金山区第二中学2018-2019学年高二上学期第二次月考试卷数学
- 格式:doc
- 大小:607.50 KB
- 文档页数:15
金山区二中2018-2019学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1. 已知x >0,y >0, +=1,不等式x+y ≥2m ﹣1恒成立,则m 的取值范围( )A .(﹣∞,]B .(﹣∞,] C .(﹣∞,] D .(﹣∞,]2. 将正方形的每条边8等分,再取分点为顶点(不包括正方形的顶点),可以得到不同的三角形个数为( ) A .1372 B .2024 C .3136 D .44953. 已知点P 是双曲线C :22221(0,0)x y a b a b-=>>左支上一点,1F ,2F 是双曲线的左、右两个焦点,且12PF PF ⊥,2PF 与两条渐近线相交于M ,N 两点(如图),点N 恰好平分线段2PF ,则双曲线的离心率是( )A.5B.2 D.2【命题意图】本题考查双曲线的标准方程及其性质等基础知识知识,意在考查运算求解能力.4. 已知某市两次数学测试的成绩ξ1和ξ2分别服从正态分布ξ1:N 1(90,86)和ξ2:N 2(93,79),则以下结论正确的是( )A .第一次测试的平均分比第二次测试的平均分要高,也比第二次成绩稳定B .第一次测试的平均分比第二次测试的平均分要高,但不如第二次成绩稳定C .第二次测试的平均分比第一次测试的平均分要高,也比第一次成绩稳定D .第二次测试的平均分比第一次测试的平均分要高,但不如第一次成绩稳定 5. 己知y=f (x )是定义在R 上的奇函数,当x <0时,f (x )=x+2,那么不等式2f (x )﹣1<0的解集是( )A .B .或C .D .或6. 在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若(acosB+bcosA )=2csinC ,a+b=8,且△ABC 的面积的最大值为4,则此时△ABC 的形状为( )A .等腰三角形B .正三角形C .直角三角形D .钝角三角形7. ∃x ∈R ,x 2﹣2x+3>0的否定是( )A .不存在x ∈R ,使∃x 2﹣2x+3≥0B .∃x ∈R ,x 2﹣2x+3≤0C .∀x ∈R ,x 2﹣2x+3≤0D .∀x ∈R ,x 2﹣2x+3>08. 函数y=|a|x ﹣(a ≠0且a ≠1)的图象可能是( )A .B .C .D .9. 已知双曲线的渐近线与圆x 2+(y ﹣2)2=1相交,则该双曲线的离心率的取值范围是( )A .(,+∞) B .(1,) C .(2.+∞) D .(1,2)10.设S n 为等差数列{a n }的前n 项和,已知在S n 中有S 17<0,S 18>0,那么S n 中最小的是( ) A .S 10 B .S 9C .S 8D .S 711.抛物线x=﹣4y 2的准线方程为( )A .y=1B .y=C .x=1D .x=12.已知集合{2,1,1,2,4}A =--,2{|log ||1,}B y y x x A ==-∈,则A B =( )A .{2,1,1}--B .{1,1,2}-C .{1,1}-D .{2,1}--【命题意图】本题考查集合的交集运算,意在考查计算能力.二、填空题13.若正数m 、n 满足mn ﹣m ﹣n=3,则点(m ,0)到直线x ﹣y+n=0的距离最小值是 .14.已知函数322()7f x x ax bx a a =++--在1x =处取得极小值10,则ba 的值为 ▲ .15.设是空间中给定的个不同的点,则使成立的点的个数有_________个.16.正方体ABCD ﹣A 1B 1C 1D 1中,平面AB 1D 1和平面BC 1D 的位置关系为 .17.已知关于的不等式20x ax b ++<的解集为(1,2),则关于的不等式210bx ax ++>的解集 为___________.18.如图,一船以每小时20km 的速度向东航行,船在A 处看到一个灯塔B 在北偏东60°方向,行驶4小时后,船到达C 处,看到这个灯塔在北偏东15°方向,这时船与灯塔间的距离为 km .三、解答题19.【盐城中学2018届高三上第一次阶段性考试】已知函数f (x )=(2﹣a )(x ﹣1)﹣2lnx ,g (x )=1x xe -.(a ∈R ,e 为自然对数的底数)(Ⅰ)当a=1时,求f (x )的单调区间; (Ⅱ)若函数f (x )在10,2⎛⎫⎪⎝⎭上无零点,求a 的最小值; (Ⅲ)若对任意给定的x 0∈(0,e],在(0,e]上总存在两个不同的x i (i=1,2),使得f (x i )=g (x 0)成立,求a 的取值范围.2020142015CBA 5场比赛中的投篮次数及投中次数如下表所示:3分球的平均命中率;(2)视这5场比赛中2分球和3分球的平均命中率为相应的概率.假设运动员在第6场比赛前一分钟分别获得1次2分球和1次3分球的投篮机会,该运动员在最后一分钟内得分ξ分布列和数学期望.21.已知函数f(x)=2cos2ωx+2sinωxcosωx﹣1,且f(x)的周期为2.(Ⅰ)当时,求f(x)的最值;(Ⅱ)若,求的值.22.(本小题满分12分)在多面体ABCDEFG中,四边形ABCD与CDEF均为正方形,CF⊥平面ABCD,==.BG⊥平面ABCD,且24AB BG BH(1)求证:平面AGH⊥平面EFG;--的大小的余弦值.(2)求二面角D FG E23.设函数f(x)=lnx+a(1﹣x).(Ⅰ)讨论:f(x)的单调性;(Ⅱ)当f(x)有最大值,且最大值大于2a﹣2时,求a的取值范围.24.设函数f(x)=x+ax2+blnx,曲线y=f(x)过P(1,0),且在P点处的切线斜率为2 (1)求a,b的值;(2)设函数g(x)=f(x)﹣2x+2,求g(x)在其定义域上的最值.金山区二中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1.【答案】D【解析】解:x>0,y>0,+=1,不等式x+y≥2m﹣1恒成立,所以(x+y)(+)=10+≥10=16,当且仅当时等号成立,所以2m﹣1≤16,解得m;故m的取值范围是(﹣];故选D.2.【答案】C【解析】【专题】排列组合.【分析】分两类,第一类,三点分别在三条边上,第二类,三角形的两个顶点在正方形的一条边上,第三个顶点在另一条边,根据分类计数原理可得.【解答】解:首先注意到三角形的三个顶点不在正方形的同一边上.任选正方形的三边,使三个顶点分别在其上,有4种方法,再在选出的三条边上各选一点,有73种方法.这类三角形共有4×73=1372个.另外,若三角形有两个顶点在正方形的一条边上,第三个顶点在另一条边上,则先取一边使其上有三角形的两个顶点,有4种方法,再在这条边上任取两点有21种方法,然后在其余的21个分点中任取一点作为第三个顶点.这类三角形共有4×21×21=1764个.综上可知,可得不同三角形的个数为1372+1764=3136.故选:C.【点评】本题考查了分类计数原理,关键是分类,还要结合几何图形,属于中档题.3.【答案】A.【解析】4.【答案】C【解析】解:∵某市两次数学测试的成绩ξ1和ξ2分别服从正态分布ξ1:N1(90,86)和ξ2:N2(93,79),∴μ1=90,▱1=86,μ2=93,▱2=79,∴第二次测试的平均分比第一次测试的平均分要高,也比第一次成绩稳定,故选:C.【点评】本题考查正态分布曲线的特点,考查学生分析解决问题的能力,比较基础.5.【答案】B【解析】解:因为y=f(x)为奇函数,所以当x>0时,﹣x<0,根据题意得:f(﹣x)=﹣f(x)=﹣x+2,即f(x)=x﹣2,当x<0时,f(x)=x+2,代入所求不等式得:2(x+2)﹣1<0,即2x<﹣3,解得x<﹣,则原不等式的解集为x<﹣;当x≥0时,f(x)=x﹣2,代入所求的不等式得:2(x﹣2)﹣1<0,即2x<5,解得x<,则原不等式的解集为0≤x<,综上,所求不等式的解集为{x|x<﹣或0≤x<}.故选B6.【答案】A【解析】解:∵(acosB+bcosA)=2csinC,∴(sinAcosB+sinBcosA)=2sin2C,∴sinC=2sin2C,且sinC>0,∴sinC=,∵a+b=8,可得:8≥2,解得:ab≤16,(当且仅当a=b=4成立)∵△ABC的面积的最大值S△ABC=absinC≤=4,∴a=b=4,则此时△ABC的形状为等腰三角形.故选:A.7.【答案】C【解析】解:因为特称命题的否定是全称命题,所以,∃x∈R,x2﹣2x+3>0的否定是:∀x∈R,x2﹣2x+3≤0.故选:C.8.【答案】D【解析】解:当|a|>1时,函数为增函数,且过定点(0,1﹣),因为0<1﹣<1,故排除A,B当|a|<1时且a≠0时,函数为减函数,且过定点(0,1﹣),因为1﹣<0,故排除C.故选:D.9.【答案】C【解析】解:∵双曲线渐近线为bx±ay=0,与圆x2+(y﹣2)2=1相交∴圆心到渐近线的距离小于半径,即<1∴3a2<b2,∴c2=a2+b2>4a2,∴e=>2故选:C.【点评】本题主要考查了双曲线的简单性质,直线与圆的位置关系,点到直线的距离公式等.考查了学生数形结合的思想的运用.10.【答案】C【解析】解:∵S16<0,S17>0,∴=8(a8+a9)<0,=17a9>0,∴a8<0,a9>0,∴公差d>0.∴S n中最小的是S8.故选:C .【点评】本题考查了等差数列的通项公式性质及其求和公式、不等式的解法,考查了推理能力与计算能力,属于中档题.11.【答案】D【解析】解:抛物线x=﹣4y 2即为y 2=﹣x ,可得准线方程为x=.故选:D .12.【答案】C【解析】当{2,1,1,2,4}x ∈--时,2log ||1{1,1,0}y x =-∈-,所以AB ={1,1}-,故选C .二、填空题13.【答案】 .【解析】解:点(m ,0)到直线x ﹣y+n=0的距离为d=,∵mn ﹣m ﹣n=3,∴(m ﹣1)(n ﹣1)=4,(m ﹣1>0,n ﹣1>0),∴(m ﹣1)+(n ﹣1)≥2,∴m+n ≥6,则d=≥3.故答案为:.【点评】本题考查了的到直线的距离公式,考查了利用基本不等式求最值,是基础题.14.【答案】12-考点:函数极值【方法点睛】函数极值问题的常见类型及解题策略(1)知图判断函数极值的情况.先找导数为0的点,再判断导数为0的点的左、右两侧的导数符号.(2)已知函数求极值.求f′(x)―→求方程f′(x)=0的根―→列表检验f′(x)在f′(x)=0的根的附近两侧的符号―→下结论.(3)已知极值求参数.若函数f(x)在点(x0,y0)处取得极值,则f′(x0)=0,且在该点左、右两侧的导数值符号相反.15.【答案】1【解析】【知识点】平面向量坐标运算【试题解析】设设,则因为,所以,所以因此,存在唯一的点M ,使成立。
金山区二中2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 下列各组表示同一函数的是( )A .y=与y=()2B .y=lgx 2与y=2lgxC .y=1+与y=1+ D .y=x 2﹣1(x ∈R )与y=x 2﹣1(x ∈N )2. 将y=cos (2x+φ)的图象沿x轴向右平移个单位后,得到一个奇函数的图象,则φ的一个可能值为( )A.B.﹣C.﹣D.3. 设曲线y=ax 2在点(1,a )处的切线与直线2x ﹣y ﹣6=0平行,则a=( )A .1B.C.D .﹣14. 若复数12,z z 在复平面内对应的点关于y 轴对称,且12i z =-,则复数12z z 在复平面内对应的点在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限【命题意图】本题考查复数的几何意义、代数运算等基础知识,意在考查转化思想与计算能力.5. 已知函数f (x )是R 上的奇函数,且当x >0时,f (x )=x 3﹣2x 2,则x <0时,函数f (x )的表达式为f (x )=( ) A .x 3+2x 2B .x 3﹣2x 2C .﹣x 3+2x 2D .﹣x 3﹣2x 26. 给出下列各函数值:①sin100°;②cos (﹣100°);③tan (﹣100°);④.其中符号为负的是( ) A .①B .②C .③D .④7. 已知直线l ⊥平面α,直线m ⊂平面β,有下面四个命题: (1)α∥β⇒l ⊥m ,(2)α⊥β⇒l ∥m , (3)l ∥m ⇒α⊥β,(4)l ⊥m ⇒α∥β, 其中正确命题是( )A .(1)与(2)B .(1)与(3)C .(2)与(4)D .(3)与(4)8. 把函数y=sin (2x﹣)的图象向右平移个单位得到的函数解析式为( )A .y=sin (2x﹣) B .y=sin (2x+)C .y=cos2xD .y=﹣sin2x9. 已知A ,B 是以O 为圆心的单位圆上的动点,且||=,则•=( )A .﹣1B .1C .﹣D .10.设函数f (x )的定义域为A ,若存在非零实数l 使得对于任意x ∈I (I ⊆A ),有x+l ∈A ,且f (x+l )≥f (x ),则称f (x )为I 上的l 高调函数,如果定义域为R 的函数f (x )是奇函数,当x ≥0时,f (x )=|x ﹣a 2|﹣a 2,且函数f (x )为R 上的1高调函数,那么实数a 的取值范围为( )A .0<a <1B .﹣≤a ≤C .﹣1≤a ≤1D .﹣2≤a ≤211.已知等差数列{}n a 的前项和为n S ,且120a =-,在区间()3,5内任取一个实数作为数列{}n a 的公差,则n S 的最小值仅为6S 的概率为( ) A .15 B .16 C .314 D .1312.随机变量x 1~N (2,1),x 2~N (4,1),若P (x 1<3)=P (x 2≥a ),则a=( ) A .1 B .2C .3D .4二、填空题13由表中数据算出线性回归方程为=x+.若该公司第五名推销员的工作年限为8年,则估计他(她)的年推销金额为 万元.14.若在圆C :x 2+(y ﹣a )2=4上有且仅有两个点到原点O 距离为1,则实数a 的取值范围是 .15.对于函数(),,y f x x R =∈,“|()|y f x =的图象关于y 轴对称”是“()y f x =是奇函数”的 ▲ 条件. (填“充分不必要”, “必要不充分”,“充要”,“既不充分也不必要”) 16.若数列{}n a 满足212332n a a a a n n =++⋅⋅⋅⋅⋅⋅⋅,则数列{}n a 的通项公式为 .17.已知集合{}|03,A x x x R =<∈≤,{}|12,B x x x R =-∈≤≤,则A ∪B = ▲ . 18.记等比数列{a n }的前n 项积为Πn ,若a 4•a 5=2,则Π8= .三、解答题19.【南师附中2017届高三模拟二】已知函数()()323131,02f x x a x ax a =+--+>. (1)试讨论()()0f x x ≥的单调性;(2)证明:对于正数a ,存在正数p ,使得当[]0,x p ∈时,有()11f x -≤≤; (3)设(1)中的p 的最大值为()g a ,求()g a 得最大值.20.已知函数f (x )=.(1)求f (x )的定义域; (2)判断并证明f (x )的奇偶性;(3)求证:f ()=﹣f (x ).21.已知斜率为2的直线l 被圆x 2+y 2+14y+24=0所截得的弦长为,求直线l 的方程.22.已知函数f (x )=alnx+x 2+bx+1在点(1,f (1))处的切线方程为4x ﹣y ﹣12=0.(1)求函数f(x)的解析式;(2)求f(x)的单调区间和极值.23.已知二次函数f(x)的图象过点(0,4),对任意x满足f(3﹣x)=f(x),且有最小值是.(1)求f(x)的解析式;(2)求函数h(x)=f(x)﹣(2t﹣3)x在区间[0,1]上的最小值,其中t∈R;(3)在区间[﹣1,3]上,y=f(x)的图象恒在函数y=2x+m的图象上方,试确定实数m的范围.24.(本小题满分12分)求下列函数的定义域:(1)()f x=;(2)()f x=.金山区二中2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1.【答案】C【解析】解:A.y=|x|,定义域为R,y=()2=x,定义域为{x|x≥0},定义域不同,不能表示同一函数.B.y=lgx2,的定义域为{x|x≠0},y=2lgx的定义域为{x|x>0},所以两个函数的定义域不同,所以不能表示同一函数.C.两个函数的定义域都为{x|x≠0},对应法则相同,能表示同一函数.D.两个函数的定义域不同,不能表示同一函数.故选:C.【点评】本题主要考查判断两个函数是否为同一函数,判断的标准就是判断两个函数的定义域和对应法则是否一致,否则不是同一函数.2.【答案】D【解析】解:将y=cos(2x+φ)的图象沿x轴向右平移个单位后,得到一个奇函数y=cos=cos(2x+φ﹣)的图象,∴φ﹣=kπ+,即φ=kπ+,k∈Z,则φ的一个可能值为,故选:D.3.【答案】A【解析】解:y'=2ax,于是切线的斜率k=y'|x=1=2a,∵切线与直线2x﹣y﹣6=0平行∴有2a=2∴a=1故选:A【点评】本题考查导数的几何意义:曲线在切点处的导数值是切线的斜率.4.【答案】B【解析】5.【答案】A【解析】解:设x<0时,则﹣x>0,因为当x>0时,f(x)=x3﹣2x2所以f(﹣x)=(﹣x)3﹣2(﹣x)2=﹣x3﹣2x2,又因为f(x)是定义在R上的奇函数,所以f(﹣x)=﹣f(x),所以当x<0时,函数f(x)的表达式为f(x)=x3+2x2,故选A.6.【答案】B【解析】解::①sin100°>0,②cos(﹣100°)=cos100°<0,③tan(﹣100°)=﹣tan100>0,④∵sin>0,cosπ=﹣1,tan<0,∴>0,其中符号为负的是②,故选:B.【点评】本题主要考查三角函数值的符号的判断,判断角所在的象限是解决本题的关键,比较基础.7.【答案】B【解析】解:∵直线l⊥平面α,α∥β,∴l⊥平面β,又∵直线m⊂平面β,∴l⊥m,故(1)正确;∵直线l⊥平面α,α⊥β,∴l∥平面β,或l⊂平面β,又∵直线m⊂平面β,∴l与m可能平行也可能相交,还可以异面,故(2)错误;∵直线l⊥平面α,l∥m,∴m⊥α,∵直线m⊂平面β,∴α⊥β,故(3)正确;∵直线l⊥平面α,l⊥m,∴m∥α或m⊂α,又∵直线m⊂平面β,则α与β可能平行也可能相交,故(4)错误;故选B.【点评】本题考查的知识点是空间中直线与平面之间的位置关系,其中熟练掌握空间中直线与平面位置关系的判定及性质定理,建立良好的空间想像能力是解答本题的关键.8.【答案】D【解析】解:把函数y=sin(2x﹣)的图象向右平移个单位,所得到的图象的函数解析式为:y=sin[2(x﹣)﹣]=sin(2x﹣π)=﹣sin2x.故选D.【点评】本题是基础题,考查三角函数的图象平移,注意平移的原则:左右平移x加与减,上下平移,y的另一侧加与减.9.【答案】B【解析】解:由A,B是以O为圆心的单位圆上的动点,且||=,即有||2+||2=||2,可得△OAB为等腰直角三角形,则,的夹角为45°,即有•=||•||•cos45°=1××=1.故选:B.【点评】本题考查向量的数量积的定义,运用勾股定理的逆定理得到向量的夹角是解题的关键.10.【答案】B【解析】解:定义域为R的函数f(x)是奇函数,当x≥0时,f(x)=|x﹣a2|﹣a2=图象如图,∵f(x)为R上的1高调函数,当x<0时,函数的最大值为a2,要满足f(x+l)≥f(x),1大于等于区间长度3a2﹣(﹣a2),∴1≥3a2﹣(﹣a2),∴﹣≤a≤故选B【点评】考查学生的阅读能力,应用知识分析解决问题的能力,考查数形结合的能力,用图解决问题的能力,属中档题.11.