0 B .f (x )=2x -12x +1C .f (x )=|x |xD .f (x )=x 2ln(x 2+1)[解析] 由程序框图知该程序输出的是存在零点的奇函数,选项A 、C 中的函数虽然是奇函数,但在给定区间上不存在零点,故排除A 、C.选项D 中的函数是偶函数,故排除D.选B.[答案] B[解题技法] 顺序结构和条件结构的运算方法(1)顺序结构是最简单的算法结构,语句与语句之间、框与框之间是按从上到下的顺序进行的.解决此类问题,只需分清运算步骤,赋值量及其范围进行逐步运算即可.(2)条件结构中条件的判断关键是明确条件结构的功能,然后根据“是”的分支成立的条件进行判断. (3)对于条件结构,无论判断框中的条件是否成立,都只能执行两个分支中的一个,不能同时执行两个分支.[题组训练]1.半径为r 的圆的面积公式为S =πr 2,当r =5时,计算面积的流程图为( )解析:选D 因为输入和输出框是平行四边形,故计算面积的流程图为D. 2.运行如图所示的程序框图,可输出B =______,C =______.解析:若直线x +By +C =0与直线x +3y -2=0平行,则B =3,且C ≠-2, 若直线x +3y +C =0与圆x 2+y 2=1相切,则|C |12+(3)2=1,解得C =±2,又C ≠-2,所以C =2. 答案:3 2考点二 循环结构考法(一) 由程序框图求输出(输入)结果[例1] (2018·天津高考)阅读如图所示的程序框图,运行相应的程序,若输入N 的值为20,则输出T 的值为( )A .1B .2C .3D .4[解析] 输入N 的值为20, 第一次执行条件语句,N =20, i =2,Ni=10是整数,∴T =0+1=1,i =3<5;第二次执行条件语句,N =20,i =3,N i =203不是整数,∴i =4<5;第三次执行条件语句,N =20,i =4,Ni =5是整数,∴T =1+1=2,i =5,此时i ≥5成立,∴输出T =2. [答案] B[例2] (2019·安徽知名示范高中联考)执行如图所示的程序框图,如果输出的n =2,那么输入的 a 的值可以为( )A .4B .5C .6D .7[解析] 执行程序框图,输入a ,P =0,Q =1,n =0,此时P ≤Q 成立,P =1,Q =3,n =1,此时P ≤Q 成立,P =1+a ,Q =7,n =2.因为输出的n 的值为2,所以应该退出循环,即P >Q ,所以1+a >7,结合选项,可知a 的值可以为7,故选D.[答案] D[解题技法] 循环结构的一般思维分析过程 (1)分析进入或退出循环体的条件,确定循环次数.(2)结合初始条件和输出结果,分析控制循环的变量应满足的条件或累加、累乘的变量的表达式. (3)辨析循环结构的功能. 考法(二) 完善程序框图[例1] (2018·武昌调研考试)执行如图所示的程序框图,如果输入的a 依次为2,2,5时,输出的s 为17,那么在判断框中可以填入( )A .k <n?B .k >n?C .k ≥n?D .k ≤n?[解析] 执行程序框图,输入的a =2,s =0×2+2=2,k =1;输入的a =2,s =2×2+2=6,k =2;输入的a =5,s =2×6+5=17,k =3,此时结束循环,又n =2,所以判断框中可以填“k >n ?”,故选B.[答案] B[例2] (2018·全国卷Ⅱ)为计算S =1-12+13-14+…+199-1100,设计了如图所示的程序框图,则在空白框中应填入( )A .i =i +1B .i =i +2C .i =i +3D .i =i +4[解析] 由题意可将S 变形为S =⎝⎛⎭⎫1+13+…+199-⎝⎛⎭⎫12+14+…+1100,则由S =N -T ,得N =1+13+…+199,T =12+14+…+1100.据此,结合N =N +1i ,T =T +1i +1易知在空白框中应填入i =i +2.故选B. [答案] B[解题技法] 程序框图完善问题的求解方法 (1)先假设参数的判断条件满足或不满足;(2)运行循环结构,一直到运行结果与题目要求的输出结果相同为止; (3)根据此时各个变量的值,补全程序框图.[题组训练]1.(2018·凉山质检)执行如图所示的程序框图,设输出的数据构成的集合为A ,从集合A 中任取一个元素a ,则函数y =x a ,x ∈[0,+∞)是增函数的概率为( )A.47B.45C.35D.34解析:选C 执行程序框图,x =-3,y =3;x =-2,y =0;x =-1,y =-1;x =0,y =0;x =1,y =3;x =2,y =8;x =3,y =15;x =4,退出循环.则集合A 中的元素有-1,0,3,8,15,共5个,若函数y =x a ,x ∈[0,+∞)为增函数,则a >0,所以所求的概率为35.2.(2019·珠海三校联考)执行如图所示的程序框图,若输出的n 的值为4,则p 的取值范围是( )A.⎝⎛⎦⎤34,78B.⎝⎛⎭⎫516,+∞C.⎣⎡⎭⎫516,78D.⎝⎛⎦⎤516,78解析:选A S =0,n =1;S =12,n =2;S =12+122=34,n =3;满足条件,所以p >34,继续执行循环体;S=34+123=78,n =4;不满足条件,所以p ≤78.输出的n 的值为4,所以34<p ≤78,故选A. 3.(2019·贵阳适应性考试)某程序框图如图所示,若该程序运行后输出的值是137,则整数a 的值为( )A .6B .7C .8D .9解析:选A 先不管a 的取值,直接运行程序.首先给变量S ,k 赋值,S =1,k =1,执行S =S +1k (k +1),得S =1+11×2,k =2;执行S =1+11×2+12×3,k =3;……继续执行,得S =1+11×2+12×3+…+1k (k +1)=1+⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+…+⎝⎛⎭⎫1k -1k +1=2-1k +1,由2-1k +1=137得k =6,所以整数a =6,故选A.考点三 基本算法语句[典例] 执行如图程序语句,输入a =2cos 2 019π3,b =2tan 2 019π4,则输出y 的值是( )INPUT a ,b IF a<b THENy =a(a +b) ELSEy =a 2-b END IF PRINT y ENDA .3B .4C .6D .-1[解析] 根据条件语句可知程序运行后是计算y =⎩⎪⎨⎪⎧a (a +b ),a <b ,a 2-b ,a ≥b ,且a =2cos 2 019π3=2cos π=-2,b =2tan 2 019π4=2tan 3π4=-2.因为a ≥b ,所以y =a 2-b =(-2)2-(-2)=6, 即输出y 的值是6.[答案] C[变透练清]1. 执行如图所示的程序,输出的结果是________.i =11S =1DOS =S*ii =i -1LOOP UNTIL i<9PRINT S END解析:程序反映出的算法过程为 i =11⇒S =11×1,i =10; i =10⇒S =11×10,i =9; i =9⇒S =11×10×9,i =8;i =8<9退出循环,执行“PRINT S ”. 故S =990. 答案:9902.阅读如图所示的程序.a 的值是________. 解析:由题意可得程序的功能是计算并输出a =⎩⎪⎨⎪⎧2+a ,a >2,a ×a ,a ≤2的值, 当a >2时,由2+a =9得a =7; 当a ≤2时,由a 2=9得a =-3, 综上知,a =7或a =-3. 答案:-3或7[课时跟踪检测]1.(2019·湖北八校联考)对任意非零实数a ,b ,定义a *b 的运算原理如图所示,则(log222)*⎝⎛⎭⎫18-23=( )A .1B .2C .3D .4解析:选A 因为log222=3,⎝⎛⎭⎫18-23=4,3<4,所以输出4-13=1,故选A. 2.执行如图所示的程序框图,则输出的x ,y 分别为( )A .90,86B .94,82C .98,78D .102,74解析:选C 第一次执行循环体,y =90,s =867+15,不满足退出循环的条件,故x =90;第二次执行循环体,y =86,s =907+433,不满足退出循环的条件,故x =94;第三次执行循环体,y =82,s =947+413,不满足退出循环的条件,故x =98;第四次执行循环体,y =78,s =27,满足退出循环的条件,故x =98,y =78.3.(2018·云南民族大学附属中学二模)执行如图所示的程序框图,若输出的k 的值为6,则判断框内可填入的条件是( )A .s >12?B .s >710?C .s >35?D .s >45?解析:选B s =1,k =9,满足条件;s =910,k =8,满足条件;s =45,k =7,满足条件;s =710,k =6,不满足条件.输出的k =6,所以判断框内可填入的条件是“s >710?”.故选B.4.(2019·合肥质检)执行如图所示的程序框图,如果输出的k 的值为3,则输入的a 的值可以是( )A .20B .21C .22D .23解析:选A 根据程序框图可知,若输出的k =3,则此时程序框图中的循环结构执行了3次,执行第1次时,S =2×0+3=3,执行第2次时,S =2×3+3=9,执行第3次时,S =2×9+3=21,因此符合题意的实数a 的取值范围是9≤a <21,故选A.5.(2019·重庆质检)执行如图所示的程序框图,如果输入的x =0,y =-1,n =1,则输出x ,y 的值满足( )A .y =-2xB .y =-3xC .y =-4xD .y =-8x解析:选C 初始值x =0,y =-1,n =1,x =0,y =-1,x 2+y 2<36,n =2,x =12,y =-2,x 2+y 2<36,n =3,x =32,y =-6,x 2+y 2>36,退出循环,输出x =32,y =-6,此时x ,y 满足y =-4x ,故选C.6.(2018·南宁二中、柳州高中联考)执行如图所示的程序框图,若输出的结果s =132,则判断框中可以填( )A .i ≥10?B .i ≥11?C .i ≤11?D .i ≥12?解析:选B 执行程序框图,i =12,s =1;s =12×1=12,i =11;s =12×11=132,i =10.此时输出的s =132,则判断框中可以填“i ≥11?”.7.(2019·漳州八校联考)执行如图所示的程序,若输出的y 的值为1,则输入的x 的值为( )INPUT xIF x>=1 THEN y =x 2ELSEy =-x 2+1END IF PRINT y ENDA .0B .1C .0或1D .-1,0或1解析:选C 当x ≥1时,由x 2=1得x =1或x =-1(舍去);当x <1时,由-x 2+1=1得x =0.∴输入的x 的值为0或1.8.执行如图所示的程序框图,若输入的n =4,则输出的s =( )A.10 B.16C.20 D.35解析:选C执行程序框图,第一次循环,得s=4,i=2;第二次循环,得s=10,i=3;第三次循环,得s=16,i=4;第四次循环,得s=20,i=5.不满足i≤n,退出循环,输出的s=20.9.(2018·洛阳第一次统考)已知某算法的程序框图如图所示,则该算法的功能是()A.求首项为1,公差为2的等差数列的前2 018项和B.求首项为1,公差为2的等差数列的前2 019项和C.求首项为1,公差为4的等差数列的前1 009项和D.求首项为1,公差为4的等差数列的前1 010项和解析:选D由程序框图得,输出的S=(2×1-1)+(2×3-1)+(2×5-1)+…+(2×2 019-1),可看作数列{2n-1}的前2 019项中所有奇数项的和,即首项为1,公差为4的等差数列的前1 010项和.故选D.10.(2018·郑州第一次质量测试)执行如图所示的程序框图,若输出的结果是7,则判断框内m的取值范围是()A.(30,42] B.(30,42)C.(42,56] D.(42,56)解析:选A k=1,S=2,k=2;S=2+4=6,k=3;S=6+6=12,k=4;S=12+8=20,k=5;S=20+10=30,k=6;S=30+12=42,k=7,此时不满足S=42<m,退出循环,所以30<m≤42,故选A.11.(2019·石家庄调研)20世纪70年代,流行一种游戏——角谷猜想,规则如下:任意写出一个自然数n ,按照以下的规律进行变换,如果n 是奇数,则下一步变成3n +1;如果n 是偶数,则下一步变成n2.这种游戏的魅力在于无论你写出一个多么庞大的数字,最后必然会落在谷底,更准确地说是落入底部的4-2-1循环,而永远也跳不出这个圈子,下列程序框图就是根据这个游戏而设计的,如果输出的i 值为6,则输入的n 值为( )A .5或16B .16C .5或32D .4或5或32解析:选C 若n =5,执行程序框图,n =16,i =2;n =8,i =3;n =4,i =4;n =2,i =5;n =1,i =6,结束循环,输出的i =6.若n =32,执行程序框图,n =16,i =2;n =8,i =3;n =4,i =4;n =2,i =5;n =1,i =6,结束循环,输出的i =6.当n =4或16时,检验可知不正确,故输入的n =5或32,故选C.12.(2018·贵阳第一学期检测)我国明朝数学家程大位著的《算法统宗》里有一道闻名世界的题目:“一百馒头一百僧,大僧三个更无争.小僧三人分一个,大小和尚各几丁?”如图所示的程序框图反映了对此题的一个求解算法,则输出的n 的值为( )A .20B .25C .30D .35解析:选B 法一:执行程序框图,n =20,m =80,S =60+803=8623≠100;n =21,m =79,S =63+793=8913≠100;n =22,m =78,S =66+783=92≠100;n =23,m =77,S =69+773=9423≠100;n =24,m =76,S =72+763=9713≠100;n =25,m =75,S =75+753=100,退出循环.所以输出的n =25.法二:设大和尚有x 个,小和尚有y 个, 则⎩⎪⎨⎪⎧x +y =100,3x +13y =100,解得⎩⎪⎨⎪⎧x =25,y =75, 根据程序框图可知,n 的值即大和尚的人数,所以n =25.13.已知函数y =lg|x -3|,如图所示程序框图表示的是给定x 值,求其相应函数值y 的算法.请将该程序框图补充完整.其中①处应填________,②处应填________.解析:由y =lg|x -3|=⎩⎪⎨⎪⎧lg (x -3),x >3,lg (3-x ),x <3及程序框图知,①处应填x <3?,②处应填y =lg(x -3).