计算方法李桂成习题集答案
- 格式:doc
- 大小:3.29 MB
- 文档页数:51
1.*x 为精确值x 的近似值;()**x f y =为一元函数()x f y =1的近似值;()**,*y x f y =为二元函数()y x f y ,2=的近似值,请写出下面的公式:**e x x =-:***r x xe x -=()()()*'1**y f x x εε≈⋅ ()()()()'***1**r r x f x y x f x εε≈⋅()()()()()**,**,*2**f x y f x y y x y x yεεε∂∂≈⋅+⋅∂∂()()()()()****,***,**222r f x y e x f x y e y y x y y y ε∂∂≈⋅+⋅∂∂ 2、 计算方法实际计算时,对数据只能取有限位表示,这时所产生的误差叫 舍入误差 。
3、 分别用2.718281,2.718282作数e 的近似值,则其有效数字分别有6 位和7 1.73≈(三位有效数字)-211.73 10 2≤⨯。
4、 设121.216, 3.654x x ==均具有3位有效数字,则12x x 的相对误差限为 0.0055 。
5、 设121.216, 3.654x x ==均具有3位有效数字,则12x x +的误差限为 0.01 。
6、 已知近似值2.4560A x =是由真值T x 经四舍五入得到,则相对误差限为 0.0000204 .7、 递推公式,⎧⎪⎨⎪⎩0n n-1y =y =10y -1,n =1,2,如果取0 1.41y =≈作计算,则计算到10y 时,误差为8110 2⨯;这个计算公式数值稳定不稳定 不稳定 . 8、 精确值 14159265.3*=π,则近似值141.3*1=π和1415.3*2=π分别有 3 位和 4 位有效数字。
9、 若*2.71828x e x =≈=,则x 有 6 位有效数字,其绝对误差限为1/2*10-5。
10、 设x*的相对误差为2%,求(x*)n的相对误差0.02n11、近似值*0.231x =关于真值229.0=x 有( 2 )位有效数字;12、计算方法主要研究( 截断 )误差和( 舍入 )误差;13、为了使计算 ()()2334610111y x x x =++---- 的乘除法次数尽量地少,应将该表达式改写为11,))64(3(10-=-++=x t t t t y ,为了减少舍入误差,应将表达式19992001-改写为199920012+。
习题一1.什么叫数值方法?数值方法的基本思想及其优劣的评价标准如何?数值方法是利用计算机求解数学问题近似解的方法xmax x i , x ( x 1 , x 2 , x n ) T R n 及 A nR n n .2.试证明maxa ij , A ( a ij )1 in1 i n1j证明:( 1)令 x rmaxxi1 i nnp 1/ pnx ip1/ pnx r p 1/ p1/ pxlim(x i lim x r [( ]lim x r [limx r))() ]x r npi 1pi 1 x rpi 1 xrp即 xx rnp1/ pnp 1/ p又 lim(lim(x rx i)x r)pi 1pi 1即 xx rxx r⑵ 设 x(x 1,... x n )0 ,不妨设 A 0 ,nnnn令maxaijAxmaxaijx jmaxa ij xjmax x i maxaijx1 i nj 11 i nj 11 i nj 11 i n1 i nj 1即对任意非零 xR n,有Axx下面证明存在向量 x 00 ,使得Ax 0,x 0n( x 1,... x n )T 。
其中 x j设j a i 0 j ,取向量 x 0sign(a i 0 j )( j 1,2,..., n) 。
1nn显然x 01 且 Ax 0 任意分量为ai 0 jx jai 0 j,i 1i1nn故有Ax 0maxaijx jai 0 j即证。
ii 1j 13. 古代数学家祖冲之曾以355作为圆周率的近似值,问此近似值具有多少位有效数字?113解: x325 &0.314159292 101133xx355 0.266 10 6 0.5 101 7 该近似值具有 7 为有效数字。
4. 若 T(h)逼近其精确值T 的截断误差为R(T ) : T (h) T A i h2 ii 1T0 ( h) T (h) 其中,系数 A i与h无关。
第一章 误差1 问3.142,3.141,722分别作为π的近似值各具有几位有效数字?分析 利用有效数字的概念可直接得出。
解 π=3.141 592 65…记x 1=3.142,x 2=3.141,x 3=722.由π- x 1=3.141 59…-3.142=-0.000 40…知3411110||1022x π--⨯<-≤⨯ 因而x 1具有4位有效数字。
由π- x 2=3.141 59…-3.141=-0.000 59…知 2231021||1021--⨯≤-<⨯x π因而x 2具有3位有效数字。
