2019年四川省宜宾市中考数学试题(word版,含解析)
- 格式:doc
- 大小:370.50 KB
- 文档页数:27
2019年四川省凉山州中考数学试卷、选择题(共 12个小题,每小题 4分,共48分)在每小题给出的四个选项中只有一项 是正确的,把正确选项的宇母填涂在答题卡上相应的位置6人数(人) 3 17 13 7 时间(小时)78910A . 17, 8.5B . 17, 9C . 8, 9D . 8, 8.57. (4分)下列命题: ①直线外一点到这条直线的垂线段,叫做点到直线的距离; ②两点 之间线段最短;③相等的圆心角所对的弧相等; ④平分弦的直径垂直于弦.其中,真命题的个数是( )A . 1B . 2C . 3D . 41. (4分) -2的相反数是(2. 3. 4. (4分) 是(2018年凉山州生产总值约为 A . 1.533 X 109B . 1.533 X 10153300000000,用科学记数法表示数 15330000000010C . 1.533 X 1011D . 1.533 X 1012 (4分)如图,BD // EF , AE 与BD 交于点 )((4分)下列各式正确的是(C ,Z C . B =30°,/115° A = 75°,则/ E 的度数为D . 105°a 2?a = a 35. (4分)不等式1-x > x - 1的解集是 A . x > 1B . x >- 1C . x w 1D . x <- 1& ( 4分)如图,正比例函数 y = kx 与反比例函数y=JL 的图象相交于 A 、C 两点,过点 A作x 轴的垂线交x 轴于点B ,连接BC ,则厶ABC 的面积等于(9. ( 4 分)如图,在△ ABC 中,CA = CB = 4, cosC =丄,贝U sinB 的值为(411. (4分)如图,在△ AOC 中,0A = 3cm , OC = 2口,将厶AOC 绕点 0顺时针旋转 90 ° )cm 2.C .4Vio10. (4 分)如图,在△ ABC 中,D 在 AC 边上,AD : DC = 1 : 2, O 是BD 的中点,连接AO并延长交BC 于E ,则BE : EC =( )B . 1: 3C . 1 : 4后得到△ BOD ,则AC 边在旋转过程中所扫过的图形的面积为( A . 8B . 6 A •匸A . 1: 2A . 1B . 2C . 3D . 4二、填空题(共 5个小题,每小题 4分,共20分)f x+y=:1013. (4分)方程组* c “的解是 _____________ .⑵+E614. (4分)方程 一 +1的解是 _______ .x-1 l-x z15. (4分)如图所示,AB 是O O 的直径,弦CD 丄AB 于H , / A = 30°, CD = 2 ■:,则O OAC 相交于 F ,则 S A AEF : S A CBF 是 ______ .217 . (4分)将抛物线y =( x -3) - 2向左平移 _________ 个单位后经过点 A ( 2, 2). 三、解答题(共5小题,共32分)~2B . 2n1719212 . (4分)二次函数y = ax +bx+c 的部分图象如图所示,有以下结论:2① 3a - b = 0;② b -4ac >0;③5a - 2b+c > 0;④4b+3c > 0,其中错误结论的个数是()E 将AD 分为2: 3的两部分,连接BE 、的半径是 ________18. (5 分)计算:tan45° + (*::、—H 'T ) 0- ■ ) 2+| : - 2|.219. (5 分)先化简,再求值:(a+3) 2—( a+1) (a — 1) — 2 ( 2a+4),其中 a =-丄.220 . (6分)如图,正方形ABCD 的对角线 AC 、BD 相交于点 O, E 是OC 上一点,连接EB .过点A 作AM 丄BE ,垂足为 M , AM 与BD 相交于点F .求证:OE = OF .B C21 . (8分)某校初中部举行诗词大会预选赛,学校对参赛同学获奖情况进行统计,绘制了如下两幅不完整的统计图.请结合图中相关数据解答下列问题:(1 )参加此次诗词大会预选赛的同学共有 __________ 人;(2) ____________________________________________________________ 在扇形统计图中,“三等奖”所对应的扇形的圆心角的度数为 ________________________________ ;(3) 将条形统计图补充完整;(4) 若获得一等奖的同学中有 一来自七年级,-来自九年级,其余的来自八年级,学校4 2决定从获得一等奖的同学中任选两名同学参加全市诗词大会比赛,请通过列表或树状图 方法求所选两名同学中,恰好是一名七年级和一名九年级同学的概率.22 . ( 8分)如图,点 D 是以AB 为直径的O O 上一点,过点 B 作O O 的切线,交 AD 的延 长线于点C , E 是BC 的中点,连接 DE 并延长与AB 的延长线交于点 F . (1) 求证:DF 是O O 的切线; (2) 若 OB = BF , EF = 4,求 AD 的长.个人数13—-101——获奖痔;兄扇形统计圏8642086420获奖痔况条形统计图四、B 卷填空题(共2小题,每小题5分,共10分)223. (5分)当O w x w 3时,直线y = a 与抛物线y =( x - 1)- 3有交点,则a 的取值范围是.24. (5分)如图,正方形 ABCD 中,AB = 12, AE =^AB ,点P 在BC 上运动(不与 B 、C4重合),过点P 作PQ 丄EP ,交CD 于点Q ,贝U CQ 的最大值为2y = x +x+a 的图象与x 轴交于A ( x i,0)、B (X 2,0)两点,且一—+=1,求a 的值.26. (10分)根据有理数乘法(除法)法则可知:① 若ab >0 (或?>0),贝Ub② 若ab v 0 (或二v 0),贝Ub根据上述知识,求不等式(x -2) ( x+3)> 0的解集X -2^* 0f x 0解:原不等式可化为:(1)*或(2) 丿.x+3>0x+3<0由( 1)得,x > 2, 由(2)得,x v- 3,•••原不等式的解集为:x v- 3或x >2.25.( 8分)已知二次函数c共40分)请你运用所学知识,结合上述材料解答下列问题:(1) __________________________________ 不等式X 2- 2x - 3v 0的解集为 . (2) 求不等式 三匕v 0的解集(要求写出解答过程)1-x27. (10 分)如图,/ ABD = Z BCD = 90°, DB 平分/ ADC ,过点 B 作 BM // CD 交 AD 于M •连接CM 交DB 于N .2(1) 求证:BD 2= AD ?CD ;(2) 若 CD = 6, AD = 8,求 MN 的长.228. (12 分)如图,抛物线 y = ax+bx+c 的图象过点 A (- 1, 0)、B (3, 0 )、C (0, 3).(1)求抛物线的解析式;(2)在抛物线的对称轴上是否存在一点P ,使得△ PAC 的周长最小,若存在,请求出点P 的坐标及厶PAC 的周长;若不存在,请说明理由; (3)在(2)的条件下,在x 轴上方的抛物线上是否存在点M (不与C 点重合),使得S请说明理由.2019年四川省凉山州中考数学试卷参考答案与试题解析、选择题(共 12个小题,每小题 4分,共48分)在每小题给出的四个选项中只有一项 是正确的,把正确选项的宇母填涂在答题卡上相应的位置【分析】根据相反数的意义,只有符号不同的数为相反数.故选:A .是(【分析】利用科学记数法表示即可 【解答】解: 11153 300 000 000 = 1.533 X 1011故选:C .【点评】本题主要考查科学记数法的表示, 把一个数表示成 (1 < a v 10, n 为整数),这种记数法叫做科学记数法.1. (4分)-2的相反数是(【解答】解:根据相反数的定义,2的相反数是2.【点评】 本题考查了相反数的意义. 注意掌握只有符号不同的数为相反数, 0的相反数是2. 0.(4分) 2018年凉山州生产总值约为 153300000000 ,用科学记数法表示数1533000000009A . 1.533 X 1010B . 1.533 X 1011C . 1.533 X 1012D . 1.533 X 10科学记数法表示: a 与10的n 次幕相乘的形式3. (4 分)如图,BD // EF , AE 与 BD 交于点 C ,/ B = 30°,/ A = 75°,则/ E 的度数为 C . 115°D . 105°【分析】直接利用三角形的外角性质得出/ACD 度数,再利用平行线的性质分析得出答( )案.【解答】解:•••/ B = 30°,/ A = 75°, •••/ ACD = 30° +75 ° = 105°, •/ BD // EF ,•••/ E =/ ACD = 105°. 故选:D .【点评】此题主要考查了平行线的性质以及三角形的外角,正确掌握平行线的性质是解 题关键.2 2 4A . 2a +3a = 5aD.二 a【分析】分别根据合并同类项的法则、同底数幕的乘法法则、幕的乘方法则以及二次根 式的性质解答即可.2 2 2【解答】解:A 、2a 2+3a 2= 5a 2,故选项A 不合题意; B 、a 2?a = a 3 4 5,故选项B 符合题意; C 、(a 2) 3= a 6,故选项C 不合题意; D 、一「=|a|,故选项D 不合题意. 故选:B .【点评】本题主要考查了合并同类项的法则、幕的运算法则以及二次根式的性质,熟练 掌握相关运算性质是解答本题的关键.-2x >- • x < 1. 故选:C .【点评】本题考查了解简单不等式的能力,解答这类题学生往往在解题时不注意移项要 改变符号这一点而出错.6. ( 4分)某班40名同学一周参加体育锻炼时间统计如表所示:4. (4分)下列各式正确的是(B . a 2?a = a 35. (4分)不等式1-x > x - 1的解集是 A . x > 1B . x >- 1C. xw 1 D . x <- 1【分析】 移项、合并同类项,系数化为1即可求解.【解答】 解: 1- x >x - 1 ,那么该班40名同学一周参加体育锻炼时间的众数、中位数分别是()A . 17, 8.5B . 17, 9 C. 8, 9 D. 8, 8.5【分析】根据中位数、众数的概念分别求得这组数据的中位数、众数.【解答】解:众数是一组数据中出现次数最多的数,即8;由统计表可知,处于20 , 21两个数的平均数就是中位数,•••这组数据的中位数为三 =8.5;2故选:D.【点评】本题考查了中位数、众数的概念.本题为统计题,考查众数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.7. (4分)下列命题:①直线外一点到这条直线的垂线段,叫做点到直线的距离;②两点之间线段最短;③相等的圆心角所对的弧相等;④平分弦的直径垂直于弦•其中,真命题的个数是()A . 1B . 2 C. 3 D. 4【分析】根据点到直线的距离,线段的性质,弧、弦、圆心角之间的关系以及垂径定理判断即可.【解答】解:①直线外一点到这条直线的垂线段,叫做点到直线的距离;假命题;②两点之间线段最短;真命题;③相等的圆心角所对的弧相等;假命题;④平分弦的直径垂直于弦;假命题;真命题的个数是1个;故选:A.【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定& ( 4分)如图,正比例函数 y = kx 与反比例函数y=JL 的图象相交于 A 、C 两点,过点 A作x 轴的垂线交x 轴于点B ,连接BC ,则厶ABC 的面积等于(A . 8B . 6C . 4 【分析】由于点A 、C 位于反比例函数图象上且关于原点对称,则 据反比例函数系数 k 的几何意义作答即可.【解答】解:因为过双曲线上任意一点与原点所连的线段、坐标轴、向坐标轴作垂线所 围成的直角三角形面积 S 是个定值, 即 s =—|k|.2所以△ ABC 的面积等于2X _l |k|= |k|= 4.2故选:C .【点评】主要考查了反比例函数 y = 中k 的几何意义,即过双曲线上任意一点引 x 轴、y 轴垂线,所得矩形面积为|k|,是经常考查的一个知识点;这里体现了数形结合的思想, 做此类题一定要正确理解k 的几何意义•图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S 的关系即S = 1 |k|.29. ( 4 分)如图,在△ ABC 中,CA = CB = 4, cosC =丄,贝U sinB 的值为()【分析】 过点A 作AD 丄BC ,垂足为 D ,在Rt △ ACD 中可求出AD , CD 的长,在 Rt△D . 2S ^OBA = S A OBC ,再根A/10C- JA/10ABD中,利用勾股定理可求出AB的长,再利用正弦的定义可求出sinB的值.【解答】解:过点A作AD丄BC,垂足为D,如图所示.在Rt△ ACD 中,CD = CA?cosC= 1,••• AD = ::|r'- ■ ■-;在Rt△ ABD 中,BD = CB- CD = 3, AD = 〒,•AB= : . 1 ji2',• sinB ='” = '」.A5 4【点评】本题考查了解直角三角形以及勾股定理,通过解直角三角形及勾股定理,求出AD, AB的长是解题的关键.10. (4分)如图,在△ ABC中,D在AC边上,AD : DC = 1 : 2, O是BD的中点,连接AO并延长交BC于E,则BE : EC=( )A . 1: 2B . 1: 3 C. 1: 4 D. 2: 3【分析】过0作BC的平行线交AC与G,由中位线的知识可得出AD: DC = 1 : 2,根据已知和平行线分线段成比例得出AD = DG = GC , AG: GC = 2 : 1 , AO: OF = 2: 1,再由同高不同底的三角形中底与三角形面积的关系可求出BF : FC的比.【解答】解:如图,过0作0G // BC,交AC于G ,•/ 0是BD的中点,• G是DC的中点.又AD : DC = 1: 2,• AD = DG= GC ,••• AG : GC = 2: 1 , AO : OE = 2 : 1, 二 S A AOB : S ^BOE = 2设 S ^BOE =S , S ^AOB = 2S,又 BO = OD , •- S A A OD = 2S, S A ABD = 4S, •/ AD : DC = 1: 2,•- S A BDC = 2S\ABD = 8S , S 四边形 CDOE = 7S , • S ^AEC = 9S, S A ABE = 3S,【点评】本题考查平行线分线段成比例及三角形的中位线的知识,难度较大,注意熟练 运用中位线定理和三角形面积公式.11. (4分)如图,在△ AOC 中,OA = 3cm , OC = 2口,将厶AOC 绕点 O 顺时针旋转 90 后得到△ BOD ,则AC 边在旋转过程中所扫过的图形的面积为()cm 2.A . -B . 2 nC .17 197t【分析】根据旋转的性质可以得到阴影部分的面积=扇形 OAB 的面积-扇形 OCD 的面积,利用扇形的面积公式即可求解.【解答】解:•••△ AOC ◎△ BOD , •阴影部分的面积=扇形OAB 的面积-扇形 OCD 的面积==2 n,故选:B .【点评】 本题考查了旋转的性质以及扇形的面积公式,正确理解:阴影部分的面积=扇 形OAB 的面积-扇形 OCD 的面积是解题关键.2 212. (4分)二次函数 y = ax+bx+c 的部分图象如图所示,有以下结论: ①3a - b = 0;②b-4ac >0;③5a - 2b+c > 0;④4b+3c > 0,其中错误结论的个数是()【分析】①对称轴为x =-;,得b = 3a;4b+3c = 3b+ b+3c = 3b+3a+3c = 3 ( a+b+c )v 0; 【解答】解:由图象可知 a v 0, c >0,对称轴为x =-23 b…x =-—=- ,2 2ab = 3a , ① 正确;•••函数图象与x 轴有两个不同的交点,2/•△= b - 4ac >0, ② 正确;当 x =- 1 时,a - b+c >0, 当 x =- 3 时,9a - 3b+c >0, •••10a - 4b+2c >0,JI-4 -3 -2 :-1(91 2/i■ _ 3A . 1B .C . 3②函数图象与x 轴有两个不同的交点,得△= 2 ,小b - 4ac > 0;③ 当 x =- 1 时,a - b+c >0,当 x =- 3 时, 9a - 3b+c > 0,得 5a - 2b+c > 0;④ 由对称性可知x = 1时对应的y 值与x =-4时对应的y 值相等,当x = 1时a+b+c v 0,::25a - 2b+c> 0,2③ 正确;由对称性可知x = 1时对应的y 值与x =- 4时对应的y 值相等, •••当 x = 1 时 a+b+c v 0,T b = 3a ,•- 4b+3c = 3b+ b+3c = 3b+3a+3c = 3 (a+b+c )v 0,• 4b+3c v 0,④ 错误; 故选:A .【点评】本题考查二次函数的图象及性质;熟练掌握从函数图象获取信息,将信息与函 数解析式相结合解题是关键.二、填空题(共 5个小题,每小题 4分,共20分)x+y=10 (x=613. (4分)方程组、 的解是_ _.【分析】利用加减消元法解之即可. 【解答】解:®,l2x+y=16 ②②-①得: x = 6,把x = 6代入①得: 6+y = 10, 解得:y = 4,方程组的解为: 故答案为:x=6” ,产4【点评】 14. (4 分)本题考查了解二元一次方程组,正确掌握加减消元法是解题的关键. 2方程 ,+. = 1的解是 x =- 2 .X_1【分析】 去分母,把分式方程化为整式方程,求解并验根即可.2去括号, 2 2得 2x +x - 3= x - 1【解答】2x-l去分母, 得(2x - 1) (x+1)- 2 =( x+1) ( x - 1)移项并整理,得x2+x-2 = 0所以(x+2)(x- 1)= 0解得x=- 2或x= 1经检验,x=- 2是原方程的解.故答案为:x=- 2.【点评】本题考查了分式方程、一元二次方程的解法•掌握分式方程的解法是解决本题的关键.注意验根.15. (4分)如图所示,AB是O O的直径,弦CD丄AB于H , / A = 30°, CD = 2 :,则O O的半径是 2 .~ D【分析】连接BC,由圆周角定理和垂径定理得出/ ACB = 90°, CH = DH = —CD =二,2由直角三角形的性质得出AC= 2CH = 2二,AC= 二BC = 2二,AB= 2BC,得出BC= 2,AB= 4,求出OA= 2即可.【解答】解:连接BC,如图所示:•/ AB是O O的直径,弦CD丄AB于H ,•••/ACB= 90° , CH = DH = 1CD = 乙,•••/ A= 30°,• AC= 2CH = 2 ';,在Rt△ ABC 中,/ A = 30°,AC= 'BC = 2 ':, AB = 2BC,• BC= 2, AB = 4,• OA= 2,即O O的半径是2;故答案为:2.【点评】本题考查的是垂径定理、圆周角定理、含30。