【答案】D【解析】考点:等差数列.12.【答案】C【解析】解:随机变量x1~N(2,1),图象关于x=2对称,x2~N(4,1),图象关于x=4对称,因为P(x1<3)=P(x2≥a),所以3﹣2=4﹣a,所以a=3,故选:C.【点评】本题主要考查正态分布的图象,结合正态曲线,加深对正态密度函数的理解.二、填空题13.【答案】.【解析】解:由条件可知=(3+5+10+14)=8,=(2+3+7+12)=6, 代入回归方程,可得a=﹣,所以=x﹣,当x=8时,y=,估计他的年推销金额为万元.故答案为:.【点评】本题考查线性回归方程的意义,线性回归方程一定过样本中心点,本题解题的关键是正确求出样本中心点,题目的运算量比较小,是一个基础题.14.【答案】 ﹣3<a <﹣1或1<a <3 .【解析】解:根据题意知:圆x 2+(y ﹣a )2=4和以原点为圆心,1为半径的圆x 2+y 2=1相交,两圆圆心距d=|a|, ∴2﹣1<|a|<2+1, ∴﹣3<a <﹣1或1<a <3. 故答案为:﹣3<a <﹣1或1<a <3.【点评】本题体现了转化的数学思想,解题的关键在于将问题转化为:圆x 2+(y ﹣a )2=4和以原点为圆心,1为半径的圆x 2+y 2=1相交,属中档题.15.【答案】必要而不充分【解析】试题分析:充分性不成立,如2y x =图象关于y 轴对称,但不是奇函数;必要性成立,()y f x =是奇函数,|()||()||()|f x f x f x -=-=,所以|()|y f x =的图象关于y 轴对称.考点:充要关系【名师点睛】充分、必要条件的三种判断方法.1.定义法:直接判断“若p 则q ”、“若q 则p ”的真假.并注意和图示相结合,例如“p ⇒q ”为真,则p 是q 的充分条件.2.等价法:利用p ⇒q 与非q ⇒非p ,q ⇒p 与非p ⇒非q ,p ⇔q 与非q ⇔非p 的等价关系,对于条件或结论是否定式的命题,一般运用等价法.3.集合法:若A ⊆B ,则A 是B 的充分条件或B 是A 的必要条件;若A =B ,则A 是B 的充要条件.16.【答案】 6,12,2,n n a n n n n *=⎧⎪=+⎨≥∈⎪⎩N【解析】【解析】()()12312n a a a a n n =++⋅⋅⋅⋅⋅⋅⋅11:6n a ==;()()()123112312:12 1n n n n a a a a a n n a a a a n n --≥⋅=++=+⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅故22:n n n a n+≥=17.【答案】1-1,3] 【解析】试题分析:A ∪B ={}{}|03,|12,x x x R x x x R <∈-∈≤≤≤=1-1,3]考点:集合运算 【方法点睛】1.用描述法表示集合,首先要弄清集合中代表元素的含义,再看元素的限制条件,明确集合类型,是数集、点集还是其他的集合.2.求集合的交、并、补时,一般先化简集合,再由交、并、补的定义求解.3.在进行集合的运算时要尽可能地借助Venn 图和数轴使抽象问题直观化.一般地,集合元素离散时用Venn 图表示;集合元素连续时用数轴表示,用数轴表示时要注意端点值的取舍. 18.【答案】 16 .【解析】解:∵等比数列{a n }的前n 项积为Πn ,∴Π8=a 1•a 2a 3•a 4•a 5a 6•a 7•a 8=(a 4•a 5)4=24=16.故答案为:16.【点评】本题主要考查等比数列的计算,利用等比数列的性质是解决本题的关键.三、解答题19.【答案】(1)证明过程如解析;(2)对于正数a ,存在正数p ,使得当[]0,x p ∈时,有()11f x -≤≤;(3)()g a【解析】【试题分析】(1)先对函数()()323131,02f x x a x ax a =+--+>进行求导,再对导函数的值的 符号进行分析,进而做出判断;(2)先求出函数值()01,f =()3213122f a a a =--+=()()211212a a -+-,进而分()1f a ≥-和()1f a <-两种情形进行 分析讨论,推断出存在()0,p a ∈使得()10f p +=,从而证得当[]0,x p ∈时,有()11f x -≤≤成立;(3) 借助(2)的结论()f x :在[)0,+∞上有最小值为()f a ,然后分011a a ≤,两种情形探求()g a 的解析表达式和最大值。
金山屯区第二高级中学2018-2019学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1.在正方体8个顶点中任选3个顶点连成三角形,则所得的三角形是等腰直角三角形的概率为()A.B.C.D.2.已知点M的球坐标为(1,,),则它的直角坐标为()A.(1,,)B.(,,)C.(,,)D.(,,)3.定义新运算⊕:当a≥b时,a⊕b=a;当a<b时,a⊕b=b2,则函数f(x)=(1⊕x)x﹣(2⊕x),x∈[﹣2,2]的最大值等于()A.﹣1 B.1 C.6 D.124.在△ABC中,a,b,c分别是角A,B,C的对边,a=5,b=4,cosC=,则△ABC的面积是()A.16 B.6 C.4 D.85.已知函数f(x)=2x﹣2,则函数y=|f(x)|的图象可能是()A.B.C.D.6.设全集U={1,3,5,7,9},集合A={1,|a﹣5|,9},∁U A={5,7},则实数a的值是()A.2 B.8 C.﹣2或8 D.2或87.如果一个几何体的三视图如图所示,主视图与左视图是边长为2的正三角形、俯视图轮廓为正方形,(单位:cm),则此几何体的表面积是()A .8cm 2B . cm 2C .12 cm 2D .cm 28. 观察下列各式:a+b=1,a 2+b 2=3,a 3+b 3=4,a 4+b 4=7,a 5+b 5=11,…,则a 10+b 10=( ) A .28B .76C .123D .1999. 若函数y=a x ﹣(b+1)(a >0,a ≠1)的图象在第一、三、四象限,则有( ) A .a >1且b <1 B .a >1且b >0 C .0<a <1且b >0D .0<a <1且b <010.已知集合},052|{2Z x x x x M ∈<+=,},0{a N =,若∅≠N M ,则=a ( ) A .1- B . C .1-或 D .1-或2-11.定义运算,例如.若已知,则=( )A .B .C .D .12.已知f (x )=2sin (ωx+φ)的部分图象如图所示,则f (x )的表达式为( )A .B .C .D .二、填空题13.(sinx+1)dx 的值为 .14.已知曲线y=(a ﹣3)x 3+lnx 存在垂直于y 轴的切线,函数f (x )=x 3﹣ax 2﹣3x+1在[1,2]上单调递减,则a 的范围为 .15.抽样调查表明,某校高三学生成绩(总分750分)X 近似服从正态分布,平均成绩为500分.已知P (400<X <450)=0.3,则P (550<X <600)= .16.某公司对140名新员工进行培训,新员工中男员工有80人,女员工有60人,培训结束后用分层抽样的方法调查培训结果. 已知男员工抽取了16人,则女员工应抽取人数为 .17.当下社会热议中国人口政策,下表是中国人民大学人口预测课题组根据我过2000年第五次人口普查预测的线性回归方程为附:回归直线的斜率和截距的最小二乘估计公式分别为: =, =﹣.18.要使关于x 的不等式2064x ax ≤++≤恰好只有一个解,则a =_________. 【命题意图】本题考查一元二次不等式等基础知识,意在考查运算求解能力.三、解答题19.在平面直角坐标系中,△ABC 各顶点的坐标分别为:A (0,4);B (﹣3,0),C (1,1) (1)求点C 到直线AB 的距离; (2)求AB 边的高所在直线的方程.20.(1)已知f (x )的定义域为[﹣2,1],求函数f (3x ﹣1)的定义域; (2)已知f (2x+5)的定义域为[﹣1,4],求函数f (x )的定义域.21.设函数f(x)=x2e x.(1)求f(x)的单调区间;(2)若当x∈[﹣2,2]时,不等式f(x)>m恒成立,求实数m的取值范围.22.某同学在研究性学习中,了解到淘宝网站一批发店铺在今年的前五个月的销售量(单位:百件)的数据如(Ⅰ)该同学为了求出y关于x的回归方程=x+,根据表中数据已经正确算出=0.6,试求出的值,并估计该店铺6月份的产品销售量;(单位:百件)(Ⅱ)一零售商现存有从该淘宝批发店铺2月份进货的4件和3月份进货的5件产品,顾客甲现从该零售商处随机购买了3件,后经了解,该淘宝批发店铺今年2月份的产品都有质量问题,而3月份的产品都没有质量问题.记顾客甲所购买的3件产品中存在质量问题的件数为X,求X的分布列和数学期望.23.(本小题满分12分)成都市某中学计划举办“国学”经典知识讲座.由于条件限制,按男、女生比例采取分层抽样的方法,从某班选出10人参加活动,在活动前,对所选的10名同学进行了国学素养测试,这10名同学的性别和测试成绩(百分制)的茎叶图如图所示.(1)根据这10名同学的测试成绩,分别估计该班男、女生国学素养测试的平均成绩;(2)若从这10名同学中随机选取一男一女两名同学,求这两名同学的国学素养测试成绩均为优良的概率.(注:成绩大于等于75分为优良)24.(本小题满分10分)已知函数f(x)=|x-a|+|x+b|,(a≥0,b≥0).(1)求f(x)的最小值,并求取最小值时x的范围;(2)若f(x)的最小值为2,求证:f(x)≥a+b.金山屯区第二高级中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1.【答案】C【解析】解:正方体8个顶点中任选3个顶点连成三角形,所得的三角形是等腰直角三角形只能在各个面上,在每一个面上能组成等腰直角三角形的有四个,所以共有4×6=24个,而在8个点中选3个点的有C83=56,所以所求概率为=故选:C【点评】本题是一个古典概型问题,学好古典概型可以为其它概率的学习奠定基础,同时有利于理解概率的概念,有利于计算一些事件的概率,有利于解释生活中的一些问题.2.【答案】B【解析】解:设点M的直角坐标为(x,y,z),∵点M的球坐标为(1,,),∴x=sin cos=,y=sin sin=,z=cos=∴M的直角坐标为(,,).故选:B.【点评】假设P(x,y,z)为空间内一点,则点P也可用这样三个有次序的数r,φ,θ来确定,其中r为原点O与点P间的距离,θ为有向线段OP与z轴正向的夹角,φ为从正z轴来看自x轴按逆时针方向转到OM 所转过的角,这里M为点P在xOy面上的投影.这样的三个数r,φ,θ叫做点P的球面坐标,显然,这里r,φ,θ的变化范围为r∈[0,+∞),φ∈[0,2π],θ∈[0,π],3.【答案】C【解析】解:由题意知当﹣2≤x≤1时,f(x)=x﹣2,当1<x≤2时,f(x)=x3﹣2,又∵f(x)=x﹣2,f(x)=x3﹣2在定义域上都为增函数,∴f(x)的最大值为f(2)=23﹣2=6.故选C.4.【答案】D【解析】解:∵a=5,b=4,cosC=,可得:sinC==,∴S△ABC=absinC==8.故选:D.5.【答案】B【解析】解:先做出y=2x的图象,在向下平移两个单位,得到y=f(x)的图象,再将x轴下方的部分做关于x轴的对称图象即得y=|f(x)|的图象.故选B【点评】本题考查含有绝对值的函数的图象问题,先作出y=f(x)的图象,再将x轴下方的部分做关于x轴的对称图象即得y=|f(x)|的图象.6.【答案】D【解析】解:由题意可得3∈A,|a﹣5|=3,∴a=2,或a=8,故选D.7.【答案】C【解析】解:由已知可得:该几何体是一个四棱锥,侧高和底面的棱长均为2,故此几何体的表面积S=2×2+4××2×2=12cm2,故选:C.【点评】本题考查的知识点是棱柱、棱锥、棱台的体积和表面积,空间几何体的三视图,根据已知判断几何体的形状是解答的关键.8.【答案】C【解析】解:观察可得各式的值构成数列1,3,4,7,11,…,其规律为从第三项起,每项等于其前相邻两项的和,所求值为数列中的第十项.继续写出此数列为1,3,4,7,11,18,29,47,76,123,…,第十项为123,即a10+b10=123,.故选C.9.【答案】B【解析】解:∵函数y=a x﹣(b+1)(a>0,a≠1)的图象在第一、三、四象限,∴根据图象的性质可得:a>1,a0﹣b﹣1<0,即a>1,b>0,故选:B10.【答案】D 【解析】试题分析:由{}{}1,2,025,0522--=⎭⎬⎫⎩⎨⎧∈<<-=∈<+=Z x x x Z x x x x M ,集合{}a N ,0=, 又φ≠N M ,1-=∴a 或2-=a ,故选D . 考点:交集及其运算. 11.【答案】D【解析】解:由新定义可得,====.故选:D .【点评】本题考查三角函数的化简求值,考查了两角和与差的三角函数,是基础题.12.【答案】 B【解析】解:∵函数的周期为T==,∴ω=又∵函数的最大值是2,相应的x 值为∴=,其中k ∈Z取k=1,得φ=因此,f (x )的表达式为,故选B【点评】本题以一个特殊函数求解析式为例,考查由y=Asin (ωx+φ)的部分图象确定其解析式、三角函数的图象与性质,周期与相位等概念,属于基础题.二、填空题13.【答案】 2 .【解析】解:所求的值为(x ﹣cosx )|﹣11=(1﹣cos1)﹣(﹣1﹣cos (﹣1)) =2﹣cos1+cos1 =2.故答案为:2.14.【答案】 .【解析】解:因为y=(a ﹣3)x 3+lnx 存在垂直于y 轴的切线,即y'=0有解,即y'=在x >0时有解,所以3(a ﹣3)x 3+1=0,即a ﹣3<0,所以此时a <3.函数f (x )=x 3﹣ax 2﹣3x+1在[1,2]上单调递减,则f'(x )≤0恒成立,即f'(x )=3x 2﹣2ax ﹣3≤0恒成立,即,因为函数在[1,2]上单调递增,所以函数的最大值为,所以,所以.综上.故答案为:.【点评】本题主要考查导数的基本运算和导数的应用,要求熟练掌握利用导数在研究函数的基本应用.15.【答案】 0.3 .【解析】离散型随机变量的期望与方差. 【专题】计算题;概率与统计.【分析】确定正态分布曲线的对称轴为x=500,根据对称性,可得P (550<ξ<600).【解答】解:∵某校高三学生成绩(总分750分)ξ近似服从正态分布,平均成绩为500分,∴正态分布曲线的对称轴为x=500, ∵P (400<ξ<450)=0.3, ∴根据对称性,可得P (550<ξ<600)=0.3.故答案为:0.3.【点评】本题考查正态分布曲线的特点及曲线所表示的意义,正确运用正态分布曲线的对称性是关键.16.【答案】12 【解析】考点:分层抽样17.【答案】 y=﹣1.7t+68.7【解析】解: =, ==63.6.=(﹣2)×4.4+(﹣1)×1.4+0+1×(﹣1.6)+2×(﹣2.6)=﹣17.=4+1+0+1+2=10.∴=﹣=﹣1.7.=63.6+1.7×3=68.7.∴y 关于t 的线性回归方程为y=﹣1.7t+68.7. 故答案为y=﹣1.7t+68.7.【点评】本题考查了线性回归方程的解法,属于基础题.18.【答案】±.【解析】分析题意得,问题等价于264x ax ++≤只有一解,即220x ax ++≤只有一解,∴280a a ∆=-=⇒=±,故填:±.三、解答题19.【答案】【解析】解(1)∵,∴根据直线的斜截式方程,直线AB :,化成一般式为:4x ﹣3y+12=0,∴根据点到直线的距离公式,点C 到直线AB 的距离为;(2)由(1)得直线AB 的斜率为,∴AB 边的高所在直线的斜率为,由直线的点斜式方程为:,化成一般式方程为:3x+4y ﹣7=0,∴AB 边的高所在直线的方程为3x+4y ﹣7=0.20.【答案】【解析】解:(1)∵函数y=f(x)的定义域为[﹣2,1],由﹣2≤3x﹣1≤1得:x∈[﹣,],故函数y=f(3x﹣1)的定义域为[﹣,];’(2)∵函数f(2x+5)的定义域为[﹣1,4],∴x∈[﹣1,4],∴2x+5∈[3,13],故函数f(x)的定义域为:[3,13].21.【答案】【解析】解:(1)…令∴f(x)的单增区间为(﹣∞,﹣2)和(0,+∞);单减区间为(﹣2,0).…(2)令∴x=0和x=﹣2,…∴∴f(x)∈[0,2e2]…∴m<0…22.【答案】【解析】解:(1),=5…且,代入回归直线方程可得∴=0.6x+3.2,x=6时,=6.8,…(2)X的取值有0,1,2,3,则,,, (X)0 1 2 3 P【点评】本题考查线性回归方程、离散型随机变量的分布列及其数学期望,考查学生分析解决问题的能力.23.【答案】【解析】【命题意图】本题考查茎叶图的制作与读取,古典概型的概率计算,是概率统计的基本题型,解答的关键是应用相关数据进行准确计算,是中档题.24.【答案】【解析】解:(1)由|x-a|+|x+b|≥|(x-a)-(x+b)|=|a+b|得,当且仅当(x-a)(x+b)≤0,即-b≤x≤a时,f(x)取得最小值,∴当x∈[-b,a]时,f(x)min=|a+b|=a+b.(2)证明:由(1)知a+b=2,(a+b)2=a+b+2ab≤2(a+b)=4,∴a+b≤2,∴f(x)≥a+b=2≥a+b,即f(x)≥a+b.。
