第2章 测量理论分析与数据处理
- 格式:ppt
- 大小:1.52 MB
- 文档页数:136
第二章2-171因此无法说明测量数据中是否存在系统误差。
2通过马利科夫准则进行校核:△=0.4—(—0.4)=0.8因此,有马利科夫准则,当△显著不为零时,则有理由认为测量列存在线性系统误差。
3通过阿卑—赫梅特准则进行校核:u=0.3056因此,由u<= 0.789936可知,本次测量不一定存在周期性的系统误差。
2-19则t=1.404由ν=10+10—2=18及取α=0.05,查t分布表(书中附录表3),得tα=2.1因∣t∣=1.404< tα=2.1故无根据怀疑两组间有系统误差。
2-22解:(1) 3σ准则(莱以特准则)x̅=28.57067σ=0.2646153σ= 0.793844根据3σ准则(莱以特准则)第四测得值的残余误差∣v4∣=0.9493> 0.793844即它含有粗大误差,故将此测得值剔除。
再根据剩下的14个测得值重新计算,得x̅′=28.50286σ==0.0336113σ′= 0.100832由上表知,第十四测得值的残余误差∣v14∣=0.1029> 0.1008即它含有粗大误差,故将此测得值剔除。
再根据剩下的14个测得值重新计算,得x̅′′=28.51σ′′=0.016583σ′′=0.04975剩下的13个测得值的残余误差满足∣vi′′∣<3σ′′故可认为这些测量值不再含有粗大误差。
(2) 罗曼诺夫斯基准则首先怀疑第四测得值含有粗大误差,将其剔除。
然后根据剩下的14个测量值计算平均值和标准差,得x̅=28.50286σ=0.033611选取显著度α=0.05,已知n=15,查表得K(15,0.05)=2.24Kσ=2.240.033611=0.07528774因∣x4—x̅∣=0.90117>0.0752877故第四测量值含有粗大误差,应予剔除。
(3) 格罗布准则由3σ准则计算过程中表格知x̅=28.57067σ=0.264615按测得值的大小,顺序排列的x(1)=28.4,x(15)= 29.52进有两测得值x(1)、x(15)可怀疑,但由于x̅—x(1)=28.57067-28.4=-0.1707x̅—x(15)=28.57067-29.52=0.9493 故先怀疑x(15)是否含有粗大误差计算g(11)=x̅−x(15)σ=3.587查表得g(0)(15,0.05)=2.41则g(11)>g(0)故将第四测得值予以剔除,然后将剩下14个值再一次进行检验分析。
第二章实验数据误差分析和数据处理第一节实验数据的误差分析由于实验方法和实验设备的不完善,周围环境的影响,以及人的观察力,测量程序等限制,实验观测值和真值之间,总是存在一定的差异。
人们常用绝对误差、相对误差或有效数字来说明一个近似值的准确程度。
为了评定实验数据的精确性或误差,认清误差的来源及其影响,需要对实验的误差进行分析和讨论。
由此可以判定哪些因素是影响实验精确度的主要方面,从而在以后实验中,进一步改进实验方案,缩小实验观测值和真值之间的差值,提高实验的精确性。
一、误差的基本概念测量是人类认识事物本质所不可缺少的手段。
通过测量和实验能使人们对事物获得定量的概念和发现事物的规律性。
科学上很多新的发现和突破都是以实验测量为基础的。
测量就是用实验的方法,将被测物理量与所选用作为标准的同类量进行比较,从而确定它的大小。
1.真值与平均值真值是待测物理量客观存在的确定值,也称理论值或定义值。
通常真值是无法测得的。
若在实验中,测量的次数无限多时,根据误差的分布定律,正负误差的出现几率相等。
再经过细致地消除系统误差,将测量值加以平均,可以获得非常接近于真值的数值。
但是实际上实验测量的次数总是有限的。
用有限测量值求得的平均值只能是近似真值,常用的平均值有下列几种:(1) 算术平均值 算术平均值是最常见的一种平均值。
设1x 、2x 、……、n x 为各次测量值,n 代表测量次数,则算术平均值为nx n x x x x ni in ∑==+⋅⋅⋅++=121(2-1)(2) 几何平均值 几何平均值是将一组n 个测量值连乘并开n 次方求得的平均值。
即n nx x x x ⋅⋅⋅⋅=21几(2-2)(3)均方根平均值 nxnxx x x ni in∑==+⋅⋅⋅++=1222221均(2-3)(4) 对数平均值 在化学反应、热量和质量传递中,其分布曲线多具有对数的特性,在这种情况下表征平均值常用对数平均值。
设两个量1x 、2x ,其对数平均值21212121lnln ln x x x x x x x x x -=--=对(2-4)应指出,变量的对数平均值总小于算术平均值。
《电子测量技术》课程标准课程名称:电子测量技术 Electronic Measurement Technology课程性质:专业选修学分:2.5总学时:45,理论学时:36,实验(上机)学时:9适用专业:电子信息技术先修课程:模拟电子技术、数字电子技术、信号与系统、微机原理一、教学目的与要求《电子测量技术》是电子信息、自动控制、测量仪器等专业的通用技术基础课程。
包括电子测量的基本原理、测量误差分析和实际应用,主要电子仪器的工作原理,性能指标,电参数的测试方法,该领域的最新发展等。
电子测量技术综合应用了电子、计算机、通信、控制等技术。
通过本课程的学习,培养学生具有电子测量技术和仪器方面的基础知识和应用能力;通过本课程的学习,可开拓学生思路,培养综合应用知识能力和实践能力;培养学生严肃认真,求实求真的科学作风,为后续课程的学习和从事研发工作打下基础。
二、教学内容与学时分配三、各章节主要知识点与教学要求第1章序论第一节测量的基本概念一、测量的定义二、测量的意义三、测量技术第二节计量的基本概念一、计量二、单位和单位制三、计量标准四、测量标准的传递第三节电子测量技术的内容,特点和方法一、电子测量二、电子测量的内容和特点三、电子测量的一般方法第四节电子测量的基本技术一、电子测量的变换技术二、电子测量的放大技术三、电子测量的比较技术四、电子测量的处理技术五、电子测量的显示技术第五节本课程的任务重点:测量的基本概念、基本要素;单位和单位制,基准和标准,量值的传递准则。
难点:量值的传递准则教学要求:理解测量的基本概念、基本要素,测量误差的基本概念和计算方法。
理解计量的基本概念,单位和单位制,基准和标准,量值的传递准则。
理解测量的基本原理,信息获取原理和量值比较原理。
理解电子测量的实现原理:变换、比较、处理、显示技术。
第2章测量误差理论与数据处理第一节测量误差的基本概念一、有关误差的基本概念二、测量误差的基本表示方法第二节测量误差的来源与分类一、测量误差的来源二、测量误差的分类第三节测量误差的分析与处理一、随机误差的分析与处理二、系统误差的判断及消除方法三、粗大误差的分析与处理第四节测量误差的合成与分配一、测量误差的合成二、测量测量不确定度及其合成三、误差分配及最佳测量方案第五节测量数据处理一、有效数字处理二、测量结果的处理三、最小二乘法与回归分析重点:测量误差的分类估计和处理,系统误差和粗大误差的判断及处理,不确定度的评定方法。