宜宾市2019年高中阶段学校招生考试数学试卷(考试时间:120分钟, 全卷满分120分)本试卷分选择题和非选择题两部分,考生作答时,须将答案答在答题卡上,在本试题卷、草稿纸上答题无效.考试结束,将本试题卷和答题卡一并交回. 注意事项:1答题前,考生在答题卡上务必将自己的姓名、准考证号填写清楚,并贴好条形码请认真核准条形码上的准考证号、姓名和科目.2在作答选择题时,每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦擦干净后,再选潦其他答案标号,在试题卷上作答无效.......... 3在作答非选择题时,请在答题卡上各题的答题区域内作答,在试题卷上作答无效.......... 一、选择题:(本大题共8小题,每小题3分,共24分)在每小题给出的四个选项中,只有 一项是符合题目要求的,请将正确选项填在答题卡对成题目上. (注意..:在试题卷上作答无效.........) 1. 2的倒数是A. 12B.–12C. ±12 D.22. 下列运算的结果中, 是正数的是A .(–2018)–1B .– (2018)–1C .(–1) (–2018)D .(–2018)÷2018 3.如图,放置的一个机器零件(图1),若其主(正)视图如(图2)所示,则其俯视图4.一个袋子中装有6个黑球和3个白球,这些球除颜色外,形状、大小、质地等完全相 同在看不到球的条件下,随机地从这个袋子中摸出一个球,摸到白球的概率是A .19B .13C .12D . 235.若关于x 的一元二次方程的两根为x 1=1,x 2 =2则这个方程是 A .x 2+3x –2=0 B .x 2–3x+2=0 C .x 2–2x+3=0 D .x 2+3x+2=06.如图,过A 点的一次函数的图象与正比例函数y=2x 的图象相交于 点B ,则这个一次函数的解析式是 A .y=2x+3 B .y= x –3 C .y=2x –3 D .y= –x+37.如图,将n 个边长都为2的正方形按如图所示摆放,点A 1,A 2,x…A n 分别是正方形的中心,则这n 个正方形重叠部分的面积之和是 A.n B.n –1 C.(14)n –1 D. 14n8.已知⊙O 的半径r =3,设圆心O 到一条直线的距离为d ,圆上 到这条直线的距离为2的点的个数为m ,给出下列 ①若d>5,则m=0;②若d=5,则m=1;③若1<d<5,则m=3 ④若d=1,则m=2;⑤若d<1,则m = 4. 其中正确 A .1 B .2 C . 3 D .5二、填空题:(本大题共8小题,每小题3分,共24分)请把答案直接填在答题卡对应题中 横线上(注意..:在试题卷上作答无效.........) 9.分解因式:x 3– x = .10.分式方程x x –2 – 1x 2 – 4= 1的解是. 11.如图,直线a 、b 被第三条直线c 所截,如果a ∥b,∠1 =70°,那么∠3的度数是 .12.菱形的周长为20cm ,两个相邻的内角的度数之比为l∶2,则较长的对角线长度是cm.13.在平面直角坐标系中,将点A(–1,2)向右平移3个单位长度得到点B ,则点B 关于x 轴的对称点C 的坐标是 .14.如图,在Rt△ABC 中,∠B=90°,AB =3,BC= 4,将△ABC 折叠,使点B 恰好落在斜边AC 上,与点B′重合,AE 为折痕,则E B′= .15.如图,已知AB 为⊙O 的直径,AB=2,AD 和BE 是圆O 的两条切线,A 、B 为切点,过圆上一点C 作⊙O 的切线CF ,分别交AD 、BE 于点AM= .16.规定:sin(–x)= –sin x ,cos(–x)= cos x ,sin(x+y)=sinx·cosy+cosx·siny,据此判断下列等式成立的是 (写出所有正确的序号). ①cos (–60°)= – 12; ② sin75°= 6+24③sin2x=2sinx·cosx; ④sin(x–y)=sinx·cosy–cosx·siny,三、解答题:(本大题共8个题,共72分)解答应写出文字说明,证明过程或演算步骤. 17.(每小题5分,共10分) (注意..:在试题卷上作答无效.........) baCB 'B AF(1)计算:||–2– (–2)0+ ( 13 )–1(2)化简:(3aa–3–aa+3) ·a2–9a18. (本小题6分) (注意..:在试题卷上作答无效.........)如图,已知:在△AFD和△CEB中,点A、E、F、C在同一直线上,AE=CF,∠B=∠D AD∥BC.求证:AD = BC.19.(本小题8分) (注意..:在试题卷上作答无效.........)我市中小学全面开展“阳光体育”活动,某校在大课间中开设了A:体操,B:跑操,C:舞蹈,D:健美操四项活动为了解学生最喜欢哪一项活动,随机抽取了部分学生进行调查,并将调查结果绘制成了如下两幅不完整的统计图,请根据统计图回答下列问题:(1)这次被调查的学生共有人;(2)请将统计图2补充完整;(3)统计图1中B项目对应的扇形的圆心角是度;(4)已知该校共有学生3600人,请根据调查结果估计该校喜欢健美操的学生人数.20.(本小题8分) (注意..:在试题卷上作答无效.........) 在我市举行的中学生安全知识竞赛中共有20道题,每一题答对得5分,答错或不答都 扣3分.(1)小李考了60分,那么小李答对了多少道题?(2)小王获得二等奖(75~85分),请你算算小王答对了几道题?21.(本小题8分) (注意..:在试题卷上作答无效.........) 在平面直角坐标系中,若点P(x ,y)的坐标x 、y 均为整数,则称点P则称该多边形为格点多边形.格点多边形的面积记为S 内部的格点数记为N ,边界上的格点数记为L 。
精品文档,欢迎下载!如果您喜欢这份文档,欢迎下载!祝您成绩进步,学习愉快!2019年四川省宜宾市中考数学试卷一、选择题(本大题共8小题,共24.0分) 1. 2的倒数是( )A. 12B. −2C. −12D. ±122. 人体中枢神经系统中约含有1千亿个神经元,某种神经元的直径约为52微米,52微米为0.000052米.将0.000052用科学记数法表示为( )A. 5.2×10−6B. 5.2×10−5C. 52×10−6D. 52×10−53. 如图,四边形ABCD 是边长为5的正方形,E 是DC 上一点,DE =1,将△ADE 绕着点A 顺时针旋转到与△ABF 重合,则EF =( ) A. √41 B. √42 C. 5√2 D. 2√13 4. 一元二次方程x 2-2x +b =0的两根分别为x 1和x 2,则x 1+x 2为( ) A. −2 B. b C. 2 D. −b 5. 已知一个组合体是由几个相同的正方体叠合在一起组成,该组合体的主视图与俯视图如图所示,则该组合体中正方体的个数最多是( )A. 10B. 9C. 8D. 76. 次数 环数 运动员 第1次 第2次 第3次 第4次 第5次 第6次 第7次 第8次 甲 10 7 7 8 8 8 9 7 乙1055899810根据以上数据,设甲、乙的平均数分别为x 甲−、x 乙−,甲、乙的方差分别为s 甲2,s 乙2,则下列结论正确的是( )A. x 甲−=x 乙−,s 甲2<s 乙2B. x 甲−=x 乙−,s 甲2>s 乙2C. x 甲−>x 乙−,s 甲2<s 乙2D. x 甲−<x 乙−,s 甲2<s 乙27.如图,∠EOF的顶点O是边长为2的等边△ABC的重心,∠EOF的两边与△ABC的边交于E,F,∠EOF=120°,则∠EOF与△ABC的边所围成阴影部分的面积是()A. √32B. 2√35C. √33D. √348.已知抛物线y=x2-1与y轴交于点A,与直线y=kx(k为任意实数)相交于B,C两点,则下列结论不正确的是()A. 存在实数k,使得△ABC为等腰三角形B. 存在实数k,使得△ABC的内角中有两角分别为30∘和60∘C. 任意实数k,使得△ABC都为直角三角形D. 存在实数k,使得△ABC为等边三角形二、填空题(本大题共8小题,共24.0分)9.分解因式:b2+c2+2bc-a2=______.10.如图,六边形ABCDEF的内角都相等,AD∥BC,则∠DAB=______°.11.将抛物线y=2x2的图象,向左平移1个单位,再向下平移2个单位,所得图象的解析式为______.12.如图,已知直角△ABC中,CD是斜边AB上的高,AC=4,BC=3,则AD=______.13.某产品每件的生产成本为50元,原定销售价65元,经市场预测,从现在开始的第一季度销售价格将下降10%,第二季度又将回升5%.若要使半年以后的销售利润不变,设每个季度平均降低成本的百分率为x,根据题意可列方程是______.14.若关于x的不等式组{x−24<x−132x−m≤2−x有且只有两个整数解,则m的取值范围是______.15.如图,⊙O的两条相交弦AC、BD,∠ACB=∠CDB=60°,AC=2√3,则⊙O的面积是______.精品文档,欢迎下载!16.如图,△ABC和△CDE都是等边三角形,且点A、C、E在同一直线上,AD与BE、BC分别交于点F、M,BE与CD交于点N.下列结论正确的是______(写出所有正确结论的序号).①AM=BN;②△ABF≌△DNF;③∠FMC+∠FNC=180°;④1MN =1AC+1CE三、计算题(本大题共1小题,共10.0分)17.(1)计算:(2019-√2)0-2-1+|-1|+sin245°(2)化简:2xyx2−y2÷(1x−y+1x+y)四、解答题(本大题共7小题,共62.0分)18.如图,AB=AD,AC=AE,∠BAE=∠DAC.求证:∠C=∠E.19.某校在七、八、九三个年级中进行“一带一路”知识竞赛,分别设有一等奖、二等奖、三等奖、优秀奖、纪念奖.现对三个年级同学的获奖情况进行了统计,其中获得纪念奖有17人,获得三等奖有10人,并制作了如图不完整的统计图.(1)求三个年级获奖总人数;(2)请补全扇形统计图的数据;,其余为九年级的同学,(3)在获一等奖的同学中,七年级和八年级的人数各占14现从获一等奖的同学中选2名参加市级比赛,通过列表或者树状图的方法,求所选出的2人中既有七年级又有九年级同学的概率.20.甲、乙两辆货车分别从A、B两城同时沿高速公路向C城运送货物.已知A、C两城相距450千米,B、C两城的路程为440千米,甲车比乙车的速度快10千米/小时,甲车比乙车早半小时到达C城.求两车的速度.21.如图,为了测得某建筑物的高度AB,在C处用高为1米的测角仪CF,测得该建筑物顶端A的仰角为45°,再向建筑物方向前进40米,又测得该建筑物顶端A的仰角为60°.求该建筑物的高度AB.(结果保留根号)(k>0)的图象和一次函数y=-x+b22.如图,已知反比例函数y=kx的图象都过点P(1,m),过点P作y轴的垂线,垂足为A,O为坐标原点,△OAP的面积为1.精品文档,欢迎下载!(1)求反比例函数和一次函数的解析式;(2)设反比例函数图象与一次函数图象的另一交点为M,过M作x轴的垂线,垂足为B,求五边形OAPMB的面积.23.如图,线段AB经过⊙O的圆心O,交⊙O于A、C两点,BC=1,AD为⊙O的弦,连结BD,∠BAD=∠ABD=30°,连结DO并延长交⊙O于点E,连结BE交⊙O于点M.(1)求证:直线BD是⊙O的切线;(2)求⊙O的半径OD的长;(3)求线段BM的长.24.如图,在平面直角坐标系xOy中,已知抛物线y=ax2-2x+c与直线y=kx+b都经过A(0,-3)、B(3,0)两点,该抛物线的顶点为C.(1)求此抛物线和直线AB的解析式;(2)设直线AB与该抛物线的对称轴交于点E,在射线EB上是否存在一点M,过M作x轴的垂线交抛物线于点N,使点M、N、C、E是平行四边形的四个顶点?若存在,求点M的坐标;若不存在,请说明理由;(3)设点P是直线AB下方抛物线上的一动点,当△PAB面积最大时,求点P的坐标,并求△PAB面积的最大值.答案和解析1.【答案】A【解析】解:2的倒数是,故选:A.根据倒数的定义,可以求得题目中数字的倒数,本题得以解决.本题考查倒数,解答本题的关键是明确倒数的定义.2.【答案】B【解析】解:0.000052=5.2×10-5;故选:B.由科学记数法可知0.000052=5.2×10-5;本题考查科学记数法;熟练掌握科学记数法a×10n中a与n的意义是解题的关键.3.【答案】D【解析】解:由旋转变换的性质可知,△ADE≌△ABF,∴正方形ABCD的面积=四边形AECF的面积=25,∴BC=5,BF=DE=1,∴FC=6,CE=4,∴EF===2.故选:D.根据旋转变换的性质求出FC、CE,根据勾股定理计算即可.本题考查的是旋转变换的性质、勾股定理的应用,掌握性质的概念、旋转变换的性质是解题的关键.4.【答案】C【解析】解:根据题意得:x1+x2=-=2,精品文档,欢迎下载!故选:C.根据“一元二次方程x2-2x+b=0的两根分别为x1和x2”,结合根与系数的关系,即可得到答案.本题考查了根与系数的关系,正确掌握一元二次方程根与系数的关系是解题的关键.5.【答案】B【解析】解:从俯视图可得最底层有5个小正方体,由主视图可得上面一层是2个,3个或4个小正方体,则组成这个几何体的小正方体的个数是7个或8个或9个,组成这个几何体的小正方体的个数最多是9个.故选:B.从俯视图中可以看出最底层小正方体的个数及形状,从主视图可以看出每一层小正方体的层数和个数,从而算出总的个数.本题考查三视图的知识及从不同方向观察物体的能力,解题中用到了观察法.确定该几何体有几列以及每列方块的个数是解题关键.6.【答案】A【解析】解:(1)=(10+7+7+8+8+8+9+7)=8;=(10+5+5+8+9+9+8+10)=8;s甲2=[(10-8)2+(7-8)2+(7-8)2+(8-8)2+(8-8)2+(8-8)2+(9-8)2+(7-8)2]=1;s乙2=[(10-8)2+(5-8)2+(5-8)2+(8-8)2+(9-8)2+(9-8)2+(8-8)2+(10-8)2]=,∴=,s 甲2<s乙2,故选:A.分别计算平均数和方差后比较即可得到答案.本题考查了方差,方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.7.【答案】C【解析】解:连接OB、OC,过点O作ON⊥BC,垂足为N,∵△ABC为等边三角形,∴∠ABC=∠ACB=60°,∵点O为△ABC的内心∴∠OBC=∠OBA=∠ABC,∠OCB=∠ACB.∴∠OBA=∠OBC=∠OCB=30°.∴OB=OC.∠BOC=120°,∵ON⊥BC,BC=2,∴BN=NC=1,∴ON=tan∠OBC•BN=×1=,∴S△OBC=BC•ON=.∵∠EOF=∠AOB=120°,∴∠EOF-∠BOF=∠AOB-∠BOF,即∠EOB=∠FOC.在△EOB和△FOC中,,∴△EOB≌△FOC(ASA).∴S阴影=S△OBC=故选:C.连接OB、OC,过点O作ON⊥BC,垂足为N,由点O是等边三角形ABC的内心可以得到∠OBC=∠OCB=30°,结合条件BC=2即可求出△OBC的面积,由∠EOF=∠BOC,从而得到∠EOB=∠FOC,进而可以证到△EOB≌△FOC,因而阴影部分面积等于△OBC的面积.此题考查了等边三角形的性质、等腰三角形的性质、三角函数的定义、全等三角形的判定与性质、三角形的内心、三角形的内角和定理,有一定的综合性,作出辅助线构建全等三角形是解题的关键.精品文档,欢迎下载!8.【答案】D【解析】解:A、如图1,可以得△ABC为等腰三角形,正确;B、如图3,∠ACB=30°,∠ABC=60°,可以得△ABC的内角中有两角分别为30°和60°,正确;C、如图2和3,∠BAC=90°,可以得△ABC为直角三角形,正确;D、不存在实数k,使得△ABC为等边三角形,不正确;本题选择结论不正确的,故选:D.通过画图可解答.本题考查了二次函数和正比例函数图象,等边三角形和判定,直角三角形的判定,正确画图是关键.9.【答案】(b+c+a)(b+c-a)【解析】解:原式=(b+c)2-a2=(b+c+a)(b+c-a).故答案为:(b+c+a)(b+c-a)当被分解的式子是四项时,应考虑运用分组分解法进行分解.本题考查了分组分解法分解因式,难点是采用两两分组还是三一分组.比如本题有a的二次项,a的一次项,有常数项,所以首要考虑的就是三一分组.10.【答案】60【解析】解:在六边形ABCDEF中,(6-2)×180°=720°,=120°,∴∠B=120°,∵AD∥BC,∴∠DAB=180°-∠B=60°,故答案为:60°.先根据多边形内角和公式(n-2)×180°求出六边形的内角和,再除以6即可求出∠B的度数,由平行线的性质可求出∠DAB的度数.本题考查了多边形的内角和公式,平行线的性质等,解题关键是能够熟练运用多边形内角和公式及平行线的性质.11.【答案】y=2(x+1)2-2【解析】解:将抛物线y=2x2的图象,向左平移1个单位,再向下平移2个单位,所得图象的解析式为:y=2(x+1)2-2.故答案为:y=2(x+1)2-2.精品文档,欢迎下载!直接利用二次函数的平移规律进而得出答案.此题主要考查了二次函数图象与几何变换,正确记忆平移规律是解题关键.12.【答案】165【解析】解:在Rt△ABC中,AB==5,由射影定理得,AC2=AD•AB,∴AD==,故答案为:.根据勾股定理求出AB,根据射影定理列式计算即可.本题考查的是射影定理、勾股定理,在直角三角形中,每一条直角边是这条直角边在斜边上的射影和斜边的比例中项.13.【答案】65×(1-10%)×(1+5%)-50(1-x)2=65-50【解析】解:设每个季度平均降低成本的百分率为x,依题意,得:65×(1-10%)×(1+5%)-50(1-x)2=65-50.故答案为:65×(1-10%)×(1+5%)-50(1-x)2=65-50.设每个季度平均降低成本的百分率为x,根据利润=售价-成本价结合半年以后的销售利润为(65-50)元,即可得出关于x的一元二次方程,此题得解.本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.14.【答案】-2≤m<1【解析】解:解不等式①得:x>-2,解不等式②得:x≤,∴不等式组的解集为-2<x≤,∵不等式组只有两个整数解,∴0≤<1,解得:-2≤m<1,故答案为-2≤m<1.先求出每个不等式的解集,再求出不等式组的解集,最后根据已知得出关于m的不等式组,求出即可.本题考查了解一元一次不等式,解一元一次不等式组,不等式组的整数解的应用,解此题的关键是求出关于m的不等式组,难度适中.15.【答案】16π【解析】解:∵∠A=∠BDC,而∠ACB=∠CDB=60°,∴∠A=∠ACB=60°,∴△ACB为等边三角形,∵AC=2,∴圆的半径为4,∴⊙O的面积是16π,故答案为:16π.由∠A=∠BDC,而∠ACB=∠CDB=60°,所以∠A=∠ACB=60°,得到△ACB为等边三角形,又AC=2,从而求得半径,即可得到⊙O的面积.本题考查了圆周角定理,解题的关键是能够求得圆的半径,难度不大.16.【答案】①③④【解析】证明:①∵△ABC和△CDE都是等边三角形,∴AC=BC,CE=CD,∠ACB=∠ECD=60°,∴∠ACB+∠ACE=∠ECD+∠ACE,即∠BCE=∠ACD,在△BCE和△ACD中,,∴△BCE≌△ACD(SAS),∴AD=BE,∠ADC=∠BEC,∠CAD=∠CBE,精品文档,欢迎下载!在△DMC和△ENC中,,∴△DMC≌△ENC(ASA),∴DM=EN,CM=CN,∴AD-DM=BE-EN,即AM=BN;②∵∠ABC=60°=∠BCD,∴AB∥CD,∴∠BAF=∠CDF,∵∠AFB=∠DFN,∴△ABF∽△DNF,找不出全等的条件;③∵∠AFB+∠ABF+∠BAF=180°,∠FBC=∠CAF,∴∠AFB+∠ABC+∠BAC=180°,∴∠AFB=60°,∴∠MFN=120°,∵∠MCN=60°,∴∠FMC+∠FNC=180°;④∵CM=CN,∠MCN=60°,∴△MCN是等边三角形,∴∠MNC=60°,∵∠DCE=60°,∴MN∥AE,∴==,∵CD=CE,MN=CN,∴=,∴=1-,两边同时除MN得=-,∴=.故答案为①③④①根据等边三角形性质得出AC=BC,CE=CD,∠ACB=∠ECD=60°,求出∠BCE=∠ACD,根据SAS推出两三角形全等即可;②根据∠ABC=60°=∠BCD,求出AB∥CD,可推出△ABF∽△DNF,找不出全等的条件;③根据角的关系可以求得∠AFB=60°,可求得MFN=120°,根据∠BCD=60°可解题;④根据CM=CN,∠MCN=60°,可求得∠CNM=60°,可判定MN∥AE,可求得==,可解题.本题考查了全等三角形的判定,考查了全等三角形的对应边、对应角相等的性质,考查了平行线的运用,考查了正三角形的判定,本题属于中档题.17.【答案】解:(1)原式=1-12+1+(√22)2 =2-12+12=2(2)原式=2xy (x+y)(x−y)÷2x (x+y)(x−y)=2xy (x+y)(x−y)×(x+y)(x−y)2x=y .【解析】(1)先根据0指数幂、负整数指数幂的意义、特殊角的三角函数值,计算出(2019-)0、2-1、sin 245°的值,再加减;(2)先算括号里面的加法,再把除法转化为乘法,求出结果.本题考查了零指数、负整数指数幂的意义,特殊角的三角函数值、分式的混合运算等知识点,题目难度不大,综合性较强,是中考热点题型.a 0=1(a≠0); a -p =(a≠0).18.【答案】证明:∵∠BAE =∠DAC∴∠BAE +∠CAE =∠DAC +∠CAE∴∠CAB =∠EAD ,且AB =AD ,AC =AE∴△ABC ≌△ADE (SAS )∴∠C =∠E【解析】由“SAS”可证△ABC ≌△ADE ,可得∠C=∠E .本题考查了全等三角形的判定和性质,证明∠CAB=∠EAD 是本题的关键.19.