由π-722=3.141 59 …-3.142 85…=-0.001 26…知231021|722|1021--⨯≤-<⨯π因而x 3具有3位有效数字。
2 已知近似数x*有两位有效数字,试求其相对误差限。
分析 本题显然应利用有效数字与相对误差的关系。
解 利用有效数字与相对误差的关系。
这里n=2,a 1是1到9之间的数字。
%5101211021|*||*||)(|1211*=⨯⨯≤⨯≤-=+-+-n ra x x x x ε3 已知近似数的相对误差限为0.3%,问x*至少有几位有效数字? 分析 本题利用有效数字与相对误差的关系。
解 a 1是1到9间的数字。
1112*10)1(2110)19(21102110003%3.0)(--⨯+≤⨯+⨯=⨯<=a x r ε 设x*具有n 位有效数字,令-n+1=-1,则n=2,从而x*至少具有2位有效数字。
4 计算sin1.2,问要取几位有效数字才能保证相对误差限不大于0.01%。
分析 本题应利用有效数字与相对误差的关系。
解 设取n 位有效数字,由sin1.2=0.93…,故a 1=9。
411*10%01.01021|*||*||)(-+-=≤⨯≤-=n r a x x x x ε解不等式411101021-+-≤⨯n a 知取n=4即可满足要求。
计算方法本题库及答案1. 问题:请解释什么是数值稳定性,并给出一个例子。
答案:数值稳定性是指在数值计算过程中,当输入数据或初始条件发生小的变化时,计算结果的变化也很小。
例如,在求解线性方程组时,如果系数矩阵是病态的(即条件数很大),那么即使输入数据有微小的变化,解也可能发生很大的变化,这表明该问题在数值上是不稳定的。
2. 问题:请简述牛顿迭代法的基本原理,并说明其优缺点。
答案:牛顿迭代法是一种求解非线性方程f(x)=0的迭代方法。
基本原理是利用线性逼近f(x)≈f(x0)+f'(x0)(x-x0),将非线性问题转化为线性问题求解。
迭代公式为x1 = x0 - f(x0)/f'(x0)。
优点是收敛速度快,通常为二次收敛;缺点是要求函数可导,且导数容易计算,且初始猜测值需要接近真实解。
3. 问题:什么是共轭梯度法?它在解决哪些问题时特别有效?答案:共轭梯度法是一种用于求解大规模稀疏正定线性方程组的迭代算法。
它特别有效于当系数矩阵是对称正定的,且直接求解方法(如高斯消元法)因计算量过大而不可行时。
共轭梯度法利用正交性质来构造一系列梯度方向的线性组合,以逼近解。
4. 问题:请解释什么是数值分析中的病态问题,并给出一个例子。
答案:病态问题是指那些条件数非常大的问题,即对输入数据的微小变化非常敏感,导致数值解的误差非常大。
例如,求解线性方程组Ax=b时,如果系数矩阵A的行列式非常接近于零,那么即使是很小的b的变化也会导致解x的巨大变化,这就是一个病态问题。
5. 问题:什么是插值和拟合?它们之间有何区别?答案:插值是指在给定一组数据点的情况下,找到一个函数,使其精确地通过这些数据点。
拟合则是找到一个函数,使其尽可能地接近这些数据点,但不一定通过每一个点。
插值通常要求函数在所有数据点上都有相同的值,而拟合则是最小化数据点与函数值之间的误差。
6. 问题:请解释什么是数值积分,并给出一个常见的数值积分方法。
《计算方法》习题答案 第一章 数值计算中的误差 1.什么是计算方法?(狭义解释)答:计算方法就是将所求的的数学问题简化为一系列的算术运算和逻辑运算,以便在计算机上编程上机,求出问题的数值解,并对算法的收敛性、稳定性和误差进行分析、计算。
2.一个实际问题利用计算机解决所采取的五个步骤是什么?答:一个实际问题当利用计算机来解决时,应采取以下五个步骤:实际问题→建立数学模型→构造数值算法→编程上机→获得近似结果4.利用秦九韶算法计算多项式4)(53-+-=x x x x P 在3-=x 处的值,并编程获得解。
解:400)(2345-+⋅+-⋅+=x x x x x x P ,从而 1 0 -1 0 1 -4 -3 -3 9 -24 72 -219 1 -3 8 -24 73 -223所以,多项式4)(53-+-=x x x x P 在3-=x 处的值223)3(-=-P 。
5.叙述误差的种类及来源。
答:误差的种类及来源有如下四个方面: (1)模型误差:数学模型是对实际问题进行抽象,忽略一些次要因素简化得到的,它是原始问题的近似,即使数学模型能求出准确解,也与实际问题的真解不同,我们把数学模型与实际问题之间存在的误差称为模型误差。
(2)观测误差:在建模和具体运算过程中所用的一些原始数据往往都是通过观测、实验得来的,由于仪器的精密性,实验手段的局限性,周围环境的变化以及人们的工作态度和能力等因素,而使数据必然带有误差,这种误差称为观测误差。
(3)截断误差:理论上的精确值往往要求用无限次的运算才能得到,而实际运算时只能用有限次运算的结果来近似,这样引起的误差称为截断误差(或方法误差)。
