高考数学冲刺专题复习之——立体几何
- 格式:doc
- 大小:140.50 KB
- 文档页数:4
第三讲立体几何——大题备考【命题规律】立体几何大题一般为两问:第一问通常是线、面关系的证明;第二问通常跟角有关,一般是求线面角或二面角,有时与距离、几何体的体积有关.微专题1线面角保分题[2022·辽宁沈阳二模]如图,在四棱锥P-ABCD中,底面ABCD是正方形,P A⊥平面ABCD,P A=2AB=4,点M是P A的中点.(1)求证:BD⊥CM;(2)求直线PC与平面MCD所成角的正弦值.提分题例1 [2022·全国乙卷]如图,四面体ABCD中,AD⊥CD,AD=CD,∠ADB=∠BDC,E 为AC的中点.(1)证明:平面BED⊥平面ACD;(2)设AB=BD=2,∠ACB=60°,点F在BD上,当△AFC的面积最小时,求CF与平面ABD所成的角的正弦值.听课笔记:【技法领悟】利用空间向量求线面角的答题模板巩固训练1[2022·山东泰安一模]如图,在四棱锥P-ABCD中,底面ABCD是矩形,AB=2AD=2,P A⊥平面ABCD,E为PD中点.(1)若P A=1,求证:AE⊥平面PCD;(2)当直线PC与平面ACE所成角最大时,求三棱锥E-ABC的体积.微专题2二面角保分题[2022·山东临沂二模]如图,AB是圆柱底面圆O的直径,AA1、CC1为圆柱的母线,四边形ABCD是底面圆O的内接等腰梯形,且AB=AA1=2BC=2CD,E、F分别为A1D、C1C的中点.(1)证明:EF∥平面ABCD;(2)求平面OEF与平面BCC1夹角的余弦值.提分题例2 [2022·湖南岳阳三模]如图,在四棱锥P-ABCD中,底面ABCD是菱形,F是PD 的中点.(1)证明:PB∥平面AFC;(2)若直线P A⊥平面ABCD,AC=AP=2,且P A与平面AFC所成的角正弦值为√21,求7锐二面角F-AC-D的余弦值.听课笔记:AD,现例3 [2022·山东日照二模]如图,等腰梯形ABCD中,AD∥BC,AB=BC=CD=12以AC为折痕把△ABC折起,使点B到达点P的位置,且P A⊥CD.(1)证明:平面APC⊥平面ADC;(2)若M为PD上一点,且三棱锥D-ACM的体积是三棱锥P-ACM体积的2倍,求二面角P-AC-M的余弦值.听课笔记:【技法领悟】利用空间向量求二面角的答题模板巩固训练21.[2022·广东韶关二模]如图,在四棱锥P-ABCD中,底面ABCD为矩形,点S是边AB 的中点.AB=2,AD=4,P A=PD=2√2.(1)若O是侧棱PC的中点,求证:SO∥平面P AD;(2)若二面角P-AD-B的大小为2π,求直线PD与平面PBC所成角的正弦值.32.[2022·河北保定一模]如图,在等腰梯形ABCD中,AD∥BC,AD=AB=CD=1,∠BCD =60°,现将DAC沿AC折起至P AC,使得PB=√2.(1)证明:AB⊥PC;(2)求二面角A-PC-B的余弦值.微专题3探索性问题提分题例4 [2022·山东聊城三模]已知四边形ABCD为平行四边形,E为CD的中点,AB=4,△ADE为等边三角形,将三角形ADE沿AE折起,使点D到达点P的位置,且平面APE⊥平面ABCE.(1)求证:AP⊥BE;(2)试判断在线段PB上是否存在点F,使得平面AEF与平面AEP的夹角为45°.若存在,试确定点F的位置;若不存在,请说明理由.听课笔记:【技法领悟】1.通常假设问题中的数学对象存在或结论成立,再在这个前提下进行推理,如果能推出与条件吻合的数据或事实,说明假设成立,并可进一步证明;否则假设不成立.2.探索线段上是否存在满足条件的点时,一定注意三点共线的条件的应用.巩固训练3[2022·湖南岳阳一模]如图,在三棱锥S-ABC中,SA=SB=SC,BC⊥AC.(1)证明:平面SAB⊥平面ABC;(2)若BC=SC,SC⊥SA,试问在线段SC上是否存在点D,使直线BD与平面SAB所成的角为60°,若存在,请求出D点的位置;若不存在,请说明理由.第三讲立体几何微专题1线面角保分题解析:(1)证明:如图,连接AC,∵四边形ABCD是正方形,∴AC⊥BD.又P A ⊥平面ABCD ,BD ⊂平面ABCD ,∴P A ⊥BD , ∵P A ,AC ⊂平面P AC ,P A∩AC =A , ∴BD ⊥平面P AC , 又CM ⊂平面P AC , ∴BD ⊥CM .(2)易知AB ,AD ,AP 两两垂直,以点A 为原点,建立如图所示的空间直角坐标系A - xyz . ∵P A =2AB =4,∴A (0,0,0),P (0,0,4),M (0,0,2),C (2,2,0),D (0,2,0), ∴MC⃗⃗⃗⃗⃗⃗ =(2,2,-2),MD ⃗⃗⃗⃗⃗⃗ =(0,2,-2),PC ⃗⃗⃗⃗ =(2,2,-4). 设平面MCD 的法向量为n =(x ,y ,z ),则{n ·MC⃗⃗⃗⃗⃗⃗ =2x +2y −2z =0n ·MD ⃗⃗⃗⃗⃗⃗ =2y −2z =0,令y =1,得n =(0,1,1).设直线PC 与平面MCD 所成角为θ,由图可知0<θ<π2,则sinθ=|cos 〈n ,PC ⃗⃗⃗⃗ 〉|=|n·PC ⃗⃗⃗⃗⃗||n ||PC ⃗⃗⃗⃗⃗|=√12+12×√22+22+(−4)2=√36.即直线PC 与平面MCD 所成角的正弦值为√36.提分题[例1] 解析:(1)证明:∵AD =CD ,∠ADB = ∠BDC ,BD =BD , ∴△ABD ≌△CBD ,∴AB =CB .∵E 为AC 的中点,∴DE ⊥AC ,BE ⊥AC . ∵DE∩BE =E ,DE ,BE ⊂平面BED , ∴AC ⊥平面BED .∵AC ⊂平面ACD ,∴平面BED ⊥平面ACD .(2)如图,连接EF .由(1)知AC ⊥平面BED . 又∵EF ⊂平面BED , ∴EF ⊥AC . ∴S △AFC =12AC ·EF .当EF ⊥BD 时,EF 的长最小,此时△AFC 的面积最小. 由(1)知AB =CB =2. 又∵∠ACB =60°,∴△ABC 是边长为2的正三角形,∴BE =√3. ∵AD ⊥CD ,∴DE =1,∴DE 2+BE 2=BD 2,∴DE ⊥BE .以点E 为坐标原点,直线EA ,EB ,ED 分别为x 轴、y 轴、z 轴建立空间直角坐标系,则E (0,0,0),A (1,0,0),B (0,√3,0),C (-1,0,0),D (0,0,1),∴AB ⃗⃗⃗⃗⃗ =(-1,√3,0),AD ⃗⃗⃗⃗⃗ =(-1,0,1),DB ⃗⃗⃗⃗⃗ =(0,√3,-1),ED⃗⃗⃗⃗⃗ =(0,0,1),EC ⃗⃗⃗⃗ =(-1,0,0).设DF ⃗⃗⃗⃗⃗ =λDB ⃗⃗⃗⃗⃗ (0≤λ≤1), 则EF ⃗⃗⃗⃗ =ED ⃗⃗⃗⃗⃗ +DF ⃗⃗⃗⃗⃗ =ED ⃗⃗⃗⃗⃗ +λDB ⃗⃗⃗⃗⃗ =(0,0,1)+λ(0,√3,-1)=(0,√3λ,1-λ). ∵EF ⊥DB , ∴EF⃗⃗⃗⃗ ·DB ⃗⃗⃗⃗⃗ =(0,√3λ,1-λ)·(0,√3,-1)=4λ-1=0, ∴λ=14,∴EF ⃗⃗⃗⃗ =(0,√34,34),∴CF ⃗⃗⃗⃗ =EF ⃗⃗⃗⃗ −EC ⃗⃗⃗⃗ =(0,√34,34)-(-1,0,0)=(1,√34,34).设平面ABD 的法向量为n =(x ,y ,z ), 则{n ·AB ⃗⃗⃗⃗⃗ =0,n ·AD⃗⃗⃗⃗⃗ =0,即{−x +√3y =0,−x +z =0.取y =1,则x =√3,z =√3,∴n =(√3,1,√3).设当△AFC 的面积最小时,CF 与平面ABD 所成的角为θ,则sin θ=|cos 〈n ,CF ⃗⃗⃗⃗ 〉|=|n·CF ⃗⃗⃗⃗⃗||n ||CF ⃗⃗⃗⃗⃗ |=|√3×1+1×√34+√3×34|√3+1+3× √1+316+916=4√37. 故当△AFC 的面积最小时,CF 与平面ABD 所成的角的正弦值为4√37. [巩固训练1]解析:(1)证明:∵P A ⊥平面ABCD ,CD ⊂平面ABCD ,∴P A ⊥CD , ∵四边形ABCD 为矩形,∴AD ⊥CD ,又AD∩P A =A ,AD 、P A ⊂平面P AD ,∴CD ⊥平面P AD , ∵AE ⊂平面P AD ,∴AE ⊥CD ,在△P AD 中,P A =AD ,E 为PD 的中点,∴AE ⊥PD , 而PD∩CD =D ,PD 、CD ⊂平面PCD , ∴AE ⊥平面PCD .(2)以A 为坐标原点,分别以AB 、AD 、AP 所在直线为x 、y 、z 轴建立空间直角坐标系, 设AP =a (a >0),则C (2,1,0),P (0,0,a ),E (0,12,a2),∴AC ⃗⃗⃗⃗⃗ =(2,1,0),AE ⃗⃗⃗⃗⃗ =(0,12,a 2),PC ⃗⃗⃗⃗ =(2,1,-a ), 设平面ACE 的一个法向量为n =(x ,y ,z ), 则{n ·AC ⃗⃗⃗⃗⃗ =2x +y =0n ·AE⃗⃗⃗⃗⃗ =12y +a 2z =0,取y =-a ,可得n =(a2,-a ,-1).设直线PC 与平面ACE 所成角为θ,则sin θ=|cos 〈n ,PC ⃗⃗⃗⃗ 〉|=|n·FC⃗⃗⃗⃗⃗ ||n ||FC⃗⃗⃗⃗⃗ |=√54a 2+1·√5+a 2=√29+20a2+5a ≤27,当且仅当a =√2时等号成立.即当AP =√2时,直线PC 与平面ACE 所成角最大, 此时三棱锥E - ABC 的体积V =13×12×2×1×√22=√26.微专题2 二面角保分题解析:(1)证明:取AD 的中点M ,连接EM 、MC ,∵E 为A 1D 的中点,F 为CC 1的中点,∴EM ∥AA 1,EM =12AA 1,又CF ∥AA 1,CF =12AA 1, ∴EM ∥CF ,EM =CF ,∴四边形EMCF 为平行四边形,∴EF ∥CM , 又EF ⊄平面ABCD ,CM ⊂平面ABCD , ∴EF ∥平面ABCD .(2)设AB =AA 1=2BC =2CD =4,∵AC ⊥BC ,∴AC =2√3.由题意知CA 、CB 、CC 1两两垂直,故以C 为坐标原点,分别以CA 、CB 、CC 1所在直线为x 、y 、z 轴建立空间直角坐标系.则A 1(2√3,0,4)、O (√3,1,0)、F (0,0,2)、C (0,0,0)、D (√3,-1,0), ∴A 1D 的中点E 的坐标为(3√32,-12,2), ∴OF⃗⃗⃗⃗⃗ =(-√3,-1,2),EF ⃗⃗⃗⃗ =(-3√32,12,0),设平面OEF 的一个法向量为n =(x ,y ,z ),则{n ·OF ⃗⃗⃗⃗⃗ =0n ·EF ⃗⃗⃗⃗ =0,即{−√3x −y +2z =0−3√32x +12y =0,即{√3x +y −2z =03√3x −y =0, 令x =√3,得n =(√3,9,6),∵AC ⊥BC ,AC ⊥CC 1,BC ∩CC 1=C , ∴AC ⊥平面BCC 1,∴平面BCC 1的一个法向量为CA ⃗⃗⃗⃗⃗ =(2√3,0,0),cos 〈n ,CA ⃗⃗⃗⃗⃗ 〉=n·CA ⃗⃗⃗⃗⃗|n |·|CA ⃗⃗⃗⃗⃗|=√3+81+36·2√3=√1020, ∴平面OEF 与平面BCC 1夹角的余弦值为√1020. 提分题[例2] 解析:(1)证明:连接BD 交AC 于O , 易证O 为BD 中点,又F 是PD 的中点, 所以OF ∥PB ,又OF ⊂平面AFC ,且PB 不在平面AFC 内, 故PB ∥平面AFC .(2)取PC 中点为Q ,以O 为坐标原点,OB 为x 轴,OC 为y 轴,OQ 为z 轴建立空间直角坐标系,设OB =m ,则A (0,-1,0),B (m ,0,0),C (0,1,0),P (0,-1,2),D (-m ,0,0)⇒F (-m2,-12,1),AP ⃗⃗⃗⃗⃗ =(0,0,2),OF ⃗⃗⃗⃗⃗ =(-m 2,-12,1),OC⃗⃗⃗⃗⃗ =(0,1,0), 设平面AFC 的法向量为n =(x ,y ,z ),由{n ⊥OF ⃗⃗⃗⃗⃗ n ⊥OC ⃗⃗⃗⃗⃗ ⇒{−m2x −12y +z =0y =0,令x =2,有n =(2,0,m ),由P A 与平面AFC 所成的角正弦值为√217⇒√217=|AP ⃗⃗⃗⃗⃗ ·n||AP⃗⃗⃗⃗⃗ |·|n|=2√4+m 2⇒m =√3, 平面ACD 的法向量为m =(0,0,1),则锐二面角F - AC - D 的余弦值为 |m·n ||m |·|n |=√3√7=√217.[例3] 解析:(1)证明:在梯形ABCD 中取AD 中点N ,连接CN , 则由BC 平行且等于AN 知ABCN 为平行四边形,所以CN =AB , 由CN =12AD 知C 点在以AD 为直径的圆上,所以AC ⊥CD .又AP ⊥CD ,AP∩AC =A, AP ,AC ⊂平面P AC , ∴CD ⊥平面P AC , 又CD ⊂平面ADC , ∴平面APC ⊥平面ADC .