金山屯区第二中学2018-2019学年高二上学期第二次月考试卷数学班级__________ 姓名__________ 分数__________一、选择题1. 在ABC ∆中,222sin sin sin sin sin A B C B C ≤+-,则A 的取值范围是( )1111] A .(0,]6πB .[,)6ππ C. (0,]3π D .[,)3ππ 2. 圆心在直线2x +y =0上,且经过点(-1,-1)与(2,2)的圆,与x 轴交于M ,N 两点,则|MN |=( ) A .4 2 B .4 5 C .2 2D .2 53. 设复数1i z =-(i 是虚数单位),则复数22z z+=( ) A.1i - B.1i + C. 2i + D. 2i -【命题意图】本题考查复数的有关概念,复数的四则运算等基础知识,意在考查学生的基本运算能力. 4. 一个几何体的三视图如图所示,则该几何体的体积是( )A .64B .72C .80D .112【命题意图】本题考查三视图与空间几何体的体积等基础知识,意在考查空间想象能力与运算求解能力. 5. 若抛物线y 2=2px 的焦点与双曲线﹣=1的右焦点重合,则p 的值为( )A .﹣2B .2C .﹣4D .46. 设x ,y ∈R ,且满足,则x+y=( )A .1B .2C .3D .47. 在等比数列}{n a 中,821=+n a a ,8123=⋅-n a a ,且数列}{n a 的前n 项和121=n S ,则此数列的项数n 等于( )A .4B .5C .6D .7【命题意图】本题考查等比数列的性质及其通项公式,对逻辑推理能力、运算能力及分类讨论思想的理解有一定要求,难度中等.8. 若某算法框图如图所示,则输出的结果为( )A .7B .15C .31D .639. 单位正方体(棱长为1)被切去一部分,剩下部分几何体的三视图如图所示,则( )A .该几何体体积为B .该几何体体积可能为C .该几何体表面积应为+D .该几何体唯一10.如图在圆O 中,AB ,CD 是圆O 互相垂直的两条直径,现分别以OA ,OB ,OC ,OD 为直径作四个 圆,在圆O 内随机取一点,则此点取自阴影部分的概率是( )A .π1B .π21 C .π121- D .π2141- 【命题意图】本题考查几何概型概率的求法,借助圆这个载体,突出了几何概型的基本运算能力,因用到圆的几何性质及面积的割补思想,属于中等难度. 11.设等比数列{a n }的公比q=2,前n 项和为S n,则=( )A .2B .4C. D.12.以下四个命题中,真命题的是( ) A .2,2x R x x ∃∈≤-B .“对任意的x R ∈,210x x ++>”的否定是“存在0x R ∈,20010x x ++<C .R θ∀∈,函数()sin(2)f x x θ=+都不是偶函数D .已知m ,n 表示两条不同的直线,α,β表示不同的平面,并且m α⊥,n β⊂,则“αβ⊥”是 “//m n ”的必要不充分条件【命题意图】本题考查量词、充要条件等基础知识,意在考查逻辑推理能力.二、填空题13.已知是等差数列,为其公差,是其前项和,若只有是中的最小项,则可得出的结论中所有正确的序号是___________①②③④⑤14.设p :实数x 满足不等式x 2﹣4ax+3a 2<0(a <0),q :实数x 满足不等式x 2﹣x ﹣6≤0,已知¬p 是¬q 的必要非充分条件,则实数a 的取值范围是 .15.某公司租赁甲、乙两种设备生产A B ,两类产品,甲种设备每天能生产A 类产品5件和B 类产品10件,乙种设备每天能生产A 类产品6件和B 类产品20件.已知设备甲每天的租赁费为200元,设备乙每天的租赁费用为300元,现该公司至少要生产A 类产品50件,B 类产品140件,所需租赁费最少为__________元.16.已知,x y 满足41y xx y x ≥⎧⎪+≤⎨⎪≥⎩,则22223y xy x x -+的取值范围为____________. DABCO17.已知f (x )=,则f[f (0)]= .18.在极坐标系中,O 是极点,设点A ,B 的极坐标分别是(2,),(3,),则O 点到直线AB的距离是 .三、解答题19.(本小题满分12分)如图,在四棱锥P ABCD -中,底面ABCD 是菱形,且120ABC ∠=︒.点E 是棱PC 的中点,平面ABE 与棱PD 交于点F . (1)求证://AB EF ;(2)若2PA PD AD ===,且平面PAD ⊥平面ABCD ,求平面PAF 与平面AFE 所成的锐二面角的余 弦值.【命题意图】本小题主要考查空间直线与平面,直线与直线垂直的判定,二面角等基础知识,考查空间想象能力,推理论证能力,运算求解能力,以及数形结合思想、化归与转化思想.20.已知cos (+θ)=﹣,<θ<,求的值.21.(本小题满分10分)选修41-:几何证明选讲如图所示,已知PA 与⊙O 相切,A 为切点,过点P 的割线交圆于C B ,两点,弦AP CD //,BC AD ,相 交于点E ,F 为CE 上一点,且EC EF DE ⋅=2. (Ⅰ)求证:P EDF ∠=∠;(Ⅱ)若2,3,2:3:===EF DE BE CE ,求PA 的长.【命题意图】本题考查相交弦定理、三角形相似、切割线定理等基础知识,意在考查逻辑推理能力.22.(14分)已知函数1()ln ,()e x x f x mx a x m g x -=--=,其中m ,a 均为实数.(1)求()g x 的极值; 3分(2)设1,0m a =<,若对任意的12,[3,4]x x ∈12()x x ≠,212111()()()()f x f xg x g x -<-恒成立,求a 的最小值; 5分(3)设2a =,若对任意给定的0(0,e]x ∈,在区间(0,e]上总存在1212,()t t t t ≠,使得120()()()f t f t g x == 成立,求m 的取值范围. 6分23.在极坐标系内,已知曲线C1的方程为ρ2﹣2ρ(cosθ﹣2sinθ)+4=0,以极点为原点,极轴方向为x正半轴方向,利用相同单位长度建立平面直角坐标系,曲线C2的参数方程为(t为参数).(Ⅰ)求曲线C1的直角坐标方程以及曲线C2的普通方程;(Ⅱ)设点P为曲线C2上的动点,过点P作曲线C1的切线,求这条切线长的最小值.24.如图所示,一动圆与圆x2+y2+6x+5=0外切,同时与圆x2+y2﹣6x﹣91=0内切,求动圆圆心M的轨迹方程,并说明它是什么样的曲线.金山屯区第二中学2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1. 【答案】C 【解析】考点:三角形中正余弦定理的运用. 2. 【答案】【解析】选D.设圆的方程为(x -a )2+(y -b )2=r 2(r >0). 由题意得⎩⎪⎨⎪⎧2a +b =0(-1-a )2+(-1-b )2=r 2(2-a )2+(2-b )2=r2,解之得a =-1,b =2,r =3,∴圆的方程为(x +1)2+(y -2)2=9, 令y =0得,x =-1±5,∴|MN |=|(-1+5)-(-1-5)|=25,选D. 3. 【答案】A 【解析】4. 【答案】C. 【解析】5. 【答案】D【解析】解:双曲线﹣=1的右焦点为(2,0),即抛物线y2=2px的焦点为(2,0),∴=2,∴p=4.故选D.【点评】本题考查双曲线、抛物线的性质,考查学生的计算能力,属于基础题.6.【答案】D【解析】解:∵(x﹣2)3+2x+sin(x﹣2)=2,∴(x﹣2)3+2(x﹣2)+sin(x﹣2)=2﹣4=﹣2,∵(y﹣2)3+2y+sin(y﹣2)=6,∴(y﹣2)3+2(y﹣2)+sin(y﹣2)=6﹣4=2,设f(t)=t3+2t+sint,则f(t)为奇函数,且f'(t)=3t2+2+cost>0,即函数f(t)单调递增.由题意可知f(x﹣2)=﹣2,f(y﹣2)=2,即f(x﹣2)+f(y﹣2)=2﹣2=0,即f(x﹣2)=﹣f(y﹣2)=f(2﹣y),∵函数f(t)单调递增∴x﹣2=2﹣y,即x+y=4,故选:D.【点评】本题主要考查函数奇偶性的应用,利用条件构造函数f(t)是解决本题的关键,综合考查了函数的性质.7.【答案】B8.【答案】D【解析】解:模拟执行算法框图,可得A=1,B=1满足条件A ≤5,B=3,A=2 满足条件A ≤5,B=7,A=3 满足条件A ≤5,B=15,A=4 满足条件A ≤5,B=31,A=5 满足条件A ≤5,B=63,A=6不满足条件A ≤5,退出循环,输出B 的值为63. 故选:D .【点评】本题主要考查了程序框图和算法,正确得到每次循环A ,B 的值是解题的关键,属于基础题.9. 【答案】C【解析】解:由已知中三视图可得该几何体是由一个边长为1的正方体,截掉一个角(三棱锥)得到 且该三棱锥有条过同一顶点且互相垂直的棱长均为1该几何体的表面积由三个正方形,有三个两直角边为1的等腰直角三角形和一个边长为的正三角形组成故其表面积S=3•(1×1)+3•(×1×1)+•()2=.故选:C .【点评】本题考查的知识点是由三视图求表面积,其中根据三视图分析出该几何的形状及各边边长是解答本题的关键.10.【答案】C【解析】设圆O 的半径为2,根据图形的对称性,可以选择在扇形OAC 中研究问题,过两个半圆的交点分别向OA ,OC 作垂线,则此时构成一个以1为边长的正方形,则这个正方形内的阴影部分面积为12-π,扇形OAC 的面积为π,所求概率为πππ12112-=-=P . 11.【答案】C【解析】解:由于q=2,∴∴;故选:C .12.【答案】D二、填空题13.【答案】①②③④【解析】因为只有是中的最小项,所以,,所以,故①②③正确;,故④正确;,无法判断符号,故⑤错误,故正确答案①②③④答案:①②③④14.【答案】.【解析】解:∵x2﹣4ax+3a2<0(a<0),∴(x﹣a)(x﹣3a)<0,则3a<x<a,(a<0),由x2﹣x﹣6≤0得﹣2≤x≤3,∵¬p是¬q的必要非充分条件,∴q是p的必要非充分条件,即,即≤a<0,故答案为:15.【答案】2300【解析】111]试题分析:根据题意设租赁甲设备,乙设备,则⎪⎪⎩⎪⎪⎨⎧≥+≥+≥≥14020y 10x 506y 5x 0y 0x ,求目标函数300y 200x Z +=的最小值.作出可行域如图所示,从图中可以看出,直线在可行域上移动时,当直线的截距最小时,取最小值2300.1111]考点:简单线性规划.【方法点晴】本题是一道关于求实际问题中的最值的题目,可以采用线性规划的知识进行求解;细查题意,设甲种设备需要生产天,乙种设备需要生产y 天,该公司所需租赁费为Z 元,则y x Z 300200+=,接下来列出满足条件的约束条件,结合目标函数,然后利用线性规划的应用,求出最优解,即可得出租赁费的最小值. 16.【答案】[]2,6 【解析】考点:简单的线性规划.【方法点睛】本题主要考查简单的线性规划.与二元一次不等式(组)表示的平面区域有关的非线性目标函数的最值问题的求解一般要结合给定代数式的几何意义来完成.常见代数式的几何意义:(1表示点(),x y与原点()0,0的距离;(2(),x y与点(),a b间的距离;(3)yx可表示点(),x y与()0,0点连线的斜率;(4)y bx a--表示点(),x y与点(),a b连线的斜率.17.【答案】1.【解析】解:f(0)=0﹣1=﹣1,f[f(0)]=f(﹣1)=2﹣1=1,故答案为:1.【点评】本题考查了分段函数的简单应用.18.【答案】.【解析】解:根据点A,B的极坐标分别是(2,),(3,),可得A、B的直角坐标分别是(3,)、(﹣,),故AB的斜率为﹣,故直线AB的方程为y﹣=﹣(x﹣3),即x+3y﹣12=0,所以O点到直线AB的距离是=,故答案为:.【点评】本题主要考查把点的极坐标化为直角坐标的方法,点到直线的距离公式的应用,属于基础题.三、解答题19.【答案】 【解析】∵BG ⊥平面PAD ,∴)0,3,0(=GB 是平面PAF 的一个法向量,20.【答案】【解析】解:∵<θ<,∴+θ∈(,),∵cos(+θ)=﹣,∴sin(+θ)=﹣=﹣,∴sin(+θ)=sinθcos+cosθsin=(cosθ+sinθ)=﹣,∴sinθ+cosθ=﹣,①cos(+θ)=cos cosθ﹣sin sinθ=(cosθ﹣cosβ)=﹣,∴cosθ﹣sinθ=﹣,②联立①②,得cosθ=﹣,sinθ=﹣,∴====.【点评】本题考查函数值的求法,是中档题,解题时要认真审题,注意三角函数诱导公式、加法定理和同角三角函数关系式的合理运用.21.【答案】【解析】(Ⅰ)∵EC EF DE ⋅=2,DEF DEF ∠=∠ ∴DEF ∆∽CED ∆,∴C EDF ∠=∠……………………2分 又∵AP CD //,∴C P ∠=∠, ∴P EDF ∠=∠.(Ⅱ)由(Ⅰ)得P EDF ∠=∠,又PEA DEF ∠=∠,∴EDF ∆∽EPA ∆,∴EDEPEF EA =,∴EP EF ED EA ⋅=⋅,又∵EB CE ED EA ⋅=⋅,∴EP EF EB CE ⋅=⋅. ∵EC EF DE ⋅=2,2,3==EF DE ,∴ 29=EC ,∵2:3:=BE CE ,∴3=BE ,解得427=EP .∴415=-=EB EP BP .∵PA 是⊙O 的切线,∴PC PB PA ⋅=2∴)29427(4152+⨯=PA ,解得4315=PA .……………………10分 22.【答案】解:(1)e(1)()e xx g x -'=,令()0g x '=,得x = 1. 列表如下:∵g (1) = 1,∴y =()g x 的极大值为1,无极小值. 3分(2)当1,0m a =<时,()ln 1f x x a x =--,(0,)x ∈+∞.∵()0x af x x -'=>在[3,4]恒成立,∴()f x 在[3,4]上为增函数. 设1e ()()e x h xg x x ==,∵12e (1)()x x h x x --'=> 0在[3,4]恒成立,∴()h x 在[3,4]上为增函数. 设21x x >,则212111()()()()f x f xg x g x -<-等价于2121()()()()f x f x h x h x -<-, 即2211()()()()f x h x f x h x -<-.设1e ()()()ln 1e xu x f x h x x a x x=-=---⋅,则u (x )在[3,4]为减函数.∴21e (1)()10e xa x u x x x -'=--⋅≤在(3,4)上恒成立. ∴11e e x x a x x---+≥恒成立. 设11e ()e x x v x x x --=-+,∵112e (1)()1e x x x v x x---'=-+=121131e [()]24x x ---+,x ∈[3,4], ∴1221133e [()]e 1244x x --+>>,∴()v x '< 0,()v x 为减函数.∴()v x 在[3,4]上的最大值为v (3) = 3 -22e 3.∴a ≥3 -22e 3,∴a 的最小值为3 -22e 3. 8分(3)由(1)知()g x 在(0,e]上的值域为(0,1].∵()2ln f x mx x m =--,(0,)x ∈+∞,当0m =时,()2ln f x x =-在(0,e]为减函数,不合题意.当0m ≠时,2()()m x m f x x-'=,由题意知()f x 在(0,e]不单调, 所以20e m <<,即2em >.①此时()f x 在2(0,)m 上递减,在2(,e)m上递增,∴(e)1f ≥,即(e)e 21f m m =--≥,解得3e 1m -≥.②由①②,得3e 1m -≥.∵1(0,e]∈,∴2()(1)0f f m =≤成立.下证存在2(0,]t m∈,使得()f t ≥1.取e m t -=,先证e 2m m-<,即证2e 0m m ->.③设()2e x w x x =-,则()2e 10x w x '=->在3[,)e 1+∞-时恒成立.∴()w x 在3[,)e 1+∞-时为增函数.∴3e ))01((w x w ->≥,∴③成立.再证()e m f -≥1.∵e e 3()1e 1m m f m m m --+=>>-≥,∴3e 1m -≥时,命题成立. 综上所述,m 的取值范围为3[,)e 1+∞-. 14分23.【答案】【解析】【专题】计算题;直线与圆;坐标系和参数方程.【分析】(Ⅰ)运用x=ρcosθ,y=ρsinθ,x2+y2=ρ2,即可得到曲线C1的直角坐标方程,再由代入法,即可化简曲线C2的参数方程为普通方程;(Ⅱ)可经过圆心(1,﹣2)作直线3x+4y﹣15=0的垂线,此时切线长最小.再由点到直线的距离公式和勾股定理,即可得到最小值.【解答】解:(Ⅰ)对于曲线C1的方程为ρ2﹣2ρ(cosθ﹣2sinθ)+4=0,可化为直角坐标方程x2+y2﹣2x+4y+4=0,即圆(x﹣1)2+(y+2)2=1;曲线C2的参数方程为(t为参数),可化为普通方程为:3x+4y﹣15=0.(Ⅱ)可经过圆心(1,﹣2)作直线3x+4y﹣15=0的垂线,此时切线长最小.则由点到直线的距离公式可得d==4,则切线长为=.故这条切线长的最小值为.【点评】本题考查极坐标方程、参数方程和直角坐标方程、普通方程的互化,考查直线与圆相切的切线长问题,考查运算能力,属于中档题.24.【答案】【解析】解:(方法一)设动圆圆心为M(x,y),半径为R,设已知圆的圆心分别为O1、O2,将圆的方程分别配方得:(x+3)2+y2=4,(x﹣3)2+y2=100,当动圆与圆O1相外切时,有|O1M|=R+2…①当动圆与圆O2相内切时,有|O2M|=10﹣R…②将①②两式相加,得|O1M|+|O2M|=12>|O1O2|,∴动圆圆心M(x,y)到点O1(﹣3,0)和O2(3,0)的距离和是常数12,所以点M的轨迹是焦点为点O1(﹣3,0)、O2(3,0),长轴长等于12的椭圆.∴2c=6,2a=12,∴c=3,a=6∴b2=36﹣9=27∴圆心轨迹方程为,轨迹为椭圆.(方法二):由方法一可得方程,移项再两边分别平方得:2两边再平方得:3x2+4y2﹣108=0,整理得所以圆心轨迹方程为,轨迹为椭圆.【点评】本题以两圆的位置关系为载体,考查椭圆的定义,考查轨迹方程,确定轨迹是椭圆是关键.。
金山屯区实验中学2018-2019学年高二上学期第二次月考试卷数学班级__________ 姓名__________ 分数__________一、选择题1. 复数满足2+2z1-i =i z ,则z 等于( )A .1+iB .-1+iC .1-iD .-1-i2. 对一切实数x ,不等式x 2+a|x|+1≥0恒成立,则实数a 的取值范围是( )A .(﹣∞,﹣2)B . D .上是减函数,那么b+c ( )A .有最大值B .有最大值﹣C .有最小值D .有最小值﹣3. 下列给出的几个关系中:①{}{},a b ∅⊆;②(){}{},,a b a b =;③{}{},,a b b a ⊆;④{}0∅⊆,正确的有( )个A.个B.个C.个D.个4. 复数z=(其中i 是虚数单位),则z 的共轭复数=( )A .﹣iB .﹣﹣iC . +iD .﹣ +i5. 过点(0,﹣2)的直线l 与圆x 2+y 2=1有公共点,则直线l 的倾斜角的取值范围是( )A .B .C .D .6. 已知m ,n 为不同的直线,α,β为不同的平面,则下列说法正确的是( ) A .m ⊂α,n ∥m ⇒n ∥αB .m ⊂α,n ⊥m ⇒n ⊥αC .m ⊂α,n ⊂β,m ∥n ⇒α∥βD .n ⊂β,n ⊥α⇒α⊥β7. 函数y=a 1﹣x (a >0,a ≠1)的图象恒过定点A ,若点A 在直线mx+ny ﹣1=0(mn >0)上,则的最小值为( )A .3B .4C .5D .68. 若某算法框图如图所示,则输出的结果为( )A .7B .15C .31D .639. 抛物线x 2=4y 的焦点坐标是( )A .(1,0)B .(0,1)C.()D.()10.己知y=f (x )是定义在R 上的奇函数,当x <0时,f (x )=x+2,那么不等式2f (x )﹣1<0的解集是( ) A. B.或C.D.或11.如图表示的是四个幂函数在同一坐标系中第一象限内的图象,则幂函数y=x 的图象是( )A .①B .②C .③D .④12.在等差数列{}n a 中,11a =,公差0d ,n S 为{}n a 的前n 项和.若向量13(,)m a a =,133(,)n a a =-, 且0m n ?,则2163n n S a ++的最小值为( )A .4B .3 C.2 D .92【命题意图】本题考查等差数列的性质,等差数列的前n 项和,向量的数量积,基本不等式等基础知识,意在考查学生的学生运算能力,观察分析,解决问题的能力.二、填空题13.台风“海马”以25km/h 的速度向正北方向移动,观测站位于海上的A 点,早上9点观测,台风中心位于其东南方向的B 点;早上10点观测,台风中心位于其南偏东75°方向上的C 点,这时观测站与台风中心的距离AC 等于 km .14.如图所示2×2方格,在每一个方格中填入一个数字,数字可以是1、2、3中的任何一个,允许重复.若填A B方格的数字,则不同的填法共有 种(用数字作答).15.(﹣2)7的展开式中,x 2的系数是 . 16.设变量x ,y 满足约束条件,则的最小值为 .17.设集合A={﹣3,0,1},B={t 2﹣t+1}.若A ∪B=A ,则t= .18.一个正四棱台,其上、下底面均为正方形,边长分别为2cm 和4cm ,侧棱长为2cm ,则其表面积为__________2cm .三、解答题19.(14分)已知函数1()ln ,()ex x f x mx a x m g x -=--=,其中m ,a 均为实数.(1)求()g x 的极值; 3分(2)设1,0m a =<,若对任意的12,[3,4]x x ∈12()x x ≠,212111()()()()f x f xg x g x -<-恒成立,求a 的最小值; 5分(3)设2a =,若对任意给定的0(0,e]x ∈,在区间(0,e]上总存在1212,()t t t t ≠,使得120()()()f t f t g x == 成立,求m 的取值范围. 