(4)舍入误差:在数值计算过程中还会用到一些无穷小数,而计算机受机器字长的限制,它所能表示的数据只能是一定的有限数位,需要把数据按四舍五入成一定位数的近似的有理数来代替。
这样引起的误差称为舍入误差。
6.掌握绝对误差(限)和相对误差(限)的定义公式。
习 题 一3.已知函数y =4, 6.25,9x x x ===处的函数值,试通过一个二次插值函解:0120124, 6.25,9;2, 2.5,3y x x x y y y =======由题意 (1) 采用Lagrange插值多项式220()()j j j y L x l x y ==≈=∑27020112012010*********()|()()()()()()()()()()()()(7 6.25)(79)(74)(79)(74)(7 6.25)2 2.532.255 2.25 2.75 2.7552.6484848x y L x x x x x x x x x x x x x y y y x x x x x x x x x x x x ==≈------=++------------=⨯+⨯+⨯⨯-⨯⨯= 其误差为(3)25(3)25(3)2[4,9]2()(7)(74)(7 6.25)(79)3!3()83max |()|40.0117281|(7)|(4.5)(0.01172)0.008796f R f x x f x R ξ--=---==<∴<=又则(2)采用Newton插值多项式2()y N x =≈ 根据题意作差商表:224(7)2(74)()(74)(7 6.25) 2.64848489495N =+⨯-+-⨯-⨯-≈4. 设()()0,1,...,k f x x k n ==,试列出()f x 关于互异节点()0,1,...,i x i n =的Lagrange 插值多项式。
注意到:若1n +个节点()0,1,...,i x i n =互异,则对任意次数n ≤的多项式()f x ,它关于节点()0,1,...,i x i n =满足条件(),0,1,...,i i P x y i n ==的插值多项式()P x 就是它本身。
可见,当k n ≤时幂函数()(0,1,...,)kf x x k n ==关于1n +个节点()0,1,...,i x i n =的插值多项式就是它本身,故依Lagrange 公式有()00(),0,1,...,nn n k kk i j j j j j i j ii jx x x l x x x k n x x ===≠-=≡=-∑∑∏特别地,当0k =时,有()0001nn n ij j j i j ii jx x l x x x ===≠-=≡-∑∑∏而当1k =时有()000nnn ij j j j j i j ii jx x x l x x x x x ===≠⎛⎫- ⎪=≡ ⎪- ⎪⎝⎭∑∑∏ 5.依据下列函数表分别建立次数不超过3的Lagrange 插值多项式和Newton 插值多项式,并验证插值多项式的唯一性。
习题一1.什么叫数值方法?数值方法的基本思想及其优劣的评价标准如何? 数值方法是利用计算机求解数学问题近似解的方法max X i , x (为必,X n )T R n 及 || A1 i n1证明:F 面证明存在向量x o 0 ,使得X onn显然||x o|| 1且Ax o 任意分量为a i o j X ja o j ,i 1i 1nmax a ij ,A (a ij ) R n n | n j 12. 试证明|xp /xrmxrxmH pp /xrX rX r设 X (X i ,...X n )0 , 不妨设令 max1 i n ja j Ax max 1 i nj 1a ij X j max1 i na ijX jmax X 1 i n max 1 i nj 1a ij即对任意非零X R n ,有弊a i o j,取向量 X o (X i ,...X n )T 。
其中 X jsign(a i o j )( j 1,2,..., n)。
故有Ax onnmaxa ij X ja i o jii 1j 13553.古代数学家祖冲之曾以作为圆周率1133251解:x & 0.314159292 1o即证。
的近似值,问此近似值具有多少位有效数字?3551130.266 10 6 0.5 101 7该近似值具有7为有效数字。
(1)令 x r max x i1 i nm4. 若T(h)逼近其精确值T 的截断误差为R(T): T(h) TAh 2ii 1T o (h) T(h)其中,系数A i 与h 无关。
试证明由4m T mi (—) T m l (h)Tm(h) ----------- --------------- , m 1,2,4 1所定义的T 的逼近序列{T m (h)}的误差为T m (h) TA (m)h 2m 2,i 1其中诸A (m )是与h 无关的常数。
证明:当m=0时 左边 T (h )-T= i h 2i 右边i 1设m=k 时等式成立,即T k (h) -T=(k)h 2k 2ii 1当m=k+1时(k)(h)2(k1) 2i 即证。