(2)取AC 中点O ,连接PO ,由AP =PC ,可知PO ⊥AC ,再由平面P AC ⊥平面ACD ,AC 为两面交线,所以PO ⊥平面ACD ,以O 为原点,OA 为x 轴,过O 且与OA 垂直的直线为y 轴,OP 为z 轴建立空间直角坐标系,令AB =2,则A (√3,0,0),C (-√3,0,0),P (0,0,1),D (-√3,2,0), 由V P - ACM ∶V D - ACM =1∶2,得PM⃗⃗⃗⃗⃗⃗ =13PD ⃗⃗⃗⃗⃗ , 所以OM ⃗⃗⃗⃗⃗⃗ =OP ⃗⃗⃗⃗⃗ +PM ⃗⃗⃗⃗⃗⃗ =OP ⃗⃗⃗⃗⃗ +13PD ⃗⃗⃗⃗⃗ =(-√33,23,23), 设平面ACM 的法向量为n =(x ,y ,z ), 则由{n ·OM ⃗⃗⃗⃗⃗⃗ =0n ·OA ⃗⃗⃗⃗⃗ =0得{−√33x +23y +23z =0√3x =0,取z =-1得x =0,y =1,所以n =(0,1,-1),而平面P AC 的法向量m =(0,1,0),所以cos 〈n ,m 〉=m·n |m ||n |=√22. 又因为二面角P - AC - M 为锐二面角,所以其余弦值为√22.[巩固训练2]1.解析:(1)证明:取线段PD 的中点H ,连接SO 、OH 、HA ,如图,在△PCD 中,O 、H 分别是PC 、PD 的中点,所以OH ∥CD 且OH =12CD ,所以OH ∥AS 且OH =AS ,所以四边形ASOH 是平行四边形,所以SO ∥AH ,又AH ⊂平面P AD ,SO ⊄平面P AD ,所以SO ∥平面P AD .(2)取线段AD 、BC 的中点E 、F ,连结PE 、EF .由点E 是线段AD 的中点,P A =PD 可得PE ⊥AD ,又EF ⊥AD ,所以∠PEF 是二面角P - AD - B 的平面角,即∠PEF =23π,以E 为原点,EA⃗⃗⃗⃗⃗ 、EF ⃗⃗⃗⃗ 方向分别为x 轴、y 轴正方向,建立如图所示坐标系,在△P AD 中,AD =4,P A =PD =2√2知:PE =2,所以P (0,-1,√3),D (-2,0,0),B (2,2,0),C (-2,2,0),所以PD⃗⃗⃗⃗⃗ =(-2,1,-√3),PB ⃗⃗⃗⃗⃗ =(2,3,-√3),PC ⃗⃗⃗⃗ =(-2,3,-√3), 设平面PBC 的法向量n =(x ,y ,z ),则{n ·PB ⃗⃗⃗⃗⃗=0n ·PC⃗⃗⃗⃗ =0,即{2x +3y −√3z =0−2x +3y −√3z =0,可取n =(0,1,√3),设直线PD 与平面PBC 所成角为θ, 则sin θ=|cos 〈PD⃗⃗⃗⃗⃗ ,n 〉|=2·2√2=√24,所以直线PD 与平面PBC 所成角的正弦值为√24.2.解析:(1)证明:在等腰梯形ABCD 中,过A 作AE ⊥BC 于E ,过D 作DF ⊥BC 于F ,因为在等腰梯形ABCD 中,AD ∥BC ,AD =AB =CD =1,∠BCD =60°,所以BE =CF =12CD =12,AE =DF =√12−(12)2=√32, 所以AC =BD =√(32)2+(√32)2=√3, BC =2,所以BD 2+CD 2=BC 2,所以BD ⊥CD ,同理AB ⊥AC , 又因为AP =AB =1,PB =√2, ∴AP 2+AB 2=PB 2,∴AB ⊥AP又AC∩AP =A ,AC ,AP ⊂平面ACP , 所以AB ⊥平面ACP , 因为PC ⊂平面ACP , 所以AB ⊥PC .(2)取AC 的中点为M ,BC 的中点为N ,则MN ∥AB , 因为AB ⊥平面ACP ,所以MN ⊥平面ACP ,因为AC ,PM ⊂平面ACP ,所以MN ⊥AC ,MN ⊥PM , 因为P A =PC ,AC 的中点为M ,所以PM ⊥AC , 所以MN ,MC ,MP 两两垂直,所以以M 为原点,以MN 所在直线为x 轴,以MC 所在直线为y 轴,以MP 所在直线为z 轴建立空间直角坐标系,则A (0,-√32,0),B (1,-√32,0),C (0,√32,0),P (0,0,12),PC ⃗⃗⃗⃗ =(0,√32,-12),PB ⃗⃗⃗⃗⃗ =(1,-√32,-12), 平面APC 的一个法向量为m =AB⃗⃗⃗⃗⃗ =(1,0,0), 设平面PBC 的一个法向量为n =(x ,y ,z ),则 {n ·PC⃗⃗⃗⃗ =√32y −12z =0n ·PB ⃗⃗⃗⃗⃗ =x −√32y −12z =0,令y =1,则n =(√3,1,√3),所以cos 〈m ,n 〉=m·n |m ||n |=√31×√7=√217, 因为二面角A - PC - B 为锐角, 所以二面角A - PC - B 的余弦值为√217.微专题3 探索性问题提分题[例4] 解析:(1)证明:因为四边形ABCD 为平行四边形,且△ADE 为等边三角形, 所以∠BCE =120°,又E 为CD 的中点,所以CE =ED =DA =CB ,即△BCE 为等腰三角形, 所以∠CEB =30°.所以∠AEB =180°-∠AED -∠BEC =90°, 即BE ⊥AE .又因为平面AEP ⊥平面ABCE ,平面APE ∩平面ABCE =AE ,BE ⊂平面ABCE , 所以BE ⊥平面APE ,又AP ⊂平面APE ,所以BE ⊥AP .(2)取AE 的中点O ,连接PO ,由于△APE 为正三角形,则PO ⊥AE , 又平面APE ⊥平面ABCE ,平面APE ∩平面ABCE =AE ,PO ⊂平面EAP , 所以PO ⊥平面ABCE ,PO =√3,BE =2√3, 取AB 的中点G ,则OG ∥BE ,由(1)得BE ⊥AE ,所以OG ⊥AE ,以点O 为原点,分别以OA ,OG ,OP 所在的直线为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系O - xyz ,则O (0,0,0),A (1,0,0),B (-1,2√3,0),P (0,0,√3),E (-1,0,0), 则EA ⃗⃗⃗⃗⃗ =(2,0,0),EB ⃗⃗⃗⃗⃗ =(0,2√3,0),PB ⃗⃗⃗⃗⃗ =(-1,2√3,-√3),EP ⃗⃗⃗⃗ =(1,0,√3), 假设存在点F ,使平面AEF 与平面AEP 的夹角为45°, 设PF⃗⃗⃗⃗ =λPB ⃗⃗⃗⃗⃗ =(-λ,2√3λ,-√3λ),λ∈[0,1], 则EF ⃗⃗⃗⃗ =EP ⃗⃗⃗⃗ +PF ⃗⃗⃗⃗ =(1,0,√3)+(-λ,2√3λ,-√3λ)=(1-λ,2√3λ,√3−√3λ), 设平面AEF 的法向量为m =(x ,y ,z ),由{EF ⃗⃗⃗⃗·m =0EA ⃗⃗⃗⃗⃗ ·m =0得{(1−λ)x +2√3λy +(√3,-√3λ)z =02x =0, 取z =2λ,得m =(0,λ-1,2λ);由(1)知EB⃗⃗⃗⃗⃗ 为平面AEP 的一个法向量, 于是,cos 45°=|cos 〈m ,EB ⃗⃗⃗⃗⃗ 〉|=|m·EB ⃗⃗⃗⃗⃗||m |·|EB ⃗⃗⃗⃗⃗|=2√3|λ−1|2√3·√5λ2−2λ+1=√22,解得λ=13或λ=-1(舍去),所以存在点F ,且当点F 为线段PB 的靠近点P 的三等分点时,平面AEF 与平面AEP 的夹角为45°.[巩固训练3]解析:(1)证明:取AB 的中点E ,连接SE ,CE ,∵SA =SB ,∴SE ⊥AB , ∵BC ⊥AC ,∴三角形ACB 为直角三角形,∴BE =EC , 又BS =SC ,∴△SEC ≌△SEB ,∴∠SEB =∠SEC =90°, ∴SE ⊥EC ,又SE ⊥AB ,AB∩CE =E ,∴SE ⊥平面ABC . 又SE ⊂平面SAB ,∴平面SAB ⊥平面ABC .(2)以E 为坐标原点,平行AC 的直线为x 轴,平行BC 的直线为y 轴,ES 为z 轴建立空间直角坐标系,如图,不妨设SA =SB =SC =2,SC ⊥SA ,则AC =2√2,BC =SC =2知EC =2√3,SE =1,则A (-√2,1,0),B (√2,-1,0),C (√2,1,0),E (0,0,0),S (0,0,1), ∴AB⃗⃗⃗⃗⃗ =(2√2,-2,0),SA ⃗⃗⃗⃗ =(-√2,1,-1), 设D (x ,y ,z ),CD ⃗⃗⃗⃗⃗ =λCS⃗⃗⃗⃗ (0≤λ≤1),则(x -√2,y -1,z )=λ(-√2,-1,1), ∴D (√2−√2λ,1-λ,λ),BD⃗⃗⃗⃗⃗ =(-√2λ,2-λ,λ). 设平面SAB 的一个法向量为n =(x 1,y 1,z 1),则{n ·AB⃗⃗⃗⃗⃗ =2√2x 1−2y 1=0n ·SA ⃗⃗⃗⃗ =−√2x 1+y 1−z 1=0,取x 1=1,得n =(1,√2,0),sin 60°=|n·BD ⃗⃗⃗⃗⃗⃗ ||n ||BD ⃗⃗⃗⃗⃗⃗ |,则√2−2√2λ|√3√2λ2+(2−λ)2+λ2=√32, 得λ2+7λ+1=0,又∵0≤λ≤1,方程无解,∴不存在点D ,使直线BD 与平面SAB 所成的角为60°.。
【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)素养拓展26立体几何中的轨迹问题(精讲+精练)一、立体几何中的轨迹问题立体几何轨迹问题是以空间图形为素材,去探究符合一定条件的点的运动轨迹,处于解析几何和立体几何的交汇处,要求学生有较强的空间想象能力、数学转化和化归能力,以及对解析几何和立体几何知识的全面掌握.常见的轨迹类型有直线、圆雉曲线、球面、椭球面.二、常用的解决策略(1)定义法:借助圆雉曲线的定义判断.(2)坐标法:建立合适的坐标系,用方程来表示所求点的轨迹,借助方程来判断轨迹形状.(3)交轨法:运动的点同时在两个空间几何体上,如平面与圆雉、圆柱、球相交,球与球相交,等等.(4)平面化:把空间几何关系转化到同一平面内,进而探究平面内的轨迹问题,使问题更易解决.空间问题平面化也是解决立体几何题目的一般性思路.三、轨迹是圆锥曲线的原理剖析令平面与轴线的夹角为θ0<θ<90°,圆雉的母线与轴的夹角为()090<<αα,如图②.(1)当<αθ时,截口曲线为椭圆;(2)当=αθ时,截口曲线为抛物线;(3)当>αθ时,截口曲线为双曲线.图②我们再从几何角度来证明.(1)如图③,在圆锥内放两个大小不同的球,使它们分别与截面切于点12,F F .在截口曲线上任取一点P ,过点P 作圆雉的母线,分别与两球切于点12,Q Q .由球的性质可知2112,PQ PF PQ PF ==,于是121212PF PF PQ PQ Q Q +=+=为定值,这样截口曲线上的任一点P 到两个定点12,Q Q 的距离之和为常数,由椭圆的定义知,截口曲线是椭圆.一、知识点梳理(2)如图④,在互相倒置的两个圆雉内放两个大小不同的球,使它们分别与圆雉的侧面、截面相切,两个球分别与截面切于点12,F F .在截口曲线上任取一点P ,过点P 作圆雉的母线,分别与两球切于点12,Q Q .由球的性质可知1122,PQ PF PQ PF ==,于是121212PF PF PQ PQ Q Q -=-=为定值,这样截口曲线上的任一点P 到两个定点12,Q Q 的距离之差的绝对值为常数,由双曲线的定义知,截口曲线是双曲线.(3)如图⑤,用平行于母线OM 且垂直于轴截面OMN 的平面β去截圆雉.在圆雉内放一个球,使它和圆雉的侧面与截面β相切,球与截面切于点F .设α为球与圆雉相切时切点构成的圆所在的平面,记l ⋂=αβ.在截口曲线上任取一点P ,作直线与球相切于点T ,连结PT ,有PF PT =.在母线OM 上取点,A B (B 为OM 与球的切点),使得AB PT =.过点P 作//PQ AB ,有点Q 在l 上,且FQ AB PF ==.另一方面,因为平面OMN 与α垂直,那么l ⊥平面OMN ,有l AB ⊥,所以l PQ ⊥.于是截口曲线是以点F 为焦点,l 为准线的抛物线.1.平行、垂直有关的的轨迹问题①平行有关的轨迹问题的解题策略二、题型精讲精练1.线面平行转化为面面平行得轨迹;2.平行时可利用法向量垂直关系求轨迹.②垂直有关的轨迹问题的解题策略1.可利用线线线面垂直,转化为面面垂直,得交线求轨迹;2.利用空间坐标运算求轨迹;3.利用垂直关系转化为平行关系求轨迹.【典例1】如图,在边长为a 的正方体ABCD -A 1B 1C 1D 1中,E 、F 、G 、H 、N 分别是CC 1、C 1D 1、DD 1、CD 、BC的中点,M 在四边形EFGH 边上及其内部运动,若MN ∥面A 1BD ,则点M 轨迹的长度是()A Ba C .2D .2【典例2】在正方体1111ABCD A B C D -中,Q 是正方形11B BCC 内的动点,11A Q BC ⊥,则Q 点的轨迹是()A .点1B B .线段1B CC .线段11B C D .平面11B BCC 【答案】B【分析】如图,连接1AC ,证明1BC ⊥1B Q ,又1BC ⊥1B C ,即得解.【详解】如图,连接1AC ,因为111111111111,,,,BC AQ BC A B AQ A B A AQ A B ⊥⊥=⊂ 平面11A B Q ,所以1BC ⊥平面11A B Q ,又1B Q ⊂平面11A B Q ,所以1BC ⊥1B Q ,又1BC ⊥1B C .