6分20.为了培养中学生良好的课外阅读习惯,教育局拟向全市中学生建议一周课外阅读时间不少于t0小时.为此,教育局组织有关专家到某“基地校”随机抽取100名学生进行调研,获得他们一周课外阅读时间的数据,整理得到如图频率分布直方图:(Ⅰ)求任选2人中,恰有1人一周课外阅读时间在[2,4)(单位:小时)的概率(Ⅱ)专家调研决定:以该校80%的学生都达到的一周课外阅读时间为t0,试确定t0的取值范围21.过抛物线y2=2px(p>0)的焦点F作倾斜角为45°的直线交抛物线于A、B两点,若线段AB的长为8,求抛物线的方程.22.已知等差数列{a n}中,a1=1,且a2+2,a3,a4﹣2成等比数列.(1)求数列{a n}的通项公式;(2)若b n =,求数列{b n }的前n 项和S n .23.若已知,求sinx 的值.24.(本小题满分12分)某校高二奥赛班N 名学生的物理测评成绩(满分120分)分布直方图如下,已知分数在100-110的学生 数有21人.(1)求总人数N 和分数在110-115分的人数; (2)现准备从分数在110-115的名学生(女生占13)中任选3人,求其中恰好含有一名女生的概率; (3)为了分析某个学生的学习状态,对其下一阶段的学生提供指导性建议,对他前7次考试的数学成绩 (满分150分),物理成绩y 进行分析,下面是该生7次考试的成绩.已知该生的物理成绩y 与数学成绩是线性相关的,若该生的数学成绩达到130分,请你估计他的物理 成绩大约是多少?附:对于一组数据11(,)u v ,22(,)u v ……(,)n n u v ,其回归线v u αβ=+的斜率和截距的最小二乘估计分别为:^121()()()niii nii u u v v u u β==--=-∑∑,^^a v u β=-.金山屯区实验中学2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1. 【答案】【解析】解析:选D.法一:由2+2z1-i =i z 得2+2z =i z +z , 即(1-i )z =-2,∴z =-21-i =-2(1+i )2=-1-i.法二:设z =a +b i (a ,b ∈R ), ∴2+2(a +b i )=(1-i )i (a +b i ), 即2+2a +2b i =a -b +(a +b )i ,∴⎩⎪⎨⎪⎧2+2a =a -b2b =a +b , ∴a =b =-1,故z =-1-i. 2. 【答案】B【解析】解:由f (x )在上是减函数,知 f ′(x )=3x 2+2bx+c ≤0,x ∈,则⇒15+2b+2c ≤0⇒b+c ≤﹣.故选B .3. 【答案】C 【解析】试题分析:由题意得,根据集合之间的关系可知:{}{},,a b b a ⊆和{}0∅⊆是正确的,故选C. 考点:集合间的关系. 4. 【答案】C【解析】解:∵z==,∴=.故选:C .【点评】本题考查了复数代数形式的乘除运算,是基础题.5.【答案】A【解析】解:若直线斜率不存在,此时x=0与圆有交点,直线斜率存在,设为k,则过P的直线方程为y=kx﹣2,即kx﹣y﹣2=0,若过点(0,﹣2)的直线l与圆x2+y2=1有公共点,则圆心到直线的距离d≤1,即≤1,即k2﹣3≥0,解得k≤﹣或k≥,即≤α≤且α≠,综上所述,≤α≤,故选:A.6.【答案】D【解析】解:在A选项中,可能有n⊂α,故A错误;在B选项中,可能有n⊂α,故B错误;在C选项中,两平面有可能相交,故C错误;在D选项中,由平面与平面垂直的判定定理得D正确.故选:D.【点评】本题考查命题真假的判断,是基础题,解题时要认真审题,注意空间思维能力的培养.7.【答案】B【解析】解:函数y=a1﹣x(a>0,a≠1)的图象恒过定点A(1,1),∵点A在直线mx+ny﹣1=0(mn>0)上,∴m+n=1.则=(m+n)=2+=4,当且仅当m=n=时取等号.故选:B.【点评】本题考查了“乘1法”与基本不等式的性质、指数函数的性质,属于基础题.8.【答案】D【解析】解:模拟执行算法框图,可得A=1,B=1满足条件A≤5,B=3,A=2满足条件A≤5,B=7,A=3满足条件A≤5,B=15,A=4满足条件A≤5,B=31,A=5满足条件A≤5,B=63,A=6不满足条件A≤5,退出循环,输出B的值为63.故选:D.【点评】本题主要考查了程序框图和算法,正确得到每次循环A,B的值是解题的关键,属于基础题.9.【答案】B【解析】解:∵抛物线x2=4y中,p=2,=1,焦点在y轴上,开口向上,∴焦点坐标为(0,1),故选:B.【点评】本题考查抛物线的标准方程和简单性质的应用,抛物线x2=2py的焦点坐标为(0,),属基础题.10.【答案】B【解析】解:因为y=f(x)为奇函数,所以当x>0时,﹣x<0,根据题意得:f(﹣x)=﹣f(x)=﹣x+2,即f(x)=x﹣2,当x<0时,f(x)=x+2,代入所求不等式得:2(x+2)﹣1<0,即2x<﹣3,解得x<﹣,则原不等式的解集为x<﹣;当x≥0时,f(x)=x﹣2,代入所求的不等式得:2(x﹣2)﹣1<0,即2x<5,解得x<,则原不等式的解集为0≤x<,综上,所求不等式的解集为{x|x<﹣或0≤x<}.故选B11.【答案】D【解析】解:幂函数y=x为增函数,且增加的速度比价缓慢,只有④符合.故选:D.【点评】本题考查了幂函数的图象与性质,属于基础题.12.【答案】A【解析】二、填空题13.【答案】25【解析】解:由题意,∠ABC=135°,∠A=75°﹣45°=30°,BC=25km,由正弦定理可得AC==25km,故答案为:25.【点评】本题考查三角形的实际应用,转化思想的应用,利用正弦定理解答本题是关键.14.【答案】27【解析】解:若A方格填3,则排法有2×32=18种,若A方格填2,则排法有1×32=9种,根据分类计数原理,所以不同的填法有18+9=27种.故答案为:27.【点评】本题考查了分类计数原理,如何分类是关键,属于基础题.15.【答案】﹣280解:∵(﹣2)7的展开式的通项为=.由,得r=3.∴x2的系数是.故答案为:﹣280.16.【答案】4.【解析】解:作出不等式组对应的平面区域,则的几何意义为区域内的点到原点的斜率,由图象可知,OC的斜率最小,由,解得,即C(4,1),此时=4,故的最小值为4,故答案为:4【点评】本题主要考查线性规划的应用,利用直线斜率的定义以及数形结合是解决本题的关键.17.【答案】0或1.【解析】解:由A∪B=A知B⊆A,∴t2﹣t+1=﹣3①t2﹣t+4=0,①无解或t2﹣t+1=0②,②无解或t2﹣t+1=1,t2﹣t=0,解得t=0或t=1.故答案为0或1.【点评】本题考查集合运算及基本关系,掌握好概念是基础.正确的转化和计算是关键.18.【答案】20 【解析】考点:棱台的表面积的求解.三、解答题19.【答案】解:(1)e(1)()exx g x -'=,令()0g x '=,得x = 1. 列表如下:∵g (1) = 1,∴y =()g x 的极大值为1,无极小值. 3分(2)当1,0m a =<时,()ln 1f x x a x =--,(0,)x ∈+∞.∵()0x af x x -'=>在[3,4]恒成立,∴()f x 在[3,4]上为增函数. 设1e ()()e x h xg x x ==,∵12e (1)()x x h x x--'=> 0在[3,4]恒成立,∴()h x 在[3,4]上为增函数. 设21x x >,则212111()()()()f x f xg x g x -<-等价于2121()()()()f x f x h x h x -<-, 即2211()()()()f x h x f x h x -<-.设1e ()()()ln 1e xu x f x h x x a x x=-=---⋅,则u (x )在[3,4]为减函数.∴21e (1)()10e x a x u x x x -'=--⋅≤在(3,4)上恒成立. ∴11e e x x a x x---+≥恒成立.设11e ()e x x v x x x --=-+,∵112e (1)()1e x x x v x x---'=-+=121131e [()]24x x ---+,x ∈[3,4], ∴1221133e [()]e 1244x x --+>>,∴()v x '< 0,()v x 为减函数.∴()v x 在[3,4]上的最大值为v (3) = 3 -22e 3.∴a ≥3 -22e 3,∴a 的最小值为3 -22e 3. 8分(3)由(1)知()g x 在(0,e]上的值域为(0,1].∵()2ln f x mx x m =--,(0,)x ∈+∞,当0m =时,()2ln f x x =-在(0,e]为减函数,不合题意.当0m ≠时,2()()m x m f x x-'=,由题意知()f x 在(0,e]不单调, 所以20e m <<,即2em >.①此时()f x 在2(0,)m 上递减,在2(,e)m上递增,∴(e)1f ≥,即(e)e 21f m m =--≥,解得3e 1m -≥.②由①②,得3e 1m -≥.∵1(0,e]∈,∴2()(1)0f f m =≤成立.下证存在2(0,]t m∈,使得()f t ≥1.取e m t -=,先证e 2m m-<,即证2e 0m m ->.③设()2e x w x x =-,则()2e 10x w x '=->在3[,)e 1+∞-时恒成立.∴()w x 在3[,)e 1+∞-时为增函数.∴3e ))01((w x w ->≥,∴③成立.再证()e m f -≥1.∵e e 3()1e 1m m f m m m --+=>>-≥,∴3e 1m -≥时,命题成立. 综上所述,m 的取值范围为3[,)e 1+∞-. 14分20.【答案】【解析】解:(Ⅰ)一周课外阅读时间在[0,2)的学生人数为0.010×2×100=2人, 一周课外阅读时间在[2,4)的学生人数为0.015×2×100=3人,记一周课外阅读时间在[0,2)的学生为A,B,一周课外阅读时间在[2,4)的学生为C,D,E,从5人中选取2人,得到基本事件有AB,AC,AD,AE,BC,BD,BE,CD,CE,DE共有10个基本事件,记“任选2人中,恰有1人一周课外阅读时间在[2,4)”为事件M,其中事件M包含AC,AD,AE,BD,BC,BE,共有6个基本事件,所以P(M)==,即恰有1人一周课外阅读时间在[2,4)的概率为.(Ⅱ)以该校80%的学生都达到的一周课外阅读时间为t0,即一周课外阅读时间未达到t0的学生占20%,由(Ⅰ)知课外阅读时间落在[0,2)的频率为P1=0.02,课外阅读时间落在[2,4)的频率为P2=0.03,课外阅读时间落在[4,6)的频率为P3=0.05,课外阅读时间落在[6,8)的频率为P1=0.2,因为P1+P2+P3<0.2,且P1+P2+P3+P4>0.2,故t0∈[6,8),所以P1+P2+P3+0.1×(t0﹣6)=0.2,解得t0=7,所以教育局拟向全市中学生的一周课外阅读时间为7小时.【点评】本题主要考查了用列举法计算随机事件的基本事件,古典概型概以及频率分布直方图等基本知识,考查了数据处理能力和运用概率知识解决实际问题的能力,属于中档题.21.【答案】【解析】解:由题意可知过焦点的直线方程为y=x﹣,联立,得,设A(x1,y1),B(x2,y2)根据抛物线的定义,得|AB|=x1+x2+p=4p=8,解得p=2.∴抛物线的方程为y2=4x.【点评】本题给出直线与抛物线相交,在已知被截得弦长的情况下求焦参数p的值.着重考查了抛物线的标准方程和直线与圆锥曲线位置关系等知识,属于中档题.22.【答案】【解析】解:(1)由a 2+2,a 3,a 4﹣2成等比数列,∴=(a 2+2)(a 4﹣2),(1+2d )2=(3+d )(﹣1+3d ),d 2﹣4d+4=0,解得:d=2, ∴a n =1+2(n ﹣1)=2n ﹣1, 数列{a n }的通项公式a n =2n ﹣1;(2)b n ===(﹣),S n = [(1﹣)+(﹣)+…+(﹣)],=(1﹣),=,数列{b n }的前n 项和S n ,S n =.23.【答案】【解析】解:∵,∴<<2π,∴sin ()=﹣=﹣.∴sinx=sin[(x+)﹣]=sin ()cos﹣cos ()sin=﹣﹣=﹣.【点评】本题考查了两角和差的余弦函数公式,属于基础题.24.【答案】(1)60N =,6n =;(2)815P =;(3)115. 【解析】试题解析:(1)分数在100-110内的学生的频率为1(0.040.03)50.35P =+⨯=,所以该班总人数为21600.35N ==, 分数在110-115内的学生的频率为21(0.010.040.050.040.030.01)50.1P =-+++++⨯=,分数在110-115内的人数600.16n =⨯=.(2)由题意分数在110-115内有6名学生,其中女生有2名,设男生为1234,,,A A A A ,女生为12,B B ,从6名学生中选出3人的基本事件为:12(,)A A ,13(,)A A ,14(,)A A ,11(,)A B ,12(,)A B ,23(,)AA ,24(,)A A ,21(,)AB ,22(,)A B ,34(,)A A ,31(,)A B ,32(,)A B ,41(,)A B ,42(,)A B ,12(,)B B 共15个.其中恰 好含有一名女生的基本事件为11(,)A B ,12(,)A B ,22(,)A B ,21(,)A B ,31(,)A B ,32(,)A B ,41(,)A B ,42(,)A B ,共8个,所以所求的概率为815P =. (3)12171788121001007x --+-++=+=;69844161001007y --+-+++=+=;由于与y 之间具有线性相关关系,根据回归系数公式得到^4970.5994b ==,^1000.510050a =-⨯=,∴线性回归方程为0.550y x =+,∴当130x =时,115y =.1考点:1.古典概型;2.频率分布直方图;3.线性回归方程.【易错点睛】本题主要考查古典概型,频率分布直方图,线性回归方程,数据处理和计算能力.求线性回归方程,关键在于正确求出系数,a b ,一定要将题目中所给数据与公式中的,,a b c 相对应,再进一步求解.在求解过程中,由于,a b 的计算量大,计算时应仔细谨慎,分层进行,避免因计算而产生错误,特别是回归直线方程中一次项系数为,b 常数项为这与一次函数的习惯表示不同.。
金山区第二高级中学2018-2019学年高二上学期第二次月考试卷数学班级__________ 姓名__________ 分数__________一、选择题1. 直线在平面外是指( ) A .直线与平面没有公共点 B .直线与平面相交 C .直线与平面平行D .直线与平面最多只有一个公共点 2. “a >b ,c >0”是“ac >bc ”的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件3. 已知函数f (x )=x (1+a|x|).设关于x 的不等式f (x+a )<f (x )的解集为A ,若,则实数a 的取值范围是( )A .B .C .D .4. 已知命题:()(0xp f x a a =>且1)a ≠是单调增函数;命题5:(,)44q x ππ∀∈,sin cos x x >.则下列命题为真命题的是( )A .p q ∧B .p q ∨⌝ C. p q ⌝∧⌝ D .p q ⌝∧ 5. 如果命题p ∨q 是真命题,命题¬p 是假命题,那么( )A .命题p 一定是假命题B .命题q 一定是假命题C .命题q 一定是真命题D .命题q 是真命题或假命题6. 在某校冬季长跑活动中,学校要给获得一、二等奖的学生购买奖品,要求花费总额不得超过200元.已知一等奖和二等奖奖品的单价分别为20元、10元,一等奖人数与二等奖人数的比值不得高于,且获得一等奖的人数不能少于2人,那么下列说法中错误的是( )A .最多可以购买4份一等奖奖品B .最多可以购买16份二等奖奖品C .购买奖品至少要花费100元D .共有20种不同的购买奖品方案 7. 已知椭圆(0<b <3),左右焦点分别为F 1,F 2,过F 1的直线交椭圆于A ,B 两点,若|AF 2|+|BF 2|的最大值为8,则b 的值是( )A .B .C .D .8. 有下列四个命题:①“若a 2+b 2=0,则a ,b 全为0”的逆否命题; ②“全等三角形的面积相等”的否命题; ③“若“q ≤1”,则x 2+2x+q=0有实根”的逆否命题;④“矩形的对角线相等”的逆命题. 其中真命题为( )A .①②B .①③C .②③D .③④ 9. 若命题“p 或q ”为真,“非p ”为真,则( )A .p 真q 真B .p 假q 真C .p 真q 假D .p 假q 假10.在平面直角坐标系中,把横、纵坐标均为有理数的点称为有理点.若a 为无理数,则在过点P (a ,﹣)的所有直线中( )A .有无穷多条直线,每条直线上至少存在两个有理点B .恰有n (n ≥2)条直线,每条直线上至少存在两个有理点C .有且仅有一条直线至少过两个有理点D .每条直线至多过一个有理点11.若椭圆+=1的离心率e=,则m 的值为( )A .1B .或C .D .3或12.设集合(){,|,,1A x y x y x y =--是三角形的三边长},则A 所表示的平面区域是( )A .B .C .D .二、填空题13.抛物线y 2=4x 上一点M 与该抛物线的焦点F 的距离|MF|=4,则点M 的横坐标x= .14.若P (1,4)为抛物线C :y 2=mx 上一点,则P 点到该抛物线的焦点F 的距离为|PF|= .15.已知向量、满足,则|+|= .16.已知函数y=log(x 2﹣ax+a )在区间(2,+∞)上是减函数,则实数a 的取值范围是 .17.若在圆C :x 2+(y ﹣a )2=4上有且仅有两个点到原点O 距离为1,则实数a 的取值范围是 .18.直线ax ﹣2y+2=0与直线x+(a ﹣3)y+1=0平行,则实数a 的值为 .三、解答题19.2016年1月1日起全国统一实施全面两孩政策.为了解适龄民众对放开生育二胎政策的态度,某市选取7080100位,得到数据如表:70后公民中随机抽取3位,记其中生二胎的人数为X ,求随机变量X 的分布列和数学期望;(Ⅱ)根据调查数据,是否有90%以上的把握认为“生二胎与年龄有关”,并说明理由. 2.0722.7063.8415.024(参考公式:,其中n=a+b+c+d )20.本小题满分12分已知椭圆C 2. Ⅰ求椭圆C 的长轴长;Ⅱ过椭圆C 中心O 的直线与椭圆C 交于A 、B 两点A 、B 不是椭圆C 的顶点,点M 在长轴所在直线上,且22OMOA OM =⋅,直线BM 与椭圆交于点D ,求证:AD ⊥AB 。