【答案】解:(1)三个年级获奖总人数为17÷34%=50(人);(2)三等奖对应的百分比为1050×100%=20%, 则一等奖的百分比为1-(14%+20%+34%+24%)=4%,补全图形如下:精品文档,欢迎下载!(3)由题意知,获一等奖的学生中,七年级有1人,八年级有1人,九年级有2人, 画树状图为:(用A 、B 、C 分别表示七年级、八年级和九年级的学生)共有12种等可能的结果数,其中所选出的两人中既有七年级又有九年级同学的结果数为4,所以所选出的两人中既有七年级又有九年级同学的概率为13.【解析】(1)由获得纪念奖的人数及其所占百分比可得答案;(2)先求出获得三等奖所占百分比,再根据百分比之和为1可得一等奖对应百分比,从而补全图形;(3)画树状图(用A 、B 、C 分别表示七年级、八年级和九年级的学生)展示所有12种等可能的结果数,再找出所选出的两人中既有七年级又有九年级同学的结果数,然后利用概率公式求解.本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n ,再从中选出符合事件A 或B 的结果数目m ,然后利用概率公式求事件A 或B 的概率.也考查了统计图.20.【答案】解:设乙车的速度为x 千米/时,则甲车的速度为(x +10)千米/时. 根据题意,得:450x+10+12=440x ,解得:x =80,或x =-110(舍去),∴x =80,经检验,x =,80是原方程的解,且符合题意.当x =80时,x +10=90.答:甲车的速度为90千米/时,乙车的速度为80千米/时.【解析】设乙车的速度为x 千米/时,则甲车的速度为(x+10)千米/时,路程知道,且甲车比乙车早半小时到达C 城,以时间做为等量关系列方程求解.本题考查分式方程的应用、分式方程的解法,分析题意,找到合适的等量关系是解决问题的关键.根据时间=,列方程求解.21.【答案】解:设AM =x 米,在Rt △AFM 中,∠AFM =45°,∴FM =AM =x ,在Rt △AEM 中,tan ∠AEM =AM EM , 则EM =AM tan∠AEM =√33x , 由题意得,FM -EM =EF ,即x -√33x =40, 解得,x =60+20√3,∴AB =AM +MB =61+20√3,答:该建筑物的高度AB 为(61+20√3)米.【解析】设AM=x 米,根据等腰三角形的性质求出FM ,利用正切的定义用x 表示出EM ,根据题意列方程,解方程得到答案.本题考查的是解直角三角形的应用-仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.22.【答案】解:(1)∵过点P 作y 轴的垂线,垂足为A ,O 为坐标原点,△OAP 的面积为1.∴S △OPA =12|k |=1,∴|k |=2,∵在第一象限,∴k =2,∴反比例函数的解析式为y =2x ;∵反比例函数y =k x (k >0)的图象过点P (1,m ),∴m =21=2,∴P (1,2),∵次函数y =-x +b 的图象过点P (1,2),精品文档,欢迎下载!∴2=-1+b ,解得b =3,∴一次函数的解析式为y =-x +3;(2)设直线y =-x +3交x 轴、y 轴于C 、D 两点,∴C (3,0),D (0,3),解{y =−x +3y =2x得{y =2x=1或{y =1x=2, ∴P (1,2),M (2,1),∴PA =1,AD =3-2=1,BM =1,BC =3-2=1,∴五边形OAPMB 的面积为:S △COD -S △BCM -S △ADP =12×3×3-12×1×1-12×1×1=72. 【解析】(1)根据系数k 的几何意义即可求得k ,进而求得P (1,2),然后利用待定系数法即可求得一次函数的解析式;(2)设直线y=-x+3交x 轴、y 轴于C 、D 两点,求出点C 、D 的坐标,然后联立方程求得P 、M 的坐标,最后根据S 五边形=S △COD -S △APD -S △BCM ,根据三角形的面积公式列式计算即可得解;本题考查了反比例函数与一次函数的交点问题,三角形的面积以及反比例函数系数k 的几何意义,求得交点坐标是解题的关键.23.【答案】(1)证明:∵OA =OD ,∠A =∠B =30°, ∴∠A =∠ADO =30°,∴∠DOB =∠A +∠ADO =60°,∴∠ODB =180°-∠DOB -∠B =90°,∵OD 是半径,∴BD 是⊙O 的切线;(2)∵∠ODB =90°,∠DBC =30°,∴OD =12OB ,∵OC =OD ,∴BC =OC =1,∴⊙O 的半径OD 的长为1;(3)∵OD =1,∴DE =2,BD =√3,∴BE =√BD 2+DE 2=√7,∵BD 是⊙O 的切线,BE 是⊙O 的割线,∴BD 2=BM •BE ,∴BM =BD 2BE =√7=3√77. 【解析】(1)根据等腰三角形的性质得到∠A=∠ADO=30°,求出∠DOB=60°,求出∠ODB=90°,根据切线的判定推出即可; (2)根据直角三角形的性质得到OD=OB ,于是得到结论;(3)解直角三角形得到DE=2,BD=,根据勾股定理得到BE==,根据切割线定理即可得到结论.本题考查了切线的判定和性质,圆周角定理,直角三角形的性质,勾股定理,切割线定理,正确的识别图形是解题的关键.24.【答案】解:(1)∵抛物线y =ax 2-2x +c 经过A (0,-3)、B (3,0)两点, ∴{c =−39a−6+c=0,∴{c =−3a=1,∴抛物线的解析式为y =x 2-2x -3,∵直线y =kx +b 经过A (0,-3)、B (3,0)两点,∴{b =−33k+b=0,解得:{b =−3k=1,∴直线AB 的解析式为y =x -3,(2)∵y =x 2-2x -3=(x -1)2-4,∴抛物线的顶点C 的坐标为(1,-4),∵CE ∥y 轴,∴E (1,-2),∴CE =2,①如图,若点M 在x 轴下方,四边形CEMN 为平行四边形,则CE =MN , 设M (a ,a -3),则N (a ,a 2-2a -3), ∴MN =a -3-(a 2-2a -3)=-a 2+3a ,∴-a 2+3a =2,解得:a =2,a =1(舍去),∴M (2,-1),②如图,若点M 在x 轴上方,四边形CENM 为平行四边形,则CE =MN ,精品文档,欢迎下载!设M (a ,a -3),则N (a ,a 2-2a -3),∴MN =a 2-2a -3-(a -3)=a 2-3a ,∴a 2-3a =2, 解得:a =3+√172,a =3−√172(舍去), ∴M (3+√172,−3+√172), 综合可得M 点的坐标为(2,-1)或(3+√172,−3+√172).(3)如图,作PG ∥y 轴交直线AB 于点G ,设P (m ,m 2-2m -3),则G (m ,m -3),∴PG =m -3-(m 2-2m -3)=-m 2+3m ,∴S △PAB =S △PGA +S △PGB =12PG ⋅OB =12×(−m 2+3m)×3=−32m 2+92m =-32(m −32)2+278,∴当m =32时,△PAB 面积的最大值是278,此时P 点坐标为(32,−32).【解析】(1)将A (0,-3)、B (3,0)两点坐标分别代入二次函数的解析式和一次函数解析式即可求解;(2)先求出C 点坐标和E 点坐标,则CE=2,分两种情况讨论:①若点M 在x 轴下方,四边形CEMN 为平行四边形,则CE=MN ,②若点M 在x 轴上方,四边形CENM 为平行四边形,则CE=MN ,设M (a ,a-3),则N (a ,a 2-2a-3),可分别得到方程求出点M 的坐标;(3)如图,作PG ∥y 轴交直线AB 于点G ,设P (m ,m 2-2m-3),则G (m ,m-3),可由,得到m的表达式,利用二次函数求最值问题配方即可.本题是二次函数综合题,考查了待定系数法求函数解析式,二次函数求最值问题,以及二次函数与平行四边形、三角形面积有关的问题.。
2019-2020学年中考数学模拟试卷 一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.正方形ABCD 在直角坐标系中的位置如图所示,将正方形ABCD 绕点A 按顺时针方向旋转180°后,C 点的坐标是( )A .(2,0)B .(3,0)C .(2,-1)D .(2,1)2.如图所示,数轴上两点A ,B 分别表示实数a ,b ,则下列四个数中最大的一个数是( )A .aB .bC .1aD .1b3.如图,两根竹竿AB 和AD 斜靠在墙CE 上,量得∠ABC=α,∠ADC=β,则竹竿AB 与AD 的长度之比为( )A .tan tan αβB .sin sin βαC .sin sin αβD .cos cos βα4.9的值是( )A .±3B .3C .9D .815.用配方法解方程2230x x +-=时,可将方程变形为( )A .2(1)2x +=B .2(1)2x -=C .2(1)4x -=D .2(1)4x +=6.如图,在△ABC 中,AC 的垂直平分线分别交AC 、BC 于E ,D 两点,EC =4,△ABC 的周长为23,则△ABD 的周长为( )A .13B .15C .17D .197.如图,CD 是⊙O 的弦,O 是圆心,把⊙O 的劣弧沿着CD 对折,A 是对折后劣弧上的一点,∠CAD=100°,则∠B 的度数是( )A .100°B .80°C .60°D .50°8.如图,在平行线l 1、l 2之间放置一块直角三角板,三角板的锐角顶点A ,B 分别在直线l 1、l 2上,若∠l=65°,则∠2的度数是( )A .25°B .35°C .45°D .65°9.如图,E 为平行四边形ABCD 的边AB 延长线上的一点,且BE:AB=2:3,△BEF 的面积为4,则平行四边形ABCD 的面积为()A .30B .27C .14D .3210.若二次函数22y ax ax c =-+的图象经过点(﹣1,0),则方程220ax ax c -+=的解为( ) A .13x =-,21x =- B .11x =,23x =C .11x =-,23x =D .13x =-,21x =二、填空题(本题包括8个小题)11.某市对九年级学生进行“综合素质”评价,评价结果分为A ,B ,C ,D ,E 五个等级.现随机抽取了500名学生的评价结果作为样本进行分析,绘制了如图所示的统计图.已知图中从左到右的五个长方形的高之比为2:3:3:1:1,据此估算该市80000名九年级学生中“综合素质”评价结果为“A”的学生约为_____人.12.如图,正五边形ABCDE 和正三角形AMN 都是⊙O 的内接多边形,则∠BOM =_______.13.如图的三角形纸片中,AB=8cm ,BC=6cm ,AC=5cm.沿过点B 的直线折叠三角形,使点C 落在AB 边的点E 处,折痕为BD.则△AED 的周长为____cm.14.如图,半径为5的半圆的初始状态是直径平行于桌面上的直线b ,然后把半圆沿直线b 进行无滑动滚动,使半圆的直径与直线b 重合为止,则圆心O 运动路径的长度等于_____.15.飞机着陆后滑行的距离S (单位:米)与滑行的时间t (单位:秒)之间的函数关系式是s =60t ﹣1.2t 2,那么飞机着陆后滑行_____秒停下.16.已知函数22y x x =--,当 时,函数值y 随x 的增大而增大.17.为了估计池塘里有多少条鱼,从池塘里捕捞了1000条鱼做上标记,然后放回池塘里,经过一段时间,等有标记的鱼完全混合于鱼群中以后,再捕捞200条,若其中有标记的鱼有10条,则估计池塘里有鱼_____条.18.正六边形的每个内角等于______________°.三、解答题(本题包括8个小题)19.(6分)探究:在一次聚会上,规定每两个人见面必须握手,且只握手1次若参加聚会的人数为3,则共握手 次:;若参加聚会的人数为5,则共握手 次;若参加聚会的人数为n (n 为正整数),则共握手 次;若参加聚会的人共握手28次,请求出参加聚会的人数.拓展:嘉嘉给琪琪出题:“若线段AB 上共有m 个点(含端点A ,B ),线段总数为30,求m 的值.”琪琪的思考:“在这个问题上,线段总数不可能为30”琪琪的思考对吗?为什么?20.(6分)如图,已知函数k y x=(x >0)的图象经过点A 、B ,点B 的坐标为(2,2).过点A 作AC ⊥x轴,垂足为C,过点B作BD⊥y轴,垂足为D,AC与BD交于点F.一次函数y=ax+b的图象经过点A、D,与x轴的负半轴交于点E.若AC=32OD,求a、b的值;若BC∥AE,求BC的长.21.(6分)如图,在四边形ABCD中,AB=AD,BC=DC,AC、BD相交于点O,点E在AO上,且OE=OC.求证:∠1=∠2;连结BE、DE,判断四边形BCDE的形状,并说明理由.22.(8分)如图,点A,C,B,D在同一条直线上,BE∥DF,∠A=∠F,AB=FD,求证:AE=FC.23.(8分)如图,某数学兴趣小组想测量一棵树CD的高度,他们先在点A处测得树顶C的仰角为30°,然后沿AD方向前行10m,到达B点,在B处测得树顶C的仰角高度为60°(A、B、D三点在同一直线上).请你根据他们测量数据计算这棵树CD的高度(结果精确到0.1m).(参考数据:≈1.414,≈1.732)24.(10分)如图,在△ABC中,AB=AC,D为BC的中点,DE⊥AB,DF⊥AC,垂足分别为E、F,求证:DE=DF.25.(10分)我市正在创建“全国文明城市”,某校拟举办“创文知识”抢答赛,欲购买A、B两种奖品以鼓励抢答者.如果购买A种20件,B种15件,共需380元;如果购买A种15件,B种10件,共需280元.A、B两种奖品每件各多少元?现要购买A、B两种奖品共100件,总费用不超过900元,那么A种奖品最多购买多少件?26.(12分)央视热播节目“朗读者”激发了学生的阅读兴趣,某校为满足学生的阅读需求,欲购进一批学生喜欢的图书,学校组织学生会成员随机抽取部分学生进行问卷调查,被调查学生须从“文史类、社科类、小说类、生活类”中选择自己喜欢的一类,根据调查结果绘制了统计图(未完成),请根据图中信息,解答下列问题:此次共调查了名学生;将条形统计图1补充完整;图2中“小说类”所在扇形的圆心角为度;若该校共有学生2000人,估计该校喜欢“社科类”书籍的学生人数.参考答案一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.B【解析】试题分析:正方形ABCD绕点A顺时针方向旋转180°后,C点的对应点与C一定关于A对称,A是对称点连线的中点,据此即可求解.试题解析:AC=2,则正方形ABCD绕点A顺时针方向旋转180°后C的对应点设是C′,则AC′=AC=2,则OC′=3,故C′的坐标是(3,0).故选B.考点:坐标与图形变化-旋转.2.D【解析】【详解】∵负数小于正数,在(0,1)上的实数的倒数比实数本身大.∴1a <a<b<1b,故选D.3.B【解析】【分析】在两个直角三角形中,分别求出AB、AD即可解决问题;【详解】在Rt△ABC中,AB=AC sinα,在Rt△ACD中,AD=AC sinβ,∴AB:AD=ACsinα:ACsinβ=sinsinβα,故选B.【点睛】本题考查解直角三角形的应用、锐角三角函数等知识,解题的关键是学会利用参数解决问题.4.C【解析】试题解析:∵3=∴ 3故选C.5.D【解析】【分析】配方法一般步骤:将常数项移到等号右侧,左右两边同时加一次项系数一半的平方,配方即可.【详解】解:2230x x +-=223x x +=2214x x ++=()214x +=故选D.【点睛】本题考查了配方法解方程的步骤,属于简单题,熟悉步骤是解题关键.6.B【解析】∵DE 垂直平分AC ,∴AD=CD ,AC=2EC=8,∵C △ABC =AC+BC+AB=23,∴AB+BC=23-8=15,∴C △ABD =AB+AD+BD=AB+DC+BD=AB+BC=15.故选B.7.B【解析】试题分析:如图,翻折△ACD ,点A 落在A′处,可知∠A=∠A′=100°,然后由圆内接四边形可知∠A′+∠B=180°,解得∠B=80°.故选:B8.A【解析】【分析】如图,过点C作CD∥a,再由平行线的性质即可得出结论.【详解】如图,过点C作CD∥a,则∠1=∠ACD,∵a∥b,∴CD∥b,∴∠2=∠DCB,∵∠ACD+∠DCB=90°,∴∠1+∠2=90°,又∵∠1=65°,∴∠2=25°,故选A.【点睛】本题考查了平行线的性质与判定,根据题意作出辅助线,构造出平行线是解答此题的关键.9.A【解析】∵四边形ABCD是平行四边形,∴AB//CD,AB=CD,AD//BC,∴△BEF∽△CDF,△BEF∽△AED,∴22BEF BEFCDF AEDS SBE BES CD S AE∆∆∆∆⎛⎫⎛⎫==⎪ ⎪⎝⎭⎝⎭,,∵BE:AB=2:3,AE=AB+BE,∴BE:CD=2:3,BE:AE=2:5,∴44925BEF BEFCDF AEDS SS S∆∆∆∆==,,∵S△BEF=4,∴S△CDF=9,S△AED=25,∴S四边形ABFD=S△AED-S△BEF=25-4=21,∴S平行四边形ABCD=S△CDF+S四边形ABFD=9+21=30,故选A.【点睛】本题考查了平行四边形的性质,相似三角形的判定与性质等,熟记相似三角形的面积等于相似比的平方是解题的关键.10.C【解析】【详解】∵二次函数22y ax ax c =-+的图象经过点(﹣1,0),∴方程220ax ax c -+=一定有一个解为:x=﹣1,∵抛物线的对称轴为:直线x=1,∴二次函数22y ax ax c =-+的图象与x 轴的另一个交点为:(3,0),∴方程220ax ax c -+=的解为:11x =-,23x =.故选C .考点:抛物线与x 轴的交点.二、填空题(本题包括8个小题)11.16000【解析】【分析】用毕业生总人数乘以“综合素质”等级为A 的学生所占的比即可求得结果.【详解】∵A ,B ,C ,D ,E 五个等级在统计图中的高之比为2:3:3:1:1,∴该市80000名九年级学生中“综合素质”评价结果为“A”的学生约为80000×223311++++=16000, 故答案为16000.【点睛】本题考查了条形统计图的应用,读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.12.48°【解析】【分析】连接OA ,分别求出正五边形ABCDE 和正三角形AMN 的中心角,结合图形计算即可.【详解】连接OA ,∵五边形ABCDE是正五边形,∴∠AOB=3605︒=72°,∵△AMN是正三角形,∴∠AOM=3603︒=120°,∴∠BOM=∠AOM-∠AOB=48°,故答案为48°.点睛:本题考查的是正多边形与圆的有关计算,掌握正多边形的中心角的计算公式是解题的关键.13.7【解析】【分析】根据翻折变换的性质可得BE=BC,DE=CD,然后求出AE,再求出△ADE的周长=AC+AE.【详解】∵折叠这个三角形点C落在AB边上的点E处,折痕为BD,∴BE=BC,DE=CD,∴AE=AB-BE=AB-BC=8-6=2cm,∴△ADE的周长=AD+DE+AE,=AD+CD+AE,=AC+AE,=5+2,=7cm.故答案为:7.【点睛】本题考查了翻折变换的性质,翻折前后对应边相等,对应角相等.14.5π【解析】【分析】根据题意得出球在无滑动旋转中通过的路程为12圆弧,根据弧长公式求出弧长即可.【详解】解:由图形可知,圆心先向前走OO1的长度,从O到O1的运动轨迹是一条直线,长度为14圆的周长,然后沿着弧O1O2旋转14圆的周长,则圆心O 运动路径的长度为:112544π⨯⨯+×2π×5=5π, 故答案为5π.【点睛】本题考查的是弧长的计算和旋转的知识,解题关键是确定半圆作无滑动翻转所经过的路线并求出长度. 15.1【解析】【分析】飞机停下时,也就是滑行距离最远时,即在本题中需求出s 最大时对应的t 值.【详解】由题意,s=﹣1.2t 2+60t=﹣1.2(t 2﹣50t+61﹣61)=﹣1.2(t ﹣1)2+750即当t=1秒时,飞机才能停下来.故答案为1.【点睛】本题考查了二次函数的应用.解题时,利用配方法求得t=2时,s 取最大值.16.x≤﹣1.【解析】试题分析:∵22y x x =--=2(1)1x -++,a=﹣1<0,抛物线开口向下,对称轴为直线x=﹣1,∴当x≤﹣1时,y 随x 的增大而增大,故答案为x≤﹣1.考点:二次函数的性质.17.20000【解析】试题分析:1000÷10200=20000(条). 