所以点Q 在线段1B C 上.故选:B2.距离、角度有关的的轨迹问题①距离有关的轨迹问题的解题策略1.距离,可转化为在一个平面内的距离关系,借助于圆锥曲线定义或者球和圆的定义等知识求解轨迹;2.利用空间坐标计算求轨迹.②角度有关的轨迹问题的解题策略1.直线与面成定角,可能是圆锥侧面;2.直线与定直线成等角,可能是圆锥侧面;3.利用空间坐标系计算求轨迹.【典例3】已知正方体ABCD -A 1B 1C 1D 1的棱长为1,P 为底面ABCD 内一点,若P 到棱CD ,A 1D 1距离相等的点,则点P 的轨迹是()如图示,过P 作PE ⊥以D 为坐标原点建立空间直角坐标系2211x y -=+,平方得:【典例4】正方体1111ABCD A B C D -中,M ,N 分别为AB ,11A B 的中点,P 是边11C D 上的一个点(包括端点),Q 是平面1PMB 上一动点,满足直线MN 与直线AN 夹角与直线MN 与直线NQ 的夹角相等,则点Q 所在轨迹为()A .椭圆B .双曲线C .抛物线D .抛物线或双曲线【答案】D【分析】根据题设分析可知:Q 点轨迹为以AN 为母线,MN 为轴,AB 为底面直径的圆锥体,及其关于11A B 反向对称的锥体与平面1PMB 的交线,应用数形结合,结合平面与双锥面相交所成曲线的性质判断Q 所在轨迹的形状.【详解】由题设,Q 点轨迹为以AN 为母线,MN 为轴,AB 为底面直径的圆锥体,及其关于11A B 反向对称的锥体与平面1PMB 的交线,如下图示:当P 是边11C D 上移动过程中,只与下方锥体有相交,Q 点轨迹为抛物线;当P 是边11C D 上移动过程中,与上方锥体也有相交,Q 点轨迹为双曲线;故选:D3.翻折有关的的轨迹问题①翻折有关的轨迹问题的解题策略1.翻折过程中寻找不变的垂直的关系求轨迹2.翻折过程中寻找不变的长度关系求轨迹3.可以利用空间坐标运算求轨迹【典例5】1822年,比利时数学家Dandelin 利用圆锥曲线的两个内切球,证明了用一个平面去截圆锥,可以得到椭圆(其中两球与截面的切点即为椭圆的焦点),实现了椭圆截线定义与轨迹定义的统一性.在生活中,有一个常见的现象:用手电筒斜照地面上的篮球,留下的影子会形成椭圆.这是由于光线形成的圆锥被地面所截产生了椭圆的截面.如图,在地面的某个占1A 正上方有一个点光源,将小球放置在地面,使得1AA 与小球相切.若15A A =,小球半径为2,则小球在地面的影子形成的椭圆的离心率为()A .23B .45C .13D .25【答案】A【分析】设21A F x =,从而可得15AA =,122A A x =+,23AA x =+,利用勾股定理可得10x =,再由离心率的定义即可求解.【详解】在21Rt AA A 中,设21A F x =,2DA x∴=15AA =,122A A x =+,23AA x =+,2225(2)(3)x x ∴++=+,10x ∴=,∴长轴长12212A A a ==,6a =,624c =-=则离心率23c e a ==.故选:A 【题型训练2-刷模拟】1.平行、垂直有关的的轨迹问题一、单选题1.(2023·全国·高三专题练习)正四棱锥S ABCD -的底面边长为2,高为2,E 是边BC 的中点,动点P 在表面上运动,并且总保持PE AC ⊥,则动点P 的轨迹的周长为()A .62+B .62-C .4D .51+2.(2023·安徽滁州·安徽省定远中学校考模拟预测)在正四棱柱1111ABCD A B C D -中,1AB =,14AA =,E 为1DD 中点,P 为正四棱柱表面上一点,且11C P B E ⊥,则点P 的轨迹的长为()A .52+B .222+C .252+D .132+3.(2023·江西赣州·统考二模)在棱长为4的正方体1111ABCD A B C D -中,点P 满足14AA AP =,E ,F 分别为棱BC ,CD 的中点,点Q 在正方体1111ABCD A B C D -的表面上运动,满足1//AQ 面EFP ,则点Q 的轨迹所构成的周长为()A .5373B .237C .7373D .83734.(2023·全国·高三专题练习)如图所示,正方体1111ABCD A B C D -的棱长为2,E ,F 分别为1AA ,AB 的中点,点P 是正方体表面上的动点,若1//C P 平面1CD EF ,则P 点在正方体表面上运动所形成的轨迹长度为()A .25+B .225+C .225+D .2225+BBA.点P可以是棱1C.点P的轨迹是正方形6.(2023·全国·高三专题练习)已知棱长为MP平面ABD表面上,且//二、填空题8.(2023·河南·校联考模拟预测)已知正方体则点P的轨迹长度为9.(2023春·四川绵阳内切球O的球面上的动点,2.距离、角度有关的的轨迹问题一、单选题二、填空题3.翻折有关的的轨迹问题一、单选题A .523πB .453π2.如图,正方形ABCD 的边长为2,E 为BC 的中点,将①四棱锥P AECD -的体积最大值为255AB=,上一动点,现将AED ....【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)素养拓展26立体几何中的轨迹问题(精讲+精练)一、立体几何中的轨迹问题立体几何轨迹问题是以空间图形为素材,去探究符合一定条件的点的运动轨迹,处于解析几何和立体几何的交汇处,要求学生有较强的空间想象能力、数学转化和化归能力,以及对解析几何和立体几何知识的全面掌握.常见的轨迹类型有直线、圆雉曲线、球面、椭球面.二、常用的解决策略(1)定义法:借助圆雉曲线的定义判断.(2)坐标法:建立合适的坐标系,用方程来表示所求点的轨迹,借助方程来判断轨迹形状.(3)交轨法:运动的点同时在两个空间几何体上,如平面与圆雉、圆柱、球相交,球与球相交,等等.(4)平面化:把空间几何关系转化到同一平面内,进而探究平面内的轨迹问题,使问题更易解决.空间问题平面化也是解决立体几何题目的一般性思路.三、轨迹是圆锥曲线的原理剖析令平面与轴线的夹角为θ0<θ<90°,圆雉的母线与轴的夹角为()090<<αα,如图②.(2)当<αθ时,截口曲线为椭圆;(2)当=αθ时,截口曲线为抛物线;(3)当>αθ时,截口曲线为双曲线.图②我们再从几何角度来证明.(1)如图③,在圆锥内放两个大小不同的球,使它们分别与截面切于点12,F F .在截口曲线上任取一点P ,过点P 作圆雉的母线,分别与两球切于点12,Q Q .由球的性质可知2112,PQ PF PQ PF ==,于是121212PF PF PQ PQ Q Q +=+=为定值,这样截口曲线上的任一点P 到两个定点12,Q Q 的距离之和为常数,由椭圆的定义知,截口曲线是椭圆.一、知识点梳理(2)如图④,在互相倒置的两个圆雉内放两个大小不同的球,使它们分别与圆雉的侧面、截面相切,两个球分别与截面切于点12,F F .在截口曲线上任取一点P ,过点P 作圆雉的母线,分别与两球切于点12,Q Q .由球的性质可知1122,PQ PF PQ PF ==,于是121212PF PF PQ PQ Q Q -=-=为定值,这样截口曲线上的任一点P 到两个定点12,Q Q 的距离之差的绝对值为常数,由双曲线的定义知,截口曲线是双曲线.(3)如图⑤,用平行于母线OM 且垂直于轴截面OMN 的平面β去截圆雉.在圆雉内放一个球,使它和圆雉的侧面与截面β相切,球与截面切于点F .设α为球与圆雉相切时切点构成的圆所在的平面,记l ⋂=αβ.在截口曲线上任取一点P ,作直线与球相切于点T ,连结PT ,有PF PT =.在母线OM 上取点,A B (B 为OM 与球的切点),使得AB PT =.过点P 作//PQ AB ,有点Q 在l 上,且FQ AB PF ==.另一方面,因为平面OMN 与α垂直,那么l ⊥平面OMN ,有l AB ⊥,所以l PQ ⊥.于是截口曲线是以点F 为焦点,l 为准线的抛物线.1.平行、垂直有关的的轨迹问题①平行有关的轨迹问题的解题策略二、题型精讲精练1.线面平行转化为面面平行得轨迹;2.平行时可利用法向量垂直关系求轨迹.②垂直有关的轨迹问题的解题策略1.可利用线线线面垂直,转化为面面垂直,得交线求轨迹;2.利用空间坐标运算求轨迹;3.利用垂直关系转化为平行关系求轨迹.【典例1】如图,在边长为a 的正方体ABCD -A 1B 1C 1D 1中,E 、F 、G 、H 、N 分别是CC 1、C 1D 1、DD 1、CD 、BC的中点,M 在四边形EFGH 边上及其内部运动,若MN ∥面A 1BD ,则点M 轨迹的长度是()A Ba C .2D .2【典例2】在正方体1111ABCD A B C D -中,Q 是正方形11B BCC 内的动点,11A Q BC ⊥,则Q 点的轨迹是()A .点1B B .线段1B CC .线段11B C D .平面11B BCC 【答案】B【分析】如图,连接1AC ,证明1BC ⊥1B Q ,又1BC ⊥1B C ,即得解.【详解】如图,连接1AC ,因为111111111111,,,,BC AQ BC A B AQ A B A AQ A B ⊥⊥=⊂ 平面11A B Q ,所以1BC ⊥平面11A B Q ,又1B Q ⊂平面11A B Q ,所以1BC ⊥1B Q ,又1BC ⊥1B C .所以点Q 在线段1B C 上.故选:B2.距离、角度有关的的轨迹问题①距离有关的轨迹问题的解题策略1.距离,可转化为在一个平面内的距离关系,借助于圆锥曲线定义或者球和圆的定义等知识求解轨迹;2.利用空间坐标计算求轨迹.②角度有关的轨迹问题的解题策略1.直线与面成定角,可能是圆锥侧面;2.直线与定直线成等角,可能是圆锥侧面;3.利用空间坐标系计算求轨迹.【典例3】已知正方体ABCD -A 1B 1C 1D 1的棱长为1,P 为底面ABCD 内一点,若P 到棱CD ,A 1D 1距离相等的点,则点P 的轨迹是()如图示,过P 作PE ⊥以D 为坐标原点建立空间直角坐标系2211x y -=+,平方得:【典例4】正方体1111ABCD A B C D -中,M ,N 分别为AB ,11A B 的中点,P 是边11C D 上的一个点(包括端点),Q 是平面1PMB 上一动点,满足直线MN 与直线AN 夹角与直线MN 与直线NQ 的夹角相等,则点Q 所在轨迹为()A .椭圆B .双曲线C .抛物线D .抛物线或双曲线【答案】D【分析】根据题设分析可知:Q 点轨迹为以AN 为母线,MN 为轴,AB 为底面直径的圆锥体,及其关于11A B 反向对称的锥体与平面1PMB 的交线,应用数形结合,结合平面与双锥面相交所成曲线的性质判断Q 所在轨迹的形状.【详解】由题设,Q 点轨迹为以AN 为母线,MN 为轴,AB 为底面直径的圆锥体,及其关于11A B 反向对称的锥体与平面1PMB 的交线,如下图示:当P 是边11C D 上移动过程中,只与下方锥体有相交,Q 点轨迹为抛物线;当P 是边11C D 上移动过程中,与上方锥体也有相交,Q 点轨迹为双曲线;故选:D3.翻折有关的的轨迹问题①翻折有关的轨迹问题的解题策略1.翻折过程中寻找不变的垂直的关系求轨迹2.翻折过程中寻找不变的长度关系求轨迹3.可以利用空间坐标运算求轨迹【典例5】1822年,比利时数学家Dandelin 利用圆锥曲线的两个内切球,证明了用一个平面去截圆锥,可以得到椭圆(其中两球与截面的切点即为椭圆的焦点),实现了椭圆截线定义与轨迹定义的统一性.在生活中,有一个常见的现象:用手电筒斜照地面上的篮球,留下的影子会形成椭圆.这是由于光线形成的圆锥被地面所截产生了椭圆的截面.如图,在地面的某个占1A 正上方有一个点光源,将小球放置在地面,使得1AA 与小球相切.若15A A =,小球半径为2,则小球在地面的影子形成的椭圆的离心率为()A .23B .45C .13D .25【答案】A【分析】设21A F x =,从而可得15AA =,122A A x =+,23AA x =+,利用勾股定理可得10x =,再由离心率的定义即可求解.【详解】在21Rt AA A 中,设21A F x =,2DA x∴=15AA =,122A A x =+,23AA x =+,2225(2)(3)x x ∴++=+,10x ∴=,∴长轴长12212A A a ==,6a =,624c =-=则离心率23c e a ==.故选:A 【题型训练2-刷模拟】1.平行、垂直有关的的轨迹问题一、单选题1.(2023·全国·高三专题练习)正四棱锥S ABCD -的底面边长为2,高为2,E 是边BC 的中点,动点P 在表面上运动,并且总保持PE AC ⊥,则动点P 的轨迹的周长为()A .62+B .62-C .4D .51+【答案】A【分析】由题意,动点P 的轨迹为过E 且垂直AC 的平面与正四棱锥S ABCD -的交线,再根据线面垂直的性质求解即可.