答案:x <3? y =lg(x -3)14.执行如图所示的程序框图,若输入的N =20,则输出的S =________.解析:依题意,结合题中的程序框图知,当输入的N =20时,输出S 的值是数列{2k -1}的前19项和,即19(1+37)2=361.答案:36115.执行如图所示的程序框图,则输出的λ是________.解析:依题意,若λa +b 与b 垂直,则有(λa +b )·b =4(λ+4)-2(-3λ-2)=0,解得λ=-2;若λa +b 与b 平行,则有-2(λ+4)=4(-3λ-2),解得λ=0.结合题中的程序框图可知,输出的λ是-2.答案:-216.执行如图所示的程序框图,如果输入的x ,y ∈R ,那么输出的S 的最大值为________.解析:当条件x ≥0,y ≥0,x +y ≤1不成立时,输出S 的值为1,当条件x ≥0,y ≥0,x +y ≤1成立时,⎩⎪⎨⎪⎧x ≥0,y ≥0,x +y ≤1表输出S =2x +y ,下面用线性规划的方法求此时S 的最大值.作出不等式组示的平面区域如图中阴影部分所示,由图可知当直线S =2x +y 经过点M (1,0)时S 最大,其最大值为2×1+0=2,故输出S 的最大值为2.答案:2第三节 合情推理与演绎推理一、基础知识1.合情推理(1)归纳推理①定义:由某类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或者由个别事实概括出一般结论的推理,称为归纳推理(简称归纳).②特点:由部分到整体、由个别到一般的推理.(2)类比推理①定义:由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理称为类比推理(简称类比).②特点:由特殊到特殊的推理.类比推理的注意点在进行类比推理时要尽量从本质上去类比,不要被表面现象迷惑,如果只抓住一点表面现象的相似甚至假象就去类比,那么就会犯机械类比的错误.(3)合情推理归纳推理和类比推理都是根据已有的事实,经过观察、分析、比较、联想,再进行归纳、类比,然后提出猜想的推理,我们把它们统称为合情推理.合情推理的关注点(1)合情推理是合乎情理的推理.(2)合情推理既可以发现结论也可以发现思路与方向.2.演绎推理(1)演绎推理从一般性的原理出发,推出某个特殊情况下的结论,我们把这种推理称为演绎推理.简言之,演绎推理是由一般到特殊的推理.↓演绎推理:常用来证明和推理数学问题,解题时应注意推理过程的严密性,书写格式的规范性.(2)“三段论”是演绎推理的一般模式,包括:①大前提——已知的一般原理;②小前提——所研究的特殊情况;③结论——根据一般原理,对特殊情况做出的判断.二、常用结论(1)合情推理的结论是猜想,不一定正确;演绎推理在大前提、小前提和推理形式都正确时,得到的结论一定正确.(2)合情推理是发现结论的推理;演绎推理是证明结论的推理. 考点一 归纳推理考法(一) 与数字有关的推理[典例] 《聊斋志异》中有这样一首诗:“挑水砍柴不堪苦,请归但求穿墙术.得诀自诩无所阻,额上坟起终不悟.”在这里,我们称形如以下形式的等式具有“穿墙术”:223=223,3 38= 338,4 415=4415,5 524= 5524,…,则按照以上规律,若99n= 99n具有“穿墙术”,则n =( ) A .25 B .48 C .63 D .80[解析] 由223=223,338=338,4415=4415,5524= 5524,…, 可得若99n = 99n具有“穿墙术”,则n =92-1=80. [答案] D考法(二) 与式子有关的推理[典例] 已知f (x )=xe x ,f 1(x )=f ′(x ),f 2(x )=[f 1(x )]′,…,f n +1(x )=[f n (x )]′,n ∈N *,经计算:f 1(x )=1-x e x ,f 2(x )=x -2e x ,f 3(x )=3-xe x,…,照此规律,则f n (x )=________. [解析] 因为导数分母都是e x,分子为(-1)n(x -n ),所以f n (x )=(-1)n (x -n )e x .[答案] (-1)n (x -n )e x考法(三) 与图形有关的推理[典例] 分形几何学是数学家伯努瓦·曼德尔布罗在20世纪70年代创立的一门新的数学学科,它的创立为解决传统科学众多领域的难题提供了全新的思路.按照如图(1)所示的分形规律可得如图(2)所示的一个树形图.若记图(2)中第n 行黑圈的个数为a n ,则a 2 019=________.[解析] 根据题图(1)所示的分形规律,可知1个白圈分形为2个白圈1个黑圈,1个黑圈分形为1个白圈2个黑圈,把题图(2)中的树形图的第1行记为(1,0),第2行记为(2,1),第3行记为(5,4),第4行的白圈数为2×5+4=14,黑圈数为5+2×4=13,所以第4行的“坐标”为(14,13),同理可得第5行的“坐标”为(41,40),第6行的“坐标”为(122,121),….各行黑圈数乘2,分别是0,2,8,26,80,…,即1-1,3-1,9-1,27-1,81-1,…,所以可以归纳出第n 行的黑圈数a n =3n -1-12(n ∈N *),所以a 2 019=32 018-12.[答案] 32 018-12[题组训练]1.(2019·兰州实战性测试)观察下列式子:1,1+2+1,1+2+3+2+1,1+2+3+4+3+2+1,…,由以上可推测出一个一般性结论:对于n ∈N *,则1+2+…+n +…+2+1=________.解析:由1=12,1+2+1=4=22,1+2+3+2+1=9=32,1+2+3+4+3+2+1=16=42,…,归纳猜想可得1+2+…+n +…+2+1=n 2.答案:n 22.某种平面分形图如图所示,一级分形图是由一点出发的三条线段,长度均为1,两两夹角为120°;二级分形图是在一级分形图的每条线段的末端出发再生成两条长度为原来13的线段,且这两条线段与原线段两两夹角为120°,…,依此规律得到n 级分形图.则n 级分形图中共有________条线段.解析:分形图的每条线段的末端出发再生成两条线段, 由题图知,一级分形图有3=3×2-3条线段, 二级分形图有9=3×22-3条线段, 三级分形图中有21=3×23-3条线段, 按此规律n 级分形图中的线段条数a n =3×2n -3. 答案:3×2n -3考点二 类比推理[典例] 我国古代称直角三角形为勾股形,并且直角边中较小者为勾,另一直角边为股,斜边为弦.若a ,b ,c 为直角三角形的三边,其中c 为斜边,则a 2+b 2=c 2,称这个定理为勾股定理.现将这一定理推广到立体几何中:在四面体O -ABC 中,∠AOB =∠BOC =∠COA =90°,S 为顶点O 所对面△ABC 的面积,S 1,S 2,S 3分别为侧面△OAB ,△OAC ,△OBC 的面积,则下列选项中对于S ,S 1,S 2,S 3满足的关系描述正确的为( )A .S 2=S 21+S 22+S 23B .S 2=1S 21+1S 22+1S 23C .S =S 1+S 2+S 3D .S =1S 1+1S 2+1S 3S 2=⎝⎛⎭⎫12BC ·AD 2=[解析] 如图,作OD ⊥BC 于点D ,连接AD ,则AD ⊥BC ,从而⎝⎛⎭⎫12OB ·OA 2+14BC 2·AD 2=14BC 2·(OA 2+OD 2)=14(OB 2+OC 2)·OA 2+ 14BC 2·OD 2=⎝⎛⎭⎫12OC ·OA 2+⎝⎛⎭⎫12BC ·OD 2=S 21+S 22+S 23. [答案] A[题组训练]1.给出下面类比推理(其中Q 为有理数集,R 为实数集,C 为复数集):①“若a ,b ∈R ,则a -b =0⇒a =b ”类比推出“a ,c ∈C ,则a -c =0⇒a =c ”;②“若a ,b ,c ,d ∈R ,则复数a +b i =c +d i ⇒a =c ,b =d ”类比推出“a ,b ,c ,d ∈Q ,则a +b 2=c +d 2⇒a =c ,b =d ”;③“a ,b ∈R ,则a -b >0⇒a >b ”类比推出“若a ,b ∈C ,则a -b >0⇒a >b ”; ④“若x ∈R ,则|x |<1⇒-1<x <1”类比推出“若z ∈C ,则|z |<1⇒-1<z <1”. 其中类比结论正确的个数为( ) A .1 B .2 C .3D .4解析:选B 类比结论正确的有①②.2.设等差数列{a n }的前n 项和为S n ,则S 3,S 6-S 3,S 9-S 6,S 12-S 9成等差数列.类比以上结论:设等比数列{b n }的前n 项积为T n ,则T 3,________,________,T 12T 9成等比数列.解析:等比数列{b n }的前n 项积为T n , 则T 3=b 1b 2b 3,T 6=b 1b 2…b 6,T 9=b 1b 2…b 9, T 12=b 1b 2…b 12,所以T 6T 3=b 4b 5b 6,T 9T 6=b 7b 8b 9,T 12T 9=b 10b 11b 12,所以T 3,T 6T 3,T 9T 6,T 12T 9的公比为q 9,因此T 3,T 6T 3,T 9T 6,T 12T 9成等比数列.答案:T 6T 3 T 9T 6考点三 演绎推理[典例] 数列{a n }的前n 项和记为S n ,已知a 1=1,a n +1=n +2n S n(n ∈N *).证明:(1)数列⎩⎨⎧⎭⎬⎫S n n 是等比数列;(2)S n +1=4a n .[证明] (1)∵a n +1=S n +1-S n ,a n +1=n +2n S n ,∴(n +2)S n =n (S n +1-S n ),即nS n +1=2(n +1)S n . 故S n +1n +1=2·S nn ,(小前提)∴⎩⎨⎧⎭⎬⎫S n n 是以1为首项,2为公比的等比数列.(结论)(大前提是等比数列的定义) (2)由(1)可知S n +1n +1=4·S n -1n -1(n ≥2),∴S n +1=4(n +1)·S n -1n -1=4·n -1+2n -1·S n -1=4a n (n ≥2).(小前提) 又∵a 2=3S 1=3,S 2=a 1+a 2=1+3=4=4a 1,(小前提) ∴对于任意正整数n ,都有S n +1=4a n .(结论) [解题技法] 演绎推理问题求解策略(1)演绎推理是由一般到特殊的推理,常用的一般模式为三段论.(2)演绎推理的前提和结论之间有着某种蕴含关系,解题时要找准正确的大前提,一般地,若大前提不明确时,可找一个使结论成立的充分条件作为大前提.[题组训练]1.正弦函数是奇函数,f (x )=sin(x 2+1)是正弦函数,因此f (x )=sin(x 2+1)是奇函数,以上推理( ) A .结论正确 B .大前提不正确 C .小前提不正确D .全不正确解析:选C 因为f (x )=sin(x 2+1)不是正弦函数,所以小前提不正确.2.已知函数y =f (x )满足:对任意a ,b ∈R ,a ≠b ,都有af (a )+bf (b )>af (b )+bf (a ),试证明:f (x )为R 上的单调增函数.证明:设x 1,x 2∈R ,取x 1<x 2,则由题意得x 1f (x 1)+x 2f (x 2)>x 1f (x 2)+x 2f (x 1), ∴x 1[f (x 1)-f (x 2)]+x 2[f (x 2)-f (x 1)]>0, (x 2-x 1)[f (x 2)-f (x 1)]>0,∵x 1<x 2,∴f (x 2)-f (x 1)>0,f (x 2)>f (x 1). ∴y =f (x )为R 上的单调增函数.考点四 逻辑推理问题[典例] (2019·安徽示范高中联考)某参观团根据下列要求从A ,B ,C ,D ,E 五个镇选择参观地点:①若去A 镇,也必须去B 镇;②D ,E 两镇至少去一镇;③B ,C 两镇只去一镇;④C ,D 两镇都去或者都不去;⑤若去E镇,则A,D两镇也必须去.则该参观团至多去了()A.B,D两镇B.A,B两镇C.C,D两镇D.A,C两镇[解析]假设去A镇,则也必须去B镇,但去B镇则不能去C镇,不去C镇则也不能去D镇,不去D镇则也不能去E镇,D,E镇都不去则不符合条件.故若去A镇则无法按要求完成参观.同理,假设不去A镇去B镇,同样无法完成参观.要按照要求完成参观,一定不能去B镇,而不去B镇的前提是不去A镇.故A,B两镇都不能去,则一定不能去E镇,所以能去的地方只有C,D两镇.故选C.[答案] C[解题技法] 逻辑推理问题求解的2种途径求解此类推理性试题,要根据所涉及的人与物进行判断,通常有两种途径:(1)根据条件直接进行推理判断;(2)假设一种情况成立或不成立,然后以此为出发点,联系条件,判断是否与题设条件相符合.[题组训练]1.数学老师给同学们出了一道证明题,以下四人中只有一人说了真话,只有一人会证明此题.甲:“我不会证明.”乙:“丙会证明.”丙:“丁会证明.”丁:“我不会证明.”根据以上条件,可以判断会证明此题的人是()A.甲B.乙C.丙D.丁解析:选A四人中只有一人说了真话,只有一人会证明此题,由丙、丁的说法知丙与丁中有一个人说的是真话,若丙说了真话,则甲必是假话,矛盾;若丁说了真话,则甲说的是假话,甲就是会证明的那个人,符合题意,故选A.2.(2019·大连模拟)甲、乙、丙、丁、戊和己6人围坐在一张正六边形的小桌前,每边各坐一人.已知:①甲与乙正面相对;②丙与丁不相邻,也不正面相对.若己与乙不相邻,则以下选项正确的是()A.若甲与戊相邻,则丁与己正面相对B.甲与丁相邻C.戊与己相邻D.若丙与戊不相邻,则丙与己相邻解析:选D由题意可得到甲、乙位置的示意图如图(1),因此,丙和丁的座位只可能是1和2,3和4,4和3,2和1,由己和乙不相邻可知,己只能在1或2,故丙和丁只能在3和4,4和3,示意图如图(2)和图(3),由此可排除B、C两项.对于A项,若甲与戊相邻,则己与丁可能正面相对,也可能不正面相对,排除A.对于D项,若丙与戊不相邻,则戊只能在丙的对面,则己与丙相邻,正确.故选D.。