考点:用样本估计总体.18.120【解析】试题解析:六边形的内角和为:(6-2)×180°=720°,∴正六边形的每个内角为:=120°.考点:多边形的内角与外角.三、解答题(本题包括8个小题)19.探究:(1)3,1;(2)(1)2n n -;(3)参加聚会的人数为8人;拓展:琪琪的思考对,见解析. 【解析】【分析】 探究:(1)根据握手次数=参会人数×(参会人数-1)÷2,即可求出结论;(2)由(1)的结论结合参会人数为n ,即可得出结论;(3)由(2)的结论结合共握手28次,即可得出关于n 的一元二次方程,解之取其正值即可得出结论; 拓展:将线段数当成握手数,顶点数看成参会人数,由(2)的结论结合线段总数为2,即可得出关于m 的一元二次方程,解之由该方程的解均不为整数可得出琪琪的思考对.【详解】探究:(1)3×(3-1)÷2=3,5×(5-1)÷2=1.故答案为3;1.(2)∵参加聚会的人数为n (n 为正整数),∴每人需跟(n-1)人握手,∴握手总数为()12n n -. 故答案为()12n n -. (3)依题意,得:()12n n -=28,整理,得:n 2-n-56=0,解得:n 1=8,n 2=-7(舍去).答:参加聚会的人数为8人.拓展:琪琪的思考对,理由如下:如果线段数为2,则由题意,得:()12m m -=2, 整理,得:m 2-m-60=0,解得m 1=12+,m 2=2(舍去). ∵m 为正整数,∴没有符合题意的解,∴线段总数不可能为2.【点睛】本题考查了一元二次方程的应用以及列代数式,解题的关键是:(1)根据各数量之间的关系,列式计算;(2)根据各数量之间的关系,用含n 的代数式表示出握手总数;(3)(拓展)找准等量关系,正确列出一元二次方程.20.(1)a=34,b=2;(2)【解析】试题分析:(1)首先利用反比例函数图象上点的坐标性质得出k 的值,再得出A 、D 点坐标,进而求出a ,b 的值; (2)设A 点的坐标为:(m ,4m ),则C 点的坐标为:(m ,0),得出tan ∠ADF=42AF m DF m-=,tan ∠AEC=42AC m EC =,进而求出m 的值,即可得出答案. 试题解析:(1)∵点B (2,2)在函数y=k x (x >0)的图象上, ∴k=4,则y=4x, ∵BD ⊥y 轴,∴D 点的坐标为:(0,2),OD=2,∵AC ⊥x 轴,AC=32OD ,∴AC=3,即A 点的纵坐标为:3, ∵点A 在y=4x 的图象上,∴A 点的坐标为:(43,3), ∵一次函数y=ax+b 的图象经过点A 、D , ∴43{32a b b +==, 解得:34a =,b=2; (2)设A 点的坐标为:(m ,4m ),则C 点的坐标为:(m ,0), ∵BD ∥CE ,且BC ∥DE ,∴四边形BCED 为平行四边形,∴CE=BD=2,∵BD ∥CE ,∴∠ADF=∠AEC ,∴在Rt △AFD 中,tan ∠ADF=42AF mDF m-=, 在Rt △ACE 中,tan ∠AEC=42AC m EC =,∴42mm=42m,解得:m=1,∴C点的坐标为:(1,0),则BC=5.考点:反比例函数与一次函数的交点问题.21.(1)证明见解析;(2)四边形BCDE是菱形,理由见解析.【解析】【分析】(1)证明△ADC≌△ABC后利用全等三角形的对应角相等证得结论.(2)首先判定四边形BCDE是平行四边形,然后利用对角线垂直的平行四边形是菱形判定菱形即可.【详解】解:(1)证明:∵在△ADC和△ABC中,∴△ADC≌△ABC(SSS).∴∠1=∠2.(2)四边形BCDE是菱形,理由如下:如答图,∵∠1=∠2,DC=BC,∴AC垂直平分BD.∵OE=OC,∴四边形DEBC是平行四边形.∵AC⊥BD,∴四边形DEBC是菱形.【点睛】考点:1.全等三角形的判定和性质;2. 线段垂直平分线的性质;3.菱形的判定.22.证明见解析.【解析】由已知条件BE∥DF,可得出∠ABE=∠D,再利用ASA证明△ABE≌△FDC即可.证明:∵BE∥DF,∴∠ABE=∠D,在△ABE和△FDC中,∠ABE=∠D,AB=FD,∠A=∠F∴△ABE≌△FDC(ASA),∴AE=FC.“点睛”此题主要考查全等三角形的判定与性质和平行线的性质等知识点的理解和掌握,此题的关键是利用平行线的性质求证△ABC和△FDC全等.23.这棵树CD的高度为8.7米【解析】试题分析:首先利用三角形的外角的性质求得∠ACB的度数,得到BC的长度,然后在直角△BDC中,利用三角函数即可求解.试题解析:∵∠CBD=∠A+∠ACB,∴∠ACB=∠CBD﹣∠A=60°﹣30°=30°,∴∠A=∠ACB,∴BC=AB=10(米).在直角△BCD中,CD=BCsin∠CBD=10×2≈5×1.732=8.7(米).答:这棵树CD的高度为8.7米.考点:解直角三角形的应用24.答案见解析【解析】由于AB=AC,那么∠B=∠C,而DE⊥AC,DF⊥AB可知∠BFD=∠CED=90°,又D是BC中点,可知BD=CD,利用AAS可证△BFD≌△CED,从而有DE=DF.25.(1)A种奖品每件16元,B种奖品每件4元.(2)A种奖品最多购买41件.【解析】【分析】(1)设A种奖品每件x元,B种奖品每件y元,根据“如果购买A种20件,B种15件,共需380元;如果购买A种15件,B种10件,共需280元”,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)设A种奖品购买a件,则B种奖品购买(100﹣a)件,根据总价=单价×购买数量结合总费用不超过900元,即可得出关于a的一元一次不等式,解之取其中最大的整数即可得出结论.【详解】(1)设A种奖品每件x元,B种奖品每件y元,根据题意得:2015380 1510280x yx y+=⎧⎨+=⎩,解得:164xy=⎧⎨=⎩,答:A种奖品每件16元,B种奖品每件4元;(2)设A种奖品购买a件,则B种奖品购买(100﹣a)件,根据题意得:16a+4(100﹣a)≤900,解得:a≤1253,∵a为整数,∴a≤41,答:A种奖品最多购买41件.【点睛】本题考查了一元一次不等式的应用以及二元一次方程组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据不等关系,正确列出不等式.26.(1)200;(2)见解析;(3)126°;(4)240人.【解析】【分析】(1)根据文史类的人数以及文史类所占的百分比即可求出总人数(2)根据总人数以及生活类的百分比即可求出生活类的人数以及小说类的人数;(3)根据小说类的百分比即可求出圆心角的度数;(4)利用样本中喜欢社科类书籍的百分比来估计总体中的百分比,从而求出喜欢社科类书籍的学生人数【详解】(1)∵喜欢文史类的人数为76人,占总人数的38%,∴此次调查的总人数为:76÷38%=200人,故答案为200;(2)∵喜欢生活类书籍的人数占总人数的15%,∴喜欢生活类书籍的人数为:200×15%=30人,∴喜欢小说类书籍的人数为:200﹣24﹣76﹣30=70人,如图所示:(3)∵喜欢社科类书籍的人数为:24人,∴喜欢社科类书籍的人数占了总人数的百分比为:24×100%=12%,100∴喜欢小说类书籍的人数占了总分数的百分比为:100%﹣15%﹣38%﹣12%=35%,∴小说类所在圆心角为:360°×35%=126°;(4)由样本数据可知喜欢“社科类”书籍的学生人数占了总人数的12%,∴该校共有学生2000人,估计该校喜欢“社科类”书籍的学生人数:2000×12%=240人.【点睛】此题考查扇形统计图和条形统计图,看懂图中数据是解题关键2019-2020学年中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,在菱形ABCD中,AB=BD,点E,F分别在AB,AD上,且AE=DF,连接BF与DE相交于点G,连接CG与BD相交于点H,下列结论:①△AED≌△DFB;②S四边形BCDG=CG2;③若AF=2DF,则BG=6GF,其中正确的结论A.只有①②.B.只有①③.C.只有②③.D.①②③.2.如图,在△ABC中,点D是边AB上的一点,∠ADC=∠ACB,AD=2,BD=6,则边AC的长为()A.2 B.4 C.6 D.83.将一副直角三角尺如图放置,若∠AOD=20°,则∠BOC的大小为()A.140°B.160°C.170°D.150°4.某班要从9名百米跑成绩各不相同的同学中选4名参加4×100米接力赛,而这9名同学只知道自己的成绩,要想让他们知道自己是否入选,老师只需公布他们成绩的()A.平均数B.中位数C.众数D.方差5.下列各曲线中表示y是x的函数的是()A.B.C.D.6.如图,AC是⊙O的直径,弦BD⊥AO于E,连接BC,过点O作OF⊥BC于F,若BD=8cm,AE=2cm,则OF 的长度是( )A .3cmB .6 cmC .2.5cmD .5 cm7.某车间有26名工人,每人每天可以生产800个螺钉或1000个螺母,1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套.设安排x 名工人生产螺钉,则下面所列方程正确的是( )A .2×1000(26﹣x )=800xB .1000(13﹣x )=800xC .1000(26﹣x )=2×800xD .1000(26﹣x )=800x 8.﹣3的绝对值是( )A .﹣3B .3C .-13D .139.如图,在⊙O 中,弦BC =1,点A 是圆上一点,且∠BAC =30°,则BC 的长是( )A .πB .13π C .12π D .16π 10.设点()11A ,x y 和()22B ,x y 是反比例函数k y x =图象上的两个点,当1x <2x <时,1y <2y ,则一次函数2y x k =-+的图象不经过的象限是A .第一象限B .第二象限C .第三象限D .第四象限二、填空题(本题包括8个小题)11.若关于x 的方程x 2-2x+sinα=0有两个相等的实数根,则锐角α的度数为___.12.某市对九年级学生进行“综合素质”评价,评价结果分为A ,B ,C ,D ,E 五个等级.现随机抽取了500名学生的评价结果作为样本进行分析,绘制了如图所示的统计图.已知图中从左到右的五个长方形的高之比为2:3:3:1:1,据此估算该市80000名九年级学生中“综合素质”评价结果为“A”的学生约为_____人.13.图1是我国古代建筑中的一种窗格,其中冰裂纹图案象征着坚冰出现裂纹并开始消溶,形状无一定规则,代表一种自然和谐美.图2是从图1冰裂纹窗格图案中提取的由五条线段组成的图形,则∠1+∠2+∠3+∠4+∠5=度.14.2(2)=__________15.如图,从甲楼底部A处测得乙楼顶部C处的仰角是30°,从甲楼顶部B处测得乙楼底部D处的俯角是45°,已知甲楼的高AB是120m,则乙楼的高CD是_____m(结果保留根号)16.分解因式:2x3﹣4x2+2x=_____.17.如图,正方形OABC与正方形ODEF是位似图形,点O为位似中心,位似比为2:3,点B、E在第一象限,若点A的坐标为(1,0),则点E的坐标是______.18.如图,在网格中,小正方形的边长均为1,点A、B、O都在格点上,则∠OAB的正弦值是_____.三、解答题(本题包括8个小题)19.(6分)有一项工程,若甲队单独做,恰好在规定日期完成,若乙队单独做要超过规定日期3天完成;现在先由甲、乙两队合做2天后,剩下的工程再由乙队单独做,也刚好在规定日期完成,问规定日期多少天?20.(6分)某超市销售一种商品,成本每千克40元,规定每千克售价不低于成本,且不高于80元.经市场调查,每天的销售量y(千克)与每千克售价x(元)满足一次函数关系,部分数据如下表:售价x/(元/千克) 50 60 70销售量y/千克100 80 60(1)求y与x之间的函数表达式;设商品每天的总利润为W(元),求W与x之间的函数表达式(利润=收入-成本);试说明(2)中总利润W随售价x的变化而变化的情况,并指出售价为多少时获得最大利润,最大利润是多少?21.(6分)省教育厅决定在全省中小学开展“关注校车、关爱学生”为主题的交通安全教育宣传周活动,某中学为了了解本校学生的上学方式,在全校范围内随机抽查了部分学生,将收集的数据绘制成如下两幅不完整的统计图(如图所示),请根据图中提供的信息,解答下列问题.m= %,这次共抽取名学生进行调查;并补全条形图;在这次抽样调查中,采用哪种上学方式的人数最多?如果该校共有1500名学生,请你估计该校骑自行车上学的学生有多少名?22.(8分)如图所示,在△ABC中,BO、CO是角平分线.∠ABC=50°,∠ACB=60°,求∠BOC的度数,并说明理由.题(1)中,如将“∠ABC=50°,∠ACB=60°”改为“∠A=70°”,求∠BOC的度数.若∠A=n°,求∠BOC的度数.23.(8分)为弘扬中华传统文化,黔南州近期举办了中小学生“国学经典大赛”.比赛项目为:A.唐诗;B.宋词;C.论语;D.三字经.比赛形式分“单人组”和“双人组”.小丽参加“单人组”,她从中随机抽取一个比赛项目,恰好抽中“三字经”的概率是多少?小红和小明组成一个小组参加“双人组”比赛,比赛规则是:同一小组的两名队员的比赛项目不能相同,且每人只能随机抽取一次,则恰好小红抽中“唐诗”且小明抽中“宋词”的概率是多少?请用画树状图或列表的方法进行说明.24.(10分)已知:二次函数C1:y1=ax2+2ax+a﹣1(a≠0)把二次函数C1的表达式化成y=a(x﹣h)2+b(a≠0)的形式,并写出顶点坐标;已知二次函数C1的图象经过点A(﹣3,1).①求a的值;②点B在二次函数C1的图象上,点A,B关于对称轴对称,连接AB.二次函数C2:y2=kx2+kx(k≠0)的图象,与线段AB只有一个交点,求k的取值范围.25.(10分)从一幢建筑大楼的两个观察点A,B观察地面的花坛(点C),测得俯角分别为15°和60°,如图,直线AB与地面垂直,AB=50米,试求出点B到点C的距离.(结果保留根号)26.(12分)关于x的一元二次方程mx2﹣(2m﹣3)x+(m﹣1)=0有两个实数根.求m的取值范围;若m为正整数,求此方程的根.参考答案一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.D【解析】【详解】解:①∵ABCD为菱形,∴AB=AD.∵AB=BD,∴△ABD为等边三角形.∴∠A=∠BDF=60°.又∵AE=DF,AD=BD,∴△AED≌△DFB;②∵∠BGE=∠BDG+∠DBF=∠BDG+∠GDF=60°=∠BCD,即∠BGD+∠BCD=180°,∴点B、C、D、G四点共圆,∴∠BGC=∠BDC=60°,∠DGC=∠DBC=60°.∴∠BGC=∠DGC=60°.过点C作CM⊥GB于M,CN⊥GD于N.∴CM=CN,则△CBM≌△CDN,(HL)∴S四边形BCDG=S四边形CMGN.S四边形CMGN=1S△CMG,∵∠CGM=60°,∴GM=12CG,CM=3CG,∴S四边形CMGN=1S△CMG=1×12×12CG×3CG=CG1.③过点F作FP∥AE于P点.∵AF=1FD,∴FP:AE=DF:DA=1:3,∵AE=DF,AB=AD,∴BE=1AE,∴FP:BE=1:6=FG:BG,即BG=6GF.故选D.2.B【解析】【分析】证明△ADC∽△ACB,根据相似三角形的性质可推导得出AC2=AD•AB,由此即可解决问题. 【详解】∵∠A=∠A,∠ADC=∠ACB,∴△ADC∽△ACB,∴AC AD AB AC,∴AC2=AD•AB=2×8=16,∵AC>0,∴AC=4,故选B.【点睛】本题考查相似三角形的判定和性质、解题的关键是正确寻找相似三角形解决问题.3.B【解析】试题分析:根据∠AOD=20°可得:∠AOC=70°,根据题意可得:∠BOC=∠AOB+∠AOC=90°+70°=160°.考点:角度的计算4.B【解析】【分析】总共有9名同学,只要确定每个人与成绩的第五名的成绩的多少即可判断,然后根据中位数定义即可判断.【详解】要想知道自己是否入选,老师只需公布第五名的成绩,即中位数.故选B.5.D【解析】根据函数的意义可知:对于自变量x 的任何值,y 都有唯一的值与之相对应,故D 正确.故选D .6.D【解析】分析:根据垂径定理得出OE 的长,进而利用勾股定理得出BC 的长,再利用相似三角形的判定和性质解答即可.详解:连接OB ,∵AC 是⊙O 的直径,弦BD ⊥AO 于E ,BD=1cm ,AE=2cm .在Rt △OEB 中,OE 2+BE 2=OB 2,即OE 2+42=(OE+2)2解得:OE=3,∴OB=3+2=5,∴EC=5+3=1.在Rt △EBC 中,22224845BE EC +=+= ∵OF ⊥BC ,∴∠OFC=∠CEB=90°. ∵∠C=∠C ,∴△OFC ∽△BEC , ∴OF OC BE BC=,即445OF = 解得:5故选D .点睛:本题考查了垂径定理,关键是根据垂径定理得出OE 的长.7.C【解析】【分析】试题分析:此题等量关系为:2×螺钉总数=螺母总数.据此设未知数列出方程即可【详解】.故选C.解:设安排x 名工人生产螺钉,则(26-x )人生产螺母,由题意得1000(26-x )=2×800x ,故C 答案正确,考点:一元一次方程.8.B【解析】【分析】根据负数的绝对值是它的相反数,可得出答案.【详解】根据绝对值的性质得:|-1|=1.故选B .【点睛】 本题考查绝对值的性质,需要掌握非负数的绝对值是它本身,负数的绝对值是它的相反数.9.B【解析】【分析】连接OB ,OC .首先证明△OBC 是等边三角形,再利用弧长公式计算即可.【详解】解:连接OB ,OC .∵∠BOC =2∠BAC =60°,∵OB =OC ,∴△OBC 是等边三角形,∴OB =OC =BC =1,∴BC 的长=6011803ππ⋅⋅=, 故选B .【点睛】考查弧长公式,等边三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,属于中考常考题型.10.A【解析】∵点()11A ,x y 和()22B ,x y 是反比例函数k y x=图象上的两个点,当1x <2x <1时,1y <2y ,即y 随x增大而增大,∴根据反比例函数k y x=图象与系数的关系:当0k >时函数图象的每一支上,y 随x 的增大而减小;当0k <时,函数图象的每一支上,y 随x 的增大而增大.故k <1.∴根据一次函数图象与系数的关系:一次函数1y=k x+b 的图象有四种情况:①当1k 0>,b 0>时,函数1y=k x+b 的图象经过第一、二、三象限;②当1k 0>,b 0<时,函数1y=k x+b 的图象经过第一、三、四象限;③当1k 0<,b 0>时,函数1y=k x+b 的图象经过第一、二、四象限;④当1k 0<,b 0<时,函数1y=k x+b 的图象经过第二、三、四象限.因此,一次函数2y x k =-+的1k 20=-<,b=k 0<,故它的图象经过第二、三、四象限,不经过第一象限.故选A .二、填空题(本题包括8个小题)11.30°【解析】试题解析:∵关于x 的方程2sin 0x α+=有两个相等的实数根, ∴()2241sin 0,α=--⨯⨯= 解得:1sin 2α=, ∴锐角α的度数为30°;故答案为30°.12.16000【解析】【分析】用毕业生总人数乘以“综合素质”等级为A 的学生所占的比即可求得结果.【详解】∵A ,B ,C ,D ,E 五个等级在统计图中的高之比为2:3:3:1:1,∴该市80000名九年级学生中“综合素质”评价结果为“A”的学生约为80000×223311++++=16000, 故答案为16000.【点睛】本题考查了条形统计图的应用,读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.13.360°.【解析】【分析】根据多边形的外角和等于360°解答即可.【详解】由多边形的外角和等于360°可知,∠1+∠2+∠3+∠4+∠5=360°,故答案为360°.【点睛】本题考查的是多边形的内角和外角,掌握多边形的外角和等于360°是解题的关键.14.2;【解析】试题解析:先求-2的平方4.15.【解析】【分析】利用等腰直角三角形的性质得出AB=AD ,再利用锐角三角函数关系即可得出答案.【详解】解:由题意可得:∠BDA=45°,则AB=AD=120m ,又∵∠CAD=30°,∴在Rt △ADC 中,tan ∠CDA=tan30°=CD AD =解得:m ),故答案为.【点睛】此题主要考查了解直角三角形的应用,正确得出tan ∠CDA=tan30°=CD AD是解题关键. 16.2x (x-1)2【解析】2x 3﹣4x 2+2x=222(21)2(1)x x x x x -+=-。