上海市金山中学2018-2019学年高二数学5月月考试题(含解析)一、填空题(本大题共12小题,满分54分,其中1~6题每题4分,7~12题每题5分)考生应在答题纸相应编号的空格内直接填写结果.1.已知i 为虚数单位,若复数()()12ai i ++是纯虚数,则实数a =______. 【答案】2 【解析】 【分析】利用复数的运算法则进行化简,然后再利用纯虚数的定义即可得出. 【详解】∵复数(1+ai )(2+i )=2﹣a +(1+2a )i 是纯虚数,∴20120a a -=⎧⎨+≠⎩,解得a =2. 故答案为:2.【点睛】熟练掌握复数的运算法则、纯虚数的定义是解题的关键,本题属于基础题. 2.椭圆5cos 4sin x y θθ=⎧⎨=⎩(θ为参数)的焦距为______.【答案】6 【解析】 【分析】消参求出椭圆的普通方程,即可求出椭圆的焦距.【详解】将5cos 4sin x y θθ=⎧⎨=⎩变形为cos 5sin 4xy θθ⎧=⎪⎪⎨⎪=⎪⎩,平方相加消去参数θ可得:2212516x y +=, 所以,c ==3,所以,焦距为2c =6.故答案为6.【点睛】本题考查椭圆的参数方程,考查椭圆的性质,正确转化为普通方程是关键.3.以椭圆2212x y +=的焦点为顶点,顶点为焦点的双曲线方程是______.【答案】221x y -= 【解析】 【分析】根据椭圆的标准方程求出焦点和顶点坐标,得出双曲线的顶点和焦点,从而求出双曲线的方程.【详解】椭圆2212x y +=的焦点为F (±1,0),,0);则双曲线的顶点为(±1,0),0), ∴a =1,c ,∴b ==1,∴双曲线的方程为221x y -=, 故答案为:221x y -=.【点睛】本题考查了椭圆与双曲线的标准方程与简单几何性质的应用问题,是基础题.4.某圆锥体的侧面图是圆心角为23π的扇形,当侧面积是27π时,则该圆锥体的体积是______.【答案】 【解析】 【分析】由圆锥体侧面展开图的半径是圆锥的母线长,展开图的弧长是底面圆的周长,可以求出圆锥的母线和底面圆半径,从而得出高和体积.【详解】设圆锥的侧面展开图扇形的半径为l ,则侧面展开图扇形的面积S 1223π=⨯ l 2=27π;∴l =9.又设圆锥的底面圆半径为r ,则2πr =23πl , ∴r 13=l =3; ∴圆锥的高h === ∴该圆锥体的体积是:V 圆锥13=•πr 2•h 13=•π•9•=.故答案为:.【点睛】本题考查圆锥的体积公式,考查了空间想象能力,计算能力,关键是弄清楚侧面展开图与圆锥体的关系,属于基础题.5.已知实数x 、y 满足11y x x y y ≤⎧⎪+≤⎨⎪≥-⎩,则目标函数2z x y =-的最大值为______.【答案】5 【解析】试题分析:可行域为一个三角形ABC 及其内部,其中(1,1),(2,1),(1,0)A B C -,直线2z x y =-过点C 时取最大值1. 考点:线性规划【易错点睛】线性规划的实质是把代数问题几何化,即数形结合的思想.需要注意的是:一,准确无误地作出可行域;二,画目标函数所对应的直线时,要注意与约束条件中的直线的斜率进行比较,避免出错;三,一般情况下,目标函数的最大或最小值会在可行域的端点或边界上取得.6.已知圆柱M 的底面圆的半径与球O 的半径相同,若圆柱M 与球O 的体积相等,则它们的表面积之比:S S =圆柱球______.(用数值作答) 【答案】76【解析】【分析】由已知中圆柱M 与球O 的体积相等,可以求出圆柱的高与圆柱底面半径的关系,进而求出圆柱和球的表面积后,即可得到S 圆柱:S 球的值.【详解】∵设圆柱M 的底面圆的半径与球O 的半径均为R ,M 的高为h 则球的表面积S 球=4πR 2又∵圆柱M 与球O 的体积相等 即2343R h R ππ= 解得h =43R , 4πR 2=2πR 2+2πR •h则S 圆柱=2πR 2+2πR •h=2143R π,S 球24R π=, ∴S 圆柱:S 球147436==:, 故答案为:76. 【点睛】本题考查的知识点是球的体积和表面积,圆柱的体积和表面积,其中根据已知求出圆柱的高,是解答本题的关键.7.若虛数1z 、2z 是实系数一元二次方程20x px q ++=的两个根,且212z z =,则pq =______.【答案】1 【解析】 【分析】设z 1=a +bi ,则z 2=a ﹣bi ,(a ,b ∈R ),根据两个复数相等的充要条件求出z 1,z 2,再由根与系数的关系求得p ,q 的值.【详解】由题意可知z 1与z 2为共轭复数,设z 1=a +bi ,则z 2=a ﹣bi ,(a ,b ∈R 且b 0≠),又212z z =,则222i a b ab -+=a ﹣bi ,∴(2a +b )+(a +2b )i =1﹣i ,∴221222a a b a ab b b ⎧=-⎪⎧-=⎪⇒⎨⎨=-⎩⎪=±⎪⎩.∴z 1=12-,z 2=12-i ,(或z 2=12-,z 1=12--i )由根与系数的关系,得p =﹣(z 1+z 2)=1,q =z 1•z 2=1, ∴pq =1. 故答案为:1.【点睛】本题考查实系数一元二次方程在复数集的根的问题,考查了两个复数相等的充要条件,属于基础题.8.已知双曲线221x y -=,1A 、2A 是它的两个顶点,点P 是双曲线上的点,且直线1PA 的斜率是12,则直线2PA 的斜率为______. 【答案】2 【解析】 【分析】设P (x 0,y 0),则22001x y -=,202011y x =-,由A 1(﹣1,0),A 2(1,0),知k 1k 2200020001111y y y x x x =⋅==+--,由此能求出直线PA 2的斜率. 【详解】设P (x 0,y 0),则22001x y -=,∴202011y x =-, ∵A 1(﹣1,0),A 2(1,0),设直线PA 1斜率为k 1,直线PA 2的斜率为k 2,∴k 1k 2200020001111y y y x x x =⋅==+--, ∵k 112=, ∴k 22=. 故答案为:2.【点睛】本题考查两直线的斜率之积的求法,考查曲线上点的坐标与曲线方程的关系,考查了分析问题的能力,属于基础题.9.已知半径为R 的球的球面上有三个点,其中任意两点间的球面距离都等于3Rπ,且经过这三个点的小圆周长为4π,则R =______.【答案】【解析】 【分析】根据题意,得出AB =BC =CA =R ,利用其周长得到正三角形ABC 的外接圆半径r ,故可以得到高,设D 是BC 的中点,在△OBC 中,又可以得到角以及边与R 的关系,在Rt △ABD 中,再利用直角三角形的勾股定理,即可解出R .【详解】∵球面上三个点,其中任意两点间的球面距离都等于3Rπ, ∴∠ABC =∠BCA =∠CAB 3π=,∴AB =BC =CA =R ,设球心为O ,因为正三角形ABC 的外径r =2,故高AD 32=r =3,D 是BC 的中点. 在△OBC 中,BO =CO =R ,∠BOC 3π=,所以BC =BO =R ,BD 12=BC 12=R .在Rt △ABD 中,AB =BC =R ,所以由AB 2=BD 2+AD 2,得R 214=R 2+9,所以R =故答案为:.【点睛】本题考查了球的基本概念及性质应用,考查了空间想象能力,是基础题.10.关于x 的方程1x +=m 的取值范围是______.【答案】m 1≥-. 【解析】 【分析】由题意可得,函数y =x +1的图象和函数y =的图象有一个交点,对函数y =的m 分类,分别画出y =的图象,可求出实数m 的取值范围.【详解】∵关于x 的方程x+1=故直线y =x +1的图象和函数y =的图象有一个交点.在同一坐标系中分别画出函数y =x +1的图象和函数y =的图象.由于函数y =当m=0时,y x ===和直线y =x +1的图象如图:满足有一个交点; 当m>0时,y =y 2﹣x 2=m(y>0)此双曲线y 2﹣x 2=m渐近线方程为y =±x ,其中y=x 与直线y =x +1平行, 双曲线y 2﹣x 2=m 的顶点坐标为(0, 如图:只要m>0,均满足函数y =x +1的图象和函数y =的图象有一个交点,当m<0时,y =x 2﹣y 2=﹣m(y>0),此双曲线x 2﹣y 2=﹣m 的渐近线方程为y =±x ,其中y=x 与直线y =x +1平行,而双曲线x 2﹣y 2=﹣m 的顶点坐标为(0),如图:1≤时,满足函数y =x +1的图象和函数y即当1m 0-≤<时符合题意; 综上: m 1≥-, 故答案为:m 1≥-.【点睛】本题考查的知识点直线和双曲线的位置关系的应用,将问题转化为直线y =x +1的图象和函数y =是解答本题的关键,考查了数形结合思想,属于中档题.11.棱长为1的正方体1111ABCD A B C D -中,点M 、N 分别在线段1AB 、1BC 上运动(不包括线段端点),且AM BN =.以下结论:①1AA MN ⊥;②若点M 、N 分别为线段1AB 、1BC 的中点,则由线MN 与1AB 确定的平面在正方体1111ABCD A B C D -上的截面为等边三角形;③四面体MBCN 的体积的最大值为124;④直线1D M 与直线1A N 的夹角为定值.其中正确的结论为______.(填序号)【答案】① ② ③ 【解析】 【分析】①作NE ⊥BC ,MF ⊥AB ,垂足分别为E ,F ,可得四边形MNEF 是矩形,可得MN ∥FE ,利用AA 1⊥面AC ,可得结论成立;②截面为△AB 1C ,为等边三角形,故正确.③设=BN 1λB C ,则MBCN V =13BCNS d M ﹣BCN =11λ1λ624-≤(),故③成立; ④设=BN 1λB C ,当λ接近于0时,直线1M D 与直线1N A 的夹角接近于3π,当λ接近于1时,夹角接近于2π,故④不正确;【详解】①作NE ⊥BC ,MF ⊥AB ,垂足分别为E ,F ,∵AM =BN ,∴NE =MF ,∴四边形MNEF 是矩形,∴MN ∥FE ,∵AA 1⊥面AC ,EF ⊂面AC ,∴AA 1⊥EF ,∴AA 1⊥MN ,故①正确;②点M 、N 分别为线段AB 1、BC 1的中点,则由线MN 与AB 1确定的平面在正方体ABCD ﹣A 1B 1C 1D 1 上的截面为△AB 1C ,为等边三角形,故②正确. ③设=BN 1λB C ,则M BCN V -=13BCNS d M ﹣BCN ,又AM=BN=11λB λA C B =,∴BCN S=1λ2,d M ﹣BCN =()1λAB 1λ-=-,∴MBCN V =13BCNS d M ﹣BCN =11λ1λ624-≤(),当且仅当1λ2=时取得最大值,故③成立;④设=BN 1λB C ,当λ接近于0时,直线1M D 与直线1N A 的夹角近似于直线1A D 和直线1B A 的夹角,接近于3π,当λ接近于1时,直线1M D 与直线1N A 的夹角近似于直线11D B 和直线11A C 的夹角,接近于2π,故④不正确;综上可知,正确的结论为①②③ 故答案为:①②③【点睛】本题考查线面平行、垂直,考查点到面的距离的计算,考查学生分析解决问题的能力,属于中档题.12.“横看成岭侧成峰,远近高低各不同.”同一事物从不同角度看,我们会有不同的认识.请解决以下问题:设函数2()(21)2(,,0)f x ax b x a a b R a =++--∈≠在[]3,4至少有一个零点,则22a b +的最小值为______. 【答案】1100【解析】 【分析】把等式看成关于a ,b 的直线方程:(x 2﹣1)a +2xb +x ﹣2=0,由于直线上一点(a ,b )到原点的距离大于等于原点到直线的距离,从而可得,从而可得a 2+b 222221()51(24)2x x x x -≥=+-++-;从而解得.【详解】把等式看成关于a ,b 的直线方程:(x 2﹣1)a +2xb +x ﹣2=0, 由于直线上一点(a ,b )到原点的距离大于等于原点到直线的距离,≥所以a 2+b 222221()51(24)2x x x x -≥=+-++-, ∵x ﹣252x +-在[3,4]是减函数,∴252+≤x ﹣252x +≤-1+5; 即92≤x ﹣252x +≤-6; 故2115100(24)2x x ≥-++-;当x =3,a 225=-,b 350=-时取等号,故a 2+b 2的最小值为1100.故答案为:1100. 【点睛】本题考查了函数的零点的应用,把等式看成关于a ,b 的直线方程(x 2﹣1)a +2xb +x ﹣2=0是难点,属于较难题.二、填空题(本大题共有4小题,满分20分,每题5分)每题有且只有一个正确答案,考生应在答题纸的相应编号上将代表答案的小方格涂黑.13.设直线l 与平面α平行,直线m 在平面α上,那么( ) A. 直线l 不平行于直线m B. 直线l 与直线m 异面 C. 直线l 与直线m 没有公共点 D. 直线l 与直线m 不垂直【答案】C 【解析】 【分析】由已知中直线l 与平面α平行,直线m 在平面α上,可得直线l 与直线m 异面或平行,进而得到答案.【详解】∵直线l 与平面α平行,由线面平行的定义可知:直线l 与平面α无公共点, 又直线m 在平面α上, ∴直线l 与直线m 没有公共点, 故选:C .【点睛】本题考查的知识点是空间中直线与直线之间的位置关系,考查了直线与平面平行的定义,属于基础题.14.已知集合{|()()20,,,}A z a bi z a bi z a b R z C =++-+=∈∈,{|||1,}B z z z C ==∈,若AB =∅,则a ,b 之间的关系是( )A. 1a b +>B. 1a b +<C. 221a b +<D.221a b +>【答案】C 【解析】 【分析】先设出复数z,利用复数相等的定义得到集合A看成复平面上直线上的点,集合B可看成复平面上圆的点集,若A∩B=∅即直线与圆没有交点,借助直线与圆相离的定义建立不等关系即可.【详解】设z=x+yi,,x y R∈,则(a+bi)(x﹣yi)+(a﹣bi)(x+yi)+2=0化简整理得,ax+by+1=0即,集合A可看成复平面上直线上的点,集合B可看成复平面上圆x2+y2=1的点集,若A∩B=∅,即直线ax+by+1=0与圆x2+y2=1没有交点,1d=,即a2+b2<1故选:C.【点睛】本题考查了复数相等的定义及几何意义,考查了直线与圆的位置关系,考查了转化思想,属于中档题.15.已知某四面体的六条棱长分别为3,3,2,2,2,2,则两条较长棱所在直线所成角的余弦值为()A. 0B.79C. 0或79D. 以上都不对【答案】B【解析】【分析】当较长的两条棱是四面体相对的棱时,根据三角形两边之和大于第三边出现矛盾,得此种情况不存在;当它们是四面体相邻的棱时,根据余弦定理可以算出所成角的余弦之值,由此可得正确答案.【详解】①当较长的两条棱是四面体相对的棱时,如图,取CD中点E,则∵等腰△BCD中,中线BE⊥CD,等腰△ACD中,中线AE⊥CD,AE、BE是平面ABE内的相交直线∴CD⊥平面ABE,结合AB⊆平面ABE,可得AB⊥CD此时两条较长棱所在直线所成角的余弦值为cos90°=0,检验:此时△ABE中,AE=BE=AE+BE>AB,故此种情况舍去;②当较长的两条棱是四面体相邻的棱时,如图设所成的角为θ,根据余弦定理得cosθ9947 2339+-==⨯⨯综上所述,得所求余弦值为7 9故选B.【点睛】本题考查了在四面体中求两条棱所在直线所成角的余弦值,着重考查了余弦定理、线面垂直的判定与性质和异面直线所成角等知识,属于基础题.16.以下命题:①根据斜二测画法,三角形的直观图是三角形;②有两个平面互相平行,其余各面都是平行四边形的多面体是棱柱;③两相邻侧面所成角相等的棱锥是正棱锥;④若两个二面角的半平面互相垂直,则这两个二面角的大小相等或互补.其中正确命题的个数为()A. 1B. 2C. 3D. 4【答案】A 【解析】 【分析】由斜二测画法规则直接判断①正确;举出反例即可说明命题②、③、④错误; 【详解】对于①,由斜二测画法规则知:三角形的直观图是三角形;故①正确; 对于②,如图符合条件但却不是棱柱;故②错误;对于③,两相邻侧面所成角相等的棱锥不一定是正棱锥,例如把如图所示的正方形折叠成三棱锥不是正棱锥.故③错误;对于④,一个二面角的两个半平面分别垂直于另一个二面角的两个半平面,则这两个角的平面角相等或互补错误,如教室中的前墙面和左墙面构成一个直二面角,底板面垂直于左墙面,垂直于前墙面且与底板面相交的面与底板面构成的二面角不一定是直角.故④错误; ∴只有命题①正确. 故选A .【点睛】本题考查了命题的真假判断与应用,考查了空间几何体的结构特征,考查了学生的空间想象能力和思维能力,是中档题.三、解答题(本大题共5题,满分76分)解答下列各题必须在答题纸相应编号的规定区域写出必要的步骤.17.如图,正方体1111ABCD A B C D 的棱长为1.(1)求二面角1B AC B --的大小;(用反三角函数表示) (2)求直线1A B 与平面11BDD B 所成角的大小.【答案】(1);(2)6π. 【解析】 【分析】(1)连接AC ,取AC 中点O ,连接BO ,1B O ,先说明1BOB ∠为二面角1B AC B --的平面角,再在1Rt BO B 中求得1tan BOB ∠即可.(2)取11B D 的中点1O ,连接11A O 和1BO .由1111A O B D ⊥和111AO BB ⊥得11A O ⊥平面11BDD B ,可得11A BO ∠为直线1A B 与平面11BDD B 所成的角. 在直角三角形11AO B 中,计算11sin A BO ∠即可.【详解】(1)连接AC ,取AC 中点O ,连接BO ,1B O ,因为AB BC =,则BO AC ⊥, 因为11AB CB =,则1B O AC ⊥,所以1BOB ∠为二面角1B AC B --的平面角.因为1B B ⊥平面ABCD ,2BO =,11BB =,所以11tan BB BOB BO ∠==所以1BOB ∠=,即二面角1B AC B --的大小为. (2)取11B D 的中点1O ,连接11A O 和1BO .由1111A O B D ⊥和111AO BB ⊥得11A O ⊥平面11BDD B , 所以11A BO ∠为直线1A B 与平面11BDD B 所成的角.在直角三角形11AO B 中,112A O =,1A B =,所以111111sin 2A O A BO A B ∠==,所以116A BO π∠=, 所以直线1AB 与平面11BDD B 所成角的大小为6π. 【点睛】本题考查线面角的大小的求法,考查二面角的大小的求法,利用定义定理作出所求角是关键,是中档题.18.已知抛物线24y x =,(),0A a 是x 轴上一点,(),P x y 是抛物线上任意一点. (1)若1a =,求PA 的最小值;(2)已知O 为坐标原点,若PA 的最小值为OA ,求实数a 的取值范围. 【答案】(1)1;(2)2a ≤. 【解析】 【分析】(1)由题意及抛物线的定义可得PA =P 到准线的距离,可得P 为抛物线的顶点时,PA 的最小值为1.(2)将PA 表示为关于x 的函数,结合二次函数的性质求得结果.【详解】(1)当1a =时,A (1,0)为抛物线的焦点,此时PA =P 到准线的距离, ∴当P 为抛物线的顶点时,P 到准线的距离最小为1,即PA 的最小值为1. (2)||PA ===||PA 的最小值为||OA ,即当0x =时||PA 取得最小值,所以20a -≤,即2a ≤.【点睛】本题考查了抛物线的定义的应用,考查了二次函数最值问题,考查了分析转化能力,属于基础题.19.如图,已知四面体ABCD中,DA DB DC ===且,,DA DB DC 两两互相垂直,点O 是ABC ∆的中心.(1)过O 作OE AD ⊥,求DEO ∆绕直线DO 旋转一周所形成的几何体的体积;(2)将DAO ∆绕直线DO 旋转一周,则在旋转过程中,直线DA 与直线BC 所成角记为θ,求cos θ的取值范围.【答案】(1;(2)0cos θ≤≤. 【解析】 【分析】(1)由圆锥的几何特征可得,该几何体由两个底面相等的圆锥组合而成,其中两个圆锥的高,底半径为3,代入圆锥的体积公式,即可得到答案. (2)以O 为坐标原点,OF 为x 轴,OG 为y 轴,OD 为z 轴,建立空间直角坐标系,利用向量夹角公式求得cos θ=,令t y =+,结合点A 的轨迹方程求得t 的范围,可得结果.