【详解】如图,设,AC BD 交于O ,连接SO ,由正四棱锥的性质可得,SO ⊥平面ABCD ,因为AC ⊂平面ABCD ,故SO AC ⊥.又BD AC ⊥,SO BD O ⋂=,SO BD ⊂,平面SBD ,故AC ⊥平面SBD .由题意,PE AC ⊥则动点P 的轨迹为过E 且垂直AC 的平面与正四棱锥S ABCD -的交线,即如图EFG ,则AC ⊥平面EFG .由线面垂直的性质可得平面//SBD 平面EFG ,又由面面平行的性质可得//EG SB ,//GF SD ,//EF BD ,又E 是边BC 的中点,故,,EG GF EF 分别为,,SBC SDC BCD 的中位线.由题意222,226BD SB SD ===+=,故()16622622EG EF GF ++=++=+.即动点P 的轨迹的周长为62+.故选:A2.(2023·安徽滁州·安徽省定远中学校考模拟预测)在正四棱柱点,P 为正四棱柱表面上一点,且A .52+B .2因为11AC ⊂平面1B A 1111ED B D D ⋂=,则取1CC 中点F ,连接而11D C ⊥平面1BCC 又1,B F FE ⊂平面1B故选:D4.(2023·全国·高三专题练习)如图所示,正方体P 是正方体表面上的动点,若1C P A .25+B .2【答案】B【分析】要满足1//C P 平面CD 中点G ,11A B 的中点H ,连结迹为三角形1C HG ,求出周长即可【详解】取1BB 的中点G ,A 正方体1111ABCD A B C D -的棱长为因为,F H 为分别为11,AB A B 的中点,BB的中点A.点P可以是棱1C.点P的轨迹是正方形【答案】B【分析】如图,取棱BC的中点必过D点,进而取A D中点F【点睛】关键点点睛:本题解题的关键在于取棱的性质求解点P 轨迹即可求解6.(2023·全国·高三专题练习)已知棱长为表面上,且//MP 平面1ABD ,则动点A .22B .【详解】E 、F 、G 、M 分别是1AA 、11A D 、1B C 1AD ,//EM AB ,所以//EF 平面1ABD 1ABD //平面EFGM ,故点P 的轨迹为矩形12G =,所以22MG =,所以1EFGM S =⨯【点睛】本题考查面面平行的判定和面面平行的性质,以及正方体的截面问题,属综合中档题二、填空题【答案】10【分析】先推出BC ⊥,,EF CF AC ,推出BC 【详解】因为AB 是圆柱下底面圆又BC AD ⊥,AC AD 设过A 的母线与上底面的交点为因为⊥AE 平面ABC ,因为AE AC A = ,所以点D 在平面ACE 依题意得5AE =,OA 所以矩形AEFC 的面积为1DD ⊥平面ABCD ,AC ⊂平面ABCD ,则1DD AC ⊥11,,DD BD D DD BD =⊂∩平面1BDD ,于是AC ⊥平面则1AC BD ⊥,同理11⊥AB BD ,而1,,AC AB A AC AB = 令1BD 交平面1AB C 于点E ,由11B AB C B ABC V V --=,得13S 311【答案】3305π【分析】由题意画出图形,得BN ⊥平面DCP ,所以【详解】如图所示,在1BB 上取点P ,使得12BP PB =,连接112NC NB =Q ,CP BN∴⊥又DC ⊥平面11BCC B ,DC BN∴⊥又DC CP C Ç=Q ,DC ⊂平面DCP ,CP ⊂平面BN ∴⊥平面DCP又点M 是棱长为32的正方体1111ABCD A B C D -DCP 与球O 的截面圆周.2.距离、角度有关的的轨迹问题一、单选题故选:C2.(2023·河北·统考模拟预测)已知正四棱锥(底面为正方形,且顶点在底面的射影为正方形的中心的棱锥为正四棱锥)P -ABCD 的底面正方形边长为则动点Q 形成轨迹的周长为(A .2π11根据等体积法得(143ABCD PAB S S +△∴11344423263PE ⎛⎫+⨯⨯⨯⨯=⨯ ⎪⎝⎭【详解】,取AD 的中点H ,连接EH ,则1//EH AA .1111ABCD A B C D -中,1AA ⊥底面ABCD ,所以EH ⊥底面ABCD.EFH 为EF 与底面ABCD 所成的角,则60EFH ∠=︒.设正方体的棱长为a ,因为该正方体外接球的表面积为12π,22233π12π2a a ⎛⎫==⎪ ⎪⎝⎭,解得2a =,12AA a ===,从而23HF =,的轨迹为以H 为圆心,23为半径的圆在正方形ABCD 区域内的部分,如图中,23HG HM ==,3AH AHG πAHG ∠=,【点睛】本题考查了平面截圆锥面所得轨迹问题,考查了转化化归思想,属于难题7.(2022秋·河南·高三期末)棱长为1的正方体11ABCD A B C -则下面结论正确的有()①若点E 满足1AE B C ⊥,则动点E 的轨迹是线段;②若点E 满足130EA C ∠=,则动点E 的轨迹是椭圆的一部分;若130EA C ∠= ,则E 在以1AC 为轴,母线所在直线为平面1BC 与圆锥的轴1AC 因为11//,A B CD 所以1A E 与CD 所成的角等于当E 为1BC 中点时,1B E tan EA B ∠二、填空题8.(2023春·湖南长沙·高三校联考阶段练习)则正方体表面到P 点距离为5的点的轨迹总长度为【答案】35π2⎛⎫+ ⎪⎝⎭【分析】根据以P 为球心,5为半径的球与正方体表面的交线长度来求得轨迹总长度【详解】以P 为球心,5为半径的球与正方体表面的交线长度即为所求,在平面11ABB A 和平面11ADD A 上轨迹是以圆心角为π2的两段弧,弧长为在平面1111D C B A 上的轨迹是以A 在平面ABCD 上的轨迹是以A 为圆心,因此,轨迹的总长度为352⎛+ ⎝故答案为:35π2⎛⎫+ ⎪⎝⎭9.(2023·全国·高三专题练习)已知三棱锥到底面ABC 的距离为4,且三棱锥【答案】43π【分析】设ABC 直角边的边长为得出球心O 到底面ABC 的距离连接,,OD OG OH ,则有OG OH =2GH a =,5GD a =且GH GD ⊥设O 到平面DCHG 的距离为:d 则在三棱锥O DGH -中,有O GDH V -所以11113232GH GD d OG ⨯⨯⨯⨯=⨯⨯3.翻折有关的的轨迹问题一、单选题A .523πB .453π【答案】D设三棱锥S ABC -外接球的球心为,,O SAC BAC 的中心分别为易知1OO ⊥平面2,SAC OO ⊥平面BAC ,且12,,,O O O①四棱锥P AECD -的体积最大值为255③,EP CD 与平面PAD 所成角的正弦值之比为④三棱锥P AED -的外接球半径有最小值A .①③B .②③【答案】C取PA中点为G,则,GF EC平行且相等,四边形所以,点F的轨迹与点G的轨迹完全相同,过,H G的轨迹是H以为圆心,55HG=中点F的轨迹长度为55π.②错误;由四边形ECFG是平行四边形知//ECAB=,上一动点,现将AED....。
2024年高考数学总复习第八章《立体几何与空间向量》§8.2空间点、直线、平面之间的位置关系最新考纲 1.借助长方体模型,在直观认识和理解空间点、线、面的位置关系的基础上,抽象出空间线、面位置关系的定义.2.了解可以作为推理依据的公理和定理.3.能运用公理、定理和已获得的结论证明一些空间位置关系的简单命题.1.四个公理公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内.公理2:过不在一条直线上的三点,有且只有一个平面.公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.公理4:平行于同一条直线的两条直线互相平行.2.直线与直线的位置关系(1)位置关系的分类异面直线:不同在任何一个平面内,没有公共点(2)异面直线所成的角①定义:设a,b是两条异面直线,经过空间任一点O作直线a′∥a,b′∥b,把a′与b′所成的锐角(或直角)叫做异面直线a与b所成的角(或夹角).,π2.3.直线与平面的位置关系有直线在平面内、直线与平面相交、直线与平面平行三种情况.4.平面与平面的位置关系有平行、相交两种情况.5.等角定理空间中如果两个角的两边分别对应平行,那么这两个角相等或互补.概念方法微思考1.分别在两个不同平面内的两条直线为异面直线吗?提示不一定.因为异面直线不同在任何一个平面内.分别在两个不同平面内的两条直线可能平行或相交.2.空间中如果两个角的两边分别对应平行,那么这两个角一定相等吗?提示不一定.如果这两个角开口方向一致,则它们相等,若反向则互补.题组一思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)如果两个不重合的平面α,β有一条公共直线a,就说平面α,β相交,并记作α∩β=a.(√)(2)两个平面α,β有一个公共点A,就说α,β相交于过A点的任意一条直线.(×)(3)如果两个平面有三个公共点,则这两个平面重合.(×)(4)经过两条相交直线,有且只有一个平面.(√)(5)没有公共点的两条直线是异面直线.(×)(6)若a,b是两条直线,α,β是两个平面,且a⊂α,b⊂β,则a,b是异面直线.(×)题组二教材改编2.如图所示,在正方体ABCD—A1B1C1D1中,E,F分别是AB,AD的中点,则异面直线B1C与EF所成角的大小为()A.30°B.45°C.60°D.90°答案C解析连接B1D1,D1C,则B1D1∥EF,故∠D1B1C即为所求的角.又B1D1=B1C=D1C,∴△B1D1C为等边三角形,∴∠D1B1C=60°.3.如图,在三棱锥A—BCD中,E,F,G,H分别是棱AB,BC,CD,DA的中点,则(1)当AC,BD满足条件________时,四边形EFGH为菱形;(2)当AC,BD满足条件________时,四边形EFGH为正方形.答案(1)AC=BD(2)AC=BD且AC⊥BD解析(1)∵四边形EFGH为菱形,∴EF=EH,∴AC=BD.(2)∵四边形EFGH为正方形,∴EF=EH且EF⊥EH,∵EF∥AC,EH∥BD,且EF=12AC,EH=12BD,∴AC=BD且AC⊥BD.题组三易错自纠4.α是一个平面,m,n是两条直线,A是一个点,若m⊄α,n⊂α,且A∈m,A∈α,则m,n的位置关系不可能是()A.垂直B.相交C.异面D.平行答案D解析依题意,m∩α=A,n⊂α,∴m与n可能异面、相交(垂直是相交的特例),一定不平行.5.如图,α∩β=l,A,B∈α,C∈β,且C∉l,直线AB∩l=M,过A,B,C三点的平面记作γ,则γ与β的交线必通过()A.点AB.点BC.点C但不过点MD.点C和点M答案D解析∵AB⊂γ,M∈AB,∴M∈γ.又α∩β=l,M∈l,∴M∈β.根据公理3可知,M在γ与β的交线上.同理可知,点C也在γ与β的交线上.6.如图为正方体表面的一种展开图,则图中的四条线段AB,CD,EF,GH在原正方体中互为异面的对数为______.答案3解析平面图形的翻折应注意翻折前后相对位置的变化,则AB,CD,EF和GH在原正方体中,显然AB与CD,EF与GH,AB与GH都是异面直线,而AB与EF相交,CD与GH 相交,CD与EF平行.故互为异面的直线有且只有3对.题型一平面基本性质的应用例1如图所示,在正方体ABCD—A1B1C1D1中,E,F分别是AB和AA1的中点.求证:(1)E,C,D1,F四点共面;(2)CE,D1F,DA三线共点.证明(1)如图,连接EF,CD1,A1B.∵E,F分别是AB,AA1的中点,∴EF∥BA1.又A1B∥D1C,∴EF∥CD1,∴E,C,D1,F四点共面.(2)∵EF∥CD1,EF<CD1,∴CE与D1F必相交,设交点为P,如图所示.则由P∈CE,CE⊂平面ABCD,得P∈平面ABCD.同理P∈平面ADD1A1.又平面ABCD∩平面ADD1A1=DA,∴P∈直线DA,∴CE,D1F,DA三线共点.思维升华共面、共线、共点问题的证明(1)证明共面的方法:①先确定一个平面,然后再证其余的线(或点)在这个平面内;②证两平面重合.(2)证明共线的方法:①先由两点确定一条直线,再证其他各点都在这条直线上;②直接证明这些点都在同一条特定直线上.(3)证明线共点问题的常用方法是:先证其中两条直线交于一点,再证其他直线经过该点.跟踪训练1如图,在空间四边形ABCD 中,E ,F 分别是AB ,AD 的中点,G ,H 分别在BC ,CD 上,且BG ∶GC =DH ∶HC =1∶2.(1)求证:E ,F ,G ,H 四点共面;(2)设EG 与FH 交于点P ,求证:P ,A ,C 三点共线.证明(1)∵E ,F 分别为AB ,AD 的中点,∴EF ∥BD .∵在△BCD 中,BG GC =DH HC =12,∴GH ∥BD ,∴EF ∥GH .∴E ,F ,G ,H 四点共面.(2)∵EG ∩FH =P ,P ∈EG ,EG ⊂平面ABC ,∴P ∈平面ABC .同理P ∈平面ADC .∴P 为平面ABC 与平面ADC 的公共点.又平面ABC ∩平面ADC =AC ,∴P ∈AC ,∴P ,A ,C 三点共线.