整式一.选择题(共16小题)1.(2019•泰州)若2a﹣3b=﹣1,则代数式4a2﹣6ab+3b的值为()A.﹣1B.1C.2D.3 2.(2019•重庆)按如图所示的运算程序,能使输出y值为1的是()A.m=1,n=1B.m=1,n=0C.m=1,n=2D.m=2,n=1 3.(2019•台湾)小宜跟同学在某餐厅吃饭,如图为此餐厅的菜单.若他们所点的餐点总共为10份意大利面,x杯饮料,y份沙拉,则他们点了几份A餐?()A.10﹣x B.10﹣y C.10﹣x+y D.10﹣x﹣y 4.(2019•邢台二模)若m+n=7,2n﹣p=4,则m+3n﹣p=()A.﹣11B.﹣3C.3D.11 5.(2019•宿迁三模)若(2x+1)4=a0x4+a1x3+a2x2+a3x+a4,则a0+a2+a4的值为()A.82B.81C.42D.41 6.(2019•南安市一模)已知(2x﹣3)7=a0x7+a1x6+a2x5+……+a6x+a7,则a0+a1+a2+……+a7=()A.1B.﹣1C.2D.0 7.(2019•霍邱县二模)2018年电影《我不是药神》反映了用药贵的事实,从而引起了社会的广泛关注.国家针对部分药品进行了改革,看病贵将成为历史.据调查,某种原价为345元的药品进行了两次降价,第一次降价15%,第二次降价的百分率为x,则该药品两次降价后的价格变为多少元?()A.345(1﹣15%)(1﹣x)B.345(1﹣15%)(1﹣x%)C.D.8.(2019•重庆模拟)程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.根据如图所示的计算程序,若输入的值x=﹣2,则输出的值为()A.﹣7B.﹣3C.﹣5D.5 9.(2019•平房区二模)甲、乙两个商家对标价相同的同一件商品进行价格调整,甲的方案是:先提价8%,再降价8%;乙的方案是:先降价8%,再提价8%;则甲、乙两个商家对这件商品的最终定价()A.甲比乙多B.乙比甲多C.甲、乙一样多D.无法确定10.(2019春•南岸区校级月考)根据如图的程序运算:当输入x=50时,输出的结果是101;当输入x=20时,输出的结果是167.如果当输入x的值是正整数,输出的结果是127,那么满足条件的x的值最多有()A.3个B.4个C.5个D.6个11.(2019春•沙坪坝区校级月考)如图是一个计算程序,按这个计算程序的计算规律,若输入的数是9,则输出的数是()A12345B36111827A.50B.63C.83D.100 12.(2019春•兴化市期中)如图,两个正方形的面积分别为25,9,两阴影部分的面积分别为a,b(a>b),则(a﹣b)等于()A.4B.9C.16D.25 13.(2019•柳州模拟)已知a2+2a=1,则代数式3a2+6a﹣1的值为()A.0B.1C.﹣1D.214.(2019春•南京期中)如图,把六张形状大小完全相同的小长方形卡片(如图①)不重叠的放在一个底面为长方形(长为7cm,宽为6cm)的盒子底部(如图②),盒子底面未被卡片覆盖的部分用阴影表示,则图②中两块阴影部分的周长和是()A.16cm B.24cm C.28cm D.32cm 15.(2019•慈溪市模拟)把四张形状大小完全相同的小长方形卡片(如图①),分两种不同形式不重叠的放在一个底面长为m,宽为n的长方形盒子底部(如图②、图③),盒子底面未被卡片覆盖的部分用阴影表示,设图②中阴影部分图形的周长为l1,图③中两个阴影部分图形的周长和为l2,若,则m,n满足()A.m=n B.m=n C.m=n D.m=n 16.(2019•鄞州区模拟)如图,4张如图1的长为a,宽为b(a>b)长方形纸片,按图2的方式放置,阴影部分的面积为S1,空白部分的面积为S2,若S2=2S1,则a,b满足()A.a=B.a=2b C.a=b D.a=3b二.填空题(共4小题)17.(2019•河北)如图,约定:上方相邻两数之和等于这两数下方箭头共同指向的数.示例:即4+3=7则(1)用含x的式子表示m=;(2)当y=﹣2时,n的值为.18.(2019•海安县一模)已知当2≤x≤3时,关于x的多项式x2﹣2kx+k2﹣k﹣1(k为大于2的常数)有最小值﹣2,则常数k的值为.19.(2019•临海市一模)如图,九宫格中横向、纵向、对角线上的三个数之和均相等,请用含x的代数式表示y,y=.20.(2019春•江油市校级月考)当x=1时,代数式ax5+bx3+cx+1=2019,当x=﹣1时,ax5+bx3+cx+1=.三.解答题(共10小题)21.(2019•贵阳)如图是一个长为a,宽为b的矩形,两个阴影图形都是一对底边长为1,且底边在矩形对边上的平行四边形.(1)用含字母a,b的代数式表示矩形中空白部分的面积;(2)当a=3,b=2时,求矩形中空白部分的面积.22.(2019•长安区三模)下列算式是一类两个两位数相乘的特殊计算方法:67×63=100×(62+6)+7×3=4221,38×32=100×(32+3)+8×2=1216.(1)仿照上面方法计算,求44×46和51×59的值44×46=;51×59=;(2)观察上述算式我们发现:十位数字相同,个位数字和为10的两个两位数相乘,可以使用上述方法进行计算.如果用a,b分别表示两个两位数的个位数字,c表示十位上的数字.请用含a,b,c的式子表示上面的规律,并说明其正确性;(3)仿照(1)的计算方法,补充完成3342×3358的计算过程:3342×3358==.23.(2019春•沙坪坝区校级月考)已知A、B、C是数轴上3点,O为原点,A在O右侧,C在B右侧,线段OA=2BC=m,点D在线段BC上,关于x的多项式P的一次项系数为n,BD=nCD,且l6x4+mx=P•(2x﹣1)+7.(1)求m,n的值:(2)若OA、BC中点连线的长度也为m,求线段OB的长;(3)若A、C重合,E是直线OA上一动点,F是线段OA延长线上任意一点,求OE++AE的最小值.24.(2019春•鼓楼区校级期中)某菜农用780元购进某种蔬菜200千克,如果直接批发给菜商,每千克售价a元,如果拉到市场销售,每千克售价b元(b>a).已知该蔬菜在市场上平均每天可售出20千克,且该菜农每天还需支付15元其他费用.假设该蔬菜能全部售完.(1)当a=4.5,b=6时,该菜农批发给菜商和在市场销售获得的销售额分别是多少元?(2)设W1和W分别表示该菜农批发给菜商和在市场销售的利润,用含a,b的式子分别表示出W1和W;(3)若b=a+k(0<k<2),试根据k的取值范围,讨论选择哪种出售方式较好.25.(2019春•瑞安市期中)如图,将一张长方形纸板按图中虚线裁剪成9块,其中有2块是边长都为m厘米的大正方形,2块是边长都为n厘米的小正方形,5块是长为m厘米,宽为n厘米的一模一样的小长方形,且m>n,设图中所有裁剪线(虚线部分)长之和为L厘米.(1)L=(试用m,n的代数式表示)(2)若每块小长方形的面积为10平方厘米,四个正方形的面积和为58平方厘米,求L 的值.26.(2019•河东区一模)某单位要印刷“市民文明出行,遵守交通安全”的宣传材料,甲印刷厂提出:每份材料收1元印刷费,另收150元的制版费;乙印刷厂提出:每份材料收2.5元印刷费,不收制版费设在同一家印刷厂一次印制数量为x份(x为正整数)(1)根据题意,填写下表一次印制数量51020 (x)甲印刷厂收费(元)155…乙印刷厂收费(元)12.5…(Ⅱ)在印刷品数量大于800份的情况下选哪家印刷厂印制省钱?27.(2019春•瑶海区期中)书是人类进步的阶梯!为爱护书一般都将书本用封皮包好,现有一本如图1的数学课本,其长为26cm、宽为18.5cm、厚为1cm,小海宝用一张长方形纸包好了这本数学书,他将封面和封底各折进去xcm封皮展开后如图(2)所示,求:(1)则小海宝所用包书纸的面积是多少?(用含x的代数式表示)(2)当封面和封底各折进去2cm时,请帮小海宝计算一下他需要的包装纸至少需要多少平方厘米?28.(2019春•南关区校级月考)滴滴快车是一种便捷的出行工具,计价规则如下表:计费项目里程费时长费远途费单价 1.8元/公里0.45元/分钟0.4元/公里注:车费由里程费、时长费、远途费三部分构成,其中里程费按行车的实际里程计算;时长费按行车的实际时间计算;远途费的收取方式为:行车里程10公里以内(QUOTE 含10公里)不收远途费,超过10公里的,超出部分每公里收0.4元.(1)若小东乘坐滴滴快车,行车里程为20公里,行车时间为30分钟,则需付车费元.(2)若小明乘坐滴滴快车,行车里程为a公里,行车时间为b分钟,则小明应付车费多少元(用含a、b的代数式表示,并化简.)(3)小王与小张各自乘坐滴滴快车,行车里程分别为9.5公里与14.5公里,如果下车时两人所付车费相同,那么这两辆滴滴快车的行车时间相差多少分钟?29.(2018秋•蒸湘区校级期末)甲、乙两家商店出售同样牌子和规格的羽毛球拍和羽毛球,每副球拍定价300元,每盒羽毛球定价40元,为庆祝五一节,两家商店开展促销活动如下:甲商店:所有商品9折优惠;乙商店:每买1副球拍赠送1盒羽毛球.某校羽毛球队需要购买a副球拍和b盒羽毛球(b>a).(1)按上述的促销方式,该校羽毛球队在甲、乙两家商店各应花费多少元?试用含a、b 的代数式表示;(2)当a=10,b=20时,试判断分别到甲、乙两家商店购买球拍和羽毛球,哪家便宜?30.(2018秋•南安市期末)福建省教育厅日前发布文件,从2019年开始,体育成绩将按一定的原始分计入中考总分.某校为适应新的中考要求,决定为体育组添置一批体育器材.学校准备在网上订购一批某品牌足球和跳绳,在查阅天猫网店后发现足球每个定价150元,跳绳每条定价30元.现有A、B两家网店均提供包邮服务,并提出了各自的优惠方案.A网店:买一个足球送一条跳绳;B网店:足球和跳绳都按定价的90%付款.已知要购买足球40个,跳绳x条(x>40)(1)若在A网店购买,需付款元(用含x的代数式表示).若在B网店购买,需付款元(用含x的代数式表示).(2)若x=100时,通过计算说明此时在哪家网店购买较为合算?(3)当x=100时,你能给出一种更为省钱的购买方案吗?试写出你的购买方法,并计算需付款多少元?参考答案与试题解析一.选择题(共16小题)1.【解答】解:4a2﹣6ab+3b,=2a(2a﹣3b)+3b,=﹣2a+3b,=﹣(2a﹣3b),=1,故选:B.2.【解答】解:当m=1,n=1时,y=2m+1=2+1=3,当m=1,n=0时,y=2n﹣1=﹣1,当m=1,n=2时,y=2m+1=3,当m=2,n=1时,y=2n﹣1=1,故选:D.3.【解答】解:x杯饮料则在B和C餐中点了x份意大利面,y份沙拉则在C餐中点了y份意大利面,∴点A餐为10﹣x;故选:A.4.【解答】解:∵m+n=7,2n﹣p=4,∴m+3n﹣p=(m+n)+(2n﹣p)=7+4=11,故选:D.5.【解答】解:令x=1,得34=a0+a1+a2+a3+a4,①令x=﹣1,得1=a0﹣a1+a2﹣a3+a4,②①+②得:2(a0+a2+a4)=82,则a0+a2+a4=41,故选:D.6.【解答】解:当x=1时,(2﹣3)7=a0+a1+a2+……+a6+a7,则a0+a1+a2+……+a7=﹣1,故选:B.7.【解答】解:由题意可得,该药品两次降价后的价格变为:345(1﹣15%)(1﹣x),故选:A.8.【解答】解:当x=﹣2,x2+1=4+1=5.故选:D.9.【解答】解:甲:把原来的价格看作单位“1”,1×(1﹣8%)×(1+8%)=92%×1.08=99.36%;乙:把原来的价格看作单位“1”,1×(1+8%)×(1﹣8%)=92%×1.08=99.36%;则甲、乙两个商家对这件商品的最终定价一样多.故选:C.10.【解答】解:根据题意得:2x+1=127,解得:x=63;2x+1=63,解得:x=31;2x+1=31,解得:x=15;2x+1=15,解得:x=7;2x+1=7,解得:x=3;2x+1=3,解得:x=1,则满足条件x的值有6个,故选:D.11.【解答】解:若输入的数是9,则输出的数为92+2=81+2=83,故选:C.12.【解答】解:设空白出长方形的面积为x,根据题意得:a+x=25,b+x=9,两式相减得:a﹣b=16,故选:C.13.【解答】解:当a2+2a=1时,3a2+6a﹣1=3(a2+2a)﹣1=3×1﹣1=3﹣1=2故选:D.14.【解答】解:设小长方形的长为xcm,宽为ycm(x>y),则根据题意得:3y+x=7,阴影部分周长和为:2(6﹣3y+6﹣x)+2×7=12+2(﹣3y﹣x)+12+14=38+2×(﹣7)=24(cm)故选:B.15.【解答】解:图②中通过平移,可将阴影部分的周长转换为长为m,宽为n的长方形的周长,即图②中阴影部分的图形的周长l1为2m+2n图③中,设小长形卡片的宽为x,长为y,则y+2x=m所求的两个长方形的周长之各为:2m+2(n﹣y)+2(n﹣2x),整理得,2m+4n﹣2m=4n即l2为4n∵,∴2m+2n=×4n整理得,故选:C.16.【解答】解:由图形可知,,,∵S2=2S1,∴a2+2b2=2(2ab﹣b2),∴a2﹣4ab+4b2=0,即(a﹣2b)2=0,∴a=2b,故选:B.二.填空题(共4小题)17.【解答】解:(1)根据约定的方法可得:m=x+2x=3x;故答案为:3x;(2)根据约定的方法即可求出nx+2x+2x+3=m+n=y.当y=﹣2时,5x+3=﹣2.解得x=﹣1.∴n=2x+3=﹣2+3=1.故答案为:1.18.【解答】解:x2﹣2kx+k2﹣k﹣1=(x﹣k)2﹣k﹣1(k>2),①当2<k≤3时,当x=k时取最小值,∴﹣k﹣1=﹣2,∴k=2,不合题意;②当k>3时,当x=3时取最小值,∴9﹣6k+k2﹣k﹣1=﹣2,∴k=4或2.5,∵k>3,∴k=4;综上,k=4;故答案为:4.19.【解答】解:根据题意得:第一行第三列,第二行第二列,第三行第一列的三个数之和为:x+y+7,第一行第一列的数为:x+y+7﹣x﹣4=y+3,第一行第二列的数为:x+y+7﹣(y+3)﹣7=x﹣3,第三行第二列的数为:x+y+7﹣(x﹣3)﹣x=10﹣x+y,第三行的三个数之和为:y+(10﹣x+y)+4=x+y+7,整理得:y=2x﹣7,故答案为:2x﹣7.20.【解答】解:把x=1代入ax5+bx3+cx+1得a+b+c+1=2019,∴a+b+c=2018,再把x=﹣1代入ax5+bx3+cx+1得﹣a﹣b﹣c+1=﹣(a+b+c)+1=﹣2018+1=﹣2017.故答案为:﹣2017三.解答题(共10小题)21.【解答】解:(1)S=ab﹣a﹣b+1;(2)当a=3,b=2时,S=6﹣3﹣2+1=2;22.【解答】解:(1)由题意可得,44×46=100×(42+4)+4×6=2024,51×59=100×(52+5)+1×9=3009,故答案为:100×(42+4)+4×6=2024;100×(52+5)+1×9=3009;(2)(10c+a)×(10c+b)=100(c2+c)+ab,证明如下:(10c+a)×(10c+b)=100c2+10bc+10ac+ab=100c2+10c(b+a)+ab=100c2+100c+ab=100(c2+c)+ab;(3)3342×3358=3342×(3348+10)=3342×3348+33420=100×(3342+334)+2×8+33420=11222436故答案为:100×(3342+334)+2×8+33420;11222436.23.【解答】解:(1)∵l6x4+mx=P•(2x﹣1)+7,设P=8x3+ax2+nx+b,∴16x4+2ax3+2nx2+2bx﹣8x3﹣ax2﹣nx﹣b+7=l6x4+mx,∴a=4,n=2,2b﹣n=m,b=7,∴m=12,n=2;(2)∵m=12,∴OA=12,BC=6,∵O为原点,A在O右侧,∴A表示的数是12,∴OA的中点表示的是6,∵OA、BC中点连线的长度也为m,∴BC中点在数轴上表示的数是18或﹣6,∴B点表示的数是15或﹣9,∴BO=15或BO=9;(3)∵BC=6,n=2,BD=nCD,A、C重合,∴B点表示的数是6,D点表示的数是10,设E点表示的数是a,F点表示的数是b,OE++AE=|a|++|12﹣a|=|a|+|12﹣a|+,当a<0时,OE++AE=17﹣>17;当0≤a≤10时,OE++AE=17﹣,∴12≤OE++AE≤17;当10<a<12时,OE++AE=7+,∴12<OE++AE<13;当a≥12时,OE++AE=﹣17≥13;∴12≤OE++AE,∴OE++AE的最小值是12;24.【解答】解:由题意,可得直接批发商的销售额为200a元,拉到市场的销售额为200b元(1)当a=4.5时,直接批发商的销售额为:200×4.5=900元,当b=6时,拉到市场的销售额为:200×6=1200元(2)由题意,进菜的成本为=3.9元直接批发商的利润为:W1=200(a﹣3.9)=200a﹣780拉到市场的利润为:W=200(b﹣3.9)﹣×15=200b﹣930(3)由题意,当b=a+k(0<k<2)时,W=200(a+k)﹣930=200a+200k﹣930则W﹣W1=200a+200k﹣930﹣(200a﹣780)=200k﹣150∴①当0.75<k<2时,W>W1,选择拉到市场出售比直接给批发商好;②当k=0.75时,W=W1,两种出售方式都可以;③当0<k<0.75时,W<W1,选择直接给批发商比拉到市场出售好;25.【解答】解:(1)L=6m+6n,故答案为:6m+6n;(2)依题意得,2m2+2n2=58,mn=10,∴m2+n2=29,∵(m+n)2=m2+2mn+n2,∴(m+n)2=29+20=49,∵m+n>0,∴m+n=7,∴图中所有裁剪线(虚线部分)长之和为42cm.26.【解答】解:(1)甲每份材料收1元印刷费,另收150元的制版费;故答案为160,170,150+x;乙每份材料收2.5元印刷费,故答案为25,50,2.5x;(2)对甲来说,印刷大于800份时花费大于150+800,即花费大于950元;对乙来说,印刷大于800份时花费大于2.5×800,即花费大于2000元;故去甲更省钱;27.【解答】解:(1)小海宝所用包书纸的面积是:(18.5×2+1+2x)(26+2x)=(38+2x)(26+2x)=4x2+128x+988(cm2);(2)当x=2cm时,S=4×22+128×2+988=1260(cm2).答:需要的包装纸至少是1260平方厘米.28.【解答】解:(1)1.8×20+0.45×30+0.4×(20﹣10)=53.5(元),故答案为:53.5;(2)当a≤10时,小明应付费(1.8a+0.45b)元;当a>10时,小明应付费1.8a+0.45b+0.4(a﹣10)=(2.2a+0.45b﹣4)元;(3)小王与小张乘坐滴滴快车分别为a分钟、b分钟,1.8×9.5+0.45a=1.8×14.5+0.45b+0.4×(14.5﹣10)整理,得0.45a﹣0.45b=10.8,∴a﹣b=24因此,这两辆滴滴快车的行车时间相差24分钟.29.【解答】解:(1)由题意可得,在甲商店购买的费用为:(300a+40b)×0.9=(270a+36b)(元),在乙商店购买的费用为:300a+40(b﹣a)=(260a+40b)(元);(2)当a=10,b=20时,在甲商店购买的费用为:270×10+36×20=3420(元),在乙商店购买的费用为:260×10+40×20=3400(元),∵3420>3400,∴当a=10,b=20时,到乙商店购买球拍和羽毛球便宜.30.【解答】解:依题意(1)A店购买可列式:40×150+(x﹣40)×30=4800+30x在网店B购买可列式:(40×150+30x)×0.9=5400+27x故答案为:4800+30x;5400+27x(2)当x=100时在A网店购买需付款:4800+30x=4800+30×100=7800元在B网店购买需付款:5400+27x=5400+27×100=8100元∵7800<8100∴当x=100时,应选择在A网店购买合算.(3)由(2)可知,当x=100时,在A网店付款7800元,在B网店付款8100元,在A网店购买40个足球配送40个跳绳,再在B网店购买60个跳绳合计需付款:150×40+30×60×90%=7620∵7620<7800<8100∴省钱的购买方案是:在A网店购买40个足球配送40个跳绳,再在B网店购买60个跳绳,付款7620元.。