【详解】(1)过E 作EH DO ⊥,经计算得DO =,=OA 2OE =,由此得EH =所以DEO ∆绕直线DO 旋转一周所形成的几何体的体积213V π==⎝⎭. (2)过O 作OGAC 交AB 于G ,取AC 的中点F ,以O 为坐标原点,OF 为x 轴,OG 为y 轴,OD 为z 轴,建立空间直角坐标系,则D ,(B -,3,0)C -,设(,,0)A x y ,则3,0)BC =-,(,AD x y =--,所以cosθ=,在xOy 平面上,点A 的轨迹方程为2212x y +=,令t y =+,将t y =+看作直线y=,则直线y=与圆2212x y +=有公共点,则||2t d =≤所以0t ≤≤0cos θ≤≤. 【点睛】本题考查了旋转体的体积,考查了利用空间向量进行异面直线所成的角的求法,涉及点的轨迹问题,属于中档题.20.如图,几何体EF ABCD -中,CDEF 是边长为2的正方形,ABCD 为直角梯形,AB CD ∥,AD DC ⊥,2AD =,90ADF ∠=︒.(1)求异面直线BE 和CD 所成角的大小; (2)求几何体EF ABCD -的体积;(3)若平面ABCD 内有一经过点B 的曲线Γ,该曲线上的任一动点都满足EQ 与CD 所成角的大小恰等于BE 与CD 所成角.试判断曲线Γ的形状并说明理由.【答案】(1);(2)163;(3)双曲线.【解析】 【分析】(1)根据几何体的特征,建立空间直角坐标系,求出向量CD ,BE 的坐标,利用向量坐标运算求异面直线所成角的余弦值,可得角的大小;(2)利用几何体的体积V =V E ﹣ABCD +V B ﹣CEF ,分别求得两个棱锥的底面面积与高,代入棱锥的体积公式计算.(3)利用向量夹角公式直接可得关于x ,y 的表达式,满足双曲线方程,可得结果. 【详解】(1)∵AD DC ⊥且90ADF ︒∠=,∴AD ⊥平面CDEF ,∴AD DE ⊥如图建系,以D 为坐标原点,DA 为x 轴,DC 为y 轴,DE 为z 轴,建立空间直角坐标系,则(2,4,0)B ,(0,0,2)E ,(0,2,0)C ,(0,0,0)D ,(2,4,2)BE =--,(0,2,0)CD =-u u u r设异面直线BE 和CD 所成角的大小为θ,则6cos 1||||BE CD BE CD θ⋅==⋅所以异面直线BE 和CD 所成角的大小为. (2)如图,连结EC ,过B 作CD 的垂线,垂足为N ,则BN ⊥平面CDEF ,且BN =2.∵V EF ﹣ABCD =V E ﹣ABCD +V B ﹣ECF()1111111642222223332323ABCDEFCS DE S BN =⋅+⋅=⋅⋅+⋅⋅+⋅⋅⋅⋅=. ∴几何体EF ﹣ABCD 的体积为163.(3)设(, , 0)Q x y ,则(,,2)EQ x y =-,由题意知EQ 与CD 所成角的大小为arccos3|||EQ CD EQ CD ⋅==‖化简得22184y x -=所以曲线Γ的形状是双曲线.【点睛】本题考查了利用向量法求异面直线所成角,考查了组合几何体体积的计算,考查了学生的空间想象能力与运算能力,属于中档题.21.椭圆C :22221(0)x y a b a b+=>>,其长轴是短轴的两倍,以某短轴顶点和长轴顶点为端点,直线l 与椭圆交于11(,)A x y ,22(,)B x y 两点. (1)求椭圆C 的方程;(2)过点O 作直线l 的垂线,垂足为D .若OA OB ⊥,求点D 的轨迹方程;(3)设直线OA ,l ,OB 的斜率分别为1k ,k ,2k ,其中0k >且212k k k =.设OAB ∆的面积为S .以OA 、OB 为直径的圆的面积分别为1S ,2S ,求12S S S+的取值范围. 【答案】(1)2214x y +=;(2)2245x y +=;(3)5,4π⎡⎫+∞⎪⎢⎣⎭. 【解析】【分析】(1)由题意知a =2b=,由此能求出椭圆方程.(2)先考虑直线l 斜率存在时,设直线l 的方程为y kx m =+,和椭圆的方程联立,结合向量的垂直关系即可找到找m ,k的关系式,从而求得||5OD =.再验证斜率不存在时也满足,则可得点D 的轨迹方程. (3)设直线l 的方程为y =kx +m ,A (x 1,y 1),B (x 2,y 2),联立2214y kx m x y =+⎧⎪⎨+=⎪⎩,利用韦达定理、椭圆弦长公式结合已知条件能求出12S S S+的取值范围. 【详解】(1)由题可知,2a b =,解得:2a =,1b =, 故椭圆的方程为:2214x y +=. (2)当直线l 斜率存在时,设直线l 的方程为y kx m =+, 由2214y kx m x y =+⎧⎪⎨+=⎪⎩可得()()222148410k x kmx m +++-=,由韦达定理有: ()12221228144114km x x k m x x k ⎧+=-⎪+⎪⎨-⎪=⎪+⎩且()2216140k m ∆=+-> ∵OA OB ⊥,∴0OA OB ⋅=,即12120x x y y +=∴()()12120x x kx m kx m +++=由韦达定理代入化简得:22544m k =+∵OD 垂直直线l,∴ ||5OD == 当直线l 斜率不存在时,设l :x t =,易求5t =?,此时||5OD =所以点D 的轨迹方程为2245x y +=. (3)设直线l 的方程为(0)y kx m m =+≠, 由2214y kx m x y =+⎧⎪⎨+=⎪⎩可得()()222148410k x kmx m +++-=,由韦达定理有: ()12221228144114km x x k m x x k ⎧+=-⎪+⎪⎨-⎪=⎪+⎩且()2216140k m ∆=+-> ∵212k k k =⋅,∴()()1221212kx m kx m k k k x x ++=⋅=,即()2120km x x m ++= 由韦达定理代入化简得:214k =. ∵0k >,∴12k = 此时()21620m∆=->,即(m ∈⋃.故121||2S AB d x =⋅=-||||m m == 又()22221211224S S x y x y π+=⋅+++2212332444x x π⎛⎫=⋅++ ⎪⎝⎭()212123521624x x x x πππ⎡⎤=⋅+-+=⎣⎦为定值.∴1254S S S π+=5544ππ=≥ ∴当且仅当1m =±时等号成立.综上:125,4S S S π+⎡⎫∈+∞⎪⎢⎣⎭. 【点睛】本题考查椭圆方程的求法及求曲线的方程,考查弦长公式、三角形面积公式及直线与椭圆位置关系的应用,考查了函数思想,属于较难题.。
金山屯区第二中学校2018-2019学年高二上学期第二次月考试卷数学班级__________ 姓名__________ 分数__________一、选择题1. 已知i 为虚数单位,则复数所对应的点在( )A .第一象限B .第二象限C .第三象限D .第四象限 2. 命题:“∀x >0,都有x 2﹣x ≥0”的否定是( )A .∀x ≤0,都有x 2﹣x >0B .∀x >0,都有x 2﹣x ≤0C .∃x >0,使得x 2﹣x <0D .∃x ≤0,使得x 2﹣x >03. △ABC 的内角A ,B ,C 所对的边分别为,,,已知a =b =6A π∠=,则B ∠=( )111]A .4π B .4π或34π C .3π或23π D .3π4. 集合{}|42,M x x k k Z ==+∈,{}|2,N x x k k Z ==∈,{}|42,P x x k k Z ==-∈,则M ,N ,P 的关系( )A .M P N =⊆B .N P M =⊆C .M N P =⊆D .M P N ==5. 幂函数y=f (x )的图象经过点(﹣2,﹣),则满足f (x )=27的x 的值是( )A .B .﹣C .3D .﹣36. 函数f (x )=ax 3+bx 2+cx+d 的图象如图所示,则下列结论成立的是( )A .a >0,b <0,c >0,d >0B .a >0,b <0,c <0,d >0C .a <0,b <0,c <0,d >0D .a >0,b >0,c >0,d <07. 四棱锥P ABCD -的底面ABCD 为正方形,PA ⊥底面ABCD ,2AB =,若该四棱锥的所有顶点都在体积为24316π同一球面上,则PA =( )A .3B .72C .D .92【命题意图】本题考查空间直线与平面间的垂直和平行关系、球的体积,意在考查空间想象能力、逻辑推理能力、方程思想、运算求解能力.8.已知向量=(﹣1,3),=(x,2),且,则x=()A.B.C.D.9.设有直线m、n和平面α、β,下列四个命题中,正确的是()A.若m∥α,n∥α,则m∥n B.若m⊂α,n⊂α,m∥β,n∥β,则α∥βC.若α⊥β,m⊂α,则m⊥βD.若α⊥β,m⊥β,m⊄α,则m∥α10.执行如图所示的程序框图,若a=1,b=2,则输出的结果是()A.9 B.11 C.13 D.1511.过抛物线y2=﹣4x的焦点作直线交抛物线于A(x1,y1),B(x2,y2),若x1+x2=﹣6,则|AB|为()A.8 B.10 C.6 D.412.如果执行右面的框图,输入N=5,则输出的数等于()A.B.C.D.二、填空题13.对于集合M,定义函数对于两个集合A,B,定义集合A△B={x|f A(x)f B(x)=﹣1}.已知A={2,4,6,8,10},B={1,2,4,8,12},则用列举法写出集合A△B的结果为.14.在直三棱柱中,∠ACB=90°,AC=BC=1,侧棱AA1=,M为A1B1的中点,则AM与平面AA1C1C所成角的正切值为()A.B.C.D.15.如图,P是直线x+y-5=0上的动点,过P作圆C:x2+y2-2x+4y-4=0的两切线、切点分别为A、B,当四边形P ACB 的周长最小时,△ABC 的面积为________.16.已知函数f (x )=有3个零点,则实数a 的取值范围是 .17.若复数34sin (cos )i 55z αα=-+-是纯虚数,则tan α的值为 . 【命题意图】本题考查复数的相关概念,同角三角函数间的关系,意在考查基本运算能力.18.已知函数f (x )=恰有两个零点,则a 的取值范围是 .三、解答题19.△ABC 的三个内角A 、B 、C 所对的边分别为a 、b 、c ,asinAsinB+bcos 2A=a .(Ⅰ)求;(Ⅱ)若c 2=b 2+a 2,求B .20.(本题满分14分)在ABC ∆中,角A ,B ,C 所对的边分别为c b a ,,,已知cos (cos )cos 0C A A B +=. (1)求角B 的大小;(2)若2=+c a ,求b 的取值范围.【命题意图】本题考查三角函数及其变换、正、余弦定理等基础知识,意在考查运算求解能力.21.如图,在四棱锥P﹣ABCD中,底面ABCD是正方形,PA⊥底面ABCD,且PA=AD,点F是棱PD的中点,点E为CD的中点.(1)证明:EF∥平面PAC;(2)证明:AF⊥EF.22.生产A,B两种元件,其质量按测试指标划分为:指标大于或等于82为正品,小于82为次品.现随机抽100(Ⅱ)生产一件元件A,若是正品可盈利40元,若是次品则亏损5元;生产一件元件B,若是正品可盈利50元,若是次品则亏损10元.在(Ⅰ)的前提下,(ⅰ)记X为生产1件元件A和1件元件B所得的总利润,求随机变量X的分布列和数学期望;(ⅱ)求生产5件元件B所获得的利润不少于140元的概率.23.现有5名男生和3名女生.(1)若3名女生必须相邻排在一起,则这8人站成一排,共有多少种不同的排法?(2)若从中选5人,且要求女生只有2名,站成一排,共有多少种不同的排法?24.解关于x的不等式12x2﹣ax>a2(a∈R).金山屯区第二中学校2018-2019学年高二上学期第二次月考试卷数学(参考答案) 一、选择题1. 【答案】A 【解析】解:==1+i ,其对应的点为(1,1),故选:A .2. 【答案】C【解析】解:命题是全称命题,则根据全称命题的否定是特称命题得命题的否定是:∃x >0,使得x 2﹣x <0,故选:C .【点评】本题主要考查含有量词的命题 的否定,比较基础.3. 【答案】B 【解析】试题分析:由正弦定理可得:(),sin 0,,sin 24sin6B B B B πππ=∴=∈∴= 或34π,故选B.考点:1、正弦定理的应用;2、特殊角的三角函数. 4. 【答案】A 【解析】试题分析:通过列举可知{}{}2,6,0,2,4,6M P N ==±±=±±±,所以M P N =⊆.考点:两个集合相等、子集.1 5. 【答案】A【解析】解:设幂函数为y=x α,因为图象过点(﹣2,﹣),所以有=(﹣2)α,解得:α=﹣3所以幂函数解析式为y=x ﹣3,由f (x )=27,得:x ﹣3=27,所以x=.故选A .6. 【答案】A【解析】解:f (0)=d >0,排除D , 当x →+∞时,y →+∞,∴a >0,排除C ,函数的导数f ′(x )=3ax 2+2bx+c ,则f ′(x )=0有两个不同的正实根,则x 1+x 2=﹣>0且x 1x 2=>0,(a >0),∴b <0,c >0,方法2:f ′(x )=3ax 2+2bx+c ,由图象知当当x <x 1时函数递增,当x 1<x <x 2时函数递减,则f ′(x )对应的图象开口向上,则a >0,且x 1+x 2=﹣>0且x 1x 2=>0,(a >0),∴b <0,c >0, 故选:A7. 【答案】B【解析】连结,AC BD 交于点E ,取PC 的中点O ,连结OE ,则O EP A ,所以OE ⊥底面ABCD ,则O到四棱锥的所有顶点的距离相等,即O 球心,均为12PC ==可得34243316ππ=,解得72PA =,故选B .8. 【答案】C【解析】解:∵,∴3x+2=0,解得x=﹣. 故选:C .【点评】本题考查了向量共线定理、方程的解法,考查了推理能力与计算能力,属于中档题.9. 【答案】D【解析】解:A 不对,由面面平行的判定定理知,m 与n 可能相交,也可能是异面直线;B 不对,由面面平行的判定定理知少相交条件;C 不对,由面面垂直的性质定理知,m 必须垂直交线; 故选:D .10.【答案】C【解析】解:当a=1时,不满足退出循环的条件,故a=5,当a=5时,不满足退出循环的条件,故a=9,当a=9时,不满足退出循环的条件,故a=13,当a=13时,满足退出循环的条件,故输出的结果为13,故选:C【点评】本题考查的知识点是程序框图,当循环的次数不多,或有规律时,常采用模拟循环的方法解答.11.【答案】A【解析】解:由题意,p=2,故抛物线的准线方程是x=1,∵抛物线y2=﹣4x 的焦点作直线交抛物线于A(x1,y1)B(x2,y2)两点∴|AB|=2﹣(x1+x2),又x1+x2=﹣6∴∴|AB|=2﹣(x1+x2)=8故选A12.【答案】D【解析】解:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是累加并输出S=的值.∵S==1﹣=故选D.二、填空题13.【答案】{1,6,10,12}.【解析】解:要使f A(x)f B(x)=﹣1,必有x∈{x|x∈A且x∉B}∪{x|x∈B且x∉A}={6,10}∪{1,12}={1,6,10,12,},所以A△B={1,6,10,12}.故答案为{1,6,10,12}.【点评】本题是新定义题,考查了交、并、补集的混合运算,解答的关键是对新定义的理解,是基础题.14.【答案】【解析】解:法1:取A1C1的中点D,连接DM,则DM∥C1B1,在在直三棱柱中,∠ACB=90°,∴DM⊥平面AA1C1C,则∠MAD是AM与平面AA1C1C所的成角,则DM=,AD===,则tan∠MAD=.法2:以C1点坐标原点,C1A1,C1B1,C1C分别为X,Y,Z轴正方向建立空间坐标系,则∵AC=BC=1,侧棱AA=,M为A1B1的中点,1∴=(﹣,,﹣),=(0,﹣1,0)为平面AA1C1C的一个法向量设AM与平面AA1C1C所成角为θ,则sinθ=||=则tanθ=故选:A【点评】本题考查的知识点是直线与平面所成的角,其中利用定义法以及建立坐标系,求出直线的方向向量和平面的法向量,将线面夹角问题转化为向量夹角问题是解答本题的关键.15.【答案】【解析】解析:圆x 2+y 2-2x +4y -4=0的标准方程为(x -1)2+(y +2)2=9.圆心C (1,-2),半径为3,连接PC ,∴四边形P ACB 的周长为2(P A +AC ) =2PC 2-AC 2+2AC =2PC 2-9+6.当PC 最小时,四边形P ACB 的周长最小. 此时PC ⊥l .∴直线PC 的斜率为1,即x -y -3=0,由⎩⎪⎨⎪⎧x +y -5=0x -y -3=0,解得点P 的坐标为(4,1), 由于圆C 的圆心为(1,-2),半径为3,所以两切线P A ,PB 分别与x 轴平行和y 轴平行, 即∠ACB =90°,∴S △ABC =12AC ·BC =12×3×3=92.即△ABC 的面积为92.答案:9216.【答案】 (,1) .【解析】解:∵函数f (x )=有3个零点,∴a >0 且 y=ax 2+2x+1在(﹣2,0)上有2个零点,∴,解得<a <1,故答案为:(,1).17.【答案】34-【解析】由题意知3sin 05α-=,且4cos 05α-≠,所以4cos 5α=-,则3tan 4α=-. 18.【答案】 (﹣3,0) .【解析】解:由题意,a ≥0时,x <0,y=2x 3﹣ax 2﹣1,y ′=6x 2﹣2ax >0恒成立, f (x )在(0,+∞)上至多一个零点; x ≥0,函数y=|x ﹣3|+a 无零点, ∴a ≥0,不符合题意;﹣3<a <0时,函数y=|x ﹣3|+a 在[0,+∞)上有两个零点,函数y=2x 3﹣ax 2﹣1在(﹣∞,0)上无零点,符合题意;a=﹣3时,函数y=|x ﹣3|+a 在[0,+∞)上有两个零点,函数y=2x 3﹣ax 2﹣1在(﹣∞,0)上有零点﹣1,不符合题意;a <﹣3时,函数y=|x ﹣3|+a 在[0,+∞)上有两个零点, 函数y=2x 3﹣ax 2﹣1在(﹣∞,0)上有两个零点,不符合题意;综上所述,a 的取值范围是(﹣3,0). 故答案为(﹣3,0).三、解答题19.【答案】【解析】解:(Ⅰ)由正弦定理得,sin 2AsinB+sinBcos 2A=sinA ,即sinB (sin 2A+cos 2A )=sinA∴sinB=sinA , =(Ⅱ)由余弦定理和C 2=b 2+a 2,得cosB=由(Ⅰ)知b 2=2a 2,故c 2=(2+)a 2,可得cos 2B=,又cosB >0,故cosB=所以B=45° 【点评】本题主要考查了正弦定理和余弦定理的应用.解题的过程主要是利用了正弦定理和余弦定理对边角问题进行了互化.20.【答案】(1)3B π=;(2)[1,2).【解析】21.【答案】【解析】(1)证明:如图,∵点E,F分别为CD,PD的中点,∴EF∥PC.∵PC⊂平面PAC,EF⊄平面PAC,∴EF∥平面PAC.(2)证明:∵PA⊥平面ABCD,CD⊂平面ABCD,又ABCD是矩形,∴CD⊥AD,∵PA∩AD=A,∴CD⊥平面PAD.∵AF⊂平面PAD,∴AF⊥CD.∵PA=AD,点F是PD的中点,∴AF⊥PD.又CD∩PD=D,∴AF⊥平面PDC.∵EF⊂平面PDC,∴AF⊥EF.【点评】本题考查了线面平行的判定,考查了由线面垂直得线线垂直,综合考查了学生的空间想象能力和思维能力,是中档题.22.【答案】【解析】解:(Ⅰ)元件A为正品的概率约为.元件B为正品的概率约为.(Ⅱ)(ⅰ)∵生产1件元件A和1件元件B可以分为以下四种情况:两件正品,A次B正,A正B次,A 次B次.∴随机变量X的所有取值为90,45,30,﹣15.∵P(X=90)==;P(X=45)==;P(X=30)==;P(X=﹣15)==.∴随机变量X的分布列为:EX=.(ⅱ)设生产的5件元件B中正品有n件,则次品有5﹣n件.依题意得50n﹣10(5﹣n)≥140,解得.所以n=4或n=5.设“生产5件元件B所获得的利润不少于140元”为事件A,则P(A)==.23.【答案】【解析】解:(1)先排3个女生作为一个整体,与其余的5个元素做全排列有A33A66=4320种.(2)从中选5人,且要求女生只有2名,则男生有3人,先选再排,故有C32C53A55=3600种【点评】本题主要考查排列与组合及两个基本原理,排列数公式、组合数公式的应用,注意特殊元素和特殊位置要优先排.24.【答案】【解析】解:由12x2﹣ax﹣a2>0⇔(4x+a)(3x﹣a)>0⇔(x+)(x﹣)>0,①a>0时,﹣<,解集为{x|x<﹣或x>};②a=0时,x2>0,解集为{x|x∈R且x≠0};③a<0时,﹣>,解集为{x|x<或x>﹣}.综上,当a>0时,﹣<,解集为{x|x<﹣或x>};当a=0时,x2>0,解集为{x|x∈R且x≠0};当a<0时,﹣>,解集为{x|x<或x>﹣}.。