题型二判断空间两直线的位置关系例2(1)若直线l 1和l 2是异面直线,l 1在平面α内,l 2在平面β内,l 是平面α与平面β的交线,则下列命题正确的是()A .l 与l 1,l 2都不相交B .l 与l 1,l 2都相交C .l 至多与l 1,l 2中的一条相交D .l 至少与l 1,l 2中的一条相交答案D 解析由直线l 1和l 2是异面直线可知l 1与l 2不平行,故l 1,l 2中至少有一条与l 相交.故选D.(2)如图,在正方体ABCD -A 1B 1C 1D 1中,点E ,F 分别在A 1D ,AC 上,且A 1E =2ED ,CF =2FA ,则EF 与BD 1的位置关系是()A.相交但不垂直B.相交且垂直C.异面D.平行答案D解析连接D1E并延长,与AD交于点M,由A1E=2ED,可得M为AD的中点,连接BF并延长,交AD于点N,因为CF=2FA,可得N为AD的中点,所以M,N重合,所以EF和BD1共面,且MEED1=12,MFBF=12,所以MEED1=MFBF,所以EF∥BD1.思维升华空间中两直线位置关系的判定,主要是异面、平行和垂直的判定.异面直线可采用直接法或反证法;平行直线可利用三角形(梯形)中位线的性质、公理4及线面平行与面面平行的性质定理;垂直关系往往利用线面垂直或面面垂直的性质来解决.跟踪训练2(1)已知直线a,b分别在两个不同的平面α,β内,则“直线a和直线b相交”是“平面α和平面β相交”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案A解析若直线a和直线b相交,则平面α和平面β相交;若平面α和平面β相交,那么直线a 和直线b可能平行或异面或相交,故选A.(2)如图所示,正方体ABCD-A1B1C1D1中,M,N分别为棱C1D1,C1C的中点,有以下四个结论:①直线AM 与CC 1是相交直线;②直线AM 与BN 是平行直线;③直线BN 与MB 1是异面直线;④直线AM 与DD 1是异面直线.其中正确的结论为________.(注:把你认为正确的结论序号都填上)答案③④解析因为点A 在平面CDD 1C 1外,点M 在平面CDD 1C 1内,直线CC 1在平面CDD 1C 1内,CC 1不过点M ,所以AM 与CC 1是异面直线,故①错;取DD 1中点E ,连接AE ,则BN ∥AE ,但AE 与AM 相交,故②错;因为B 1与BN 都在平面BCC 1B 1内,M 在平面BCC 1B 1外,BN 不过点B 1,所以BN 与MB 1是异面直线,故③正确;同理④正确,故填③④.题型三求两条异面直线所成的角例3(2019·青岛模拟)如图,在底面为正方形,侧棱垂直于底面的四棱柱ABCD —A 1B 1C 1D 1中,AA 1=2AB =2,则异面直线A 1B 与AD 1所成角的余弦值为()A.15B.25C.35D.45答案D 解析连接BC 1,易证BC 1∥AD 1,则∠A 1BC 1即为异面直线A 1B 与AD 1所成的角.连接A 1C 1,由AB =1,AA 1=2,易得A 1C 1=2,A 1B =BC 1=5,故cos ∠A 1BC 1=A 1B 2+BC 21-A 1C 212×A 1B ×BC 1=45,即异面直线A 1B 与AD 1所成角的余弦值为45.引申探究将上例条件“AA 1=2AB =2”改为“AB =1,若异面直线A 1B 与AD 1所成角的余弦值为910”,试求AA 1AB 的值.解设AA 1AB=t (t >0),则AA 1=tAB .∵AB =1,∴AA 1=t .∵A 1C 1=2,A 1B =t 2+1=BC 1,∴cos ∠A 1BC 1=A 1B 2+BC 21-A 1C 212×A 1B ×BC 1=t 2+1+t 2+1-22×t 2+1×t 2+1=910.∴t =3,即AA 1AB =3.思维升华用平移法求异面直线所成的角的三个步骤(1)一作:根据定义作平行线,作出异面直线所成的角;(2)二证:证明作出的角是异面直线所成的角;(3)三求:解三角形,求出所作的角.跟踪训练3(2018·全国Ⅱ)在正方体ABCD -A 1B 1C 1D 1中,E 为棱CC 1的中点,则异面直线AE 与CD 所成角的正切值为()A.22 B.32 C.52 D.72答案C 解析如图,因为AB ∥CD ,所以AE 与CD 所成角为∠EAB .在Rt △ABE 中,设AB =2,则BE =5,则tan ∠EAB =BE AB =52,所以异面直线AE 与CD 所成角的正切值为52.立体几何中的线面位置关系直观想象是指借助几何直观和空间想象感知事物的形态与变化,利用空间形式特别是图形,理解和解决数学问题.例如图所示,四边形ABEF 和ABCD 都是梯形,BC ∥AD 且BC =12AD ,BE ∥FA 且BE =12FA ,G ,H 分别为FA ,FD 的中点.(1)证明:四边形BCHG 是平行四边形;(2)C ,D ,F ,E 四点是否共面?为什么?(1)证明由已知FG =GA ,FH =HD ,可得GH ∥AD 且GH =12AD .又BC ∥AD 且BC =12AD ,∴GH ∥BC 且GH =BC ,∴四边形BCHG 为平行四边形.(2)解∵BE ∥AF 且BE =12AF ,G 为FA 的中点,∴BE ∥FG 且BE =FG ,∴四边形BEFG 为平行四边形,∴EF ∥BG .由(1)知BG ∥CH .∴EF ∥CH ,∴EF 与CH 共面.又D ∈FH ,∴C ,D ,F ,E 四点共面.素养提升平面几何和立体几何在点线面的位置关系中有很多的不同,借助确定的几何模型,利用直观想象讨论点线面关系在平面和空间中的差异.1.四条线段顺次首尾相连,它们最多可确定的平面个数为()A .4B .3C .2D .1答案A 解析首尾相连的四条线段每相邻两条确定一个平面,所以最多可以确定四个平面.2.a ,b ,c 是两两不同的三条直线,下面四个命题中,真命题是()A.若直线a,b异面,b,c异面,则a,c异面B.若直线a,b相交,b,c相交,则a,c相交C.若a∥b,则a,b与c所成的角相等D.若a⊥b,b⊥c,则a∥c答案C解析若直线a,b异面,b,c异面,则a,c相交、平行或异面;若a,b相交,b,c相交,则a,c相交、平行或异面;若a⊥b,b⊥c,则a,c相交、平行或异面;由异面直线所成的角的定义知C正确.故选C.3.如图所示,平面α∩平面β=l,A∈α,B∈α,AB∩l=D,C∈β,C∉l,则平面ABC与平面β的交线是()A.直线ACB.直线ABC.直线CDD.直线BC答案C解析由题意知,D∈l,l⊂β,所以D∈β,又因为D∈AB,所以D∈平面ABC,所以点D在平面ABC与平面β的交线上.又因为C∈平面ABC,C∈β,所以点C在平面β与平面ABC的交线上,所以平面ABC∩平面β=CD.4.如图所示,ABCD-A1B1C1D1是长方体,O是B1D1的中点,直线A1C交平面AB1D1于点M,则下列结论正确是()A.A,M,O三点共线B.A,M,O,A1不共面C.A,M,C,O不共面D.B,B1,O,M共面答案A 解析连接A 1C 1,AC ,则A 1C 1∥AC ,∴A 1,C 1,A ,C 四点共面,∴A 1C ⊂平面ACC 1A 1,∵M ∈A 1C ,∴M ∈平面ACC 1A 1,又M ∈平面AB 1D 1,∴M 在平面ACC 1A 1与平面AB 1D 1的交线上,同理A ,O 在平面ACC 1A 1与平面AB 1D 1的交线上.∴A ,M ,O 三点共线.5.(2017·全国Ⅱ)已知直三棱柱ABCA 1B 1C 1中,∠ABC =120°,AB =2,BC =CC 1=1,则异面直线AB 1与BC 1所成角的余弦值为()A.32 B.155 C.105 D.33答案C解析方法一将直三棱柱ABC -A 1B 1C 1补形为直四棱柱ABCD -A 1B 1C 1D 1,如图①所示,连接AD 1,B 1D 1,BD .图①由题意知∠ABC =120°,AB =2,BC =CC 1=1,所以AD 1=BC 1=2,AB 1=5,∠DAB =60°.在△ABD 中,由余弦定理知BD 2=AB 2+AD 2-2×AB ×AD ×cos ∠DAB =22+12-2×2×1×cos 60°=3,所以BD =3,所以B 1D 1=3.又AB 1与AD 1所成的角即为AB 1与BC 1所成的角θ,所以cos θ=AB 21+AD 21-B 1D 212×AB 1×AD 1=5+2-32×5×2=105.故选C.方法二以B 1为坐标原点,B 1C 1所在的直线为x 轴,垂直于B 1C 1的直线为y 轴,BB 1所在的直线为z 轴建立空间直角坐标系,如图②所示.图②由已知条件知B 1(0,0,0),B (0,0,1),C 1(1,0,0),A (-1,3,1),则BC 1→=(1,0,-1),AB 1→=(1,-3,-1).所以cos 〈AB 1→,BC 1→〉=AB 1,→·BC 1→|AB 1→||BC 1→|=25×2=105.所以异面直线AB 1与BC 1所成角的余弦值为105.故选C.6.正方体AC 1中,与面ABCD 的对角线AC 异面的棱有________条.答案6解析如图,在正方体AC 1中,与面ABCD 的对角线AC 异面的棱有BB 1,DD 1,A 1B 1,A 1D 1,D 1C 1,B 1C 1,共6条.7.(2019·东北三省三校模拟)若直线l ⊥平面β,平面α⊥平面β,则直线l 与平面α的位置关系为________.答案l ∥α或l ⊂α解析∵直线l ⊥平面β,平面α⊥平面β,∴直线l ∥平面α,或者直线l ⊂平面α.8.在三棱锥S -ABC 中,G 1,G 2分别是△SAB 和△SAC 的重心,则直线G 1G 2与BC 的位置关系是________.答案平行解析如图所示,连接SG 1并延长交AB 于M ,连接SG 2并延长交AC 于N ,连接MN .由题意知SM为△SAB的中线,且SG1=23SM,SN为△SAC的中线,且SG2=23SN,∴在△SMN中,SG1SM=SG2SN,∴G1G2∥MN,易知MN是△ABC的中位线,∴MN∥BC,∴G1G2∥BC.9.如图,已知圆柱的轴截面ABB1A1是正方形,C是圆柱下底面弧AB的中点,C1是圆柱上底面弧A1B1的中点,那么异面直线AC1与BC所成角的正切值为________.答案2解析取圆柱下底面弧AB的另一中点D,连接C1D,AD,因为C是圆柱下底面弧AB的中点,所以AD∥BC,所以直线AC1与AD所成的角即为异面直线AC1与BC所成的角,因为C1是圆柱上底面弧A1B1的中点,所以C1D垂直于圆柱下底面,所以C1D⊥AD.因为圆柱的轴截面ABB1A1是正方形,所以C1D=2AD,所以直线AC1与AD所成角的正切值为2,所以异面直线AC1与BC所成角的正切值为2.10.如图是正四面体的平面展开图,G,H,M,N分别为DE,BE,EF,EC的中点,在这个正四面体中,①GH与EF平行;②BD与MN为异面直线;③GH与MN成60°角;④DE与MN垂直.以上四个命题中,正确命题的序号是________.答案②③④解析还原成正四面体A -DEF ,其中H 与N 重合,A ,B ,C 三点重合.易知GH 与EF 异面,BD 与MN 异面.连接GM ,∵△GMH 为等边三角形,∴GH 与MN 成60°角,易证DE ⊥AF ,又MN ∥AF ,∴MN ⊥DE .因此正确命题的序号是②③④.11.如图所示,A 是△BCD 所在平面外的一点,E ,F 分别是BC ,AD 的中点.(1)求证:直线EF 与BD 是异面直线;(2)若AC ⊥BD ,AC =BD ,求EF 与BD 所成的角.(1)证明假设EF 与BD 不是异面直线,则EF 与BD 共面,从而DF 与BE 共面,即AD 与BC 共面,所以A ,B ,C ,D 在同一平面内,这与A 是△BCD 所在平面外的一点相矛盾.故直线EF 与BD 是异面直线.(2)解取CD 的中点G ,连接EG ,FG ,则AC ∥FG ,EG ∥BD ,所以相交直线EF 与EG 所成的角,即为异面直线EF 与BD 所成的角.又因为AC ⊥BD ,则FG ⊥EG .在Rt △EGF 中,由EG =FG=12AC ,求得∠FEG =45°,即异面直线EF 与BD 所成的角为45°.12.如图,在三棱锥P -ABC 中,PA ⊥底面ABC ,D 是PC 的中点.已知∠BAC =π2,AB =2,AC =23,PA =2.求:(1)三棱锥P -ABC 的体积;(2)异面直线BC 与AD 所成角的余弦值.解(1)S △ABC =12×2×23=23,三棱锥P -ABC 的体积为V =13S △ABC ·PA =13×23×2=433.(2)如图,取PB 的中点E ,连接DE ,AE ,则ED ∥BC ,所以∠ADE (或其补角)是异面直线BC 与AD 所成的角.在△ADE 中,DE =2,AE =2,AD =2,cos ∠ADE =AD 2+DE 2-AE 22×AD ×DE =22+22-22×2×2=34.故异面直线BC 与AD 所成角的余弦值为34.13.