2019年四川宜宾中考数学试卷一、选择题:(本大题共8小题,每小题3分,共24分)在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项填涂在答题卡对应题目上。
1.(3分)2的倒数是( ) A .12B .﹣2C .−12D .±122.(3分)人体中枢神经系统中约含有1千亿个神经元,某种神经元的直径约为52微米,52微米为0.000052米.将0.000052用科学记数法表示为( ) A .5.2×10﹣6B .5.2×10﹣5C .52×10﹣6D .52×10﹣53.(3分)如图,四边形ABCD 是边长为5的正方形,E 是DC 上一点,DE =1,将△ADE 绕着点A 顺时针旋转到与△ABF 重合,则EF =( )A .√41B .√42C .5√2D .2√134.(3分)一元二次方程x 2﹣2x +b =0的两根分别为x 1和x 2,则x 1+x 2为( ) A .﹣2B .bC .2D .﹣b5.(3分)已知一个组合体是由几个相同的正方体叠合在一起组成,该组合体的主视图与俯视图如图所示,则该组合体中正方体的个数最多是( )A .10B .9C .8D .76.(3分)如表记录了两位射击运动员的八次训练成绩:次数 环数 运动员第1次第2次第3次第4次第5次第6次第7次第8次甲 10 7 7 8 8 8 9 7 乙1055899810根据以上数据,设甲、乙的平均数分别为x 甲、x 乙,甲、乙的方差分别为s 甲2,s 乙2,则下列结论正确的是( ) A .x 甲=x 乙,s 甲2<s 乙2 B .x 甲=x 乙,s 甲2>s 乙2 C .x 甲>x 乙,s 甲2<s 乙2D .x 甲<x 乙,s 甲2<s 乙27.(3分)如图,∠EOF 的顶点O 是边长为2的等边△ABC 的重心,∠EOF 的两边与△ABC 的边交于E ,F ,∠EOF =120°,则∠EOF 与△ABC 的边所围成阴影部分的面积是( )A .√32B .2√35C .√33D .√348.(3分)已知抛物线y =x 2﹣1与y 轴交于点A ,与直线y =kx (k 为任意实数)相交于B ,C 两点,则下列结论不正确的是( ) A .存在实数k ,使得△ABC 为等腰三角形B .存在实数k ,使得△ABC 的内角中有两角分别为30°和60° C .任意实数k ,使得△ABC 都为直角三角形D .存在实数k ,使得△ABC 为等边三角形二、填空题:(本大题共8小题,每小题3分,共24分)请把答案直接填在答题卡对应题中横上。
2019年四川省南充市中考数学试卷(word版,含答案解析)2019年四川省南充市中考数学试卷副标题题号⼀⼆三四总分得分⼀、选择题(本⼤题共10⼩题,共30.0分)1.如果6a=1,那么a的值为()A. 6B. 16C. ?6 D. ?162.下列各式计算正确的是()A. x+x2=x3B. (x2)3=x5C. x6÷x2=x3D. x?x2=x33.如图是⼀个⼏何体的表⾯展开图,这个⼏何体是()A.B.C.D.4.在2019年南充市初中毕业升学体育与健康考试中,某校九年级(1)班体育委员对本班50名同学参加球类⾃选项⽬做了统计,制作出扇形统计图(如图),则该班选考乒乓球⼈数⽐⽻⽑球⼈数多()A. 5⼈B. 10⼈C. 15⼈D. 20⼈5.如图,在△ABC中,AB的垂直平分线交AB于点D,交BC于点E,若BC=6,AC=5,则△ACE的周长为()A. 8B. 11C. 16D. 176.关于x的⼀元⼀次⽅程2x a?2+m=4的解为x=1,则a+m的值为()A. 9B. 8C. 5D. 47.如图,在半径为6的⊙O中,点A,B,C都在⊙O上,四边形OABC是平⾏四边形,则图中阴影部分的⾯积为()A. 6πB. 3√3πC. 2√3πD. 2π8.关于x的不等式2x+a≤1只有2个正整数解,则a的取值范围为()A. ?5B. ?5≤aC. ?5D. ?5≤a≤?39.如图,正⽅形MNCB在宽为2的矩形纸⽚⼀端,对折正⽅形MNCB得到折痕AE,再翻折纸⽚,使AB与AD重合,以下结论错误的是()A. AH2=10+2√5B. CDBC =√5?12C. BC2=CD?EHD. sin∠AHD=√5+1510.抛物线y=ax2+bx+c(a,b,c是常数),a>0,顶点坐标为(12,m),给出下列结论:①若点(n,y1)与(32?2n,y2)在该抛物线上,当n<12时,则y1的⼀元⼆次⽅程ax2?bx+c?m+1=0⽆实数解,那么()A. ①正确,②正确B. ①正确,②错误C. ①错误,②正确D. ①错误,②错误⼆、填空题(本⼤题共6⼩题,共18.0分)11.原价为a元的书包,现按8折出售,则售价为______元.12.如图,以正⽅形ABCD的AB边向外作正六边形ABEFGH,连接DH,则∠ADH=______度.13.计算:x2x?1+11?x=______.14.质量/kg 1.0 1.2 1.4 1.6 1.8 2.0频数/只561621121204010则500只鸡质量的中位数为______.15.在平⾯直⾓坐标系xOy中,点A(3m,2n)在直线y=?x+1上,点B(m,n)在双曲线y=kx上,则k的取值范围为______.16.如图,矩形硬纸⽚ABCD的顶点A在y轴的正半轴及原点上滑动,顶点B在x轴的正半轴及原点上滑动,点E为AB的中点,AB=24,BC=5.给出下列结论:①点A从点O出发,到点B运动⾄点O为⽌,点E经过的路径长为12π;②△OAB 的⾯积最⼤值为144;③当OD最⼤时,点D的坐标为(25√2626,125√2626).其中正确的结论是______.(填写序号)三、计算题(本⼤题共1⼩题,共8.0分)17.双曲线y=kx(k为常数,且k≠0)与直线y=?2x+b,交于A(?12m,m?2),B(1,n)两点.(1)求k与b的值;(2)如图,直线AB交x轴于点C,交y轴于点D,若点E为CD的中点,求△BOE的⾯积.四、解答题(本⼤题共8⼩题,共64.0分)18.计算:(1?π)0+|√2?√3|?√12+(√2)?1.19.如图,点O是线段AB的中点,OD//BC且OD=BC.(1)求证:△AOD≌△OBC;(2)若∠ADO=35°,求∠DOC的度数.20.现有四张完全相同的不透明卡⽚,其正⾯分别写有数字?2,?1,0,2,把这四张卡⽚背⾯朝上洗匀后放在桌⾯上.(1)随机的取⼀张卡⽚,求抽取的卡⽚上的数字为负数的概率.(2)先随机抽取⼀张卡⽚,其上的数字作为点A的横坐标;然后放回并洗匀,再随机抽取⼀张卡⽚,其上的数字作为点A的纵坐标,试⽤画树状图或列表的⽅法求出点A在直线y=2x上的概率.21.已知关于x的⼀元⼆次⽅程x2+(2m?1)x+m2?3=0有实数根.(1)求实数m的取值范围;(2)当m=2时,⽅程的根为x1,x2,求代数式(x12+2x1)(x22+4x2+2)的值.22.如图,在△ABC中,以AC为直径的⊙O交AB于点D,连接CD,∠BCD=∠A.(1)求证:BC是⊙O的切线;(2)若BC=5,BD=3,求点O到CD的距离.23. 在“我为祖国点赞“征⽂活动中,学校计划对获得⼀,⼆等奖的学⽣分别奖励⼀⽀钢笔,⼀本笔记本.已知购买2⽀钢笔和3个笔记本共38元,购买4⽀钢笔和5个笔记本共70元.(1)钢笔、笔记本的单价分别为多少元?(2)经与商家协商,购买钢笔超过30⽀时,每增加1⽀,单价降低0.1元;超过50⽀,均按购买50⽀的单价售,笔记本⼀律按原价销售.学校计划奖励⼀、⼆等奖学⽣共计100⼈,其中⼀等奖的⼈数不少于30⼈,且不超过60⼈,这次奖励⼀等奖学⽣多少⼈时,购买奖品总⾦额最少,最少为多少元?24. 如图,在正⽅形ABCD 中,点E 是AB 边上⼀点,以DE为边作正⽅形DEFG ,DF 与BC 交于点M ,延长EM 交GF 于点H ,EF 与CB 交于点N ,连接CG . (1)求证:CD ⊥CG ;(2)若tan∠MEN =13,求MNEM 的值;(3)已知正⽅形ABCD 的边长为1,点E 在运动过程中,EM 的长能否为12?请说明理由.25. 如图,抛物线y =ax 2+bx +c 与x 轴交于点A(?1,0),点B(?3,0),且OB =OC .(1)求抛物线的解析式;(2)点P 在抛物线上,且∠POB =∠ACB ,求点P 的坐标;(3)抛物线上两点M ,N ,点M 的横坐标为m ,点N 的横坐标为m +4.点D 是抛物线上M ,N 之间的动点,过点D 作y 轴的平⾏线交MN 于点E .①求DE 的最⼤值;②点D 关于点E 的对称点为F ,当m 为何值时,四边形MDNF 为矩形.答案和解析1.【答案】B【解析】解:∵6a=1,∴a=1.6故选:B.直接利⽤倒数的定义得出答案.此题主要考查了倒数,正确把握倒数的定义是解题关键.2.【答案】D【解析】解:A、x+x2,⽆法计算,故此选项错误;B、(x2)3=x6,故此选项错误;C、x6÷x2=x4,故此选项错误;D、x?x2=x3,故此选项正确;故选:D.直接利⽤合并同类项法则以及同底数幂的乘除运算法则分别计算得出答案.此题主要考查了合并同类项以及同底数幂的乘除运算,正确掌握相关运算法则是解题关键.3.【答案】C【解析】解:由平⾯图形的折叠及三棱柱的展开图的特征可知,这个⼏何体是三棱柱.故选:C.由平⾯图形的折叠及三棱柱的展开图的特征作答.考查了⼏何体的展开图,解题时勿忘记三棱柱的特征.4.【答案】B【解析】解:∵选考乒乓球⼈数为50×40%=20⼈,=10⼈,选考⽻⽑球⼈数为50×72°360°∴选考乒乓球⼈数⽐⽻⽑球⼈数多20?10=10⼈,故选:B.先根据扇形统计图中的数据,求出选考乒乓球⼈数和⽻⽑球⼈数,即可得出结论.此题主要考查了扇形统计图的应⽤,求出选考乒乓球⼈数和⽻⽑球⼈数是解本题的关键.5.【答案】B【解析】解:∵DE垂直平分AB,∴AE=BE,∴△ACE的周长=AC+CE+AE=AC+CE+BE=AC+BC=5+6=11.故选:B.根据线段垂直平分线的性质得AE=BE,然后利⽤等线段代换即可得到△ACE的周长= AC+BC,再把BC=6,AC=5代⼊计算即可.本题考查了线段垂直平分线的性质:垂直平分线垂直且平分其所在线段;垂直平分线上任意⼀点,到线段两端点的距离相等.6.【答案】C【解析】【分析】根据⼀元⼀次⽅程的概念和其解的概念解答即可.此题考查⼀元⼀次⽅程的定义,关键是根据⼀元⼀次⽅程的概念和其解的概念解答.【解答】解:因为关于x的⼀元⼀次⽅程2x a?2+m=4的解为x=1,可得:a?2=1,2+m=4,解得:a=3,m=2,所以a+m=3+2=5,故选:C.7.【答案】A【解析】解:连接OB,∵四边形OABC是平⾏四边形,∴AB=OC,∴AB=OA=OB,∴△AOB是等边三⾓形,∴∠AOB=60°,∵OC//AB,∴S△AOB=S△ABC,∴图中阴影部分的⾯积=S扇形AOB =60?π×36360=6π,故选:A.连接OB,根据平⾏四边形的性质得到AB=OC,推出△AOB是等边三⾓形,得到∠AOB= 60°,根据扇形的⾯积公式即可得到结论.本题考查的是扇形⾯积的计算,平⾏四边形的性质,掌握扇形的⾯积公式是解题的关键.8.【答案】C【解析】【分析】本题考查了不等式的整数解,正确解不等式,求出解集是解答本题的关键.解不等式应根据不等式的基本性质.⾸先解不等式求得不等式的解集,然后根据不等式只有两个正整数解即可得到⼀个关于a的不等式组,求得a的值.【解答】解:解不等式2x+a≤1得:x≤1?a2,不等式有两个正整数解,⼀定是1和2,根据题意得:2≤1?a2<3,解得:?5故选:C.9.【答案】A【解析】解:在Rt△AEB中,AB=√AE2+BE2=√22+12=√5,∵AB//DH,BH//AD,∴四边形ABHD是平⾏四边形,∵AB=AD,∴四边形ABHD是菱形,∴AD=AB=√5,∴CD=AD=AD=√5?1,∴CDBC =√5?12,故选项B正确,∵BC2=4,CD?EH=(√5?1)(√5+1)=4,∴BC2=CD?EH,故选项C正确,∵四边形ABHD是菱形,∴∠AHD=∠AHB,∴sin∠AHD=sin∠AHB=AEAH =√22+(√5+1)2=√5+15,故选项D正确,故选:A.⾸先证明四边形ABHD是菱形,利⽤勾股定理求出AB,AD,CD,EH,AH,⼀⼀判断即可解决问题.本题考查翻折变换,矩形的性质,解直⾓三⾓形,菱形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.10.【答案】A【解析】解:①∵顶点坐标为(12,m),n<12,∴点(n,y1)关于抛物线的对称轴x=12的对称点为(1?n,y1),∴点(1?n,y1)与(322n,y2)在该抛物线上,∵(1?n)?(32?2n)=n?12<0,∴1?n<322n,∵a>0,∴当x>12时,y随x的增⼤⽽增⼤,∴y1②把(12,m)代⼊y=ax2+bx+c中,得m=14a+12b+c,∴⼀元⼆次⽅程ax2?bx+c?m+1=0中,△=b2?4ac+4am?4a=b2?4ac+4a(14a+12b+c)?4a=(a+b)2?4a<0,∴⼀元⼆次⽅程ax2?bx+c?m+1=0⽆实数解,故此⼩题正确;故选:A.①根据⼆次函数的增减性进⾏判断便可;②先把顶点坐标代⼊抛物线的解析式,求得m,再把m代⼊⼀元⼆次⽅程ax2?bx+c?m+1=0的根的判别式中计算,判断其正负便可判断正误.本题主要考查了⼆次函数图象与⼆次函数的系数的关系,第①⼩题,关键是通过抛物线的对称性把两点坐标变换到对称轴的⼀边来,再通过⼆次函数的增减性进⾏⽐较,第②⼩题关键是判断⼀元⼆次⽅程根的判别式的正负.11.【答案】45a【解析】解:依题意可得,售价为810a=45a,故答案为45a.列代数式注意:①仔细辨别词义.列代数式时,要先认真审题,抓住关键词语,仔细辩析词义.如“除”与“除以”,“平⽅的差(或平⽅差)”与“差的平⽅”的词义区分.②分清数量关系.要正确列代数式,只有分清数量之间的关系.本题考查了列代数式,能根据题意列出代数式是解题的关键.12.【答案】15【解析】解:∵四边形ABCD是正⽅形,∴AB=AD,∠BAD=90°,在正六边形ABEFGH中,∵AB=AH,∠BAH=120°,∴AH=AD,∠HAD=360°?90°?120°=150°,∴∠ADH=∠AHD=12(180°?150°)=15°,故答案为:15.根据正⽅形的性质得到AB=AD,∠BAD=90°,在正六边形ABEFGH中,求得AB=AH,∠BAH=120°,于是得到AH=AD,∠HAD=360°?90°?120°=150°,根据等腰三⾓形的性质即可得到结论.本题考查了正多边形和圆,多边形的内⾓与外⾓,等腰三⾓形的判定和性质,正确的识别图形是解题的关键.13.【答案】x+1【解析】解:原式=x2x?1?1x?1=(x+1)(x?1)x?1=x+1.故答案为:x+1原式变形后,利⽤同分母分式的减法法则计算即可得到结果.此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.14.【答案】1.4kg【解析】解:500个数据的中位数是第250、251个数据的平均数,∵第250和251个数据分别为1.4、1.4,∴这组数据的中位数为1.4+1.42=1.4(kg),故答案为:1.4kg.根据中位数的概念求解可得.本题主要考查中位数,将⼀组数据按照从⼩到⼤(或从⼤到⼩)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.15.【答案】k≤124且k≠0【解析】解:∵点A(3m,2n)在直线y =?x +1上,∴2n =?3m +1,即n =?3m+12,∴B(m,3m+12),∵点B 在双曲线y =kx 上,∴k =m ?3m+12=?32(m ?16)2+124,∵?32<0,∴k 有最⼤值为124,∴k 的取值范围为k ≤124,∵k ≠0,故答案为k ≤124且k ≠0.根据⼀次函数图象上点的特征求得n =3m+12,即可得到B(m,3m+12),根据反⽐例函数图象上点的特征得到k 关于m 的函数,根据⼆次函数的性质即可求得k 的取值范围.本题考查了⼀次函数图象上点的坐标特征,反⽐例函数图象上点的坐标特征,⼆次函数的性质,图象上点的坐标适合解析式是解题的关键. 16.【答案】②③【解析】解:∵点E 为AB 的中点,AB =24,∴OE =12AB =12,∴AB 的中点E 的运动轨迹是以点O 为圆⼼,12为半径的⼀段圆弧,∵∠AOB =90°,∴点E 经过的路径长为90×12×π180=6π,故①错误;当△OAB 的⾯积最⼤时,因为AB =24,所以△OAB 为等腰直⾓三⾓形,即OA =OB ,∵E 为AB 的中点,∴OE ⊥AB ,OE =12AB =12,∴S △AOB =12×24×12=144,故②正确;如图,当O 、E 、D 三点共线时,OD 最⼤,过点D 作DF ⊥y 轴于点F ,∵AD =BC =5,AE =12AB =12,∴DE =√AD 2+AE 2=√52+122=13,∴OD =DE +OE =13+12=25,设DF =x ,∴OF =√OD 2?DF 2=√252?x 2,∵四边形ABCD 是矩形,∴∠DAB =90°,∴∠DFA =∠AOB ,∴∠DAF =∠ABO ,∴△DFA∽△AOB ∴DF OA =DA AB ,∴x OA=524,∴OA =24x 5,∵E 为AB 的中点,∠AOB =90°,∴AE =OE ,∴∠AOE =∠OAE ,∴△DFO∽△BOA ,∴OD AB =OFOA ,∴25√252?x 224x 5,解得x =25√2626,x =?25√2626舍去,∴OF =125√2626,∴D(25√2626,125√2626).故③正确.故答案为:②③.①由条件可知AB =24,则AB 的中点E 的运动轨迹是圆弧,最后根据弧长公式即可计算出点E 所经过的路径长;②当△OAB 的⾯积最⼤时,因为AB =24,所以△OAB 为等腰直⾓三⾓形,即OA =OB ,可求出最⼤⾯积为144;③当O 、E 、D 三点共线时,OD 最⼤,过点D 作DF ⊥y 轴于点F ,可求出OD =25,证明△DFA∽△AOB 和△DFO∽△BOA ,可求出DF 长,则D 点坐标可求出.本题考查四边形综合题、直⾓形的性质、矩形的性质、相似三⾓形的判定和性质等知识.解题的关键是学会添加常⽤辅助线,构造相似三⾓形解决问题,属于中考压轴题.17.【答案】解:(1)∵点A(?12m,m ?2),B(1,n)在直线y =?2x +b 上,∴{m +b =m ?22+b =n,解得:{b =?2n =?2,∴B(1,?2),代⼊反⽐例函数解析式y =kx ,∴?2=k1,∴k=?2.(2)∵直线AB的解析式为y=?2x?2,令x=0,解得y=?2,令y=0,解得x=?1,∴C(?1,0),D(0,?2),∵点E为CD的中点,2,?1),∴S△BOE=S△ODE+S△ODB=12OD?(x B?x E)=12×2×(1+12)=32.【解析】(1)将A、B两点的坐标代⼊⼀次函数解析式可得b和n的值,则求出点B(1,?2),代⼊反⽐例函数解析式可求出k的值.(2)先求出点C、D两点的坐标,再求出E点坐标,则S△BOE=S△ODE+S△ODB=12OD?(x B?x E),可求出△BOE的⾯积.本题考查了反⽐例函数与⼀次函数的交点问题,三⾓形的⾯积,熟练掌握待定系数法是解题的关键.18.【答案】解:原式=1+√3?√2?2√3+√2=1?√3.【解析】根据实数的混合计算解答即可.此题考查⼆次根式的混合计算,关键是根据实数的混合计算解答.19.【答案】(1)证明:∵点O是线段AB的中点,∴AO=BO,∵OD//BC,∴∠AOD=∠OBC,在△AOD与△OBC中,{AO=BO∠AOD=∠OBC OD=BC,∴△AOD≌△OBC(SAS);(2)解:∵△AOD≌△OBC,∴∠ADO=∠OCB=35°,∵OD//BC,∴∠DOC=∠OCB=35°.【解析】(1)根据线段中点的定义得到AO=BO,根据平⾏线的性质得到∠AOD=∠OBC,根据全等三⾓形的判定定理即可得到结论;(2)根据全等三⾓形的性质和平⾏线的性质即可得到结论.本题考查了全等三⾓形的判定和性质,平⾏线的性质,熟练掌握全等三⾓形的判定和性质是解题的关键.20.【答案】解:(1)随机的取⼀张卡⽚,抽取的卡⽚上的数字为负数的概率为2 4=12;(2)画树状图如图所⽰:共有16个可能的结果,点A在直线y=2x上的结果有2个,∴点A在直线y=2x上的概率为216=18.【解析】此题主要考查了树状图法求概率、概率公式、⼀次函数图象上点的坐标特征,正确列举出所有可能是解题关键.