金山屯区高中2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 在平面直角坐标系中,把横、纵坐标均为有理数的点称为有理点.若a 为无理数,则在过点P (a ,﹣)的所有直线中( )A .有无穷多条直线,每条直线上至少存在两个有理点B .恰有n (n ≥2)条直线,每条直线上至少存在两个有理点C .有且仅有一条直线至少过两个有理点D .每条直线至多过一个有理点2. 如图,在棱长为1的正方体1111ABCD A B C D -中,P 为棱11A B 中点,点Q 在侧面11DCC D 内运动,若1PBQ PBD ∠=∠,则动点Q 的轨迹所在曲线为( )A.直线B.圆C.双曲线D.抛物线【命题意图】本题考查立体几何中的动态问题等基础知识,意在考查空间想象能力. 3. 已知a >b >0,那么下列不等式成立的是( )A .﹣a >﹣bB .a+c <b+cC .(﹣a )2>(﹣b )2D .4. 已知一组函数f n (x )=sin n x+cos n x ,x ∈[0,],n ∈N *,则下列说法正确的个数是( )①∀n ∈N *,f n (x )≤恒成立②若f n (x )为常数函数,则n=2③f 4(x )在[0,]上单调递减,在[,]上单调递增.A .0B .1C .2D .35. 已知函数22()32f x x ax a =+-,其中(0,3]a ∈,()0f x ≤对任意的[]1,1x ∈-都成立,在1和两数间插入2015个数,使之与1,构成等比数列,设插入的这2015个数的成绩为T ,则T =( ) A .20152B .20153C .201523D .2015226. 设函数,则有( )A .f (x )是奇函数,B .f (x )是奇函数, y=b xC .f (x )是偶函数D .f (x )是偶函数,7. 已知集合P={x|﹣1<x <b ,b ∈N},Q={x|x 2﹣3x <0,x ∈Z},若P ∩Q ≠∅,则b 的最小值等于( ) A .0B .1C .2D .38. 执行如图所示的程序框图,则输出的S 等于( )A .19B .42C .47D .899. 给出下列各函数值:①sin100°;②cos (﹣100°);③tan (﹣100°);④.其中符号为负的是( ) A .①B .②C .③D .④10.已知函数f (x )=lnx+2x ﹣6,则它的零点所在的区间为( ) A .(0,1) B .(1,2) C .(2,3) D .(3,4)11.高三(1)班从4名男生和3名女生中推荐4人参加学校组织社会公益活动,若选出的4人中既有男生又有女生,则不同的选法共有( )A .34种B .35种C .120种D .140种12.已知定义在R 上的偶函数f (x )在[0,+∞)上是增函数,且f (ax+1)≤f (x ﹣2)对任意都成立,则实数a 的取值范围为( ) A .[﹣2,0] B .[﹣3,﹣1] C .[﹣5,1] D .[﹣2,1)二、填空题13.81()x x-的展开式中,常数项为___________.(用数字作答)【命题意图】本题考查用二项式定理求指定项,基础题.14.已知随机变量ξ﹣N (2,σ2),若P (ξ>4)=0.4,则P (ξ>0)= .15.下列说法中,正确的是 .(填序号)①若集合A={x|kx 2+4x+4=0}中只有一个元素,则k=1;②在同一平面直角坐标系中,y=2x 与y=2﹣x 的图象关于y 轴对称; ③y=()﹣x是增函数;④定义在R 上的奇函数f (x )有f (x )•f (﹣x )≤0.16.已知1sin cos 3αα+=,(0,)απ∈,则sin cos 7sin 12ααπ-的值为 .17.给出下列命题: ①把函数y=sin (x﹣)图象上所有点的横坐标缩短到原来的倍,纵坐标不变,得到函数y=sin (2x﹣);②若α,β是第一象限角且α<β,则cos α>cos β; ③x=﹣是函数y=cos (2x+π)的一条对称轴;④函数y=4sin (2x+)与函数y=4cos (2x﹣)相同;⑤y=2sin (2x﹣)在是增函数;则正确命题的序号 .18.【常熟中学2018届高三10月阶段性抽测(一)】已知函数()()ln R xf x x a a x =+-∈,若曲线122e e 1x x y +=+(e 为自然对数的底数)上存在点()00,x y 使得()()00f f y y =,则实数a 的取值范围为__________.三、解答题19.如图,四边形ABCD 与A ′ABB ′都是边长为a 的正方形,点E 是A ′A 的中点,AA ′⊥平面ABCD . (1)求证:A ′C ∥平面BDE ;(2)求体积V A ′﹣ABCD 与V E ﹣ABD 的比值.20.【南师附中2017届高三模拟二】已知函数()()323131,02f x x a x ax a =+--+>. (1)试讨论()()0f x x ≥的单调性;(2)证明:对于正数a ,存在正数p ,使得当[]0,x p ∈时,有()11f x -≤≤; (3)设(1)中的p 的最大值为()g a ,求()g a 得最大值.21.如图,已知几何体的底面ABCD 为正方形,AC ∩BD=N ,PD ⊥平面ABCD , PD=AD=2EC ,EC ∥PD .(Ⅰ)求异面直线BD 与AE 所成角: (Ⅱ)求证:BE ∥平面PAD ;(Ⅲ)判断平面PAD 与平面PAE 是否垂直?若垂直,请加以证明;若不垂直,请说明理由.22.(本小题满分10分) 已知圆P 过点)0,1(A ,)0,4(B .(1)若圆P 还过点)2,6( C ,求圆P 的方程; (2)若圆心P 的纵坐标为,求圆P 的方程.23.【徐州市2018届高三上学期期中】如图,有一块半圆形空地,开发商计划建一个矩形游泳池及其矩形附属设施,并将剩余空地进行绿化,园林局要求绿化面积应最大化.其中半圆的圆心为,半径为,矩形的一边在直径上,点、、、在圆周上,、在边上,且,设.(1)记游泳池及其附属设施的占地面积为,求的表达式;(2)怎样设计才能符合园林局的要求?24.如图的三个图中,上面的是一个长方体截去一个角所得多面体的直观图,它的正视图和侧视图在下面画出(单位:cm).(1)在正视图下面,按照画三视图的要求画出该多面体的俯视图;(2)按照给出的尺寸,求该多面体的体积;(3)在所给直观图中连结BC′,证明:BC′∥面EFG.金山屯区高中2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1. 【答案】C【解析】解:设一条直线上存在两个有理点A (x 1,y 1),B (x 2,y 2),由于也在此直线上,所以,当x 1=x 2时,有x 1=x 2=a 为无理数,与假设矛盾,此时该直线不存在有理点;当x 1≠x 2时,直线的斜率存在,且有,又x 2﹣a 为无理数,而为有理数,所以只能是,且y 2﹣y 1=0,即;所以满足条件的直线只有一条,且直线方程是; 所以,正确的选项为C . 故选:C .【点评】本题考查了新定义的关于直线方程与直线斜率的应用问题,解题的关键是理解新定义的内容,寻找解题的途径,是难理解的题目.2. 【答案】C.【解析】易得//BP 平面11CC D D ,所有满足1PBD PBX ∠=∠的所有点X 在以BP 为轴线,以1BD 所在直线为母线的圆锥面上,∴点Q 的轨迹为该圆锥面与平面11CC D D 的交线,而已知平行于圆锥面轴线的平面截圆锥面得到的图形是双曲线,∴点Q 的轨迹是双曲线,故选C. 3. 【答案】C 【解析】解:∵a >b >0,∴﹣a <﹣b <0,∴(﹣a )2>(﹣b )2,故选C .【点评】本题主要考查不等式的基本性质的应用,属于基础题.4. 【答案】 D【解析】解:①∵x ∈[0,],∴fn (x )=sin n x+cos n x ≤sinx+cosx=≤,因此正确;②当n=1时,f 1(x )=sinx+cosx ,不是常数函数;当n=2时,f 2(x )=sin 2x+cos 2x=1为常数函数,当n≠2时,令sin2x=t∈[0,1],则f n(x)=+=g(t),g′(t)=﹣=,当t∈时,g′(t)<0,函数g(t)单调递减;当t ∈时,g′(t)>0,函数g(t)单调递增加,因此函数f n(x)不是常数函数,因此②正确.③f4(x)=sin4x+cos4x=(sin2x+cos2x)2﹣2sin2xcos2x=1﹣==+,当x∈[0,],4x∈[0,π],因此f4(x)在[0,]上单调递减,当x∈[,],4x∈[π,2π],因此f4(x)在[,]上单调递增,因此正确.综上可得:①②③都正确.故选:D.【点评】本题考查了三角函数的图象与性质、倍角公式、平方公式、两角和差的正弦公式,考查了推理能力与计算能力,属于中档题.5.【答案】C【解析】试题分析:因为函数22()32f x x ax a=+-,()0f x≤对任意的[]1,1x∈-都成立,所以()()1010ff-≤⎧⎪⎨≤⎪⎩,解得3a≥或1a≤-,又因为(0,3]a∈,所以3a=,在和两数间插入122015,...a a a共2015个数,使之与,构成等比数列,T122015...a a a=,201521...T a a a=,两式相乘,根据等比数列的性质得()()2015201521201513T a a==⨯,T=201523,故选C.考点:1、不等式恒成立问题;2、等比数列的性质及倒序相乘的应用.6.【答案】C【解析】解:函数f(x)的定义域为R,关于原点对称.又f(﹣x)===f(x),所以f(x)为偶函数.而f()===﹣=﹣f(x),故选C.【点评】本题考查函数的奇偶性,属基础题,定义是解决该类问题的基本方法.7.【答案】C【解析】解:集合P={x|﹣1<x<b,b∈N},Q={x|x2﹣3x<0,x∈Z}={1,2},P∩Q≠∅,可得b的最小值为:2.故选:C.【点评】本题考查集合的基本运算,交集的意义,是基础题.8.【答案】B【解析】解:模拟执行程序框图,可得k=1S=1满足条件k<5,S=3,k=2满足条件k<5,S=8,k=3满足条件k<5,S=19,k=4满足条件k<5,S=42,k=5不满足条件k<5,退出循环,输出S的值为42.故选:B.【点评】本题主要考查了循环结构的程序框图,正确依次写出每次循环得到的S,k的值是解题的关键,属于基础题.9.【答案】B【解析】解::①sin100°>0,②cos(﹣100°)=cos100°<0,③tan(﹣100°)=﹣tan100>0,④∵sin>0,cosπ=﹣1,tan<0,∴>0,其中符号为负的是②,故选:B.【点评】本题主要考查三角函数值的符号的判断,判断角所在的象限是解决本题的关键,比较基础.10.【答案】C【解析】解:易知函数f(x)=lnx+2x﹣6,在定义域R+上单调递增.因为当x→0时,f(x)→﹣∞;f(1)=﹣4<0;f(2)=ln2﹣2<0;f(3)=ln3>0;f(4)=ln4+2>0.可见f (2)•f (3)<0,故函数在(2,3)上有且只有一个零点. 故选C .11.【答案】A【解析】解:从7个人中选4人共种选法,只有男生的选法有种,所以既有男生又有女生的选法有﹣=34种. 故选:A .【点评】本题考查了排列组合题,间接法是常用的一种方法,属于基础题12.【答案】A【解析】解:∵偶函数f (x )在[0,+∞)上是增函数, 则f (x )在(﹣∞,0)上是减函数,则f (x ﹣2)在区间[,1]上的最小值为f (﹣1)=f (1)若f (ax+1)≤f (x ﹣2)对任意都成立,当时,﹣1≤ax+1≤1,即﹣2≤ax ≤0恒成立则﹣2≤a ≤0 故选A二、填空题13.【答案】70【解析】81()x x -的展开式通项为8821881()(1)r r r r r rr T C x C x x--+=-=-,所以当4r =时,常数项为448(1)70C -=.14.【答案】 0.6 .【解析】解:随机变量ξ服从正态分布N (2,σ2), ∴曲线关于x=2对称,∴P (ξ>0)=P (ξ<4)=1﹣P (ξ>4)=0.6, 故答案为:0.6.【点评】本题考查正态分布曲线的特点及曲线所表示的意义,考查概率的性质,是一个基础题.15.【答案】 ②④【解析】解:①若集合A={x|kx 2+4x+4=0}中只有一个元素,则k=1或k=0,故错误; ②在同一平面直角坐标系中,y=2x 与y=2﹣x 的图象关于y 轴对称,故正确; ③y=()﹣x是减函数,故错误;④定义在R 上的奇函数f (x )有f (x )•f (﹣x )≤0,故正确. 故答案为:②④【点评】本题以命题的真假判断与应用为载体,考查了集合,指数函数的,奇函数的图象和性质,难度中档.16.【解析】7sinsin sin cos cos sin 12434343πππππππ⎛⎫=+=+ ⎪⎝⎭=,sin cos 73sin 12ααπ-∴==,故答案为3.考点:1、同角三角函数之间的关系;2、两角和的正弦公式.17.【答案】【解析】解:对于①,把函数y=sin (x ﹣)图象上所有点的横坐标缩短到原来的倍,纵坐标不变,得到函数y=sin (2x ﹣),故①正确.对于②,当α,β是第一象限角且α<β,如α=30°,β=390°,则此时有cos α=cos β=,故②错误.对于③,当x=﹣时,2x+π=π,函数y=cos(2x+π)=﹣1,为函数的最小值,故x=﹣是函数y=cos (2x+π)的一条对称轴,故③正确.对于④,函数y=4sin (2x+)=4cos[﹣(2x+)]=4cos (﹣2)=4cos (2x ﹣),故函数y=4sin (2x+)与函数y=4cos (2x﹣)相同,故④正确.对于⑤,在上,2x﹣∈,函数y=2sin (2x﹣)在上没有单调性,故⑤错误,故答案为:①③④.18.【答案】1,e⎛⎤-∞ ⎥⎝⎦【解析】结合函数的解析式:122e e 1x x y +=+可得:()()122221'1x x x e e y e +-=+, 令y ′=0,解得:x =0,当x >0时,y ′>0,当x <0,y ′<0,则x ∈(-∞,0),函数单调递增,x ∈(0,+∞)时,函数y 单调递减, 则当x =0时,取最大值,最大值为e , ∴y 0的取值范围(0,e ],结合函数的解析式:()()R lnxf x x a a x =+-∈可得:()22ln 1'x x f x x -+=, x ∈(0,e ),()'0f x >, 则f (x )在(0,e )单调递增, 下面证明f (y 0)=y 0.假设f (y 0)=c >y 0,则f (f (y 0))=f (c )>f (y 0)=c >y 0,不满足f (f (y 0))=y 0. 同理假设f (y 0)=c <y 0,则不满足f (f (y 0))=y 0. 综上可得:f (y 0)=y 0.令函数()ln xf x x a x x =+-=. 设()ln x g x x =,求导()21ln 'xg x x-=, 当x ∈(0,e ),g ′(x )>0, g (x )在(0,e )单调递增, 当x =e 时取最大值,最大值为()1g e e=, 当x →0时,a →-∞, ∴a 的取值范围1,e⎛⎤-∞ ⎥⎝⎦.点睛:(1)利用导数研究函数的单调性的关键在于准确判定导数的符号.而解答本题(2)问时,关键是分离参数k ,把所求问题转化为求函数的最小值问题.(2)若可导函数f (x )在指定的区间D 上单调递增(减),求参数范围问题,可转化为f ′(x )≥0(或f ′(x )≤0)恒成立问题,从而构建不等式,要注意“=”是否可以取到.三、解答题19.【答案】【解析】(1)证明:设BD 交AC 于M ,连接ME . ∵ABCD 为正方形,∴M 为AC 中点, 又∵E 为A ′A 的中点, ∴ME 为△A ′AC 的中位线, ∴ME ∥A ′C .又∵ME ⊂平面BDE ,A ′C ⊄平面BDE , ∴A ′C ∥平面BDE .(2)解:∵V E ﹣ABD ====V A ′﹣ABCD .∴V A ′﹣ABCD :V E ﹣ABD =4:1.20.【答案】(1)证明过程如解析;(2)对于正数a ,存在正数p ,使得当[]0,x p ∈时,有()11f x -≤≤;(3)()g a 【解析】【试题分析】(1)先对函数()()323131,02f x x a x ax a =+--+>进行求导,再对导函数的值的 符号进行分析,进而做出判断;(2)先求出函数值()01,f =()3213122f a a a =--+=()()211212a a -+-,进而分()1f a ≥-和()1f a <-两种情形进行 分析讨论,推断出存在()0,p a ∈使得()10f p +=,从而证得当[]0,x p ∈时,有()11f x -≤≤成立;(3) 借助(2)的结论()f x :在[)0,+∞上有最小值为()f a ,然后分011a a ≤,两种情形探求()g a 的解析表达式和最大值。
金山屯区第二中学2018-2019学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1.在复平面内,复数Z=+i2015对应的点位于()A.第四象限B.第三象限C.第二象限D.第一象限2.若P是以F1,F2为焦点的椭圆=1(a>b>0)上的一点,且=0,tan∠PF1F2=,则此椭圆的离心率为()A.B.C.D.3.双曲线的渐近线方程是()A.B.C.D.4.如图,该程序运行后输出的结果为()A.7 B.15 C.31 D.635.已知f(x)为定义在(0,+∞)上的可导函数,且f(x)>xf′(x)恒成立,则不等式x2f()﹣f(x)>0的解集为()A.(0,1) B.(1,2) C.(1,+∞)D.(2,+∞)6.在极坐标系中,圆的圆心的极坐标系是( )。