阶段性测试题十二(算法初步、复数、推理与证明)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分.考试时间120分钟.第Ⅰ卷(选择题 共50分)一、选择题(本大题共10个小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2015·武汉市武昌区调研)已知i 是虚数单位,则2+i 3-i =( )A .12-12iB .72-12iC .12+12iD .72+12i[答案] C [解析]2+i 3-i =(2+i )(3+i )(3-i )(3+i )=5+5i 10=12+12i.2.(文) (2014·济南模拟)复数z =i1+i 在复平面上对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限[答案] A[解析] z =i1+i =i (1-i )(1+i )(1-i )=1+i 2=12+i 2,所以复数z 对应的点为(12,12),在第一象限.(理) (2014·郑州六校质量检测)设复数z =a +b i(a ,b ∈R ),若z1+i =2-i 成立,则点P (a ,b )在( )A .第一象限B .第二象限C .第三象限D .第四象限 [答案] A[解析] 因为z1+i =2-i ,所以z =(2-i)(1+i)=3+i ,所以点P (a ,b )在第一象限.3.(文)(2014·福建高考)阅读如图所示的程序框图,运行相应的程序,输出的n 的值为( )A.1 B.2C.3 D.4[答案] B[解析]本题考查了程序框图的相关概念.S1:n=1,21>12→是,S2:n=2,22>22→否,输出n=2.关键是理解赋值语句n+1及条件2n>n2.(理)(2014·福建高考)阅读如图所示的程序框图,运行相应的程序,输出的S的值等于()A.18 B.20C.21 D.40[答案] B[解析]本题考查程序框图,当n=1时,S=3,当n=2时,S=3+22+2=9,当n=3时,S=9+23+3=20>15,故输出S=20.4.若下边的程序框图输出的S是126,则条件①可为()A .n ≤15B .n ≤6C .n ≤7D .n ≤8[答案] B[解析] 由程序框图可知这是计算S =0+2+22+ (2)=2(1-2n )1-2=2n +1-2的程序,当S =2n +1-2=126时,即2n +1=128,解得n =6,此时n =n +1=7,不满足条件,所以选B .5.(文)为确保信息安全,信息需加密传输,发送方由明文→密文(加密),接收方由密文→明文(解密),已知加密规则为:明文a ,b ,c ,d 对应密文a +2b,2b +c,2c +3d,4d ,例如,明文1,2,3,4对应密文5,7,18,16.当接收方收到密文14,9,23,28时,则解密得到的明文为( )A .4,6,1,7B .7,6,1,4C .6,4,1,7D .1,6,4,7[答案] C[解析] 因加密规则可得⎩⎪⎨⎪⎧a +2b =142b +c =92c +3d =234d =28⇒⎩⎪⎨⎪⎧a =6b =4c =1d =7.故明文为6,4,1,7.(理)设M =(1a -1)(1b -1)(1c -1),且a +b +c =1(a ,b ,c 均为正数),由综合法得M 的取值范围是( )A .[0,18]B .[18,1)C .[1,8]D .[8,+∞)[答案] D[解析] 由a +b +c =1,M =(b a +c a )(a b +c b )(a c +bc )≥8(当且仅当a =b =c 时取等号.)6.(2015·济南模拟)下面有四个命题: ①集合N 中最小的数是1; ②若-a 不属于N ,则a 属于N ;③若a ∈N ,b ∈N ,则a +b 的最小值为2; ④x 2+1=2x 的解集可表示为{1,1}. 其中真命题的个数是( ) A .0 B .1 C .2 D .3[答案] A[解析] ①假命题,集合N 中最小的数是0;②假命题,如a =12时,命题不成立;③假命题,如a =0,b =1,则a +b =1;④假命题,{1,1}与集合中元素的互异性矛盾,其解集应为{1}.7.(文) 设z =1-i(i 是虚数单位),则复数2z +i 2的虚部是( )A .1B .-1C .iD .-i[答案] A[解析] 因为z =1-i(i 是虚数单位),所以复数2z +i 2=21-i +i 2=1+i -1=i ,所以复数2z+i 2的虚部是1.(理)设复数z =1+b i(b ∈R )且|z |=2,则复数z 的虚部为( ) A . 3 B .±3 C .±1 D .±3i[答案] B[解析] z =1+b i ,且|z |=2,即1+b 2=4,解得b =±3. 8.(文)已知M 是e x +e -x的最小值,N =2tan22.5°1-tan 222.5°,则下图所示程序框图输出的S为( )A .2B .1C .12D .0[答案] A[解析] ∵e x +e -x ≥2e x ·e -x =2,∴M =2,N =2tan22.5°1-tan 222.5°=tan45°=1,所以M >N ,又框图的功能是求M ,N 中的较大值,故输出的值为2.(理) 已知函数y =1x 与x =1,x 轴和x =e 所围成的图形的面积为M ,N =tan22.5°1-tan 222.5°,则程序框图输出的S 为( )A .1B .2C .12D .0[答案] C[解析] 因为2N =2tan22.5°1-tan 222.5°=tan45°=1,所以N =12,M =⎠⎛1e 1xd x =ln x |e 1=1,所以M >N ,又框图的功能是求M ,N 中的较小值,故输出的值为12.9.(2014·新课标Ⅱ)执行下图程序框图,如果输入的x ,t 均为2,则输出的S =( )A .4B .5C .6D .7[答案] D[解析] 本题考查程序框图的基础知识. x =2,t =2,变量变化情况如下:故选D .10.(文)设x ,y ∈R ,a >1,b >1,若a x =b y =2,a 2+b =4,则2x +1y 的最大值为( )A .1B .2C .3D .4[答案] B[解析] 因为a x =b y =2,所以x =log a 2,y =log b 2,所以2x +1y =2log 2a +log 2b =log 2(a 2b )≤log 2(a 2+b 2)2=2,当且仅当a 2=b =2时取等号.(理) 定义在R 上的函数y =f (x ),满足f (3-x )=f (x ),(x -32)f ′(x )<0,若x 1<x 2,且x 1+x 2>3,则有( )A .f (x 1)<f (x 2)B .f (x 1)>f (x 2)C .f (x 1)=f (x 2)D .不确定[答案] B[解析] 因为函数y =f (x ),满足f (3-x )=f (x ),所以函数y =f (x )的对称轴为x =32.又因为(x -32)f ′(x )<0,所以x <32时,f ′(x )>0,x >32时,f ′(x )<0,所以函数y =f (x )在(-∞,32]上单调递增;在[32,+∞)上单调递减.又因为x 1<x 2,且x 1+x 2>3,所以3-x 2<x 1<x 2,且x 2∈(32,+∞),观察图像,得f (x 1)>f (x 2).第Ⅱ卷(非选择题 共100分)二、填空题(本大题共5个小题,每小题5分,共25分,把正确答案填在题中横线上) 11.(文)(2014·北京高考)若(x +i)i =-1+2i(x ∈R ),则x =________. [答案] 2[解析] 本题考查了复数乘法、复数相等的知识. (x +i)i =-1+x i =-1+2i ,x =2.(理)(2014·北京高考)复数(1+i 1-i )2=________.[答案] -1[解析] 本题考查了复数的运算. 复数1+i 1-i =(1+i )2(1-i )(1+i )=2i 2=i ,故(1+i 1-i)2=i 2=-1. 12.在复平面上,复数3(2-i )2对应的点到原点的距离为________.[答案] 35[解析] 复平面上复数z 对应的点到原点的距离就是它的模,而|3(2-i )2|=3|2-i|2=35,本题不需要把复数化简为a +b i(a ,b ∈R )形式.13.程序框图如下:如果上述程序运行的结果为S =132,那么判断框中横线上应填入的数字是________. [答案] 10[解析] 由题设条件可以看出,此程序是一个求几个数的连乘积的问题,第一次乘入的数是12,以后所乘的数依次减少1,由于132=11×12,故循环两次,故判断框中应填k ≤10.14.观察下列等式:31×2×12=1-122,31×2×12+42×3×122=1-13×22,31×2×12+42×3×122+53×4×123=1-14×23,……,由以上等式推测到一个一般的结论:对于n ∈N *,31×2×12+42×3×122+…+n +2n (n +1)×12n =________. [答案] 1-1(n +1)·2n[解析] 由已知中的等式:31×2×12=1-12231×2×12+42×3×122=1-13×22, 31×2×12+42×3×122+53×4×123=1-14×23,…, 所以对于n ∈N *,31×2×12+42×3×122+…+n +2n (n +1)×12n =1-1(n +1)2n .15.(2015·温州适应性测试)已知cos π3=12,cos π5cos 2π5=14, cos π7cos 2π7cos 3π7=18, ……(1)根据以上等式,可猜想出的一般结论是____________________________________; (2)若数列{a n }中,a 1=cos π3,a 2=cos π5cos 2π5,a 3=cos π7·cos 2π7cos 3π7,…,前n 项和S n =10231024,则n =________.[答案] (1)cos π2n +1·cos 2π2n +1·…·cos n π2n +1=12n (n ∈N *) (2)10[解析] (1)从题中所给的几个等式可知,第n 个等式的左边应有n 个余弦相乘,且分母均为2n +1,分子分别为π,2π,…,n π,右边应为12n ,故可以猜想出结论为cos π2n +1·cos 2π2n +1·…·cos n π2n +1=12n (n ∈N *). (2)由(1)可知a n =12n ,故S n =12[1-(12)n ]1-12=1-12n =2n -12n =10231024,∴n =10.三、解答题(本大题共6个小题,共75分,解答应写出文字说明,证明过程或演算步骤) 16.(本小题满分12分)实数m 分别取什么数值时,复数z =(m 2+5m +6)+(m 2-2m -15)i ;(1)与复2-12i 相等?(2)与复数12+16i 互为共轭复数? (3)对应的点在x 轴上方?[解析] (1)根据复数相等的充要条件得⎩⎪⎨⎪⎧m 2+5m +6=2,m 2-2m -15=-12.解得m =-1. (2)根据共轭复数的定义得⎩⎪⎨⎪⎧m 2+5m +6=12,m 2-2m -15=-16.解得m =1.(3)根据复数z 对应的点在x 轴上方可得m 2-2m -15>0,解得m <-3或m >5. 17.(本小题满分12分)一企业生产的某产品在不做电视广告的前提下,每天销售量为b 件.经市场调查得到如下规律:若对产品进行电视广告的宣传,每天的销售量S (件)与电视广告每天的播放量n (次)的关系可用如图所示的程序框图来体现.(1)试写出该产品每天的销售量S (件)关于电视广告每天的播放量n (次)的函数关系式;(2)要使该产品每天的销售量比不做电视广告时的销售量至少增加90%,则每天电视广告的播放量至少需多少次?[解析] (1)设电视广告播放量为每天i 次时,该产品的销售量为S i (0≤i ≤n ,i ∈N ).由题意,S i =⎩⎪⎨⎪⎧b ,i =0,S i -1+b 2i ,1≤i ≤n ,i ∈N *. 于是当i =n 时,S n =b +(b 2+b 22+…+b 2n )=b (2-12n )(n ∈N ).所以,该产品每天销售量S (件)与电视广告播放量n (次/天)的函数关系式为S =b (2-12n ),n ∈N .(2)由题意,有b (2-12n )≥1.9b ⇒2n ≥10⇒4(n ∈N *).所以,要使该产品的销售量比不做电视广告时的销售量至少增加90%,则每天广告的播放量至少需4次.18.(本小题满分12分)求证关于x 的方程ax 2+2x +1=0至少有一个负根的充要条件是a ≤1.[分析] 需证明充分性和必要性.证充分性时,可分a =0,a <0和0<a ≤1三种情况证明;证必要性,就是寻找方程有一个负根和两个负根的条件.[证明] 充分性:当a =0时,方程为2x +1=0, 其根为x =-12,方程有一个负根,符合题意.当a <0时,Δ=4-4a >0,方程ax 2+2x +1=0有两个不相等的实根,且1a <0,方程有一正一负根,符合题意.当0<a ≤1时,Δ=4-4a ≥0, 方程ax 2+2x +1=0有实根,且⎩⎨⎧-2a<01a >0,故方程有两个负根,符合题意.综上知:当a ≤1时,方程ax 2+2x +1=0至少有一个负根. 必要性:若方程ax 2+2x +1=0至少有一个负根. 当a =0时,方程为2x +1=0符合题意.当a ≠0时,方程ax 2+2x +1=0应有一正一负或两个负根.则1a<0或⎩⎪⎨⎪⎧Δ=4-4a ≥0-2a <01a >0.解得a <0或0<a ≤1.综上知:若方程ax 2+2x +1=0至少有一负根则a ≤1.故关于x 的方程ax 2+2x +1=0至少有一个负根的充要条件是a ≤1.19.(本小题满分12分)设复数z =lg(m 2-2m -2)+(m 2+3m +2)i ,当实数m 取何值时. (1)z 是纯虚数. (2)z 是实数.(3)z 对应的点位于复平面的第二象限.[解析] (1)由题意知⎩⎪⎨⎪⎧lg (m 2-2m -2)=0,m 2+3m +2≠0. 解得m =3.所以当m =3时,z 是纯虚数.(2)由m 2+3m +2=0,得m =-1或m =-2,又m =-1或m =-2时,m 2-2m -2>0,所以当m =-1或m =-2时,z 是实数.(3)由⎩⎪⎨⎪⎧lg (m 2-2m -2)<0,m 2+3m +2>0. 即⎩⎪⎨⎪⎧ m 2-2m -2>0m 2-2m -3<0m 2+3m +2>0解得:-1<m <1-3或1+3<m <3.所以当-1<m <1-3或1+3<m <3时,z 对应的点位于复平面的第二象限.20.(本小题满分13分)在△ABC 中,三个内角A 、B 、C 的对边分别为a 、b 、c ,若1a +b+1b +c =3a +b +c,试问A ,B ,C 是否成等差数列,若不成等差数列,请说明理由.若成等差数列,请给出证明.[解析] A 、B 、C 成等差数列.证明如下:∵1a +b +1b +c =3a +b +c , ∴a +b +c a +b +a +b +c b +c =3. ∴c a +b +a b +c=1, ∴c (b +c )+a (a +b )=(a +b )(b +c ),∴b 2=a 2+c 2-aC .在△ABC 中,由余弦定理,得cos B =a 2+c 2-b 22ac =ac 2ac =12, ∵0°<B <180°,∴B =60°.∴ A +C =2B =120°.∴A 、B 、C 成等差数列.21.(本小题满分14分)已知数列{a n }中,S n 是它的前n 项和,并且S n +1=4a n +2(n =1,2,…),a 1=1.(1)设b n =a n +1-2a n (n =1,2,…),求证:数列{b n }是等比数列;(2)设c n =a n 2n (n =1,2,…),求证:数列{c n }是等差数列; (3)(理)求数列{a n }的通项公式及前n 项和公式.[解析] (1)证明:∵S n +1=4a n +2,∴S n +2=4a n +1+2, 两式相减,得S n +2-S n +1=4a n +1-4a n (n =1,2,…), 即a n +2=4a n +1-4a n ,变形得a n +2-2a n +1=2(a n +1-2a n ). ∵b n =a n +1-2a n (n =1,2,…),∴b n +1=2b n . 由此可知,数列{b n }是公比为2的等比数列.(2)证明:由S 2=a 1+a 2=4a 1+2,a 1=1, ∴a 2=5,∴b 1=a 2-2a 1=3,由(1)知b n =3·2n -1,又c n =a n 2n . ∴c n +1-c n =a n +12n +1-a n 2n =a n +1-2a n 2n +1=b n 2n +1. 将b n =3·2n -1代入得c n +1-c n =34(n =1,2,…). 由此可知,数列{c n }是公差d =34的等差数列. (3)由(2)得:c 1=a 12=12,故c n =34n -14. ∵c n =34n -14=14(3n -1), ∴a n =2n ·c n =(3n -1)·2n -2(n =1,2,…). 当n ≥2时,S n =4a n -1+2=(3n -4)·2n -1+2. 由于S 1=a 1=1也适合于此公式, 所以{a n }的前n 项和公式为S n =(3n -4)·2n -1+2.。