(1)由概率公式即可得出结果;(2)直接利⽤树状图法列举出所有可能进⽽得出答案.21.【答案】解:(1)由题意△≥0,∴(2m?1)2?4(m2?3)≥0,∴m≤134.(2)当m=2时,⽅程为x2+3x+1=0,∴x1+x2=?3,x1x2=1,∵⽅程的根为x1,x2,∴x12+3x1+1=0,x22+3x2+1=0,∴(x12+2x1)(x22+4x2+2)=(x12+2x1+x1?x1)(x22+3x2+x2+2)=(?1?x1)(?1+x2+2)=(?1?x1)(x2+1)=?x2?x1x2?1?x1=?x2?x1?2=3?2=1.【解析】(1)根据△≥0,解不等式即可;(2)将m=2代⼊原⽅程可得:x2+3x+1=0,计算两根和与两根积,化简所求式⼦,可得结论.本题考查了根与系数的关系以及⼀元⼆次⽅程的解,根的判别式等知识,牢记“两根之和等于?ba ,两根之积等于ca”是解题的关键.22.【答案】(1)证明:∵AC是⊙O的直径,∴∠ADC=90°,∴∠A+∠ACD=90°,∵∠BCD=∠A,∴∠ACD+∠BCD=90°,∴∠ACB=90°,∴BC是⊙O的切线;(2)解:过O作OH⊥CD于H,∵∠BDC=∠ACB=90°,∠B=∠B,∴△ACB∽△CDB,∴BCBD =ABBC,∴53=AB5,∴AB =253,∴AD =163,∵OH ⊥CD ,∴CH =DH ,∵AO =OC ,∴OH =12AD =83,∴点O 到CD 的距离是83.【解析】本题考查了切线的判定和性质,圆周⾓定理,相似三⾓形的判定和性质,垂径定理,三⾓形的中位线的性质,正确的识别图形是解题的关键.(1)根据圆周⾓定理得到∠ADC =90°,得到∠A +∠ACD =90°,求得∠ACB =90°,于是得到结论;(2)过O 作OH ⊥CD 于H ,根据相似三⾓形的性质得到AB =253,根据垂径定理得到CH =DH ,根据三⾓形的中位线的性质即可得到结论.23.【答案】解:(1)钢笔、笔记本的单价分别为x 、y 元,根据题意得,{2x +3y =384x +5y =70,解得:{x =10y =6,答:钢笔、笔记本的单价分别为10元,6元;(2)设钢笔的单价为a 元,购买数量为b 元,⽀付钢笔和笔记本的总⾦额w 元,①当30≤b ≤50时,a =10?0.1(b ?30)=?0.1b+13,w =b(?0.1b +13)+6(100?b)=?0.1b 2+7b +600=?0.1(b ?35)2+722.5,∵当b =30时,w =720,当b =50时,w =700,∴当30≤b ≤50时,700≤w ≤722.5;②当50∴当30≤b ≤60时,w 的最⼩值为700元,∴这次奖励⼀等奖学⽣50⼈时,购买奖品总⾦额最少,最少为700元.【解析】(1)钢笔、笔记本的单价分别为x 、y 元,根据题意列⽅程组即可得到结论;(2)设钢笔的单价为a 元,购买数量为b 元,⽀付钢笔和笔记本的总⾦额w 元,①当30≤b ≤50时,求得w =?0.1(b ?35)2+722.5,于是得到700≤w ≤722.5;②当50本题考查了⼆次函数的应⽤,⼆元⼀次⽅程组的应⽤,正确的理解题意求出⼆次函数的解析式是解题的关键.24.【答案】(1)证明:∵四边形ABCD 和四边形DEFG 是正⽅形,∴∠A =∠ADC =∠EDG =90°,AD =CD ,DE =DG ,∴∠ADE =∠CDG ,在△ADE 和△CDG 中,{AD =CD∠ADE =∠CDGDE =DG,∴△ADE≌△CDG(SAS),∴∠A =∠DCG =90°,∴CD ⊥CG ;(2)解:∵四边形DEFG 是正⽅形,∴EF =GF ,∠EFM =∠GFM =45°,在△EFM 和△GFM 中{EF =GF∠EFM =∠GFMMF =MF ,∴△EFM≌△GFM(SAS),∴EM =GM ,∠MEF =∠MGF ,在△EFH 和△GFN 中,{∠EFH =∠GFNEF =GF∠MEF =∠MGF ,∴△EFH≌△GFN(ASA),∴HF =NF ,∵tan∠MEN =13=HF EF,∴GF =EF =3HF =3NF ,∴GH =2HF ,作NP//GF 交EM 于P ,则△PMN∽△HMG ,△PEN∽△HEF ,∴PNGH =MNGM ,PN HF=EN EF=23,∴PN =23HF ,∴MN EM=MN GM=PN GH=23HF 2HF=13;(3)EM 的长不可能为12,理由:假设EM 的长为12,∵点E 是AB 边上⼀点,且∠EDG =∠ADC =90°,∴点G 在BC 的延长线上,同(2)的⽅法得,EM =GM =12,∴GM =12,在Rt △BEM 中,EM 是斜边,∴BM <12,∵正⽅形ABCD 的边长为1,∴BC =1,∴CM >12,∴CM >GM ,∴点G 在正⽅形ABCD 的边BC 上,与“点G 在BC 的延长线上”相⽭盾,∴假设错误,即:EM 的长不可能为12.【解析】(1)由正⽅形的性质得出∠A =∠ADC =∠EDG =90°,AD =CD ,DE =DG ,即∠ADE =∠CDG ,由SAS 证明△ADE≌△CDG 得出∠A =∠DCG =90°,即可得出结论; (2)先证明△EFM≌△GFM 得出EM =GM ,∠MEF =∠MGF ,在证明△EFH≌△GFN 得出HF =NF ,由三⾓函数得出GF =EF =3HF =3NF ,得出GH =2HF ,作NP//GF 交EM 于P ,则△PMN∽△HMG ,△PEN∽△HEF ,得出PNGH =MNGM ,PN HF=EN EF=23,PN =23HF ,即可得出结果;(3)假设EM =12,先判断出点G 在BC 的延长线上,同(2)的⽅法得,EM =GM =12,得出GM =12,再判断出BM <12,得出CM >12,进⽽得出CM >GM ,即可得出结论.此题是相似形综合题,主要考查了全等三⾓形的判定和性质,相似三⾓形的判定和性质,构造出相似三⾓形是解本题的关键,⽤反证法说明EM 不可能为12是解本题的难度.25.【答案】解:(1)∵抛物线与x 轴交于点A(?1,0),点B(?3,0)∴设交点式y =a(x +1)(x +3)∵OC =OB =3,点C 在y 轴负半轴∴C(0,?3)把点C 代⼊抛物线解析式得:3a =?3∴a =?1∴抛物线解析式为y =?(x +1)(x +3)=?x 2?4x ?3(2)如图1,过点A 作AG ⊥BC 于点G ,过点P 作PH ⊥x 轴于点H ∴∠AGB =∠AGC =∠PHO =90°∵∠ACB =∠POB∴△ACG∽△POH∴AG PH =CGOH∴AG CG =PHOH∵OB =OC =3,∠BOC =90°∴∠ABC =45°,BC =√OB 2+OC 2=3√2 ∴△ABG 是等腰直⾓三⾓形√22AB =√2 ∴CG =BC ?BG =3√2?√2=2√2 ∴PH OH =AG CG =12 ∴OH =2PH 设P(p,?p 2?4p ?3)①当p∴?p =2(p 2+4p +3) 解得:p 1=9√334,p 2=9+√334∴P(9√334,9√338)或(?9+√334,?9+√338) ②当?30时,点P 在AB 之间或在点C 右侧,横纵坐标异号∴p =2(p 2+4p +3) 解得:p 1=?2,p 2=?32 ∴P(?2,1)或(?32,34) 综上所述,点P 的坐标为(9√334,9√338)、(?9+√334,?9+√338)、(?2,1)或(?32,34).(3)①如图2,∵x =m +4时,y =?(m +4)2?4(m +4)?3=?m 2?12m ?35∴M(m,?m 2?4m ?3),N(m +4,?m 2?12m ?35)设直线MN 解析式为y =kx +n∴{km +n =?m 2?4m ?3k(m +4)+n =?m 2?12m ?35 解得:{k =?2m ?8n =m 2+4m ?3∴直线MN :y =(?2m ?8)x +m 2+4m ?3 设D(d,?d 2?4d ?3)(m∴x E =x D =d ,E(d,(?2m ?8)d +m 2+4m ?3) ∴DE =?d 2?4d ?3?[(?2m ?8)d +m 2+4m ?3]=?d 2+(2m +4)d ?m 24m =[d (m +2)]2+4∴当d =m +2时,DE 的最⼤值为4.②如图3,∵D 、F 关于点E 对称∵四边形MDNF 是矩形∴MN =DF ,且MN 与DF 互相平分∴DE =12MN ,E 为MN 中点∴x D =x E =m +m +42=m +2 由①得当d =m +2时,DE =4∴MN =2DE =8∴(m +4?m)2+[?m 2?12m ?35?(?m 2?4m ?3)]2=82 解得:m 1=?4?√32,m 2=?4+√32∴m 的值为?4?√32或?4+√32时,四边形MDNF 为矩形.【解析】(1)已知抛物线与x 轴两交点坐标,可设交点式y =a(x +1)(x +3);由OC =OB =3得C(0,?3),代⼊交点式即求得a =?1.(2)由∠POB =∠ACB 联想到构造相似三⾓形,因为求点P 坐标⼀般会作x 轴垂线PH 得Rt△POH,故可过点A在BC边上作垂线AG,构造△ACG∽△POH.利⽤点A、B、C坐标求得AG、CG的长,由相似三⾓形对应边成⽐例推出PHOH =AGCG=12.设点P横坐标为p,则OH与PH都能⽤p表⽰,但需按P横纵坐标的正负性进⾏分类讨论.得到⽤p表⽰OH与PH并代⼊OH=2PH计算即求得p 的值,进⽽求点P坐标.(3)①⽤m表⽰M、N横纵坐标,把m当常数求直线MN的解析式.设D横坐标为d,把x=d代⼊直线MN解析式得点E纵坐标,D与E纵坐标相减即得到⽤m、d表⽰的DE的长,把m当常数,对未知数d进⾏配⽅,即得到当d=m+2时,DE取得最⼤值.②由矩形MDNF得MN=DF且MN与DF互相平分,所以E为MN中点,得到点D、E 横坐标为m+2.由①得d=m+2时,DE=4,所以MN=8.⽤两点间距离公式⽤m表⽰MN的长,即列得⽅程求m的值.本题考查了求⼆次函数解析式,求⼆次函数最⼤值,等腰三⾓形的性质,相似三⾓形的判定和性质,⼀元⼆次⽅程的解法,⼆元⼀次⽅程组的解法,矩形的性质.第(3)题没有图要先根据题意画草图帮助思考,设计较多字母运算时抓住其中的常量和变量来分析和计算.。
2019年四川省乐山市中考数学试卷注:请使用office word软件打开,wps word会导致公式错乱一、选择题(本大题共10小题,共30.0分)1.-3的绝对值是()A. 3B.C.D.2.下列四个图形中,可以由图通过平移得到的是()A. B. C. D.3.小强同学从-1,0,1,2,3,4这六个数中任选一个数,满足不等式x+1<2的概率是()A. B. C. D.4.-a一定是()A. 正数B. 负数C. 0D. 以上选项都不正确5.如图,直线a∥b,点B在a上,且AB⊥BC.若∠1=35°,那么∠2等于()A. B. C. D.6.不等式组的解集在数轴上表示正确的是()A. B.C. D.7.《九章算术》第七卷“盈不足”中记载:“今有共买物,人出八,盈三;人出七,不足四.问人数、物价各几何?”译为:“今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又差4钱.问人数、物价各多少?”根据所学知识,计算出人数、物价分别是()A. 1,11B. 7,53C. 7,61D. 6,508.把边长分别为1和2的两个正方形按如图的方式放置.则图中阴影部分的面积为()A.B.C.D.9.如图,在边长为的菱形ABCD中,∠B=30°,过点A作AE⊥BC于点E,现将△ABE沿直线AE翻折至△AFE的位置,AF与CD交于点G.则CG等于()A. B. 1 C. D.10.如图,抛物线y=x2-4与x轴交于A、B两点,P是以点C(0,3)为圆心,2为半径的圆上的动点,Q是线段PA的中点,连结OQ.则线段OQ的最大值是()A. 3B.C.D. 4二、填空题(本大题共6小题,共18.0分)11.-的相反数是______.12.某地某天早晨的气温是-2℃,到中午升高了6℃,晚上又降低了7℃.那么晚上的温度是______℃.13.若3m=9n=2.则3m+2n=______.14.如图,在△ABC中,∠B=30°,AC=2,cos C=.则AB边的长为______.15.如图,点P是双曲线C:y=(x>0)上的一点,过点P作x轴的垂线交直线AB:y=x-2于点Q,连结OP,OQ.当点P在曲线C上运动,且点P在Q的上方时,△POQ面积的最大值是______.16.如图1,在四边形ABCD中,AD∥BC,∠B=30°,直线l⊥AB.当直线l沿射线BC方向,从点B开始向右平移时,直线l与四边形ABCD的边分别相交于点E、F.设直线l向右平移的距离为x,线段EF的长为y,且y与x的函数关系如图2所示,则四边形ABCD 的周长是______.三、解答题(本大题共10小题,共102.0分)17.计算:()-1-(2019-π)0+2sin30°.18.如图,点A、B在数轴上,它们对应的数分别为-2,,且点A、B到原点的距离相等.求x的值.19.如图,线段AC、BD相交于点E,AE=DE,BE=CE.求证:∠B=∠C.20.化简:÷.21.如图,已知过点B(1,0)的直线l1与直线l2:y=2x+4相交于点P(-1,a).(1)求直线l1的解析式;(2)求四边形PAOC的面积.22.某校组织学生参加“安全知识竞赛”,测试结束后,张老师从七年级720名学生中随机地抽取部分学生的成绩绘制了条形统计图,如图所示.试根据统计图提供的信息,回答下列问题:(1)张老师抽取的这部分学生中,共有______名男生,______名女生;(2)张老师抽取的这部分学生中,女生成绩的众数是______;(3)若将不低于27分的成绩定为优秀,请估计七年级720名学生中成绩为优秀的学生人数大约是多少.23.已知关于x的一元二次方程x2-(k+4)x+4k=0.(1)求证:无论k为任何实数,此方程总有两个实数根;(2)若方程的两个实数根为x1、x2,满足+=,求k的值;(3)若Rt△ABC的斜边为5,另外两条边的长恰好是方程的两个根x1、x2,求Rt△ABC 的内切圆半径.24.如图,直线l与⊙O相离,OA⊥l于点A,与⊙O相交于点P,OA=5.C是直线l上一点,连结CP并延长交⊙O于另一点B,且AB=AC.(1)求证:AB是⊙O的切线;(2)若⊙O的半径为3,求线段BP的长.25.在△ABC中,已知D是BC边的中点,G是△ABC的重心,过G点的直线分别交AB、AC于点E、F.(1)如图1,当EF∥BC时,求证:+=1;(2)如图2,当EF和BC不平行,且点E、F分别在线段AB、AC上时,(1)中的结论是否成立?如果成立,请给出证明;如果不成立,请说明理由.(3)如图3,当点E在AB的延长线上或点F在AC的延长线上时,(1)中的结论是否成立?如果成立,请给出证明;如果不成立,请说明理由.26.如图,已知抛物线y=a(x+2)(x-6)与x轴相交于A、B两点,与y轴交于C点,且tan∠CAB=.设抛物线的顶点为M,对称轴交x轴于点N.(1)求抛物线的解析式;(2)P为抛物线的对称轴上一点,Q(n,0)为x轴上一点,且PQ⊥PC.①当点P在线段MN(含端点)上运动时,求n的变化范围;②当n取最大值时,求点P到线段CQ的距离;③当n取最大值时,将线段CQ向上平移t个单位长度,使得线段CQ与抛物线有两个交点,求t的取值范围.答案和解析1.【答案】A【解析】解:|-3|=-(-3)=3.故选:A.根据一个负数的绝对值等于它的相反数得出.考查绝对值的概念和求法.绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.【答案】D【解析】解:∵只有D的图形的形状和大小没有变化,符合平移的性质,属于平移得到;故选:D.根据平移的性质解答即可.本题考查的是平移的性质,熟知图形平移后所得图形与原图形全等是解答此题的关键.3.【答案】C【解析】解:在-1,0,1,2,3,4这六个数中,满足不等式x+1<2的有-1、0这两个,所以满足不等式x+1<2的概率是=,故选:C.找到满足不等式x+1<2的结果数,再根据概率公式计算可得.本题主要考查概率公式,用到的知识点为:概率等于所求情况数与总情况数之比.4.【答案】D【解析】解:-a中a的符号无法确定,故-a的符号无法确定.故选:D.利用正数与负数定义分析得出答案.此题主要考查了正数和负数,正确理解正负数的定义是解题关键.5.【答案】C【解析】解:∵a∥b,∠1=35°,∴∠BAC=∠1=35°.∵AB⊥BC,∴∠2=∠BCA=90°-∠BAC=55°.故选:C.先根据∠1=35°,a∥b求出∠BAC的度数,再由AB⊥BC即可得出答案.本题考查的是平行线的性质、垂线的性质,熟练掌握垂线的性质和平行线的性质是解决问题的关键.6.【答案】B【解析】解:,解①得:x>-6,解②得:x≤13,故不等式组的解集为:-6<x≤13,在数轴上表示为:.故选:B.分别解不等式进而得出不等式组的解集,进而得出答案.此题主要考查了解一元一次不等式组,正确解不等式是解题关键.7.【答案】B【解析】解:设有x人,物价为y,可得:,解得:,故选:B.设有x人,物价为y,根据该物品价格不变,即可得出关于x、y的二元一次方程组,此题得解.本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.8.【答案】A【解析】解:如图,设BC=x,则CE=1-x易证△ABC∽△FEC∴===解得x=∴阴影部分面积为:S△ABC=××1=故选:A.如图,易证△ABC∽△FEC,可设BC=x,只需求出BC即可.本题主要考查正方形的性质及三角形的相似,本题要充分利用正方形的特殊性质.利用比例的性质,直角三角形的性质等知识点的理解即可解答9.【答案】A【解析】解:在Rt△ABE中,∠B=30°,AB=,∴BE=.根据折叠性质可得BF=2BE=3.∴CF=3-.∵AD∥CF,∴△ADG∽△FCG.∴.设CG=x,则,解得x=-1.故选:A.先利用30°直角三角形的性质,求出BE,再根据折叠性质求得BF,从而得到CF长,最后根据△ADG∽△FCG得出与CG有关的比例式,即可求解CG长.本题主要考查了菱形的性质、相似三角形的判定和性质、折叠的性质,解题的关键是找到与CG相关的三角形,利用相似知识求解.10.【答案】C【解析】解:连接BP,如图,当y=0时,x2-4=0,解得x1=4,x2=-4,则A(-4,0),B(4,0),∵Q是线段PA的中点,∴OQ为△ABP的中位线,∴OQ=BP,当BP最大时,OQ最大,而BP过圆心C时,PB最大,如图,点P运动到P′位置时,BP最大,∵BC==5,∴BP′=5+2=7,∴线段OQ的最大值是.故选:C.连接BP,如图,先解方程x2-4=0得A(-4,0),B(4,0),再判断OQ为△ABP的中位线得到OQ=BP,利用点与圆的位置关系,BP过圆心C时,PB最大,如图,点P运动到P′位置时,BP最大,然后计算出BP′即可得到线段OQ的最大值.本题考查了点与圆的位置关系:点的位置可以确定该点到圆心距离与半径的关系,反过来已知点到圆心距离与半径的关系可以确定该点与圆的位置关系.也考查了三角形中位线.11.【答案】【解析】解:的相反数是,故答案为:.根据只有符号不同的两个数互为相反数,可得一个数的相反数.本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.12.【答案】-3【解析】解:-2+6-7=-3,故答案为:-3由题意列出算式进行计算求解即可.本题主要考查有理数的加减法,正确列出算式是解题的关键.13.【答案】4【解析】解:∵3m=32n=2,∴3m+2n=3m•32n=2×2=4,故答案为:4根据幂的乘方与积的乘方进行解答即可.此题考查幂的乘方与积的乘方,关键是根据幂的乘方与积的乘方解答.14.【答案】【解析】解:如图,作AH⊥BC于H.在Rt△ACH中,∵∠AHC=90°,AC=2,COSC=,∴=,∴CH=,∴AH===,在Rt△ABH中,∵∠AHB=90°,∠B=30°,∴AB=2AH=,故答案为.如图,作AH⊥BC于H.解直角三角形求出AH,再根据AB=2AH即可解决问题.本题考查解直角三角形,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.15.【答案】3【解析】解:∵PQ⊥x轴,∴设P(x,),则Q(x,x-2),∴PQ=-x+2,∴S△POQ=(-+2)•x=-(x-2)2+3,∵-<0,∴△POQ面积有最大值,最大值是3,故答案为3.