平面α过正方体ABCD -A 1B 1C 1D 1的顶点A ,α∥平面CB 1D 1,α∩平面ABCD =m ,α∩平面ABB 1A 1=n ,则m ,n 所成角的正弦值为()A.32 B.22 C.33 D.13答案A解析如图所示,设平面CB 1D 1∩平面ABCD =m 1,∵α∥平面CB 1D 1,则m 1∥m ,又∵平面ABCD ∥平面A 1B 1C 1D 1,平面CB 1D 1∩平面A 1B 1C 1D 1=B 1D 1,∴B 1D 1∥m 1,∴B 1D 1∥m ,同理可得CD 1∥n .故m ,n 所成角的大小与B 1D 1,CD 1所成角的大小相等,即∠CD 1B 1的大小.又∵B 1C =B 1D 1=CD 1(均为面对角线),∴∠CD 1B 1=π3,得sin ∠CD 1B 1=32,故选A.14.一个正方体纸盒展开后如图所示,在原正方体纸盒中有如下结论:①AB ⊥EF ;②AB 与CM 所成的角为60°;③EF 与MN 是异面直线;④MN ∥CD .以上四个命题中,正确命题的序号是________.答案①③解析如图,①AB ⊥EF ,正确;②显然AB ∥CM ,所以不正确;③EF 与MN 是异面直线,所以正确;④MN 与CD 异面,并且垂直,所以不正确,则正确的是①③.15.如图,正方形ACDE 与等腰直角三角形ACB 所在的平面互相垂直,且AC =BC =4,∠ACB =90°,F ,G 分别是线段AE ,BC 的中点,则AD 与GF 所成的角的余弦值为________.答案36解析取DE 的中点H ,连接HF ,GH .由题设,HF ∥AD 且HF =12AD ,∴∠GFH 为异面直线AD 与GF 所成的角(或其补角).在△GHF 中,可求HF =22,GF =GH =26,∴cos ∠GFH =HF 2+GF 2-GH 22×HF ×GF =(22)2+(26)2-(26)22×22×26=36.16.如图所示,三棱柱ABC -A 1B 1C 1的底面是边长为2的正三角形,侧棱A 1A ⊥底面ABC ,点E ,F 分别是棱CC 1,BB 1上的点,点M 是线段AC 上的动点,EC =2FB =2.(1)当点M 在何位置时,BM ∥平面AEF?(2)若BM ∥平面AEF ,判断BM 与EF 的位置关系,说明理由;并求BM 与EF 所成的角的余弦值.解(1)方法一如图所示,取AE 的中点O ,连接OF ,过点O 作OM ⊥AC 于点M .因为EC ⊥AC ,OM ,EC ⊂平面ACC 1A 1,所以OM ∥EC .又因为EC =2FB =2,EC ∥FB ,所以OM ∥FB 且OM =12EC =FB ,所以四边形OMBF 为矩形,BM ∥OF .因为OF ⊂平面AEF ,BM ⊄平面AEF ,故BM ∥平面AEF ,此时点M 为AC 的中点.方法二如图所示,取EC 的中点P ,AC 的中点Q ,连接PQ ,PB ,BQ .因为EC =2FB =2,所以PE ∥BF 且PE =BF ,所以PB ∥EF ,PQ ∥AE ,又AE ,EF ⊂平面AEF ,PQ ,PB ⊄平面AEF ,所以PQ ∥平面AFE ,PB ∥平面AEF ,因为PB ∩PQ =P ,PB ,PQ ⊂平面PBQ ,所以平面PBQ ∥平面AEF .又因为BQ ⊂平面PBQ ,所以BQ ∥平面AEF .故点Q 即为所求的点M ,此时点M 为AC 的中点.(2)由(1)知,BM 与EF 异面,∠OFE (或∠MBP )就是异面直线BM 与EF 所成的角或其补角.易求AF =EF =5,MB =OF =3,OF ⊥AE ,所以cos ∠OFE =OF EF =35=155,所以BM 与EF 所成的角的余弦值为155.。
⾼考数学⽴体⼏何专题复习题及答案 数学是⾼考考试中的主科之⼀,我们要对⾼考数学⽴体⼏何进⾏强化复习,⽴体⼏何是⾼考数学考试中丢分的重灾区。
下⾯是店铺为⼤家整理的⾼考数学⽴体⼏何专题复习题,希望对⼤家有所帮助! ⾼考数学⽴体⼏何专题复习题 专题四 ⽴体⼏何 第1讲 三视图及空间⼏何体的计算问题 (建议⽤时:60分钟) ⼀、选择题 1.(2014•湖北卷)在如图所⽰的空间直⾓坐标系O-xyz中,⼀个四⾯体的顶点坐标分别是(0,0,2),(2,2,0),(1,2,1),(2,2,2).给出编号为①②③④的四个图,则该四⾯体的正视图和俯视图分别为 ( ).A.①和②B.③和①C.④和③D.④和② 解析 由三视图可知,该⼏何体的正视图是⼀个直⾓三⾓形,三个顶点的坐标分别是(0,0,2),(0,2,0),(0,2,2)且内有⼀个虚线(⼀个顶点与另⼀直⾓边中点的连线),故正视图是④;俯视图即在底⾯的射影是⼀个斜三⾓形,三个顶点的坐标分别是(0,0,0),(2,2,0),(1,2,0),故俯视图是②. 答案 D 2.(2013•东北三校第三次模拟)如图,多⾯体ABCD E FG的底⾯ABCD为正⽅形,FC=GD=2EA,其俯视图如下,则其正视图和侧视图正确的是 ( ). 解析 注意BE,BG在平⾯CDGF上的投影为实线,且由已知长度关系确定投影位置,排除A,C选项,观察B,D选项,侧视图是指光线,从⼏何体的左⾯向右⾯正投影,则BG,BF的投影为虚线,故选D. 答案 D 3.(2014•安徽卷)⼀个多⾯体的三视图如图所⽰,则该多⾯体的表⾯积为 ( ).A.21+3B.18+3C.21D.18 解析 由三视图知,⼏何体的直观图如图所⽰.因此该⼏何体的表⾯积为6×2×2-6×12×1×1+2×34×(2)2=21+3. 答案 A 4.(2013;⼴东卷)某四棱台的三视图如图所⽰,则该四棱台的体积是 ( ).A.4B.143C.163D.6 解析 由四棱台的三视图可知该四棱台的上底⾯是边长为1的正⽅形,下底⾯是边长为2的正⽅形,⾼为2.由棱台的体积公式可知该四棱台的体积V=13(12+1×22+22)×2=143,故选B. 答案 B 5.如图,在矩形ABCD中,AB=2,BC=3,沿BD将矩形ABCD折叠,连接AC,所得三棱锥A B CD正视图和俯视图如图,则三棱锥A B CD侧视图的⾯积为 ( ).A.613B.1813C.213D.313 解析 由正视图及俯视图可得,在三棱锥A B CD中,平⾯ABD⊥平⾯BCD,该⼏何体的侧视图是腰长为2×322+32=613的等腰直⾓三⾓形,其⾯积为12×6132=1813. 答案 B 6.在具有如图所⽰的正视图和俯视图的⼏何体中,体积最⼤的⼏何体的表⾯积为 ( ).A.13B.7+32C.72πD.14 解析 由正视图和俯视图可知,该⼏何体可能是四棱柱或者是⽔平放置的三棱柱或⽔平放置的圆柱.由图象可知四棱柱的体积最⼤.四棱柱的⾼为1,底⾯边长分别为1,3,所以表⾯积为2(1×3+1×1+3×1)=14. 答案 D 7.(2013•湖南卷)已知正⽅体的棱长为1,其俯视图是⼀个⾯积为1的正⽅形,侧视图是⼀个⾯积为2的矩形,则该正⽅体的正视图的⾯积等于 ( ).A.32B.1C.2+12D.2 解析 易知正⽅体是⽔平放置的,⼜侧视图是⾯积为2的矩形.所以正⽅体的对⾓⾯平⾏于投影⾯,此时正视图和侧视图相同,⾯积为2. 答案 D ⼆、填空题 8.某⼏何体的三视图如图所⽰,则该⼏何体的体积为____________. 解析 由三视图可知该⼏何体由长⽅体和圆柱的⼀半组成.其中长⽅体的长、宽、⾼分别为4,2,2,圆柱的底⾯半径为2,⾼为4.所以V=2×2×4+12×22×π×4=16+8π. 答案 16+8π 9.(2013•江苏卷)如图,在三棱柱A1B1C1A BC中,D,E,F分别是AB,AC,AA1的中点,设三棱锥F A DE的体积为V1,三棱柱A1B1C1A BC的体积为V2,则V1∶V2=________. 解析 设三棱柱A1B1C1-ABC的⾼为h,底⾯三⾓形ABC的⾯积为S,则V1=13×14S•12h=124Sh=124V2,即V1∶V2=1∶24. 答案 1∶24 10.如图,正⽅体ABCD-A1B1C1D1的棱长为1,E,F分别为线段AA1,B1C上的点,则三棱锥D1-EDF的体积为________. 解析 利⽤三棱锥的体积公式直接求解. VD1-EDF=VF-DD1F=13S△D1DE•AB=13×12×1×1×1=16. 答案 16 11.(2014重庆卷改编)某⼏何体的三视图如图所⽰,则该⼏何体的表⾯积为________. 解析 由俯视图可以判断该⼏何体的底⾯为直⾓三⾓形,由正视图和侧视图可以判断该⼏何体是由直三棱柱(侧棱与底⾯垂直的棱柱)截取得到的.在长⽅体中分析还原,如图(1)所⽰,故该⼏何体的直观图如图(2)所⽰.在图(1)中,直⾓梯形ABPA1的⾯积为12×(2+5)×4=14,计算可得A1P=5.直⾓梯形BCC1P的⾯积为12×(2+5)×5=352.因 答案 60 12.已知三棱锥S ABC的所有顶点都在球O的球⾯上,△ABC是边长为1的正三⾓形,SC为球O的直径,且SC=2,则此三棱锥的体积为________. 解析 在Rt△ASC中,AC=1,∠SAC=90°,SC=2,所以SA=4-1=3.同理,SB=3.过A点作SC的垂线交SC于D点,连接DB,因为△SAC≌△SBC,故BD⊥SC,AD=BD,故SC⊥平⾯ABD,且△ABD为等腰三⾓形.因为∠ASC=30°,故AD=12SA=32,则△ABD的⾯积为12×1×AD2-122=24,则三棱锥S-ABC的体积为13×24×2=26. 答案 26 三、解答题 13.已知某⼏何体的俯视图是如图所⽰的矩形,正视图是⼀个底边长为8、⾼为4的等腰三⾓形,侧视图是⼀个底边长为6、⾼为4的等腰三⾓形. (1)求该⼏何体的体积V; (2)求该⼏何体的侧⾯积S. 解 由已知可得,该⼏何体是⼀个底⾯为矩形,⾼为4,顶点在底⾯的射影是矩形中⼼的四棱锥E‐ABCD,AB=8,BC=6. (1)V=13×8×6×4=64. (2)四棱锥E A BCD的两个侧⾯EAD,EBC是全等的等腰三⾓形,且BC边上的⾼h1=42+822=42; 另两个侧⾯EAB,ECD也是全等的等腰三⾓形,AB边上的⾼h2=42+622=5. 因此S=2×12×6×42+12×8×5=40+242. 14.如图,四边形ABCD是边长为2的正⽅形,直线l与平⾯ABCD平⾏,E和F是l上的两个不同点,且EA=ED,FB=FC.E′和F′是平⾯ABCD内的两点,EE′和FF′都与平⾯ABCD垂直. (1)证明:直线E′F′垂直且平分线段AD; (2)若∠EAD=∠EAB=60 °,EF=2.求多⾯体ABCDEF的体积. (1)证明 ∵EA=ED且EE′⊥平⾯ABCD, ∴E′D=E′A,∴点E′在线段AD的垂直平分线上. 同理,点F′在线段BC的垂直平分线上. ⼜四边形ABCD是正⽅形, ∴线段BC的垂直平分线也就是线段AD的垂直平分线,即点E′、F′都在线段AD的垂直平分线上. ∴直线E′F′垂直且平分线段AD. (2)解 如图,连接EB、EC,由题意知多⾯体ABCDEF可分割成正四棱锥E A BCD和正四⾯体E B CF 两部分.设AD的中点为M,在Rt△MEE′中,由于ME′=1,ME=3,∴EE′=2. ∴VE A BCD=13•S正⽅形ABCD•EE′=13×22×2=423. ⼜VE B CF=VC B EF=VC B EA=VE A BC=13S△ABC•EE′=13×12×22×2=223, ∴多⾯体ABCDEF的体积为VE A BCD+VE B CF=22. 15.(2013•⼴东卷)如图1,在边长为1的等边三⾓形ABC中,D,E分别是AB,AC上的点,AD=AE,F是BC的中点,AF与DE交于点G.将△ABF沿AF折起,得到如图2所⽰的三棱锥A-BCF,其中BC=22. (1)证明:DE∥平⾯BCF; (2)证明:CF⊥平⾯ABF; (3)当AD=23时,求三棱锥F-DEG的体积VF D EG. (1)证明 在等边三⾓形ABC中,AB=AC. ∵AD=AE, ∴ADDB=AEEC,∴DE∥BC, 同理可证GE∥平⾯BCF. ∵DG∩GE=G,∴平⾯GDE∥平⾯BCF, ∴DE∥平⾯BCF. (2)证明 在等边三⾓形ABC中,F是BC的中点,∴AF⊥FC, ∴BF=FC=12BC=12. 在图2中,∵BC=22, ∴BC2=BF2+FC2,∴∠BFC=90°, ∴FC⊥BF. ∵BF∩AF=F,∴CF⊥平⾯ABF. (3)解 ∵AD=23, ∴BD=13,AD∶DB=2∶1, 在图2中,AF⊥FC,AF⊥BF, ∴AF⊥平⾯BCF, 由(1)知平⾯GDE∥平⾯BCF, ∴AF⊥平⾯GDE. 在等边三⾓形ABC中,AF=32AB=32, ∴FG=13AF=36,DG=23BF=23×12=13=GE, ∴S△DGE=12DG•EG=118, ∴VF-DEG=13S△DGE•FG=3324. ⾼考数学答题技巧 1.调整好状态,控制好⾃我。