高考数学《复数》真题练习含答案一、选择题1.[2024·新课标Ⅰ卷]若z z -1=1+i ,则z =( ) A .-1-i B .-1+iC .1-iD .1+i答案:C解析:由z z -1 =1+i ,可得z -1+1z -1 =1+i ,即1+1z -1 =1+i ,所以1z -1=i ,所以z -1=1i=-i ,所以z =1-i ,故选C. 2.[2024·新课标Ⅱ卷]已知z =-1-i ,则|z |=( )A .0B .1C .2D .2答案:C解析:由z =-1-i ,得|z |=(-1)2+(-1)2 =2 .故选C.3.[2023·新课标Ⅱ卷]在复平面内,(1+3i)(3-i)对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限答案:A解析:因为(1+3i)(3-i)=3-i +9i -3i 2=6+8i ,所以该复数在复平面内对应的点为(6,8),位于第一象限,故选A.4.[2023·新课标Ⅰ卷]已知z =1-i 2+2i,则z -z - =( ) A .-i B .iC .0D .1答案:A解析:因为z =1-i 2+2i =(1-i )22(1+i )(1-i ) =-12 i ,所以z - =12 i ,所以z -z - =-12 i -12i =-i.故选A. 5.|2+i 2+2i 3|=( )A .1B .2C .5D .5答案:C解析:|2+i 2+2i 3|=|2-1-2i|=|1-2i|=5 .故选C.6.设z =2+i 1+i 2+i5 ,则z - =( ) A .1-2i B .1+2iC .2-iD .2+i答案:B解析:z =2+i 1+i 2+i 5 =2+i 1-1+i =-i ()2+i -i 2 =1-2i ,所以z - =1+2i.故选B.7.[2022·全国甲卷(理),1]若z =-1+3 i ,则z z z --1=( ) A .-1+3 i B .-1-3 iC .-13 +33 iD .-13 -33i 答案:C解析:因为z =-1+3 i ,所以z z z --1=-1+3i (-1+3i )(-1-3i )-1 =-1+3i 1+3-1 =-13 +33i.故选C. 8.[2023·全国甲卷(文)]5(1+i 3)(2+i )(2-i )=( ) A .-1 B .1C .1-iD .1+i答案:C解析:由题意知,5(1+i 3)(2+i )(2-i ) =5(1-i )22-i2 =5(1-i )5 =1-i ,故选C. 9.(多选)[2024·山东菏泽期中]已知复数z =cos θ+isin θ⎝⎛⎭⎫-π2<θ<π2 (其中i 为虚数单位),下列说法正确的是( )A .复数z 在复平面上对应的点可能落在第二象限B .|z |=cos θC .z ·z - =1D .z +1z为实数 答案:CD解析:复数z =cos θ+isin θ⎝⎛⎭⎫-π2<θ<π2 (其中i 为虚数单位), 复数z 在复平面上对应的点(cos θ,sin θ)不可能落在第二象限,所以A 不正确; |z |=cos 2θ+sin 2θ =1,所以B 不正确;z ·z - =(cos θ+isin θ)(cos θ-isin θ)=cos 2θ+sin 2θ=1,所以C 正确;z +1z =cos θ+isin θ+1cos θ+isin θ=cos θ+isin θ+cos θ-isin θ=2cos θ为实数,所以D 正确.二、填空题10.若a +b i i(a ,b ∈R )与(2-i)2互为共轭复数,则a -b =________. 答案:-7解析:a +b i i =i (a +b i )i 2 =b -a i ,(2-i)2=3-4i ,因为这两个复数互为共轭复数,所以b =3,a =-4,所以a -b =-4-3=-7.11.i 是虚数单位,复数6+7i 1+2i=________. 答案:4-i解析:6+7i 1+2i =(6+7i )(1-2i )(1+2i )(1-2i )=6-12i +7i +145 =20-5i 5=4-i. 12.设复数z 1,z 2 满足|z 1|=|z 2|=2,z 1+z 2=3 +i ,则|z 1-z 2|=________. 答案:23解析:设复数z 1=a +b i ,z 2=c +d i(a ,b ,c ,d ∈R ),则a 2+b 2=4,c 2+d 2=4,又z 1+z 2=(a +c )+(b +d )i =3 +i ,∴a +c =3 ,b +d =1,则(a +c )2+(b +d )2=a 2+c 2+b 2+d 2+2ac +2bd =4,∴8+2ac +2bd =4,即2ac +2bd =-4,∴|z 1-z 2|=(a -c )2+(b -d )2 =a 2+b 2+c 2+d 2-(2ac +2bd ) =8-(-4) =23 .[能力提升] 13.(多选)[2024·九省联考]已知复数z ,w 均不为0,则( )A .z 2=|z |2B .z z - =z 2|z |2C .z -w =z - -w -D .⎪⎪⎪⎪z w =||z ||w 答案:BCD解析:设z =a +b i(a ,b ∈R ),w =c +d i(c ,d ∈R );对A :z 2=(a +b i)2=a 2+2ab i -b 2=a 2-b 2+2ab i ,|z |2=(a 2+b 2 )2=a 2+b 2,故A 错误;对B: z z - =z 2z -·z ,又z - ·z =||z 2,即有z z - =z 2|z |2 ,故B 正确; 对C :z -w =a +b i -c -d i =a -c +(b -d )i ,则z -w =a -c -(b -d )i ,z - =a -b i ,w -=c -d i ,则z - -w - =a -b i -c +d i =a -c -(b -d )i ,即有z -w =z - -w - ,故C 正确; 对D :⎪⎪⎪⎪z w =⎪⎪⎪⎪⎪⎪a +b i c +d i =⎪⎪⎪⎪⎪⎪(a +b i )(c -d i )(c +d i )(c -d i ) =⎪⎪⎪⎪⎪⎪ac +bd -(ad -bc )i c 2+d 2 =(ac +bd c 2+d 2)2+(ad -bc c 2+d 2)2 =a 2c 2+2abcd +b 2d 2+a 2d 2-2abcd +b 2c 2(c 2+d 2)2 =a 2c 2+b 2d 2+a 2d 2+b 2c 2(c 2+d 2)2 =a 2c 2+b 2d 2+a 2d 2+b 2c 2c 2+d 2 ,||z ||w =a 2+b 2c 2+d2 =a 2+b 2×c 2+d 2c 2+d 2 =(a 2+b 2)(c 2+d 2)c 2+d 2 =a 2c 2+b 2c 2+a 2d 2+b 2d 2c 2+d 2 ,故⎪⎪⎪⎪z w =||z ||w ,故D 正确.故选BCD. 14.[2022·全国乙卷(理),2]已知z =1-2i ,且z +a z +b =0,其中a ,b 为实数,则( )A .a =1,b =-2B .a =-1,b =2C .a =1,b =2D .a =-1,b =-2答案:A解析:由z =1-2i 可知z - =1+2i.由z +a z - +b =0,得1-2i +a (1+2i)+b =1+a +b+(2a -2)i =0.根据复数相等,得⎩⎪⎨⎪⎧1+a +b =0,2a -2=0, 解得⎩⎪⎨⎪⎧a =1,b =-2.故选A. 15.[2023·全国甲卷(理)]设a ∈R ,(a +i)(1-a i)=2,则a =( )A .-2B .-1C .1D .2答案:C解析:∵(a +i)(1-a i)=a +i -a 2i -a i 2=2a +(1-a 2)i =2,∴2a =2且1-a 2=0,解得a =1,故选C.16.已知z (1+i)=1+a i ,i 为虚数单位,若z 为纯虚数,则实数a =________. 答案:-1解析:方法一 因为z (1+i)=1+a i ,所以z =1+a i 1+i =(1+a i )(1-i )(1+i )(1-i )=(1+a )+(a -1)i 2,因为z 为纯虚数, 所以1+a 2 =0且a -12≠0,解得a =-1. 方法二 因为z 为纯虚数,所以可设z =b i(b ∈R ,且b ≠0),则z (1+i)=1+a i ,即b i(1+i)=1+a i ,所以-b +b i=1+a i ,所以⎩⎪⎨⎪⎧-b =1b =a ,解得a =b =-1.。
专题十二 复数本章内容主要是复数的概念、复数的运算.引入虚数,这是中学阶段对数集的最终扩充.需要掌握复数的概念、弄清实数与复数的关系,掌握复数代数形式的运算(包括加、减、乘、除),了解复数的几何表示.由于向量已经单独学习,因此复数的向量形式与三角形式就不作要求,主要解决代数形式.【知识要点】1.复数的概念中,重要的是复数相等的概念.明确利用“转化”的思想,把虚数问题转化为实数问题加以解决,而这种“转化”的思想是通过解实数的方程(组)的方法加以实现.2.复数的代数形式:z =a +bi (a ,b ∈R ).应该注意到a ,b ∈R 是与z =a +bi 为一个整体,解决虚数问题实际上是通过a ,b ∈R 在实数集内解决实数问题.3.复数的代数形式的运算实际上是复数中实部、虚部(都是实数)的运算.【复习要求】1.了解数系的扩充过程.理解复数的基本概念与复数相等的充要条件.2.了解复数的代数表示法及其几何意义.3.能进行复数代数形式的四则运算,了解复数代数形式的加、减运算的几何意义.【例题分析】例1 m (m ∈R )取什么值时,复数z =(m 2-3m -4)+(m 2-5m -6)i 是(1)实数?(2)纯虚数?(3)零?【分析】此类问题可以应用复数的定义加以解决.解:(1)当m 2-5m -6=0,即m =-1或m =6时,复数z 为实数;(2)当,即m =4时,复数z 为纯虚数; (3)当,即m =-1时,复数z 为零. 【评析】本题主要考查实数、纯虚数的定义,需要对复数的实部、虚部加以研究.应该注意到复数的实部、虚部都是实数,解决复数的问题时实际上是在进行实数运算.这一点大家在后面的运算中更加能够体会到.例2 判断下列命题的对错:(1)复平面内y 轴上所有点的集合与纯虚数集是一一对应的;⎪⎩⎪⎨⎧=/--=--06504322m m m m ⎪⎩⎪⎨⎧=--=--06504322m m m m(2)两个复数a +bi =c +di 的充要条件是a =c ,b =d ;(3)任意两个确定的复数都不能比较大小;(4)若z 1+z 2∈R ,则z 1,z 2为共轭复数.【分析】本题进一步考察数系的概念,大家在解决此类问题时一定要跳出实数这个圈子,考虑全面一些. 解:(1)错误.复平面内y 轴上的原点对应的是实数0,不是纯虚数.(2)错误.复数a +bi 中并没有强调a ,b ∈R 这一条件,因此a ,b 不一定是复数的实部、虚部,例如:3i +4i =5i +2i ,此时,a =3i ,b =4、c =5i ,d =2,a =c ,b =d 不成立.(3)错误.复数中的两个确定的实数是可以比较大小的.(4)错误.z 1=3+4i ,z 2=5-4i ,z 1+z 2=8∈R ,z 1,z 2不是共轭复数.【评析】(4)中需要注意不能从两个复数运算的结果来判定这两个复数的范围;(3)中再次强调复数中对于实部和虚部必须加以明确;对于判断命题的正确与否的问题,错误的要能举出反例(一个即可),正确的要能加以证明.错误的命题最好能够加以改正.例3 计算下列各式的值:(1) (2)(1+2i )(3-4i )(2-i );(3)|(5+12i )(3-4i )|.【分析】这是本专题的重点,运算中要运用法则,还要观察题目本身的特点.解:(1) (2)(1+2i )(3-4i )(2-i )=(3-4i +6i +8)(2-i )=(11+2i )(2-i )=24-7i .(3)|(5+12i )(3-4i )|=|(5+12i )||(3-4i )|=【评析】(1)中的变号问题不容忽视;(2)中不妨再把后两个括号先算,对结果加以验证;(3)中运用复数模的运算法则要比先运算再取模方便得多.复数的计算是高考中考察复数知识的重点,运算要准确,不要图快,最好从多个角度加以验证.例4 已知复数z =1+i ,表示z 的共轭复数,且az +2b =(a +2z )2,求实数a ,b 的值.