ABC D7. 已知全集U={0,1,2,3,4},集合A={0,1,3},B={0,1,4},则(∁U A )∪B 为( ) A .{0,1,2,4} B .{0,1,3,4} C .{2,4} D .{4}8. 某校新校区建设在市二环路主干道旁,因安全需要,挖掘建设了一条人行地下通道,地下通道设计三视图中的主(正)视力(其中上部分曲线近似为抛物)和侧(左)视图如图(单位:m ),则该工程需挖掘的总土方数为( )A .560m 3B .540m 3C .520m 3D .500m 39. 在正方体8个顶点中任选3个顶点连成三角形,则所得的三角形是等腰直角三角形的概率为( )A .B .C .D .10.设函数()y f x =对一切实数x 都满足(3)(3)f x f x +=-,且方程()0f x =恰有6个不同的实根,则这6个实根的和为( )A.18B.12C.9D.0【命题意图】本题考查抽象函数的对称性与函数和方程等基础知识,意在考查运算求解能力. 11.已知复合命题p ∧(¬q )是真命题,则下列命题中也是真命题的是( )A .(¬p )∨qB .p ∨qC .p ∧qD .(¬p )∧(¬q )12.设定义在R 上的函数f (x )对任意实数x ,y ,满足f (x )+f (y )=f (x+y ),且f (3)=4,则f (0)+f (﹣3)的值为( ) A .﹣2 B .﹣4 C .0D .4二、填空题13.已知f (x ),g (x )都是定义在R 上的函数,且满足以下条件:①f (x )=a x g (x )(a >0,a ≠1);②g (x )≠0;③f (x )g'(x )>f'(x )g (x );若,则a= .14.已知直线l 过点P (﹣2,﹣2),且与以A (﹣1,1),B (3,0)为端点的线段AB 相交,则直线l 的斜率的取值范围是 .15.已知点A (2,0),点B (0,3),点C 在圆x 2+y 2=1上,当△ABC 的面积最小时,点C 的坐标为 .16.分别在区间[0,1]、[1,]e 上任意选取一个实数a b 、,则随机事件“ln a b ≥”的概率为_________.17.已知函数5()sin (0)2f x x a x π=-≤≤的三个零点成等比数列,则2log a = . 18.如图为长方体积木块堆成的几何体的三视图,此几何体共由 块木块堆成.三、解答题19.已知函数f (x0=.(1)画出y=f (x )的图象,并指出函数的单调递增区间和递减区间; (2)解不等式f (x ﹣1)≤﹣.20.(本题满分12分)在ABC ∆中,已知角,,A B C 所对的边分别是,,a b c ,边72c =,且tan tan tan 3A B A B +=-ABC ∆的面积为ABC S ∆=a b +的值.21.已知椭圆的左、右焦点分别为F 1(﹣c ,0),F 2(c ,0),P 是椭圆C 上任意一点,且椭圆的离心率为.(1)求椭圆C 的方程;(2)直线l 1,l 2是椭圆的任意两条切线,且l 1∥l 2,试探究在x 轴上是否存在定点B ,点B 到l 1,l 2的距离之积恒为1?若存在,求出点B 的坐标;若不存在,请说明理由.22.已知椭圆C 1:+x 2=1(a >1)与抛物线C:x 2=4y 有相同焦点F 1.(Ⅰ)求椭圆C 1的标准方程;(Ⅱ)已知直线l 1过椭圆C 1的另一焦点F 2,且与抛物线C 2相切于第一象限的点A ,设平行l 1的直线l 交椭圆C 1于B ,C 两点,当△OBC 面积最大时,求直线l 的方程.23.已知椭圆()2222:10x y C a b a b +=>>的左右焦点分别为12,F F ,椭圆C 过点P ⎛ ⎝⎭,直线1PF 交y 轴于Q ,且22,PF QO O =为坐标原点.(1)求椭圆C 的方程;(2)设M 是椭圆C 上的顶点,过点M 分别作出直线,MA MB 交椭圆于,A B 两点,设这两条直线的斜率 分别为12,k k ,且122k k +=,证明:直线AB 过定点.24.已知函数f (x )=x ﹣1+(a ∈R ,e 为自然对数的底数).(Ⅰ)若曲线y=f (x )在点(1,f (1))处的切线平行于x 轴,求a 的值; (Ⅱ)求函数f (x )的极值;(Ⅲ)当a=1的值时,若直线l :y=kx ﹣1与曲线y=f (x )没有公共点,求k 的最大值.金山屯区第二中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1.【答案】A【解析】解:复数Z=+i2015=﹣i=﹣i=﹣.复数对应点的坐标(),在第四象限.故选:A.【点评】本题考查复数的代数形式的混合运算,复数的几何意义,基本知识的考查.2.【答案】A【解析】解:∵∴,即△PF1F2是P为直角顶点的直角三角形.∵Rt△PF1F2中,,∴=,设PF2=t,则PF1=2t∴=2c,又∵根据椭圆的定义,得2a=PF1+PF2=3t∴此椭圆的离心率为e====故选A【点评】本题给出椭圆的一个焦点三角形为直角三角形,根据一个内角的正切值,求椭圆的离心率,着重考查了椭圆的基本概念和简单几何性质,属于基础题.3.【答案】B【解析】解:∵双曲线标准方程为,其渐近线方程是=0,整理得y=±x.故选:B.【点评】本题考查双曲线的简单性质的应用,令标准方程中的“1”为“0”即可求出渐近线方程.属于基础题.4.【答案】如图,该程序运行后输出的结果为()D【解析】解:因为A=1,s=1判断框内的条件1≤5成立,执行s=2×1+1=3,i=1+1=2;判断框内的条件2≤5成立,执行s=2×3+1=7,i=2+1=3;判断框内的条件3≤5成立,执行s=2×7+1=15,i=3+1=4;判断框内的条件4≤5成立,执行s=2×15+1=31,i=4+1=5;判断框内的条件5≤5成立,执行s=2×31+1=63,i=5+1=6;此时6>5,判断框内的条件不成立,应执行否路径输出63,所以输入的m值应是5.故答案为5.【点评】本题考查了程序框图中的当型循环结构,当型循环是先判断后执行,满足条件进入循环,不满足条件,算法结束.5.【答案】C【解析】解:令F(x)=,(x>0),则F′(x)=,∵f(x)>xf′(x),∴F′(x)<0,∴F(x)为定义域上的减函数,由不等式x2f()﹣f(x)>0,得:>,∴<x,∴x>1,故选:C.6.【答案】B【解析】,圆心直角坐标为(0,-1),极坐标为,选B。
金山区第二中学2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 已知是虚数单位,若复数22aiZ i+=+在复平面内对应的点在第四象限,则实数的值可以是( ) A .-2 B .1 C .2 D .3 2. 在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知a=3,,A=60°,则满足条件的三角形个数为( ) A .0 B .1C .2D .以上都不对3. 曲线y=x 3﹣2x+4在点(1,3)处的切线的倾斜角为( )A .30°B .45°C .60°D .120°4. “”是“A=30°”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也必要条件5. “1<m <3”是“方程+=1表示椭圆”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件6. 设函数的集合,平面上点的集合,则在同一直角坐标系中,P 中函数的图象恰好经过Q 中两个点的函数的个数是 A4 B6 C8 D107. “24x ππ-<≤”是“tan 1x ≤”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件D.既不充分也不必要条件【命题意图】本题主要考查充分必要条件的概念与判定方法,正切函数的性质和图象,重点是单调性. 8. 如图所示,函数y=|2x ﹣2|的图象是( )A. B. C. D.9. 定义在R 上的偶函数()f x 满足(3)()f x f x -=-,对12,[0,3]x x ∀∈且12x x ≠,都有1212()()0f x f x x x ->-,则有( )A .(49)(64)(81)f f f <<B .(49)(81)(64)f f f << C. (64)(49)(81)f f f << D .(64)(81)(49)f f f << 10.函数f (x )=Asin (ωx+θ)(A >0,ω>0)的部分图象如图所示,则f()的值为()A. B .0 C. D.11.集合A={1,2,3},集合B={﹣1,1,3},集合S=A ∩B ,则集合S 的子集有( )A .2个B .3 个C .4 个D .8个12.如图是某几何体的三视图,正视图是等腰梯形,俯视图中的曲线是两个同心的半圆组成的半圆环,侧视图是直角梯形.则该几何体表面积等于( )A .12+ B .12+23π C .12+24π D .12+π二、填空题13.设α为锐角, =(cos α,sin α),=(1,﹣1)且•=,则sin (α+)= .14.已知集合{}|03,A x x x R =<∈≤,{}|12,B x x x R =-∈≤≤,则A ∪B = ▲ . 15.已知点E 、F 分别在正方体 的棱上,且, ,则面AEF 与面ABC 所成的二面角的正切值等于 .16.观察下列等式 1=12+3+4=93+4+5+6+7=254+5+6+7+8+9+10=49 …照此规律,第n 个等式为 .17.函数2()2(1)2f x x a x =+-+在区间(,4]-∞上递减,则实数的取值范围是 . 18.设不等式组表示的平面区域为D ,在区域D 内随机取一个点,则此点到坐标原点的距离大于2的概率是 .三、解答题19.已知f (α)=,(1)化简f (α);(2)若f (α)=﹣2,求sin αcos α+cos 2α的值.20.2()sin 22f x x x =+. (1)求函数()f x 的单调递减区间;(2)在ABC ∆中,角,,A B C 的对边分别为,,a b c ,若()12A f =,ABC ∆的面积为.21.若函数f (x )=a x (a >0,且a ≠1)在[1,2]上的最大值比最小值大,求a 的值.22.在平面直角坐标系中,△ABC 各顶点的坐标分别为:A (0,4);B (﹣3,0),C (1,1) (1)求点C 到直线AB 的距离; (2)求AB 边的高所在直线的方程.23.已知椭圆C 1:+=1(a >b >0)的离心率为e=,直线l :y=x+2与以原点为圆心,以椭圆C 1的短半轴长为半径的圆O 相切. (1)求椭圆C 1的方程;(2)抛物线C 2:y 2=2px (p >0)与椭圆C 1有公共焦点,设C 2与x 轴交于点Q ,不同的两点R ,S 在C 2上(R ,S 与Q 不重合),且满足•=0,求||的取值范围.24.(本小题满分12分)已知等差数列{n a }满足:n n a a >+1(*∈N n ),11=a ,该数列的 前三项分别加上1,1,3后成等比数列,且1log 22-=+n n b a . (1)求数列{n a },{n b }的通项公式; (2)求数列{n n b a ⋅}的前项和n T .金山区第二中学2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1.【答案】A【解析】试题分析:()()()()2224(22)2225ai iai a a ii i i+-+++-==++-,对应点在第四象限,故40220aa+>⎧⎨-<⎩,A选项正确.考点:复数运算.2.【答案】B【解析】解:∵a=3,,A=60°,∴由正弦定理可得:sinB===1,∴B=90°,即满足条件的三角形个数为1个.故选:B.【点评】本题主要考查三角形个数的判断,利用正弦定理是解决本题的关键,考查学生的计算能力,属于基础题.3.【答案】B【解析】解:y/=3x2﹣2,切线的斜率k=3×12﹣2=1.故倾斜角为45°.故选B.【点评】本题考查了导数的几何意义,以及利用正切函数的图象求倾斜角,本题属于容易题.4.【答案】B【解析】解:“A=30°”⇒“”,反之不成立.故选B【点评】本题考查充要条件的判断和三角函数求值问题,属基本题.5.【答案】B【解析】解:若方程+=1表示椭圆,则满足,即, 即1<m <3且m ≠2,此时1<m <3成立,即必要性成立,当m=2时,满足1<m <3,但此时方程+=1等价为为圆,不是椭圆,不满足条件.即充分性不成立故“1<m <3”是“方程+=1表示椭圆”的必要不充分条件,故选:B【点评】本题主要考查充分条件和必要条件的判断,根据椭圆的定义和方程是解决本题的关键.6. 【答案】B【解析】本题考查了对数的计算、列举思想a =-时,不符;a =0时,y =log 2x 过点(,-1),(1,0),此时b =0,b =1符合; a =时,y =log 2(x +)过点(0,-1),(,0),此时b =0,b =1符合;a =1时,y =log 2(x +1)过点(-,-1),(0,0),(1,1),此时b =-1,b =1符合;共6个 7. 【答案】A【解析】因为tan y x =在,22ππ⎛⎫-⎪⎝⎭上单调递增,且24x ππ-<≤,所以tan tan 4x π≤,即tan 1x ≤.反之,当tan 1x ≤时,24k x k πππ-<≤+π(k Z ∈),不能保证24x ππ-<≤,所以“24x ππ-<≤”是“tan 1x ≤”的充分不必要条件,故选A. 8. 【答案】B【解析】解:∵y=|2x﹣2|=,∴x=1时,y=0, x ≠1时,y >0. 故选B .【点评】本题考查指数函数的图象和性质,解题时要结合图象进行求解.9. 【答案】A【解析】考点:1、函数的周期性;2、奇偶性与单调性的综合.1111]10.【答案】C【解析】解:由图象可得A=,=﹣(﹣),解得T=π,ω==2.再由五点法作图可得2×(﹣)+θ=﹣π,解得:θ=﹣,故f(x)=sin(2x﹣),故f()=sin(﹣)=sin=,故选:C.【点评】本题主要考查由函数y=Asin(ωx+θ)的部分图象求函数的解析式,属于中档题.11.【答案】C【解析】解:∵集合A={1,2,3},集合B={﹣1,1,3},∴集合S=A∩B={1,3},则集合S的子集有22=4个,故选:C.【点评】本题主要考查集合的基本运算和集合子集个数的求解,要求熟练掌握集合的交并补运算,比较基础.12.【答案】C【解析】解:根据几何体的三视图,得;该几何体是一半圆台中间被挖掉一半圆柱,其表面积为S=[×(2+8)×4﹣2×4]+[×π•(42﹣12)+×(4π×﹣π×)+×8π]=12+24π.故选:C.【点评】本题考查了空间几何体三视图的应用问题,也考查了空间想象能力与计算能力的应用问题,是基础题目.二、填空题13.【答案】:.【解析】解:∵•=cos α﹣sin α=,∴1﹣sin2α=,得sin2α=, ∵α为锐角,cos α﹣sin α=⇒α∈(0,),从而cos2α取正值, ∴cos2α==,∵α为锐角,sin (α+)>0,∴sin (α+)====.故答案为:.14.【答案】1-1,3] 【解析】试题分析:A ∪B ={}{}|03,|12,x x x R x x x R <∈-∈≤≤≤=1-1,3]考点:集合运算 【方法点睛】1.用描述法表示集合,首先要弄清集合中代表元素的含义,再看元素的限制条件,明确集合类型,是数集、点集还是其他的集合.2.求集合的交、并、补时,一般先化简集合,再由交、并、补的定义求解.3.在进行集合的运算时要尽可能地借助Venn 图和数轴使抽象问题直观化.一般地,集合元素离散时用Venn 图表示;集合元素连续时用数轴表示,用数轴表示时要注意端点值的取舍.15.【答案】【解析】延长EF 交BC 的延长线于P ,则AP 为面AEF 与面ABC 的交线,因为,所以为面AEF 与面ABC 所成的二面角的平面角。
16.【答案】 n+(n+1)+(n+2)+…+(3n ﹣2)=(2n ﹣1)2 .【解析】解:观察下列等式 1=12+3+4=93+4+5+6+7=254+5+6+7+8+9+10=49 …等号右边是12,32,52,72…第n 个应该是(2n ﹣1)2 左边的式子的项数与右边的底数一致, 每一行都是从这一个行数的数字开始相加的,照此规律,第n 个等式为n+(n+1)+(n+2)+…+(3n ﹣2)=(2n ﹣1)2, 故答案为:n+(n+1)+(n+2)+…+(3n ﹣2)=(2n ﹣1)2【点评】本题考查归纳推理,考查对于所给的式子的理解,主要看清楚式子中的项与项的数目与式子的个数之间的关系,本题是一个易错题.17.【答案】3a ≤- 【解析】试题分析:函数()f x 图象开口向上,对称轴为1x a =-,函数在区间(,4]-∞上递减,所以14,3a a -≥≤-. 考点:二次函数图象与性质.18.【答案】.【解析】解:到坐标原点的距离大于2的点,位于以原点O 为圆心、半径为2的圆外区域D :表示正方形OABC ,(如图)其中O 为坐标原点,A (2,0),B (2,2),C (0,2). 因此在区域D 内随机取一个点P ,则P 点到坐标原点的距离大于2时,点P 位于图中正方形OABC 内, 且在扇形OAC 的外部,如图中的阴影部分∵S正方形OABC=22=4,S阴影=S正方形OABC﹣S扇形OAC=4﹣π•22=4﹣π∴所求概率为P==故答案为:【点评】本题给出不等式组表示的平面区域,求在区域内投点使该到原点距离大于2的概率,着重考查了二元一次不等式组表示的平面区域和几何概型等知识点,属于基础题.三、解答题19.【答案】【解析】解:(1)f(α)===﹣tanα;…5(分)(2)∵f(α)=﹣2,∴tanα=2,…6(分)∴sinαcosα+cos2α====.…10(分)20.【答案】(1)5,36k k ππππ⎡⎤++⎢⎥⎣⎦(k ∈Z );(2)【解析】试题分析:(1)根据3222262k x k πππππ+≤-≤+可求得函数()f x 的单调递减区间;(2)由12A f ⎛⎫= ⎪⎝⎭可得3A π=,再由三角形面积公式可得12bc =,根据余弦定理及基本不等式可得的最小值. 1试题解析:(1)111()cos 22sin(2)2262f x x x x π=-=-+, 令3222262k x k πππππ+≤-≤+,解得536k x k ππππ+≤≤+,k Z ∈,∴()f x 的单调递减区间为5[,]36k k ππππ++(k Z ∈).考点:1、正弦函数的图象和性质;2、余弦定理、基本不等式等知识的综合运用. 21.【答案】【解析】解:由题意可得:∵当a >1时,函数f (x )在区间[1,2]上单调递增,∴f (2)﹣f (1)=a 2﹣a=a ,解得a=0(舍去),或a=.∵当 0<a <1时,函数f (x )在区间[1,2]上单调递减,∴f (1)﹣f (2)=a ﹣a 2=,解得a=0(舍去),或a=.故a的值为或.【点评】本题主要考查指数函数的单调性的应用,体现了分类讨论的数学思想,属于中档题.22.【答案】【解析】解(1)∵,∴根据直线的斜截式方程,直线AB:,化成一般式为:4x﹣3y+12=0,∴根据点到直线的距离公式,点C到直线AB的距离为;(2)由(1)得直线AB的斜率为,∴AB边的高所在直线的斜率为,由直线的点斜式方程为:,化成一般式方程为:3x+4y﹣7=0,∴AB边的高所在直线的方程为3x+4y﹣7=0.23.【答案】【解析】解:(1)由直线l:y=x+2与圆x2+y2=b2相切,∴=b,解得b=.联立解得a=,c=1.∴椭圆的方程是C1:.(2)由椭圆的右焦点(1,0),抛物线y2=2px的焦点,∵有公共的焦点,∴,解得p=2,故抛物线C2的方程为:y2=4x.易知Q(0,0),设R(,y1),S(,y2),∴=(,y1),=,由•=0,得,∵y1≠y2,∴,∴=64,当且仅当,即y1=±4时等号成立.又||===,当=64,即y2=±8时,||min=8,故||的取值范围是[8,+∞).【点评】本题考查了椭圆与抛物线的标准方程及其性质、向量的数量积运算和基本不等式的性质、点到直线的距离公式等基础知识与基本技能方法,考查了推理能力和计算能力,属于难题.24.【答案】(1)12-=n a n ,nn b 21=;(2)n nn T 2323+-=. 【解析】试题分析:(Ⅰ1)设d 为等差数列{}n a 的公差,且0>d ,利用数列的前三项分别加上3,1,1后成等比数列,求出d ,然后求解n b ;(2)写出n n n T 212...232321321-++++=利用错位相减法求和即可. 试题解析:解:(1)设d 为等差数列{}n a 的公差,0>d ,由11=a ,d a +=12,d a 213+=,分别加上3,1,1后成等比数列,] 所以)24(2)2(2d d +=+ 0>d ,∴2=d ∴122)1(1-=⨯-+=n n a n又1log 22--=n n b a ∴n b n -=2log ,即n n b 21=(6分)考点:数列的求和.。