新高考数学大一轮复习专题:第1讲 空间几何体[考情分析] 几何体的结构特征是立体几何的基础,空间几何体的表面积与体积是高考题的重点与热点,多以小题的形式进行考查,属于中等难度. 考点一 表面积与体积 核心提炼1.旋转体的侧面积和表面积(1)S 圆柱侧=2πrl ,S 圆柱表=2πr (r +l )(r 为底面半径,l 为母线长). (2)S 圆锥侧=πrl ,S 圆锥表=πr (r +l )(r 为底面半径,l 为母线长). (3)S 球表=4πR 2(R 为球的半径). 2.空间几何体的体积公式V 柱=Sh (S 为底面面积,h 为高); V 锥=13Sh (S 为底面面积,h 为高); V 球=43πR 3(R 为球的半径).例1 (1)已知圆锥的顶点为S ,母线SA ,SB 所成角的余弦值为78,SA 与圆锥底面所成角为45°.若△SAB 的面积为515,则该圆锥的侧面积为________. 答案 402π解析 因为母线SA 与圆锥底面所成的角为45°, 所以圆锥的轴截面为等腰直角三角形. 设底面圆的半径为r ,则母线长l =2r . 在△SAB 中,cos∠ASB =78,所以sin∠ASB =158.因为△SAB 的面积为515,即12SA ·SB sin∠ASB=12×2r ×2r ×158=515, 所以r 2=40,故圆锥的侧面积为πrl =2πr 2=402π.(2)如图,已知正三棱柱ABC -A 1B 1C 1的各棱长均为2,点D 在棱AA 1上,则三棱锥D -BB 1C 1的体积为________.答案 233解析 如图,取BC 的中点O ,连接AO .∵正三棱柱ABC -A 1B 1C 1的各棱长均为2, ∴AC =2,OC =1,则AO = 3. ∵AA 1∥平面BCC 1B 1,∴点D 到平面BCC 1B 1的距离为 3. 又11BB C S=12×2×2=2, ∴11D BB C V =13×2×3=233.易错提醒 (1)计算表面积时,有些面的面积没有计算到(或重复计算). (2)一些不规则几何体的体积不会采用分割法或补形思想转化求解. (3)求几何体体积的最值时,不注意使用基本不等式或求导等确定最值.跟踪演练1 (1)已知圆柱的上、下底面的中心分别为O 1,O 2,过直线O 1O 2的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为( ) A .122π B .12π C .82π D .10π答案 B解析 设圆柱的底面半径为r ,高为h ,由题意可知2r =h =22,∴圆柱的表面积S =2πr 2+2πr ·h =4π+8π=12π.故选B.(2)如图,在Rt△ABC 中,AB =BC =1,D 和E 分别是边BC 和AC 上异于端点的点,DE ⊥BC ,将△CDE 沿DE 折起,使点C 到点P 的位置,得到四棱锥P -ABDE ,则四棱锥P -ABDE 的体积的最大值为________.答案327解析 设CD =DE =x (0<x <1),则四边形ABDE 的面积S =12(1+x )(1-x )=12(1-x 2),当平面PDE ⊥平面ABDE 时,四棱锥P -ABDE 的体积最大,此时PD ⊥平面ABDE ,且PD =CD =x ,故四棱锥P -ABDE 的体积V =13S ·PD =16(x -x 3),则V ′=16(1-3x 2).当x ∈⎝ ⎛⎭⎪⎫0,33时,V ′>0;当x ∈⎝⎛⎭⎪⎫33,1时,V ′<0. ∴当x =33时,V max =327. 考点二 多面体与球 核心提炼解决多面体与球问题的两种思路(1)利用构造长方体、正四面体等确定直径.(2)利用球心O 与截面圆的圆心O 1的连线垂直于截面圆的性质确定球心.例2 (1)已知三棱锥P -ABC 满足平面PAB ⊥平面ABC ,AC ⊥BC ,AB =4,∠APB =30°,则该三棱锥的外接球的表面积为__________. 答案 64π解析 因为AC ⊥BC ,所以△ABC 的外心为斜边AB 的中点,因为平面PAB ⊥平面ABC ,所以三棱锥P -ABC 的外接球球心在平面PAB 上, 即球心就是△PAB 的外心,根据正弦定理ABsin∠APB =2R ,解得R =4,所以外接球的表面积为4πR 2=64π.(2)(2020·全国Ⅲ)已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为________. 答案23π 解析 圆锥内半径最大的球即为圆锥的内切球,设其半径为r .作出圆锥的轴截面PAB ,如图所示,则△PAB 的内切圆为圆锥的内切球的大圆.在△PAB 中,PA =PB =3,D 为AB 的中点,AB =2,E 为切点,则PD =22,△PEO ∽△PDB , 故PO PB =OE DB ,即22-r 3=r 1,解得r =22, 故内切球的体积为43π⎝ ⎛⎭⎪⎫223=23π.规律方法 (1)长方体的外接球直径等于长方体的体对角线长.(2)三棱锥S -ABC 的外接球球心O 的确定方法:先找到△ABC 的外心O 1,然后找到过O 1的平面ABC 的垂线l ,在l 上找点O ,使OS =OA ,点O 即为三棱锥S -ABC 的外接球的球心. (3)多面体的内切球可利用等积法求半径.跟踪演练2 (1)已知A ,B 是球O 的球面上两点,∠AOB =90°,C 为该球面上的动点.若三棱锥O -ABC 体积的最大值为36,则球O 的表面积为( ) A .36πB.64πC.144πD.256π 答案 C解析 如图所示,设球O 的半径为R ,因为∠AOB =90°, 所以S △AOB =12R 2,因为V O -ABC =V C -AOB , 而△AOB 的面积为定值,当点C 位于垂直于平面AOB 的直径端点时,三棱锥O -ABC 的体积最大, 此时V O -ABC =V C -AOB =13×12R 2×R =16R 3=36,故R =6,则球O 的表面积为S =4πR 2=144π.(2)中国古代数学经典《九章算术》系统地总结了战国、秦、汉时期的数学成就,书中将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的三棱锥称之为鳖臑,如图为一个阳马与一个鳖臑的组合体,已知PA ⊥平面ABCE ,四边形ABCD 为正方形,AD =5,ED =3,若鳖臑P -ADE 的外接球的体积为92π,则阳马P -ABCD 的外接球的表面积为________.答案 20π解析 ∵四边形ABCD 是正方形,∴AD ⊥CD ,即AD ⊥CE ,且AD =5,ED =3, ∴△ADE 的外接圆半径为r 1=AE 2=AD 2+ED 22=2,设鳖臑P -ADE 的外接球的半径为R 1, 则43πR 31=92π,解得R 1=322. ∵PA ⊥平面ADE ,∴R 1=⎝ ⎛⎭⎪⎫PA 22+r 21,可得PA 2=R 21-r 21=102,∴PA =10.正方形ABCD 的外接圆直径为2r 2=AC =2AD =10, ∴r 2=102, ∵PA ⊥平面ABCD ,∴阳马P -ABCD 的外接球半径R 2=⎝ ⎛⎭⎪⎫PA 22+r 22=5, ∴阳马P -ABCD 的外接球的表面积为4πR 22=20π.专题强化练一、单项选择题1.水平放置的△ABC 的直观图如图,其中B ′O ′=C ′O ′=1,A ′O ′=32,那么原△ABC 是一个( )A .等边三角形B .直角三角形C .三边中只有两边相等的等腰三角形D .三边互不相等的三角形 答案 A解析 AO =2A ′O ′=2×32=3,BC =B ′O ′+C ′O ′=1+1=2.在Rt△AOB 中,AB =12+32=2,同理AC =2,所以原△ABC 是等边三角形.2.(2020·全国Ⅰ)埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥.以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为( )A.5-14 B.5-12 C.5+14 D.5+12答案 C解析 设正四棱锥的底面正方形的边长为a ,高为h , 侧面三角形底边上的高(斜高)为h ′, 则由已知得h 2=12ah ′.如图,设O 为正四棱锥S -ABCD 底面的中心,E 为BC 的中点,则在Rt△SOE 中,h ′2=h 2+⎝ ⎛⎭⎪⎫a 22,∴h ′2=12ah ′+14a 2,∴⎝⎛⎭⎪⎫h ′a 2-12·h ′a -14=0, 解得h ′a =5+14(负值舍去). 3.已知一个圆锥的侧面积是底面积的2倍,记该圆锥的内切球的表面积为S 1,外接球的表面积为S 2,则S 1S 2等于( )A.12B.13C.14D.18答案 C解析如图,由已知圆锥侧面积是底面积的2倍,不妨设底面圆半径为r,l为底面圆周长,R为母线长,则12lR=2πr2,即12·2π·r·R=2πr2,解得R=2r,故∠ADC=30°,则△DEF为等边三角形,设B为△DEF的重心,过B作BC⊥DF,则DB为圆锥的外接球半径,BC为圆锥的内切球半径,则BCBD=12,∴r内r外=12,故S1S2=14.4.(2020·大连模拟)一件刚出土的珍贵文物要在博物馆大厅中央展出,如图,需要设计各面是玻璃平面的无底正四棱柱将其罩住,罩内充满保护文物的无色气体.已知文物近似于塔形,高1.8米,体积0.5立方米,其底部是直径为0.9米的圆形,要求文物底部与玻璃罩底边至少间隔0.3米,文物顶部与玻璃罩上底面至少间隔0.2米,气体每立方米1000元,则气体的费用最少为( )A.4500元B.4000元C.2880元D.2380元答案 B解析因为文物底部是直径为0.9米的圆形,文物底部与玻璃罩底边至少间隔0.3米,所以由正方形与圆的位置关系可知,底面正方形的边长为0.9+2×0.3=1.5米,又文物高 1.8米,文物顶部与玻璃罩上底面至少间隔0.2(米),所以正四棱柱的高为1.8+0.2=2(米),则正四棱柱的体积V=1.52×2=4.5(立方米).因为文物的体积为0.5立方米,所以罩内空气的体积为4.5-0.5=4(立方米),因为气体每立方米1000元,所以气体的费用最少为4×1000=4000(元),故选B.5.如图所示,在正方体ABCD -A 1B 1C 1D 1中,动点E 在BB 1上,动点F 在A 1C 1上,O 为底面ABCD 的中心,若BE =x ,A 1F =y ,则三棱锥O -AEF 的体积( )A .与x ,y 都有关B .与x ,y 都无关C .与x 有关,与y 无关D .与y 有关,与x 无关 答案 B解析 由已知得V 三棱锥O -AEF =V 三棱锥E -OAF =13S △AOF ·h (h 为点E 到平面AOF 的距离).连接OC ,因为BB 1∥平面ACC 1A 1,所以点E 到平面AOF 的距离为定值.又AO ∥A 1C 1,OA 为定值,点F 到直线AO 的距离也为定值,所以△AOF 的面积是定值,所以三棱锥O -AEF 的体积与x ,y 都无关.6.在梯形ABCD 中,∠ABC =π2,AD ∥BC ,BC =2AD =2AB =2.将梯形ABCD 绕AD 所在的直线旋转一周而形成的曲面所围成的几何体的体积为( ) A.2π3B.4π3 C.5π3D .2π 答案 C解析 如图,过点C 作CE 垂直AD 所在直线于点E ,梯形ABCD 绕AD 所在直线旋转一周而形成的旋转体是由以线段AB 的长为底面圆半径,线段BC 为母线的圆柱挖去以线段CE 的长为底面圆半径,ED 为高的圆锥,该几何体的体积为V =V 圆柱-V 圆锥=π·AB 2·BC -13·π·CE 2·DE=π×12×2-13π×12×1=5π3.7.(2020·全国Ⅰ)已知A ,B ,C 为球O 的球面上的三个点,⊙O 1为△ABC 的外接圆.若⊙O 1的面积为4π,AB =BC =AC =OO 1,则球O 的表面积为( ) A .64πB.48πC.36πD.32π 答案 A解析 如图,设圆O 1的半径为r ,球的半径为R ,正三角形ABC 的边长为a . 由πr 2=4π,得r =2, 则33a =2,a =23, OO 1=a =2 3.在Rt△OO 1A 中,由勾股定理得R 2=r 2+OO 21=22+(23)2=16,所以S 球=4πR 2=4π×16=64π.8.(2020·武汉调研)已知直三棱柱ABC -A 1B 1C 1的6个顶点都在球O 的表面上,若AB =AC =1,AA 1=23,∠BAC =2π3,则球O 的体积为( ) A.32π3B .3πC.4π3D .8π 答案 A解析 设△ABC 外接圆圆心为O 1,半径为r ,连接O 1O ,如图,易得O 1O ⊥平面ABC ,∵AB =AC =1,AA 1=23,∠BAC =2π3,∴2r =AB sin∠ACB =112=2,即O 1A =1,O 1O =12AA 1=3,∴OA =O 1O 2+O 1A 2=3+1=2,∴球O 的体积V =43π·OA 3=32π3.故选A.9.