【分析】利用复数相等的充要条件列出实数的方程或方程组是解决此类问题的一般方法.);2334()2()2131(i i i ---++.1)23121()34231()2334()2()2131(i i i i i +=+-+-+=---++.65513431252222=⨯=+⨯+z z解:∵z =1+i ,∴=1-i ,∵∴,∴(a +2b )+(a -2b )i =(a 2+4a )+(4a +8)i ,即:(a +2b )+(a -2b )i =(a 2+4a )+(4a +8)i ,∴ 解得 或 【评析】应注意到a ,b 是实数这一条件在本题中的作用,如果没有这个条件,那么a ,b 都要按照复数来求,问题就复杂多了.习题121.1+i +i 2+…+i 2008的值是( )A .0B .-1C .1D .i2.复数z 1=(a 2+3)+(-4a -3)i ,z 2=(a -7)+(a 2+a )i ,若z 1+z 2=2+i ,则实数a 的值为( )A .-3B .2C .1D .不存在 3.若复数的实部和虚部互为相反数,则b =( ) A . B . C . D .24.复数的共轭复数为( ) A .1+2i B .1-2i C . D . 5.若a 是实数,是纯虚数,则a =______. 6.复数,若,则|z 3|等于______. 7.复平面内,复数z =sin2+i cos2对应的点所在的象限是______.8.虚数z =(x -2)+yi (x ,y ∈R ),若虚数的模|z |=1,则的取值范围是______. z ,)2(22z a z b az +=+22442z az a z b az ++=+⎩⎨⎧+=-+=+842422a b a a a b a ⎩⎨⎧-=-=12b a ⎩⎨⎧=-=.24b a )R (212∈+-b i bi 232-32i215+i 31035+-i 31035--ii a +-1i z ii z 32,342321-=-+=213z z z =xy9.已知复数i (m R ),当z 是(1)实数;(2)虚数;(3)纯虚数时,分别求m 的值或取值范围.10.已知复数(3x +2y )+5xi 与复数18+(y -2)i 的共轭复数相等,求实数x ,y 的值.11.已知函数,求f (1+i )与f (1-i )的值.专题十二 复数参考答案习题12一、选择题:1.C 2.D 3.B 4.A提示:)152(315822--+++-=m m m m m z ∈132)(2++-=x x x x f(1)解:1+i +i 2+…+i 2008= (2)解:z 1+z 2=(a 2+3+a -7)+(-4a -3+a 2+a )i =2+i ,即:方程组无解. 二、填空题5.1; 6.; 7.第四象限; 8. 提示:(6)解: (8)解:∵,设 则k 为过圆(x -2)2+y 2=1上点及原点的直线斜率,作图如下,, 又∵y ≠0,∴k ≠0.∴ 三、解答题: 9.解:(1)当z 是实数时,有 .111112009=--=--i i ii &⎩⎨⎧=-==-=⇒⎪⎩⎪⎨⎧=--=-+41231332422a a a a a a a a 或或⇒51)].33,0()0,33[(Y -,254325)34(34)32)(34()32()32)(34(23213i i i i i i i i i i i i z z z +-=+=-=---=--+==⋅==+-=+-=5125525|43||2543|||3i i z ⎩⎨⎧=/=+-01)2(22y y x ,x y k=3333≤≤-k ].33,0()0,33[Y -∈k .50301522=⇒⎩⎨⎧=/+=--m m m m(2)当z 是虚数时,有且. (3)当z 是纯虚数时,有 10.解:∵x ,y R ,∴∵11.解:∵ ∴ ⎩⎨⎧=/+=/--0301522m m m 5≠⇒m 3-≠m ⎪⎩⎪⎨⎧=⇒=++-=/--.303158015222m m m m m m ∈,)2(1818)2(i y i y --=+-.122)2(51823,5)23(18)2(⎩⎨⎧=-=⇒⎩⎨⎧--==+∴++=+-y x y x y x xi y x i y ,132)(2++-=x x x x f ,5221113)1(2)1()1(2i i i i i i f -=+=++++-+=+⋅+=-=+-+---=-5221113)1(2)1()1(2i i i i i i f。
阶段性测试题十二(算法初步、复数、推理与证明)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分.考试时间120分钟.第Ⅰ卷(选择题 共50分)一、选择题(本大题共10个小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(文) (2014·济南模拟)复数z =i 1+i 在复平面上对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限[答案] A[解析] z =i1+i =i (1-i )(1+i )(1-i )=1+i 2=12+i 2,所以复数z 对应的点为(12,12),在第一象限.(理) (2014·郑州六校质量检测)设复数z =a +b i(a ,b ∈R),若z1+i =2-i 成立,则点P (a ,b )在( )A .第一象限B .第二象限C .第三象限D .第四象限 [答案] A[解析] 因为z1+i =2-i ,所以z =(2-i)(1+i)=3+i ,所以点P (a ,b )在第一象限.2.(文)(2014·广州一测)已知i 是虚数单位,则1-2i2+i 等于( )A .i B.45-i C.45-35i D .-i [答案] D [解析]1-2i 2+i =(1-2i )(2-i )(2+i )(2-i )=2-2-i -4i 22+12=-5i5=-i ,故答案选D.(理)(2014·石家庄质检)设z =1+i(i 是虚数单位),则2z +z 2=( )A .-1-iB .-1+iC .1-iD .1+i[答案] D[解析] 2z +z 2=21+i+(1+i)2=1-i +2i =1+i.3. (2014·北京西城区期末)执行如图所示的程序框图,则输出的S 值为( )A .3B .6C .7D .10[答案] D[解析] 通过循环,可知该循环的作用是求数列的和,循环到n =4结束循环,所以S =0+1+2+3+4=10.故选D.4.(文) 设z =1-i(i 是虚数单位),则复数2z +i 2的虚部是( )A .1B .-1C .iD .-i[答案] A[解析] 因为z =1-i(i 是虚数单位),所以复数2z +i 2=21-i +i 2=1+i -1=i ,所以复数2z+i 2的虚部是1.(理)设复数z =1+b i(b ∈R)且|z |=2,则复数z 的虚部为( ) A. 3 B .±3 C .±1 D .±3i[答案] B[解析] z =1+b i ,且|z |=2,即1+b 2=4,解得b =±3.5.(2014·商丘模拟)工人师傅想对如右图的直角铁皮,用一条直线m将其分成面积相等的两部分.下面是甲、乙、丙、丁四位同学给出的做法,其中做法正确的学生数是()A.4个B.3个C.2个D.1个[答案] A[解析]可将此图形分割成两个矩形即甲、乙、丁同学的做法,也可将此图形补上一小矩形即丙同学的做法.由矩形的对称性可知当直线过矩形的中心即对角线交点时,直线平分矩形的面积.故甲、乙、丙同学的做法正确.在丁同学的做法中,因为AB过两矩形的中心,所以AB平分此铁皮的面积.当直线m过线段AB的中点时,直线m和AB围城的两个三角形全等,故直线m还平分此铁皮的面积.综上可得4个同学的做法都对.6.(2011·泉州质检)根据下列算法语句, 当输入x 为60时, 输出y 的值为( ) A .61 B .31 C .30D .25[答案] B[解析] 分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是计算并输出分段函数,y =⎩⎨⎧0.5x x ≤5025+0.6(x -50) x>50的函数值,当x =60时,则y=25+0.6(60-50)=31,故选B .7.(文)(2014·安阳月考)已知M 是e x +e -x的最小值,N =2tan 22.5°1-tan 22.5°,则下图所示程序框图输出的S 为( )A .2B .1C .12D .0[答案] A[解析] ∵e x +e -x ≥2e x ·e -x =2,∴M =2,N =2tan 22.5°1-tan 222.5°=tan 45°=1,所以M>N ,又框图的功能是求M ,N 中的较大值,故输出的值为2.(理) (2014·安阳月考)已知函数y =1x 与x =1,x 轴和x =e 所围成的图形的面积为M ,N=tan 22.5°1-tan 22.5°,则程序框图输出的S 为( )A .1B .2C .12D .0[答案] C [解析] 因为2N =2tan 22.5°1-tan 222.5°=tan 45°=1,所以N =12,M =⎠⎛1e 1x d x =ln x |e 1=1,所以M >N ,又框图的功能是求M ,N 中的较小值,故输出的值为12.8.(文) (2014·舟山期末)读下面程序框图,该程序运行后输出的A 值为( )A.34B.45 C.56 D.67[答案] C[解析] 第一次循环:A =12-A =23,i =i +1=2,此时满足条件,继续循环;第二次循环:A =12-A =34,i =i +1=3,此时满足条件,继续循环;第三次循环:A =12-A =45,i =i +1=4,此时满足条件,继续循环;第四次循环:A =12-A =56,i =i +1=5,此时不满足条件,结束循环,输出A 的值为56.(理) (2014·东北三校模拟) 下列代数式(其中k ∈N *)能被9整除的是( ) A .6+6·7k B .2+7k -1 C .2(2+7k +1) D .3(2+7k )[答案] D[解析] (1)当k =1时,显然只有3(2+7k )能被9整除.(2)假设当k =n (n ∈N *)时,命题成立,即3(2+7n )能被9整除,那么3(2+7n +1)=21(2+7n )-36.这就是说,k =n +1时命题也成立. 由(1)(2)可知,命题对任何k ∈N *都成立.9.(2014·沧州模拟)设x ,y ∈R ,a >1,b >1,若a x =b y =2,a 2+b =4,则2x +1y 的最大值为( )A .1B .2C .3D .4[答案] B[解析] 因为a x =b y =2,所以x =log a 2,y =log b 2,所以2x +1y =2log 2a +log 2b =log 2(a 2b )≤log 2(a 2+b2)2=2,当且仅当a 2=b =2时取等号. 10. 定义在R 上的函数y =f (x ),满足f (3-x )=f (x ),(x -32)f ′(x )<0,若x 1<x 2,且x 1+x 2>3,则有( )A .f (x 1)<f (x 2)B .f (x 1)>f (x 2)C .f (x 1)=f (x 2)D .不确定[答案] B[解析] 因为函数y =f (x ),满足f (3-x )=f (x ),所以函数y =f (x )的对称轴为x =32.又因为(x -32)f ′(x )<0,所以x <32时,f ′(x )>0,x >32时,f ′(x )<0,所以函数y =f (x )在(-∞,32]上单调递增;在[32,+∞)上单调递减.又因为x 1<x 2,且x 1+x 2>3,所以3-x 2<x 1<x 2,且x 2∈(32,+∞),观察图像,得f (x 1)>f (x 2).第Ⅱ卷(非选择题 共100分)二、填空题(本大题共5个小题,每小题5分,共25分,把正确答案填在题中横线上)11.在复平面上,复数3(2-i )2对应的点到原点的距离为________.[答案] 35[解析] 复平面上复数z 对应的点到原点的距离就是它的模,而|3(2-i )2|=3|2-i|2=35,本题不需要把复数化简为a +b i(a ,b ∈R)形式.12.(2014·厦门质检)程序框图如下:如果上述程序运行的结果为S =132,那么判断框中横线上应填入的数字是________. [答案] 10[解析] 由题设条件可以看出,此程序是一个求几个数的连乘积的问题,第一次乘入的数是12,以后所乘的数依次减少1,由于132=11×12,故循环两次,故判断框中应填k ≤10.13.(2014·洛阳部分重点中学教学检测)观察下列等式:31×2×12=1-122,31×2×12+42×3×122=1-13×22,31×2×12+42×3×122+53×4×123=1-14×23,……,由以上等式推测到一个一般的结论:对于n ∈N *,31×2×12+42×3×122+…+n +2n (n +1)×12n =________. [答案] 1-1(n +1)·2n[解析] 由已知中的等式:31×2×12=1-12231×2×12+42×3×122=1-13×22,31×2×12+42×3×122+53×4×123=1-14×23,…, 所以对于n ∈N *,31×2×12+42×3×122+…+n +2n (n +1)×12n =1-1(n +1)2n . 14. (文) (2014·阜阳一中模拟)若等差数列{a n }的前n 项和为S n ,则S 2n -1=(2n -1)a n .由类比推理可得:在等比数列{b n }中,若其前n 项的积为P n ,则P 2n -1=________.[答案] b 2n -1n[解析] 因为等差数列{a n }的前n 项和为S n ,则S 2n -1=(2n -1)a n .所以类比推理可得:在等比数列{b n }中,若其前n 项的积为P n ,则P 2n -1=b 2n -1n. (理)对于命题:若O 是线段AB 上一点,则有|OB →|·OA →+|OA →|·OB →=0.将它类比到平面的情形是:若O 是△ABC 内一点,则有S △OBC ·OA →+S △OCA ·OB →+S △OAB ·OC →=0.将 它类比到空间的情形应该是:若O 是四面体ABCD 内一点,则有________.[答案] V O -BCD ·OA →+V O -ACD ·OB →+V O -ABD ·OC →+V O -ABC ·OD →=0[解析] 平面上的线段长度类比到平面上就是图形的面积,类比到空间就是几何体的体积.15.(文)如图,第n 个图形是由正n +2边形“扩展”而来的(n =1,2,3,…),则第n -2(n ≥3,n ∈N *)个图形共有________个顶点.[答案] n (n +1)[解析] 当n =1时,顶点共有3×4=12(个), 当n =2时,顶点共有4×5=20(个), 当n =3时,顶点共有5×6=30(个), 当n =4时,顶点共有6×7=42(个),故第n -2图形共有顶点(n -2+2)(n -2+3)=n (n +1)个. (理)(2014·东北四校联考)根据下面一组等式 S 1=1, S 2=2+3=5, S 3=4+5+6=15, S 4=7+8+9+10=34, S 5=11+12+13+14+15=65, S 6=16+17+18+19+20+21=111, S 7=22+23+24+25+26+27+28=175, …可得S 1+S 3+S 5+…+S 2n -1=________. [答案] n 4[解析] 根据所给等式组,不难看出:S 1=1=14; S 1+S 3=1+15=16=24; S 1+S 3+S 5=1+15+65=81=34,S 1+S 3+S 5+S 7=1+15+65+175=256=44, 由此可得S 1+S 3+S 5+…+S 2n -1=n 4.三、解答题(本大题共6个小题,共75分,解答应写出文字说明,证明过程或演算步骤) 16.(本小题满分12分)设a ,b ,c >0,证明a 2b +b 2c +c 2a ≥a +b +c .[证明] ∵a 、b 、c >0,根据均值不等式, 有a 2b +b ≥2a ,b 2c +c ≥2b ,c 2a+a ≥2c . 三式相加:a 2b +b 2c +c 2a +a +b +c ≥2(a +b +c ),即a 2b +b 2c +c 2a≥a +b +c .17.(本小题满分12分)给出以下10个数:5,9,80,43,95,73,28,17,60,36,要求把大于40的数找出来并输出,试画出该问题的程序框图.[分析] 题目给出了10个数字,将大于40的数找出来.解答本题先确定使用循环结构,再确定循环体.[解析] 程序框图如图所示:18.(本小题满分12分)设复数z =lg(m 2-2m -2)+(m 2+3m +2)i ,当实数m 取何值时.(1)z 是纯虚数.(2)z 是实数.(3)z 对应的点位于复平面的第二象限.[解析] (1)由题意知⎩⎪⎨⎪⎧lg (m 2-2m -2)=0,m 2+3m +2≠0. 解得m =3.所以当m =3时,z 是纯虚数.(2)由m 2+3m +2=0,得m =-1或m =-2,又m =-1或m =-2时,m 2-2m -2>0,所以当m =-1或m =-2时,z 是实数.(3)由⎩⎪⎨⎪⎧lg (m 2-2m -2)<0,m 2+3m +2>0.即⎩⎪⎨⎪⎧ m 2-2m -2>0m 2-2m -3<0m 2+3m +2>0解得:-1<m <1-3或1+3<m <3.所以当-1<m <1-3或1+3<m <3时,z 对应的点位于复平面的第二象限.19.(本小题满分12分)已知数列{a n }的各项排成如图所示的三角形数阵,数阵中每一行的第一个数a 1,a 2,a 4,a 7…构成等差数列{b n },S n 是{b n }的前n 项和,且b 1=a 1=1,S 5=15.(1)若数阵中从第三行开始每行中的数按从左到右的顺序均构成公比为正数的等比数列,且公比相等,已知a 9=16,求a 50的值;(2)设T n =1S n +1+1S n +2+…+1S 2n ,求T n . [解析] (1)∵{b n }为等差数列,设公差为d ,b 1=1,S 5=15,∴S 5=5+10d =15,d =1, ∴b n =1+(n -1)×1=n .设从第3行起,每行的公比都是q ,且q >0,a 9=b 4q 2,4q 2=16,q =2,1+2+3+…+9=45,故a 50是数阵中第10行第5个数,而a 50=b 10q 4=10×24=160.(2)∵S n =1+2+…+n =n (n +1)2, ∴T n =1S n +1+1S n +2+…+1S 2n =2(n +1)(n +2)+2(n +2)(n +3)+…+22n (2n +1)=2(1n +1-1n +2+1n +2-1n +3+…+12n -12n +1)=2(1n +1-12n +1)=2n (n +1)(2n +1). 20.(本小题满分13分)在△ABC 中,三个内角A 、B 、C 的对边分别为a 、b 、c ,若1a +b+1b +c =3a +b +c,试问A ,B ,C 是否成等差数列,若不成等差数列,请说明理由.若成等差数列,请给出证明.[解析] A 、B 、C 成等差数列.证明如下:∵1a +b +1b +c =3a +b +c, ∴a +b +c a +b +a +b +c b +c=3. ∴c a +b +a b +c=1, ∴c (b +c )+a (a +b )=(a +b )(b +c ),∴b 2=a 2+c 2-ac .在△ABC 中,由余弦定理,得cos B =a 2+c 2-b 22ac =ac 2ac =12, ∵0°<B <180°,∴B =60°.∴ A +C =2B =120°.∴A 、B 、C 成等差数列.21.(本小题满分14分)已知数列{a n }中,S n 是它的前n 项和,并且S n +1=4a n +2(n =1,2,…),a 1=1.(1)设b n =a n +1-2a n (n =1,2,…),求证:数列{b n }是等比数列;(2)设c n =a n 2n (n =1,2,…),求证:数列{c n }是等差数列; (3)(理)求数列{a n }的通项公式及前n 项和公式.[解析] (1)证明:∵S n +1=4a n +2,∴S n +2=4a n +1+2,两式相减,得S n +2-S n +1=4a n +1-4a n (n =1,2,…),即a n +2=4a n +1-4a n ,变形得a n +2-2a n +1=2(a n +1-2a n ). ∵b n =a n +1-2a n (n =1,2,…),∴b n +1=2b n . 由此可知,数列{b n }是公比为2的等比数列.(2)证明:由S 2=a 1+a 2=4a 1+2,a 1=1, ∴a 2=5,∴b 1=a 2-2a 1=3, 由(1)知b n =3·2n -1,又c n =a n2n .∴c n +1-c n =a n +12n +1-a n 2n =a n +1-2a n2n +1=b n2n +1.将b n =3·2n -1代入得c n +1-c n =34(n =1,2,…).由此可知,数列{c n }是公差d =34的等差数列.(3)由(2)得:c 1=a 12=12,故c n =34n -14.∵c n =34n -14=14(3n -1),∴a n =2n ·c n =(3n -1)·2n -2(n =1,2,…). 当n ≥2时,S n =4a n -1+2=(3n -4)·2n -1+2. 由于S 1=a 1=1也适合于此公式, 所以{a n }的前n 项和公式为S n =(3n -4)·2n -1+2.。
第十二章 第五节一、选择题1.若f (n )=1+12+13+…+16n -1(n ∈N +),则f (1)为( )A .1B .15C .1+12+13+14+15D .非以上答案[答案] C[解析] 等式右边的分母是从1开始的连续的自然数,且最大分母为6n -1,则当n =1时,最大分母为5,故选C .2.用数学归纳法证明不等式1+12+14+…+12n -1>12764(n ∈N +)成立,其初始值至少应取( )A .7B .8C .9D .10[答案] B[解析] 由S n =1-12n1-12>12764得n >7,又n ∈N +,所以n ≥8.3.记凸k 边形的内角和为f (k ),则凸k +1边形的内角和f (k +1)=f (k )+____________( )A .π2B .πC .32πD .2π[答案] B[解析] 由凸k 边形变为凸k +1边形时,增加了一个三角形,故f (k +1)=f (k )+π. 4.用数学归纳法证明“1+2+22+…+2n -1=2n -1(n ∈N *)”的过程中,第二步n =k时等式成立,则当n =k +1时应得到( )A .1+2+22+…+2k -2+2k -1=2k +1-1B .1+2+22+…+2k +2k +1=2k -1+2k +1C .1+2+22+…+2k -1+2k +1=2k +1-1D .1+2+22+…+2k -1+2k =2k +1-1[答案] D[解析]由条件知,左边是从20,21一直到2n-1都是连续的,因此当n=k+1时,左边应为1+2+22+…+2k-1+2k,而右边应为2k+1-1.5.对于不等式n2+n≤n+1(n∈N+),某人的证明过程如下:1°当n=1时,12+1≤1+1,不等式成立.2°假设n=k(k∈N+)时不等式成立,即k2+k<k+1,则n=k+1时,(k+1)2+(k+1)=k2+3k+2<(k2+3k+2)+k+2=(k+2)2=(k+1)+1.∴当n=k+1时,不等式成立.上述证法()A.过程全都正确B.n=1验得不正确C.归纳假设不正确D.从n=k到n=k+1的推理不正确[答案] D[解析]本题的证明中,从n=k到n=k+1的推理没有用到归纳假设,所以本题不是用数学归纳法证题.6.下列代数式(其中k∈N+)能被9整除的是()A.6+6·7k B.2+7k-1C.2(2+7k+1) D.3(2+7k)[答案] D[解析](1)当k=1时,显然只有3(2+7k)能被9整除.(2)假设当k=n(n∈N+)时,命题成立,即3(2+7n)能被9整除,那么3(2+7n+1)=21(2+7n)-36.这就是说,k=n+1时命题也成立.由(1)(2)可知,命题对任何k∈N+都成立.二、填空题7.(2014·陕西高考)已知f(x)=x1+x,x≥0,若f1(x)=f(x),f n+1(x)=f(f n(x)),n∈N+,则f2014(x)的表达式为________.[答案]x1+2014x[解析]考查归纳推理.f 1(x )=f (x )=x 1+x ,f 2(x )=f (f 1(x ))=x 1+x 1+x 1+x =11+2x ,f 3(x )=f (f 2(x ))=x 1+21+x 1+2x =x1+3x ,…,f 2014(x )=x1+2014x.8.用数学归纳法证明“当n 为正奇数时,x n +y n 能被x +y 整除”,当第二步假设n =2k -1(k ∈N +)命题为真时,进而需证n =________时,命题亦真.[答案] 2k +1[解析] ∵n 为正奇数,假设n =2k -1成立后,需证明的应为n =2k +1时成立. 9.用数学归纳法证明(n +1)(n +2)…(n +n )=2n ×1×3×…×(2n -1)(n ∈N +)时,从k 到k +1,左边需要增加的代数式为________.[答案] 2(2k +1)[解析] 当n =k 时左边的最后一项是2k ,n =k +1时左边的最后一项是2k +2,而左边各项都是连续的,所以n =k +1时比n =k 时左边少了(k +1),而多了(2k +1)(2k +2).因此增加的代数式是(2k +1)(2k +2)k +1=2(2k +1).三、解答题10.(2014·广东高考)设数列{a n }的前n 项和为S n ,满足S n =2na n +1-3n 2-4n ,n ∈N *,且S 3=15.(1)求a 1,a 2,a 3的值; (2)求数列{a n }的通项公式.[解析] (1)a 1=S 1=2a 2-3×12-4×1=2a 2-7①a 1+a 2=S 2=4a 3-3×22-4×2=4(S 3-a 1-a 2)-20=4(15-a 1-a 2)-20, ∴a 1+a 2=8②联立①②解得⎩⎪⎨⎪⎧a 1=3a 2=5,∴a 3=S 3-a 1-a 2=15-8=7,综上a 1=3,a 2=5,a 3=7.(2)由(1)猜想a n =2n +1,以下用数学归纳法证明: ①由(1)知,当n =1时,a 1=3=2×1+1,猜想成立; ②假设当n =k 时,猜想成立,即a k =2k +1, ∴S k =3k +k (k -1)2×2=k 2+2k ,又S k =2ka k +1-3k 2-4k , ∴2ka k +1-3k 2-4k =k 2+2k , ∴a k +1=2k +3,即n =k +1时,有a k +1=2(k +1)+1成立. 由数学归纳法原理知,a n =2n +1成立.一、选择题1.用数学归纳法证明1+2+3+…+n 2=n 4+n 22,则当n =k +1时左端应在n =k 的基础上加上( )A .k 2+1B .(k +1)2C .(k +1)4+(k +1)22D .(k 2+1)+(k 2+2)+(k 2+3)+…+(k +1)2 [答案] D[解析] ∵当n =k 时,左侧=1+2+3+…+k 2, 当n =k +1时,左侧=1+2+3+…+k 2+(k 2+1)+…+(k +1)2, ∴当n =k +1时,左端应在n =k 的基础上加上 (k 2+1)+(k 2+2)+(k 2+3)+…+(k +1)2.2.在一次珠宝展览会上,某商家展出一套珠宝首饰,第一件首饰是1颗珠宝,第二件首饰由6颗珠宝(图中圆圈表示珠宝)构成如图1所示的正六边形,第三件首饰由15颗珠宝构成如图2所示的正六边形,第四件首饰是由28颗珠宝构成如图3所示的正六边形,第五件首饰是由45颗珠宝构成如图4所示的正六边形,以后每件首饰都在前一件上,按照这种规律增加一定数量的珠宝,使它构成更大的正六边形,依此推断前10件首饰所用珠宝总颗数为( )A .190B .715C .725D .385[答案] B[解析] 由条件可知前5件首饰的珠宝数依次为:1,1+5,1+5+9,1+5+9+13,1+5+9+13+17,即每件首饰的珠宝数为一个以1为首项,4为公差的等差数列的前n 项和,通项a n =4n -3.由此可归纳出第n 件首饰的珠宝数为n [1+(4n -3)]2=2n 2-n .则前n 件首饰所用的珠宝总数为2(12+22+…+n 2)-(1+2+…+n )=4n 3+3n 2-n6.当n =10时,总数为715. 二、填空题3.若f (n )=12+22+32+…+(2n )2,则f (k +1)与f (k )的递推关系式是________. [答案] f (k +1)=f (k )+(2k +1)2+(2k +2)2 [解析] ∵f (k )=12+22+…+(2k )2,∴f (k +1)=12+22+…+(2k )2+(2k +1)2+(2k +2)2; ∴f (k +1)=f (k )+(2k +1)2+(2k +2)2.4.