如图所示,某几何体由底面半径和高均为5的圆柱与半径为5的半球对接而成,在该封闭的几何体内部放入一个小圆柱体,且小圆柱体的上、下底面均与外层圆柱的底面平行,则小圆柱体积的最大值为( )A.2000π9B.4000π27C .81πD .128π答案 B解析 小圆柱的高分为上、下两部分,上部分的高同大圆柱的高相等,为5,下部分深入底部半球内.设小圆柱下部分的高为h (0<h <5),底面半径为r (0<r <5).由于r ,h 和球的半径构成直角三角形,即r 2+h 2=52,所以小圆柱的体积V =πr 2(h +5)=π(25-h 2)(h +5)(0<h <5),把V 看成是关于h 的函数,求导得V ′=-π(3h -5)(h +5).当0<h <53时,V ′>0,V 单调递增;当53<h <5时,V ′<0,V 单调递减.所以当h =53时,小圆柱的体积取得最大值.即V max =π⎝⎛⎭⎪⎫25-259×⎝⎛⎭⎪⎫53+5=4000π27,故选B.10.已知在三棱锥P -ABC 中,PA ,PB ,PC 两两垂直,且长度相等.若点P ,A ,B ,C 都在半径为1的球面上,则球心到平面ABC 的距离为( ) A.36B.12C.13D.32答案 C解析 ∵在三棱锥P -ABC 中,PA ,PB ,PC 两两垂直,且长度相等,∴此三棱锥的外接球即以PA ,PB ,PC 为三边的正方体的外接球O , ∵球O 的半径为1,∴正方体的边长为233,即PA =PB =PC =233,球心到截面ABC 的距离即正方体中心到截面ABC 的距离,设P 到截面ABC 的距离为h ,则正三棱锥P -ABC 的体积V =13S △ABC ×h =13S △PAB ×PC =13×12×⎝⎛⎭⎪⎫2333, ∵△ABC 为边长为263的正三角形,S △ABC =233,∴h =23, ∴球心(即正方体中心)O 到截面ABC 的距离为13.二、多项选择题11.(2020·枣庄模拟)如图,透明塑料制成的长方体容器ABCD -A 1B 1C 1D 1内灌进一些水,固定容器一边AB 于地面上,再将容器倾斜,随着倾斜度的不同,有下面几个结论,其中正确的是( )A .没有水的部分始终呈棱柱形B .水面EFGH 所在四边形的面积为定值C .随着容器倾斜度的不同,A 1C 1始终与水面所在平面平行D .当容器倾斜如图③所示时,AE ·AH 为定值 答案 AD解析 由于AB 固定,所以在倾斜的过程中,始终有CD ∥HG ∥EF ∥AB ,且平面AEHD ∥平面BFGC ,故水的部分始终呈棱柱形(三棱柱或四棱柱),且AB 为棱柱的一条侧棱,没有水的部分也始终呈棱柱形,故A 正确;因为水面EFGH 所在四边形,从图②,图③可以看出,EF ,GH 长度不变,而EH ,FG 的长度随倾斜度变化而变化,所以水面EFGH 所在四边形的面积是变化的,故B 错;假设A 1C 1与水面所在的平面始终平行,又A 1B 1与水面所在的平面始终平行,则长方体上底面A 1B 1C 1D 1与水面所在的平面始终平行,这就与倾斜时两个平面不平行矛盾,故C 错;水量不变时,棱柱AEH -BFG 的体积是定值,又该棱柱的高AB 不变,且V AEH -BFG =12·AE ·AH ·AB ,所以AE ·AH =2V AEH -BFGAB,即AE ·AH 是定值,故D 正确.12.(2020·青岛检测)已知四棱台ABCD -A 1B 1C 1D 1的上、下底面均为正方形,其中AB =22,A 1B 1=2,AA 1=BB 1=CC 1=DD 1=2,则下列叙述正确的是( )A .该四棱台的高为 3B .AA 1⊥CC 1C .该四棱台的表面积为26D .该四棱台外接球的表面积为16π 答案 AD解析 将四棱台补为如图所示的四棱锥P -ABCD ,并取E ,E 1分别为BC ,B 1C 1的中点,记四棱台上、下底面中心分别为O 1,O ,连接AC ,BD ,A 1C 1,B 1D 1,A 1O ,OE ,OP ,PE .由条件知A 1,B 1,C 1,D 1分别为四棱锥的侧棱PA ,PB ,PC ,PD 的中点,则PA =2AA 1=4,OA =2,所以OO 1=12PO =12PA 2-OA 2=3,故该四棱台的高为3,故A 正确;由PA =PC =4,AC =4,得△PAC 为正三角形,则AA 1与CC 1所成角为60°,故B 不正确;四棱台的斜高h ′=12PE =12PO 2+OE2=12×232+22=142,所以该四棱台的表面积为(22)2+(2)2+4×2+222×142=10+67,故C 不正确;易知OA 1=OB 1=OC 1=OD 1=O 1A 21+O 1O 2=2=OA =OB =OC =OD ,所以O 为四棱台外接球的球心,所以外接球的半径为2,外接球表面积为4π×22=16π,故D 正确.三、填空题13.(2020·浙江)已知圆锥的侧面积(单位:cm 2)为2π,且它的侧面展开图是一个半圆,则这个圆锥的底面半径(单位:cm)是________. 答案 1解析 如图,设圆锥的母线长为l ,底面半径为r ,则圆锥的侧面积S 侧=πrl =2π, 即r ·l =2.由于侧面展开图为半圆, 可知12πl 2=2π,可得l =2,因此r =1.14.在如图所示的斜截圆柱中,已知圆柱的底面直径为40cm ,母线长最短50cm ,最长80cm ,则斜截圆柱的侧面面积S =________cm 2.答案 2600π解析 将题图所示的相同的两个几何体对接为圆柱,则圆柱的侧面展开图为矩形.由题意得所求侧面展开图的面积S =12×(π×40)×(50+80)=2600π(cm 2).15.已知球O 与棱长为4的正四面体的各棱相切,则球O 的体积为________. 答案823π 解析 将正四面体补成正方体,则正四面体的棱为正方体面上的对角线,因为正四面体的棱长为4,所以正方体的棱长为2 2.因为球O 与正四面体的各棱都相切,所以球O 为正方体的内切球,即球O 的直径2R =22,则球O 的体积V =43πR 3=823π.16.(2020·新高考全国Ⅰ)已知直四棱柱ABCD -A 1B 1C 1D 1的棱长均为2,∠BAD =60°.以D 1为球心,5为半径的球面与侧面BCC 1B 1的交线长为________. 答案2π2解析 如图,设B 1C 1的中点为E ,球面与棱BB 1,CC 1的交点分别为P ,Q , 连接DB ,D 1B 1,D 1P ,D 1E ,EP ,EQ ,由∠BAD =60°,AB =AD ,知△ABD 为等边三角形, ∴D 1B 1=DB =2,∴△D 1B 1C 1为等边三角形, 则D 1E =3且D 1E ⊥平面BCC 1B 1,∴E 为球面截侧面BCC 1B 1所得截面圆的圆心, 设截面圆的半径为r , 则r =R 2球-D 1E 2=5-3= 2. 又由题意可得EP =EQ =2,∴球面与侧面BCC 1B 1的交线为以E 为圆心的圆弧PQ . 又D 1P =5,∴B 1P =D 1P 2-D 1B 21=1, 同理C 1Q =1,∴P ,Q 分别为BB 1,CC 1的中点, ∴∠PEQ =π2,知PQ 的长为π2×2=2π2,即交线长为2π2.。
第1页共5页2024年高考数学总复习:立体几何中的动态问题[解题策略]立体几何中的“动态”问题就变化起因而言大致可分为两类:一是平移;二是旋转.就所求变量而言可分为三类:一是相关线、面、体的测度;二是角度;三是距离.立体几何动态问题的解决需要较高的空间想象能力与化归处理能力,在各省市的高考选择题与填空题中也时有出现.在解“动态”立体几何题时,如果我们能努力探寻运动过程中“静”的一面,动中求静,往往能以静制动、克难致胜.1.去掉枝蔓见本质——大道至简在解决立体几何中的“动态”问题时,需从复杂的图形中分化出最简单的具有实质性意义的点、线、面,让几何图形的实质“形销骨立”,即从混沌中找出秩序,是解决“动态”问题的关键.例1如图1,直线l ⊥平面α,垂足为O .正方体ABCD -A 1B 1C 1D 1的棱长为2.点A 是直线l 上的动点,点B 1在平面α内,则点O 到线段CD 1中点P 的距离的最大值为________.图1答案2+2解析从图形分化出4个点O ,A ,B 1,P ,其中△AOB 1为直角三角形,固定AOB 1,点P 的轨迹是在与AB 1垂直的平面上且以AB 1的中点Q 为圆心的圆,从而OP ≤OQ +QP =12AB 1+2=2+2,当且仅当OQ ⊥AB 1,且点O ,Q ,P 共线时取到等号,此时直线AB 1与平面α成45°角.2.极端位置巧分析——穷妙极巧在解决立体几何中的“动态”问题时,对于移动问题,由图形变化的连续性,穷尽极端特殊之要害,往往能直取答案.例2在正四面体A -BCD 中,E 为棱BC 的中点,F 为直线BD 上的动点,则平面AEF 与平面ACD 所成二面角的正弦值的取值范围是________.答案1解析本例可用极端位置法来加以分析.。
求体积的方法:
一、已知三视图求体积: (一)、单一型
例1 (1)(2011广东理6)如图,某几何体的正视图(主视图)是平行四边形,侧视图(左视图)和俯视图都是矩形,则该几何体的体积为( ).
A .18 3
B .12 3
C .9 3
D .63
[审题视点] 根据三视图还原几何体的形状,根据图中的数据和几何体的体积公式求解. 答案C 解析 该几何体为一个斜棱柱,其直观图如图所示,
由题知该几何体的底面是边长为3的正方形,高为3,
故V =3×3×3=9 3.
以三视图为载体考查几何体的体积,解题的关键是根据
三视图想象原几何体的形状构成,并从三视图中发现几何体中各
元素间的位置关系及数量关系,然后在直观图中求解.
(2)(2013重庆高考理5)某几何体的三视图如图所示,则该几何
体的体积为( )
A 、5603
B 、5803
C 、200
D 、240 【答案】:C
变式1 (1)(2012浙江理11)已知某三棱锥的三视图
(单位:cm )如图所示,则该三棱锥的体积等于
________cm 3.
(2)(2013届成都二诊理5)一个几何体的三视图如图所示,
其中正视图是一个正三角形,则该几何体的体积为( )
(二)组合型
例2 (1)(2013新课标I 卷8)某几何体的三视图如图所示,则该几
何体的体积为
A .168π+
B .88π+
C .1616π+
D .816π+
【命题意图】本题主要考查简单组合体的三视图及简单组合体体积公式,
是中档题.
【解析】由三视图知,该几何体为放到的半个圆柱底面半径为2高为4,
上边放一个长为4宽为2高为2长方体,故其体积为
21244222
π⨯⨯+⨯⨯ =168π+,故选A . (2)(2013辽宁理13)某几何体的三视图如图所示,则该几何
体的体积
是 .
【答案】1616π-
【解析】直观图是圆柱中抽出正四棱柱。
V =222424π⋅-⋅=1616π-
变式2 (1)(12东莞模拟)某几何体的三视图如图所示,
则该几何体的体积等于( ).
π π π+8 D .12 π
答案A 解析 由三视图可知,该几何体是底面半径为2,
高为2的圆柱和半径为1的球的组合体,则该几何体的
体积为π×22×2+43π=283
π.
(2)(2013成都一诊理5)一空间几何体的三视图如图所示,
图中各线段旁的数字表示该线段的长度,则该几何体的体积是 .
(A) 30 (B) 27
(C) 35 (D)36
答案A
二、已知几何体求体积:
(一)分割求和法
1、如图所示,在多面体ABCDEF 中,已知面ABCD 是边长为 3的正方形,//EF AB ,32
EF =,EF 与面AC 的距离为2, 则该多面体的体积为 .
(二)补形法
把不规则形体补成规则形体,不熟悉形体补成熟悉形体,便于计算其体积.
(三)等体积法
4、如图所示,在棱台111A B C ABC -中,
1111334,16B A B C C ABC V cm V cm --==,
求此三棱台的体积。
变式:
1.如图,一个三棱柱形容器中盛有水,且侧棱18AA =. 若11AA B B 水平放置时,液面恰好过1111,,,AC BC AC B C 的中点,则当底面ABC 水平放置时,液面的高为多少
解:当11AA B B 水平放置时,纵截面中水液面积占13144
-=, 所以水液体积与三棱柱体积比为34
. 当底面ABC 水平放置时,液面高度为3864
⨯=. 点评:容器中水的体积不会减少,无论是竖着还是横着,正是由于这种等积思想,才能寻找到不用计算体积,而通过体积比进而化为高度比. 我们可以练习这样一个题:三棱锥V —ABC 的底面ABC 的面积为12,顶点V 到底面ABC 的距离为3,侧面VAB 的面积为9,则点C 到侧面VAB 的距离为 .(答案:4)
2.四棱柱1234ABCD A B C D -中,E F 、分别为AB AD 、的中点,平面11ED B F 将四棱柱分成体积为12V V 、的两部分,那么12V V :=___________
解:
3、如图所示,三棱锥S ABC -的三条侧棱两两垂直,且5,4,3SA SB SC ===,D 为AB 的中点,E 为AC 的中点,求四棱锥S EDBC -的体积.
解:。