利用数学归纳法证明不等式1+12+13+…+12n -1<f (n )(n ≥2,n ∈N +)的过程,由n =k 到n =k +1时,左边增加了________项.[答案] 2k[解析] 当n =k 时为1+12+13+…+12k -1,当n =k +1时为1+12+…+12k -1+12k +…+12·2k -1,所以从n =k 到n =k +1增加了2k 项. 三、解答题5.设f (x )=2xx +2,x 1=1,x n =f (x n -1)(n ≥2,n ∈N +).(1)求x 2,x 3,x 4的值; (2)归纳并猜想{x n }的通项公式; (3)用数学归纳法证明你的猜想.[解析] (1)x 2=f (x 1)=23,x 3=f (x 2)=2×2323+2=12=24,x 4=f (x 3)=2×1212+2=25.(2)根据计算结果,可以归纳猜想出x n =2n +1.(3)证明:①当n =1时,x 1=21+1=1,与已知相符,归纳出的公式成立.②假设当n =k (k ∈N +)时,公式成立,即x k =2k +1, 那么,当n =k +1时,有x k +1=2x k x k +2=2×2k +12k +1+2=42k +4=2(k +1)+1,所以,当n =k +1时公式也成立. 由①②知,对任意n ∈N +,有x n =2n +1成立. 6.是否存在常数a 、b 、c 使等式12+22+32+…+n 2+(n -1)2+…+22+12=an (bn 2+c )对于一切n ∈N +都成立,若存在,求出a 、b 、c 并证明;若不存在,试说明理由.[解析] 假设存在a 、b 、c 使12+22+32+…+n 2+(n -1)2+…+22+12=an (bn 2+c )对于一切n ∈N +都成立.当n =1时,a (b +c )=1; 当n =2时,2a (4b +c )=6; 当n =3时,3a (9b +c )=19.解方程组⎩⎪⎨⎪⎧a (b +c )=1,a (4b +c )=3,3a (9b +c )=19.解得⎩⎪⎨⎪⎧a =13,b =2,c =1.证明如下:①当n =1时,由以上知存在常数a ,b ,c 使等式成立. ②假设n =k (k ∈N +)时等式成立,即12+22+32+…+k 2+(k -1)2+…+22+12 =13k (2k 2+1); 当n =k +1时,12+22+32+…+k 2+(k +1)2+k 2+(k -1)2+…+22+12 =13k (2k 2+1)+(k +1)2+k 2 =13k (2k 2+3k +1)+(k +1)2 =13k (2k +1)(k +1)+(k +1)2 =13(k +1)(2k 2+4k +3)=13(k +1)[2(k +1)2+1]. 即n =k +1时,等式成立.因此存在a =13,b =2,c =1使等式对一切n ∈N +都成立.。
第1讲算法初步课时作业1.执行两次如图所示的程序框图,若第一次输入的x的值为7,第二次输入的x的值为9,则第一次、第二次输出的a的值分别为()A.0,0 B.1,1C.0,1 D.1,0答案 D解析当x=7时,∵b=2,∴b2=4<7=x.又7不能被2整除,∴b=2+1=3.此时b2=9>7=x,∴退出循环,a=1,∴输出a=1.当x=9时,∵b=2,∴b2=4<9=x.又9不能被2整除,∴b=2+1=3.此时b2=9=x,又9能被3整除,∴退出循环,a=0.∴输出a=0.故选D.2.(2019·某某模拟)执行如图所示的程序框图,若输出的结果为48,则判断框中可以填()A.n≤5 B.n>5C.n≤4 D.n>4答案 B解析n=1,S=3,a=5;n=2,S=8,a=7;n=3,S=15,a=9;n=4,S=24,a =11;n=5,S=35,a=13,不满足判断框中的条件;n=6,S=48,a=15,满足判断框中的条件,退出循环,输出的S=48,所以判断框中可以填n>5.3.(2020·乌鲁木齐质量监测)如图所示的算法框图,当输入的x为1时,输出的结果为()A.3 B.4C.5 D.6答案 C解析当x=1时,x>1不成立,则y=x+1=1+1=2,i=0+1=1,y<20成立;x=2,x>1成立,y=2x=4,i=1+1=2,y<20成立;x =4,x >1成立,y =2x =8,i =2+1=3,y <20成立; x =8,x >1成立,y =2x =16,i =3+1=4,y <20成立;x =16,x >1成立,y =2x =32,i =4+1=5,y <20不成立,输出i =5,故选C.4.(2020·某某模拟)执行如图所示的程序框图,若输入的x 值为2019,则输出的y 值为()A .18B .14C .12D .1答案 C解析 根据流程图,可知当x ≥0时,每循环一次,x 的值减少4,输入x =2019,因为2019除以4余3,经过多次循环后x =3,再经过一次循环后x =-1,不满足x ≥0的条件,输出y =2x =2-1=12.5.(2019·某某模拟)执行如图所示的程序框图,输出的S 值为()A .0B .12C .1D .-1答案 A解析 第一次循环,k =1,S =cos0=1,k =1+1=2,k >4不成立; 第二次循环,k =2,S =1+cos π3=1+12=32,k =2+1=3,k >4不成立;第三次循环,k =3,S =32+cos 2π3=32-12=1,k =3+1=4,k >4不成立;第四次循环,k =4,S =1+cosπ=1-1=0,k =4+1=5,k >4成立. 此时退出循环,输出S =0,故选A.6.(2019·某某一检)执行如图所示的程序框图,若输出的结果是7,则判断框内m 的取值X 围是()A .(30,42]B .(30,42)C .(42,56]D .(42,56) 答案 A解析 k =1,S =2;k =2,S =2+4=6;k =3,S =6+6=12;k =4,S =12+8=20;k =5,S =20+10=30;k =6,S =30+12=42;k =7,此时不满足S =42<m ,退出循环,所以30<m ≤42,故选A.7.(2019·某某调研)如图所示的程序框图来源于中国古代数学著作《孙子算经》,其中定义[x ]表示不超过x 的最大整数,例如[0.6]=0,[2]=2,[3.6]=3.执行该程序框图,则输出的a =()A .9B .16C .23D .30 答案 C解析 执行程序框图,k =1,a =9,9-3·⎣⎢⎡⎦⎥⎤93=0≠2;k =2,a =16,16-3·⎣⎢⎡⎦⎥⎤163=1≠2;k =3,a =23,23-3·⎣⎢⎡⎦⎥⎤233=2,23-5·⎣⎢⎡⎦⎥⎤235=3,满足条件,退出循环.则输出的a =23.故选C.8.(2019·某某市第三中学调研)执行如图所示的程序框图,则输出的结果是()A .2018B .-1010C .1010D .-1009答案 C解析 执行如图所示的程序框图知,该程序运行后是计算并输出S =-1+2+(-3)+4+…+(-1)i·i . 当i >2020时,终止循环,此时输出S =(2-1)×20202=1010.故选C.9.(2020·市门头沟区高三期末)如图所示的程序框图,如果输入三个实数a ,b ,c ,要求输出这三个数中最大的数,那么在空白的判断框中,应该填入下面四个选项中的()A .c >xB .x >cC .c >bD .b >c 答案 A解析 由流程图可知a ,b ,c 中的最大数用变量x 表示并输出,先将a 的值赋给变量x . 第一个判断框是判断x 与b 的大小关系,若b >x ,则将b 的值赋给变量x ,得到x 的值是a ,b 中的较大者.所以第二个判断框一定是判断a ,b 中的较大者x 与c 的大小关系,并将最大数赋给变量x ,故第二个判断框应填入c >x .10.(2018·全国卷Ⅱ)为计算S =1-12+13-14+…+199-1100,设计了如图所示的程序框图,则在空白框中应填入()A .i =i +1B .i =i +2C .i =i +3D .i =i +4答案 B解析 由S =1-12+13-14+…+199-1100,知程序框图先对奇数项累加,偶数项累加,最后再相减.因此在空白框中应填入i =i +2,选B.11.执行如图所示的程序框图,则输出的值是()A.155 B.158 C.161 D.164答案 C解析 执行程序框图,可得,A =1,i =1,第1次执行循环体,A =14,i =2,满足条件i ≤20,第2次执行循环体,A =17,i =3,满足条件i ≤20,第3次执行循环体,A =110,i =4,满足条件i ≤20,第4次执行循环体,A =113,i =5,满足条件i ≤20,第5次执行循环体,A=116,i =6,…,观察可知,当i =20时,满足条件i ≤20,第20次执行循环体,A =14+(20-1)×3=161,i =21,此时,不满足条件i ≤20,退出循环,输出A 的值为161.故选C.12.执行如图所示的程序框图,若输入向量a =c =(-2,2),b =(1,0),则输出S 的值是()A .18B .20C .22D .24答案 B解析程序对应的运算:a=c=(-2,2),则a·c=8,S=0+8=8,i=1,c=c+b=(-1,2);a=(-2,2),b=(1,0),c=(-1,2),则a·c=6,S=8+6=14,i=2,c=c+b=(0,2);a=(-2,2),b=(1,0),c=(0,2),则a·c=4,S=14+4=18,i=3,c=c+b=(1,2);a=(-2,2),b=(1,0),c=(1,2),则a·c=2,S=18+2=20,i=4,c=c+b=(2,2);a=(-2,2),b=(1,0),c=(2,2),则a·c=0,此时跳出循环体.故输出S的值为20,故选B.13.(2019·某某六校联考)如图是某算法的程序框图,当输出的结果T>70时,正整数n 的最小值是________.答案 4解析由程序框图知,每次循环中K,T的值依次为1,1;2,4;3,16;4,72.又T=72>70,故正整数n的最小值为4.14.下面程序运行后输出的结果为________.N=5S=0WHILES<15S=S+NN=N-1WENDPRINTNEND答案0解析执行第一次后,S=5,N=4;执行第二次后,S=9,N=3;执行第三次后,S=12,N=2;执行第四次后,S=14,N=1;执行第五次后,S=15,N=0;跳出循环结构,输出N 的值,N=0.15.执行如图所示的程序框图,若a=0.182,b=log20.18,c=20.18,则输出的结果是________.答案20.18解析易知该程序框图的功能是输出a,b,c中的最大者.结合函数y=x2,y=log2x,y=2x的图象(图略)易知0<a<1,b<0,c>1,∴b<a<c.故输出的结果是20.18.16.《九章算术》是中国古代第一部数学专著,是《算经十书》中最重要的一种,成于公元一世纪左右.“更相减损术”便是《九章算术》中记录的一种求最大公约数的算法,按其算理流程有如下程序框图,若输入的a,b分别为96,36,则输出的i为________.答案 4解析当a=96,b=36时,满足a>b,则a=96-36=60,i=1,由a>b,得a=60-36=24,i=2,由a<b,得b=36-24=12,i=3,由a>b,得a=24-12=12,i=4,由a=b,得输出i=4.。
高考数学二轮练习专项12算法初步、复数名校组合测试题1、假设复数z1=1+i,z2=3-i,那么z1·z2=( )A.4+2iB.2+iC.2+2iD.3+i2.运行如图K46-2所示的程序框图,输入以下四个函数,那么能够输出的函数是( )图K46-2A、f(x)=x2B、f(x)=cos2xC、f(x)=e xD、f(x)=sinπx3、如图K46-5给出的是计算12+14+16+…+12 012的值的一个程序框图,那么判断框内应填入的条件是( )图K46-5A、i≤1 005?B、 i>1 005?C、i≤1 006?D、i>1 006?4.假设i为虚数单位,图K46-1中格纸的小正方形的边长是1,复平面内点Z表示复数z,那么复数z1-2i的共轭复数是( )图K46-1A、-35i B.35I C、-i D、i5、设z1=1+i,z2=1-i(i是虚数单位),那么z1z2+z2z1=( )A、-iB、IC、0D、1【试题出处】2018-2018天津南开附中模拟【答案】C【解析】因为z1=1+i,z2=1-i,因此z1z2+z2z1=1+i1-i+1-i1+i=i-i=0.【考点定位】复数6.复数z=a+b i(a,b∈R)的虚部记作Im(z)=b,那么Im(12+i)=( )A.13 B.25C、-13D、-157.右图是计算函数y=ln-x,x≤-20,-2<x≤32x,x>3的值的程序框图,在①、②、③处应分别填入的是( )A、y=ln(-x),y=0,y=2xB、y=ln(-x),y=2x,y=0C、y=0,y=2x,y=ln(-x)D、y=0,y=ln(-x),y=2x8.复数5i1-2i=()A、2-iB、1-2iC、-2+iD、-1+2i9、假如执行右边的程序框图,输入x=-12,那么其输出的结果是()A、9B、3C. 3D.1 910、如图,是一程序框图,那么输出结果为________、11、复数z1=i(1-i)3.(1)设复数ω=z1-i,求||ω;(2)当复数z满足||z=1时,求||z-z1的最大值、12、a为如下图的程序框图中输出的结果,求二项式(a x-1x)6的展开式中含x2项的系数、13、对一个作直线运动的质点的运动过程观测了8次,得到如下表所示的数据.观测次数i 1 2 3 4 5 6 7 8观测数据ai 40 41 43 43 44 46 47 48 在上述统计数据的分析中,一部分计算见如下图的程序框图(其中a是这8个数据的平均数),求输出的S的值、【试题出处】2018-2018衡水二中模拟【解析】解:依照题中数据可得a =44,由程序框图得S =42+32+12+12+02+22+32+428=7.【考点定位】算法初步14.当实数m 为何值时,z=lg(m 2-2m-2)+(m 2+3m+2)i (1)为纯虚数;(2)为实数;(3)对应的点在复平面内的第二象限内.(3)假设z 对应的点在复平面内的第二象限,那么有2222220(22)022132(1)(2)m m lg m m mm mm m m?13131321m m m mm或或?-1<m<1-3或1+3<m<3.【考点定位】复数15.复数z 1=3+4i,z 2=0,z 3=c+(2c-6)i 在复平面内对应的点分别为A ?B ?C,假设∠BAC 是钝角,求实数c 的取值范围.【试题出处】2018-2018启东中学模拟。
课时作业68 数学归纳法一、选择题1.用数学归纳法证明1+2+…+(2n +1)=(n +1)(2n +1)时,在验证n =1成立时,左边所得的代数式是( ).A .1B .1+3C .1+2+3D .1+2+3+42.用数学归纳法证明不等式1n +1+1n +2+…+12n <1314(n ≥2,n ∈N *)的过程中,由n =k递推到n =k +1时不等式左边( ).A .增加了一项12k +1B .增加了两项12k +1、12k +2C .增加了12k +1和12k +2两项但减少了一项1k +1D .以上各种情况均不对3.用数学归纳法证明不等式1+12+14+…+12n -1>12764成立时,起始值n 至少应取为( ).A .7B .8C .9D .104.用数学归纳法证明:“(n +1)·(n +2)·…·(n +n )=2n·1·3·…·(2n -1)”,从“k 到k +1”左端需增乘的代数式为( ).A .2k +1B .2(2k +1)C .2k +1k +1D .2k +3k +15.在数列{a n }中,a 1=13,且S n =n (2n -1)a n ,通过求a 2,a 3,a 4,猜想a n 的表达式为( ).A .1n -1n +1B .12n 2n +1C .12n -12n +1D .12n +12n +26.设函数f (n )=(2n +9)·3n +1+9,当n ∈N *时,f (n )能被m (m ∈N *)整除,猜想m 的最大值为( ).A .9B .18C .27D .367.对于不等式n 2+n <n +1(n ∈N *),某同学用数学归纳法的证明过程如下:(1)当n =1时,12+1<1+1,不等式成立.(2)假设当n =k (k ∈N *)时,不等式成立,即k 2+k <k +1,则当n =k +1时,k +12+k +1=k 2+3k +2<k 2+3k +2+k +2=k +22=(k +1)+1,∴当n =k +1时,不等式成立,则上述证法( ). A .过程全部正确 B .n =1验得不正确 C .归纳假设不正确D .从n =k 到n =k +1的推理不正确 二、填空题8.用数学归纳法证明“1+a +a 2+…+a n +1=1-a n +21-a(a ≠1,且n ∈N *)”,在验证n =1时,左边计算所得的结果是__________.9.在△ABC 中,不等式1A +1B +1C ≥9π成立;在四边形ABCD 中,不等式1A +1B +1C +1D ≥162π成立;在五边形ABCDE 中,不等式1A +1B +1C +1D +1E ≥253π成立……猜想在n 边形A 1A 2…A n 中,有不等式________成立.10.用数学归纳法证明⎝ ⎛⎭⎪⎫1+13⎝ ⎛⎭⎪⎫1+15⎝ ⎛⎭⎪⎫1+17…⎝ ⎛⎭⎪⎫1+12k -1>2k +12(k >1),则当n =k+1时,左端应乘上__________________________,这个乘上去的代数式共有因式的个数是__________.三、解答题11.设数列{a n }的前n 项和为S n ,且方程x 2-a n x -a n =0有一根为S n -1,n =1,2,3,…. (1)求a 1,a 2;(2)猜想数列{S n }的通项公式,并给出严格的证明.12.如图,P 1(x 1,y 1),P 2(x 2,y 2),…,P n (x n ,y n )(0<y 1<y 2<…<y n )是曲线C :y 2=3x (y ≥0)上的n 个点,点A i (a i,0)(i =1,2,3,…,n )在x 轴的正半轴上,且△A i -1A i P i 是正三角形(A 0是坐标原点).(1)写出a 1,a 2,a 3;(2)求出点A n (a n,0)(n ∈N *)的横坐标a n 关于n 的表达式并证明.参考答案一、选择题1.C 解析:左边表示从1开始,连续2n +1个正整数的和,故n =1时,表示1+2+3的和.2.C 解析:当n =k +1时,不等式为1(k +1)+1+1(k +1)+2+…+12(k +1)<1314,∴比当n =k 时增加了12k +1,12k +2项.但最左端少了一项1k +1.3.B 解析:∵1+12+14+…+127-1=1-⎝ ⎛⎭⎪⎫1271-12=2-126=27-126=12764,而1+12+14+…+128-1>12764,故起始值n 至少取8.4.B 解析:当n =k 时,等式为(k +1)(k +2)·…·(k +k )=2k×1×3×…×(2k -1),当n =k +1时,等式为(k +2)(k +3)·…·(k +k )(k +1+k )(k +1+k +1)=2k +1×1×3×…×(2k +1),∴左端增乘(2k +1)(2k +2)k +1=2(2k +1).5.C 解析:由a 1=13,S n =n (2n -1)a n 求得a 2=115=13×5,a 3=135=15×7,a 4=163=17×9.猜想a n =1(2n -1)(2n +1).6.D 解析:f (n +1)-f (n )=(2n +11)·3n +2-(2n +9)·3n +1=4(n +6)·3n +1, 当n =1时,f (2)-f (1)=4×7×9为最小值,据此可猜想D 正确.7.D 解析:在n =k +1时,没有应用n =k 时的假设,不是数学归纳法. 二、填空题8.1+a +a 2解析:首先观察等式两边的构成情况,它的左边是按a 的升幂顺序排列的,共有n +2项.因此当n =1时,共有3项,应该是1+a +a 2.9.1A 1+1A 2+…+1A n ≥n 2(n -2)π10.⎝ ⎛⎭⎪⎫1+12k +1⎝ ⎛⎭⎪⎫1+12k +3·…·⎝ ⎛⎭⎪⎫1+12k +1-1 2k-1 解析:当n =k 时,⎝ ⎛⎭⎪⎫1+13⎝ ⎛⎭⎪⎫1+15·…·⎝ ⎛⎭⎪⎫1+12k -1>2k +12.当n =k +1时,⎝ ⎛⎭⎪⎫1+13⎝ ⎛⎭⎪⎫1+15⎝ ⎛⎭⎪⎫1+17…⎝ ⎛⎭⎪⎫1+12k -1⎝ ⎛⎭⎪⎫1+12k +1…⎝ ⎛⎭⎪⎫1+12k +1-1>2k +32. ∴左边应乘上⎝ ⎛⎭⎪⎫1+12k +1⎝ ⎛⎭⎪⎫1+12k +3…⎝ ⎛⎭⎪⎫1+12k +1-1,设第一项a 1=2k +1,a n =2k +1-1,d =2,∴n =a n -a 12=2k +1-1-2k -12=2k-1.三、解答题11.解:(1)当n =1时,x 2-a 1x -a 1=0有一根为S 1-1=a 1-1,于是(a 1-1)2-a 1(a 1-1)-a 1=0,解得a 1=12.当n =2时,x 2-a 2x -a 2=0有一根为S 2-1=a 2-12,于是⎝ ⎛⎭⎪⎫a 2-122-a 2⎝⎛⎭⎪⎫a 2-12-a 2=0,解得a 2=16. (2)由题设知(S n -1)2-a n (S n -1)-a n =0,即S n 2-2S n +1-a n S n =0. 当n ≥2时,a n =S n -S n -1,代入上式得S n -1S n -2S n +1=0.(*)由(1)得S 1=a 1=12,S 2=a 1+a 2=12+16=23.由(*)式可得S 3=34.由此猜想S n =nn +1,n =1,2,3,….下面用数学归纳法证明这个结论. ①n =1时已知结论成立.②假设n =k (k ∈N *)时结论成立, 即S k =kk +1,当n =k +1时,由(*)得S k +1=12-S k, 即S k +1=k +1k +2, 故n =k +1时结论也成立. 综上,由①、②可知S n =nn +1对所有正整数n 都成立. 12.解:(1)a 1=2,a 2=6,a 3=12.(2)依题意,得x n =a n -1+a n 2,y n =3·a n -a n -12,由此及y n 2=3·x n 得(3·a n -a n -12)2=32(a n +a n -1), 即(a n -a n -1)2=2(a n -1+a n ).由(1)可猜想:a n =n (n +1)(n ∈N *). 下面用数学归纳法予以证明: ①当n =1时,命题显然成立.②假设当n =k (k ∈N *)时命题成立,即有a k =k (k +1),则当n =k +1时,由归纳假设及(a k +1-a k )2=2(a k +a k +1),得[a k +1-k (k +1)]2=2[k (k +1)+a k +1],即a k +12-2(k 2+k +1)a k +1+[k (k -1)]·[(k +1)(k +2)]=0,解之,得a k +1=(k +1)(k +2)〔a k +1=k (k -1)<a k 不合题意,舍去〕, 即当n =k +1时,命题成立.由①、②可知,命题a n =n (n +1)(n ∈N *)成立.。
2021年高考数学一轮复习 第十二章 推理与证明、算法初步、复数阶段回扣练13B 理(含解析)1.(xx·苏州调研)设复数z 满足z i =1+2i(i 为虚数单位),则z 的模为________.解析 由|z i|=|1+2i|,得|z |=12+22= 5. 答案52.(xx·北京卷)在(x +i)i =-1+2i(x ∈R ),则x =________.解析 因为x +i =-1+2ii =2+i ,所以x =2.答案 23.(xx·南京、盐城模拟)执行如图所示的流程图,则输出的k 的值为________.解析 逐次写出运行结果.该流程图运行4次,各次S 的取值分别是1,2,6,15,所以输出的k =4. 答案 44.(xx·辽宁卷)执行如图所示的流程图,若输入n =3,则输出T =________.解析 第一步:i =1,S =1,T =1; 第二步:i =2,S =3,T =4; 第三步:i =3,S =6,T =10;第四步:i =4,S =10,T =20,此时停止循环, ∴输出T =20. 答案 205.(xx·北京西城区模拟)在复平面内,复数z =(1+2i)(1-i)对应的点位于第________象限.解析 z =(1+2i)(1-i)=3+i ,所以复数z =3+i 对应点为(3,1)在第一象限. 答案 一6.(xx·南京模拟)若1+5i3-i=a +b i(a ,b ∈R ,i 为虚数单位),则ab =________.解析 a +b i =1+5i 3-i =1+5i 3+i 10=-2+16i 10=-15+85i ,所以a =-15,b =85.从而ab =-825.答案 -8257.(xx·江苏启东中学模拟)阅读下列程序,输出的结果是________.解析 依题意,输出的结果依次是1+1=2,2+3=5,5+5=10. 答案 108.如图是一个算法的流程图,则输出S 的值是________.解析 执行过程如下表:S 1 1+21=33+22=77+23=1515+24=3131+25=63n12345答案 639.已知数列{a n }的各项分别为11,21,12,31,22,13,41,32,23,14,…,依它的前10项的规律,则a 99+a 100的值为________.解析 通过将数列的前10项分组得到第一组有一个数:11,分子、分母之和为2;第二组有两个数:21,12,分子、分母之和为3;第三组有三个数:31,22,13,分子、分母之和为4;第四组有四个数,依次类推,a 99,a 100分别是第十四组的第8个数和第9个数,分子、分母之和为15,所以a 99=78,a 100=69.故a 99+a 100=3724.答案372410.(xx·四川卷改编)执行如图的流程图,如果输入的x ,y ∈R ,那么输出的S 的最大值为________.解析 本流程图的功能是当x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥0,y ≥0,x +y ≤1时,求目标函数S =2x +y的最大值,如图所示,目标函数在点(1,0)处取得最大值2.答案 211.(xx·镇江调研)圆x 2+y 2=r 2在点(x 0,y 0)处的切线方程为x 0x +y 0y =r 2,类似地,可以求得椭圆x 28+y 22=1在(2,1)处的切线方程为________.解析 由类比结构可知,相应的切线方程为:x 0x 8+y 0y2=1,代入点坐标,所求切线方程为:x 4+y2=1.答案 x 4+y2=112.(xx·苏州检测)对于不等式n 2+n ≤(n +1)2(n ∈N *),某学生的证明过程如下:(1)当n =1时,12+1≤1+1,不等式成立.(2)假设n =k (k ∈N *)时,不等式成立,即k 2+k ≤(k +1)2,则n =k +1时,(k +1)2+(k +1)=k 2+3k +2<(k 2+3k +2)+(k +2)=(k +2)2=[(k +1)+1]2,∴当n =k +1时,不等式也成立.对于上述证法,下列说法正确的序号是________.①过程全都正确;②n =1验证不正确;③归纳假设不正确;④从n =k 到n =k +1的推理不正确.解析 n =1的验证及归纳假设都正确,但从n =k 到n =k +1的推理中没有使用归纳假设,而是通过不等式的放缩法直接证明,不符合数学归纳法的证题要求. 答案 ④13.(xx·泰州检测)已知在等差数列{a n }中,若m +2n +p =s +2t +r ,m ,n ,p ,s ,t ,r ∈N *,则a m +2a n +a p =a s +2a t +a r ,仿此类比,可得到等比数列{b n }中的一个正确命题:若m +2n +p =s +2t +r ,m ,n ,p ,s ,t ,r ∈N *,则________.解析 将等差数列项的和类比到等比数列项的积,得等比数列中的恒等式为b m (b n )2b p =b s (b t )2b r .答案 b m (b n )2b p =b s (b t )2b r 14.(xx·苏州模拟)观察:1-12=121-12+13-14=13+141-12+13-14+15-16=14+15+16 ……根据以上事实,由归纳推理可得,当n ∈N *时,1-12+13-14+…+12 014n -1-12 014n =(________)+…+12 104n. 解析 等式的左边“1-12+13-14+…+12 014n -1-12 014n ”中共有2 014n 项,其中间两项分别为11 007n 和11 007n +1,由归纳推理可知,1-12+13-14+…+12 014n -1-12 014n =11 007n +1+11 007n +2+…+12 014n . 答案11 007n +131122 7992 禒28358 6EC6 滆 40860 9F9C 龜21299 5333 匳33354 824A 艊27550 6B9E 殞O$wBl#。