设P(x,),则Q(x,x-2),得到PQ=-x+2,根据三角形面积公式得到S△POQ=-(x-2)2+3,根据二次函数的性质即可求得最大值.本题考查了一次函数图象上点的坐标特征,二次函数的性质,反比例函数y=(k≠0)系数k的几何意义:从反比例函数y=(k≠0)图象上任意一点向x轴和y轴作垂线,垂线与坐标轴所围成的矩形面积为|k|.16.【答案】【解析】解:∵∠B=30°,直线l⊥AB,∴BE=2EF,由图可得,AB=4cos30°=4×=2,BC=5,AD=7-4=3,当EF平移到点F与点D重合时,如右图所示,∵∠EFB=60°,∴∠DEC=60°,∵DE=CE=2,∴△DEC为等边三角形,∴CD=2.∴四边形ABCD的周长是:AB+BC+AD+CD=2+5+3+2=10+2,故答案为:10+2.根据题意和函数图象中的数据,可以得到AB、BC、AD的长,再根据平行线的性质和图形中的数据可以得到CD的长,从而可以求得四边形ABCD的周长.本题考查动点问题的函数图象,解答本题的关键是明确题意,利用数形结合的思想解答.17.【答案】解:原式=,=2-1+1,=2.【解析】根据实数的混合计算解答即可.此题考查实数的运算,关键是根据实数的混合计算解答.18.【答案】解:根据题意得:,去分母,得x=2(x+1),去括号,得x=2x+2,解得x=-2经检验,x=-2是原方程的解.【解析】根据题意得出分式方程解答即可.此题考查解分式方程,关键是根据解分式方程的步骤:①去分母;②求出整式方程的解;③检验;④得出结论解答.19.【答案】证明:在△AEB和△DEC中,∵∴△AEB≌△DEC,∴∠B=∠C.【解析】根据AE=DE,∠AEB=∠DEC,BE=CE,证出△AEB≌△DEC,即可得出∠B=∠C.此题主要考查学生对全等三角形的判定与性质这一知识点的理解和掌握,此题难度不大,要求学生应熟练掌握.20.【答案】解:原式=÷,=×,=.【解析】首先将分式的分子与分母分解因式,进而约分得出答案.此题主要考查了分式的乘除运算,正确分解因式是解题关键.21.【答案】解:(1)∵点P(-1,a)在直线l2:y=2x+4上,∴2×(-1)+4=a,即a=2,则P的坐标为(-1,2),设直线l1的解析式为:y=kx+b(k≠0),那么,解得:.∴l1的解析式为:y=-x+1.(2)∵直线l1与y轴相交于点C,∴C的坐标为(0,1),又∵直线l2与x轴相交于点A,∴A点的坐标为(-2,0),则AB=3,而S四边形PAOC=S△PAB-S△BOC,∴S四边形PAOC=.【解析】(1)由点P(-1,a)在直线l2上,利用一次函数图象上点的坐标特征,即可求出a值,再利用点P的坐标和点B的坐标可求直线l1的解析式;(2)根据面积差可得结论.本题考查了两条直线相交或平行问题、一次函数图象上点的坐标特征和三角形的面积,在函数的图象上的点,就一定满足函数解析式.并利用数形结合的思想解决问题.22.【答案】40 40 27【解析】解:(1)男生:1+2+2+4+9+14+5+2+1=40(人)女生:1+1+2+3+11++13+7+1+1=40(人)故答案为40,40;(2)女生成绩27的人数最多,所以众数为27,故答案为27;(3)(人),七年级720名学生中成绩为优秀的学生人数大约是396人.(1)男生:1+2+2+4+9+14+5+2+1=40(人)女生:1+1+2+3+11++13+7+1+1=40(人);(2)女生成绩27的人数最多,所以众数为27;(3)(人).此题同时考查了条形统计图,考查了利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、认真分析、认真研究统计图,只有这样才能作出正确的判断,准确地解决问题.23.【答案】(1)证明:∵△=(k+4)2-16k=k2-8k+16=(k-4)2≥0,∴无论k为任何实数时,此方程总有两个实数根;(2)解:由题意得:x1+x2=k+4,x1•x2=4k,∵,∴,即,解得:k=2;(3)解:解方程x2-(k+4)x+4k=0得:x1=4,x2=k,根据题意得:42+k2=52,即k=3,设直角三角形ABC的内切圆半径为r,如图,由切线长定理可得:(3-r)+(4-r)=5,∴直角三角形ABC的内切圆半径r=.【解析】(1)根据根的判别式△=(k+4)2-16k=k2-8k+16=(k-4)2≥0,即可得到结论;(2)由题意得到x1+x2=k+4,x1•x2=4k,代入,解方程即可得到结论;(3)解方程x2-(k+4)x+4k=0得到x1=4,x2=k,根据题意根据勾股定理列方程得到k=3,设直角三角形ABC的内切圆半径为r,根据切线长定理即可得到结论.本题考查了三角形的内切圆和内心,切线的性质,一元二次方程根的判别式,一元二次方程根与系数的关系,熟练掌握切线长定理是解题的关键.24.【答案】(1)证明:如图,连结OB,则OP=OB,∴∠OBP=∠OPB=∠CPA,AB=AC,∴∠ACB=∠ABC,而OA⊥l,即∠OAC=90°,∴∠ACB+∠CPA=90°,即∠ABP+∠OBP=90°,∴∠ABO=90°,OB⊥AB,故AB是⊙O的切线;(2)解:由(1)知:∠ABO=90°,而OA=5,OB=OP=3,由勾股定理,得:AB=4,过O作OD⊥PB于D,则PD=DB,∵∠OPD=∠CPA,∠ODP=∠CAP=90°,∴△ODP∽△CAP,∴,又∵AC=AB=4,AP=OA-OP=2,∴,∴,∴.【解析】(1)连接OB,由AB=AC得∠ABC=∠ACB,由OP=OB得∠OPB=∠OBP,由OA⊥l得∠OAC=90°,则∠ACB+∠APC=90°,而∠APC=∠OPB=∠OBP,所以∠OBP+∠ABC=90°,即∠OBA=90°,于是根据切线的判定定理得到直线AB是⊙O的切线;(2)根据勾股定理求得AB=4,PC=2,过O作OD⊥PB于D,则PD=DB,通过证得△ODP∽△CAP,得到,求得PD,即可求得PB.本题考查了切线的判定和性质,勾股定理的应用研究三角形相似的判定和性质,熟练掌握性质定理是解题的关键.25.【答案】(1)证明:∵G是△ABC重心,∴,又∵EF∥BC,∴,,则;(2)解:(1)中结论成立,理由如下:如图2,过点A作AN∥BC交EF的延长线于点N,FE、CB的延长线相交于点M,则△BME∽△ANE,△CMF∽△ANF,,,∴,又∵BM+CM=BM+CD+DM,而D是BC的中点,即BD=CD,∴BM+CM=BM+BD+DM=DM+DM=2DM,∴,又∵,∴,故结论成立;(3)解:(1)中结论不成立,理由如下:当F点与C点重合时,E为AB中点,BE=AE,点F在AC的延长线上时,BE>AE,∴,则,同理:当点E在AB的延长线上时,,∴结论不成立.【解析】(1)根据三角形重心定理和平行线分线段成比例解答即可;(2)过点A作AN∥BC交EF的延长线于点N,FE、CB的延长线相交于点M,得出△BME∽△ANE,△CMF∽△ANF,得出比例式解答即可;(3)分两种情况:当F点与C点重合时,E为AB中点,BE=AE;点F在AC的延长线上时,BE>AE,得出,则,同理:当点E在AB的延长线上时,,即可得出结论.此题是相似三角形综合题,考查了相似三角形的判定与性质、三角形重心定理、平行线分线段成比例定理等知识;本题综合性强,熟练掌握三角形的重心定理和平行线分线段成比例定理,证明三角形相似是解题的关键.26.【答案】解:(1)根据题意得:A(-2,0),B(6,0),在Rt△AOC中,∵,且OA=2,得CO=3,∴C(0,3),将C点坐标代入y=a (x+2)(x-6)得:,抛物线解析式为:;整理得:y=-故抛物线解析式为:得:y=-;(2)①由(1)知,抛物线的对称轴为:x=2,顶点M(2,4),设P点坐标为(2,m)(其中0≤m≤4),则PC2=22+(m-3)2,PQ2=m2+(n-2)2,CQ2=32+n2,∵PQ⊥PC,∴在Rt△PCQ中,由勾股定理得:PC2+PQ2=CQ2,即22+(m-3)2+m2+(n-2)2=32+n2,整理得:=(0≤m≤4),∴当时,n取得最小值为;当m=4时,n取得最大值为4,所以,;②由①知:当n取最大值4时,m=4,∴P(2,4),Q(4,0),则,,CQ=5,设点P到线段CQ距离为h,由,得:,故点P到线段CQ距离为2;③由②可知:当n取最大值4时,Q(4,0),∴线段CQ的解析式为:,设线段CQ向上平移t个单位长度后的解析式为:,当线段CQ向上平移,使点Q恰好在抛物线上时,线段CQ与抛物线有两个交点,此时对应的点Q'的纵坐标为:,将Q'(4,3)代入得:t=3,当线段CQ继续向上平移,线段CQ与抛物线只有一个交点时,联解得:,化简得:x2-7x+4t=0,由△=49-16t=0,得,∴当线段CQ与抛物线有两个交点时,.【解析】(1)由函数解析式,可以求出点A、B的坐标分别为(-2,0),(6,0),在Rt△OAC中由tan∠CAB=,可以求出点C的坐标为(0,3),进而可以求出抛物线的解析式;(2)①抛物线的对称轴为:x=2,顶点M(2,4),在Rt△PCQ中,由勾股定理得:PC2+PQ2=CQ2,把三角形三边长用点P,Q的坐标表达出来,整理得:,利用0≤m≤4,求出n的取值范围;②由,得:,求出点P到线段CQ距离为2;③设线段CQ向上平移t个单位长度后的解析式为:,联立抛物线方程,可求出x2-7x+4t=0,由△=49-16t=0,得,∴当线段CQ与抛物线有两个交点时,主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,处理问题和解决问题.。
2019年四川省达州市中考数学试卷一、单项选择题(每小题3分,共30分)1.(3分)﹣2019的绝对值是()A.2019B.﹣2019C.D.﹣2.(3分)剪纸是我国传统的民间艺术,下列剪纸作品中,轴对称图形是()A.B.C.D.3.(3分)下列计算正确的是()A.a2+a3=a5B.a8÷a4=a4C.(﹣2ab)2=﹣4a2b2D.(a+b)2=a2+b24.(3分)如图是由7个小立方块所搭成的几何体的俯视图,小正方形中的数字表示该位置小立方块的个数,这个几何体的左视图是()A.B.C.D.5.(3分)一组数据1,2,1,4的方差为()A.1B.1.5C.2D.2.56.(3分)下列判断正确的是()A.<0.5B.若ab=0,则a=b=0C.=D.3a可以表示边长为a的等边三角形的周长7.(3分)某公司今年4月的营业额为2500万元,按计划第二季度的总营业额要达到9100万元,设该公司5、6两月的营业额的月平均增长率为x.根据题意列方程,则下列方程正确的是()A.2500(1+x)2=9100B.2500(1+x%)2=9100C.2500(1+x)+2500(1+x)2=9100D.2500+2500(1+x)+2500(1+x)2=91008.(3分)a是不为1的有理数,我们把称为a的差倒数,如2的差倒数为=﹣1,﹣1的差倒数=,已知a1=5,a2是a1的差倒数,a3是a2的差倒数,a4是a3的差倒数…,依此类推,a2019的值是()A.5B.﹣C.D.9.(3分)如图,边长都为4的正方形ABCD和正三角形EFG如图放置,AB与EF在一条直线上,点A与点F重合.现将△EFG沿AB方向以每秒1个单位的速度匀速运动,当点F与B重合时停止.在这个运动过程中,正方形ABCD和△EFG重叠部分的面积S与运动时间t的函数图象大致是()A.B.C.D.10.(3分)矩形OABC在平面直角坐标系中的位置如图所示,已知B(2,2),点A在x 轴上,点C在y轴上,P是对角线OB上一动点(不与原点重合),连接PC,过点P作PD⊥PC,交x轴于点D.下列结论:①OA=BC=2;②当点D运动到OA的中点处时,PC2+PD2=7;③在运动过程中,∠CDP是一个定值;④当△ODP为等腰三角形时,点D的坐标为(,0).其中正确结论的个数是()A.1个B.2个C.3个D.4个二、填空题(每小题3分,共18分)11.(3分)2018年,中国贸易进出口总额为4.62万亿美元(美国约为4.278万亿美元),同比增长12.6%,占全球贸易总额的11.75%,贸易总额连续两年全球第一!数据4.62万亿用科学记数法表示为.12.(3分)如图所示的电路中,当随机闭合开关S1、S2、S3中的两个时,能够让灯泡发光的概率为.13.(3分)如图所示,点C位于点A、B之间(不与A、B重合),点C表示1﹣2x,则x 的取值范围是.14.(3分)如图,▱ABCD的对角线AC、BD相交于点O,点E是AB的中点,△BEO的周长是8,则△BCD的周长为.15.(3分)如图,A、B两点在反比例函数y=的图象上,C、D两点在反比例函数y=的图象上,AC⊥x轴于点E,BD⊥x轴于点F,AC=2,BD=4,EF=3,则k2﹣k1=.16.(3分)如图,抛物线y=﹣x2+2x+m+1(m为常数)交y轴于点A,与x轴的一个交点在2和3之间,顶点为B.①抛物线y=﹣x2+2x+m+1与直线y=m+2有且只有一个交点;②若点M(﹣2,y1)、点N(,y2)、点P(2,y3)在该函数图象上,则y1<y2<y3;③将该抛物线向左平移2个单位,再向下平移2个单位,所得抛物线解析式为y=﹣(x+1)2+m;④点A关于直线x=1的对称点为C,点D、E分别在x轴和y轴上,当m=1时,四边形BCDE周长的最小值为+.其中正确判断的序号是.三、解答题:解答时应写出必要的文字说明、证明过程或演算步骤(共72分)17.(5分)计算:(π﹣3.14)0﹣()﹣2+﹣.18.(7分)先化简:(﹣)÷,再选取一个适当的x的值代入求值.19.(7分)随机抽取某小吃店一周的营业额(单位:元)如下表:星期一星期二星期三星期四星期五星期六星期日合计540680640640780111010705460(1)分析数据,填空:这组数据的平均数是元,中位数是元,众数是元.(2)估计一个月的营业额(按30天计算):①星期一到星期五营业额相差不大,用这5天的平均数估算合适么?答(填“合适”或“不合适”):.②选择一个你认为最合适的数据估算这个小吃店一个月的营业额.20.(7分)如图,在Rt△ABC中,∠ACB=90°,AC=2,BC=3.(1)尺规作图:不写作法,保留作图痕迹.①作∠ACB的平分线,交斜边AB于点D;②过点D作BC的垂线,垂足为点E.(2)在(1)作出的图形中,求DE的长.21.(7分)端午节前后,张阿姨两次到超市购买同一种粽子.节前,按标价购买,用了96元;节后,按标价的6折购买,用了72元,两次一共购买了27个.这种粽子的标价是多少?22.(8分)如图,⊙O是△ABC的外接圆,∠BAC的平分线交⊙O于点D,交BC于点E,过点D作直线DF∥BC.(1)判断直线DF与⊙O的位置关系,并说明理由;(2)若AB=6,AE=,CE=,求BD的长.23.(8分)渠县賨人谷是国家AAAA级旅游景区,以“奇山奇水奇石景,古賨古洞古部落”享誉巴渠,被誉为川东“小九寨”.端坐在观音崖旁的一块奇石似一只“啸天犬”,昂首向天,望穿古今.一个周末,某数学兴趣小组的几名同学想测出“啸天犬”上嘴尖与头顶的距离.他们把蹲着的“啸天犬”抽象成四边形ABCD,想法测出了尾部C看头顶B 的仰角为40°,从前脚落地点D看上嘴尖A的仰角刚好60°,CB=5m,CD=2.7m.景区管理员告诉同学们,上嘴尖到地面的距离是3m.于是,他们很快就算出了AB的长.你也算算?(结果精确到0.1m.参考数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84.≈1.41,≈1.73)24.(11分)箭头四角形模型规律如图1,延长CO交AB于点D,则∠BOC=∠1+∠B=∠A+∠C+∠B.因为凹四边形ABOC形似箭头,其四角具有“∠BOC=∠A+∠B+∠C”这个规律,所以我们把这个模型叫做“箭头四角形”.模型应用(1)直接应用:①如图2,∠A+∠B+∠C+∠D+∠E+∠F=.②如图3,∠ABE、∠ACE的2等分线(即角平分线)BF、CF交于点F,已知∠BEC=120°,∠BAC=50°,则∠BFC=.③如图4,BO i、CO i分别为∠ABO、∠ACO的2019等分线(i=1,2,3, (2017)2018).它们的交点从上到下依次为O1、O2、O3、…、O2018.已知∠BOC=m°,∠BAC =n°,则∠BO1000C=度.(2)拓展应用:如图5,在四边形ABCD中,BC=CD,∠BCD=2∠BAD.O是四边形ABCD内一点,且OA=OB=OD.求证:四边形OBCD是菱形.25.(12分)如图1,已知抛物线y=﹣x2+bx+c过点A(1,0),B(﹣3,0).(1)求抛物线的解析式及其顶点C的坐标;(2)设点D是x轴上一点,当tan(∠CAO+∠CDO)=4时,求点D的坐标;(3)如图2.抛物线与y轴交于点E,点P是该抛物线上位于第二象限的点,线段P A 交BE于点M,交y轴于点N,△BMP和△EMN的面积分别为m、n,求m﹣n的最大值.2019年四川省达州市中考数学试卷参考答案与试题解析一、单项选择题(每小题3分,共30分)1.(3分)﹣2019的绝对值是()A.2019B.﹣2019C.D.﹣【分析】直接利用绝对值的定义进而得出答案.【解答】解:﹣2019的绝对值是:2009.故选:A.【点评】此题主要考查了绝对值,正确把握绝对值的定义是解题关键.2.(3分)剪纸是我国传统的民间艺术,下列剪纸作品中,轴对称图形是()A.B.C.D.【分析】根据轴对称图形的概念进而判断求解.【解答】解:A、不是轴对称图形,故此选项不合题意;B、不是轴对称图形,故此选项不合题意;C、不是轴对称图形,故此选项不合题意;D、是轴对称图形,故此选项符合题意;故选:D.【点评】本题考查了轴对称图形,轴对称图形的判断方法:把某个图象沿某条直线折叠,如果图形的两部分能够重合,那么这个是轴对称图形.3.(3分)下列计算正确的是()A.a2+a3=a5B.a8÷a4=a4C.(﹣2ab)2=﹣4a2b2D.(a+b)2=a2+b2【分析】直接利用合并同类项法则以及同底数幂的乘除运算法则、积的乘方运算法则分别化简得出答案.【解答】解:A、a2+a3,无法计算,故此选项错误;B、a8÷a4=a4,故此选项正确;C、(﹣2ab)2=4a2b2,故此选项错误;D、(a+b)2=a2+2ab+b2,故此选项错误;故选:B.【点评】此题主要考查了合并同类项以及同底数幂的乘除运算、积的乘方运算,正确掌握相关运算法则是解题关键.4.(3分)如图是由7个小立方块所搭成的几何体的俯视图,小正方形中的数字表示该位置小立方块的个数,这个几何体的左视图是()A.B.C.D.【分析】由已知条件可知,左视图有2列,每列小正方形数目分别为3,1.据此可作出判断.【解答】解:从左面看可得到从左到右分别是3,1个正方形.故选:B.【点评】本题考查几何体的三视图.由几何体的俯视图及小正方形内的数字,可知左视图的列数与俯视图的行数相同,且每列小正方形数目为俯视图中相应行中正方形数字中的最大数字.5.(3分)一组数据1,2,1,4的方差为()A.1B.1.5C.2D.2.5【分析】先求得这组数据平均值,再根据方差公式,计算即可【解答】解:平均数为==2方差S2=[(1﹣2)2+(2﹣2)2+(1﹣2)2+(4﹣2)2]=故选:B.【点评】此题主要考查方差的计算公式,熟记方差的计算公式:S2=×[(x1﹣)2+(x2﹣)2+…+(x n﹣1﹣)2+(x n﹣)2]是解题的关键6.(3分)下列判断正确的是()A.<0.5B.若ab=0,则a=b=0C.=D.3a可以表示边长为a的等边三角形的周长【分析】根据实数的大小比较法则、二次根式的乘除法法则、列代数式的一般步骤判断即可.【解答】解:A、2<<3,∴<<1,本选项错误;B、若ab=0,则a=0或b=0或a=b=0,本选项错误;C、当a≥0,b>0时,=,本选项错误;D、3a可以表示边长为a的等边三角形的周长,本选项正确;故选:D.【点评】本题考查的是二次根式的乘除法、实数的大小比较、列代数式,掌握二次根式的乘除法法则、实数的大小比较法则是解题的关键.7.(3分)某公司今年4月的营业额为2500万元,按计划第二季度的总营业额要达到9100万元,设该公司5、6两月的营业额的月平均增长率为x.根据题意列方程,则下列方程正确的是()A.2500(1+x)2=9100B.2500(1+x%)2=9100C.2500(1+x)+2500(1+x)2=9100D.2500+2500(1+x)+2500(1+x)2=9100【分析】分别表示出5月,6月的营业额进而得出等式即可.【解答】解:设该公司5、6两月的营业额的月平均增长率为x.根据题意列方程得:2500+2500(1+x)+2500(1+x)2=9100.故选:D.【点评】此题主要考查了由实际问题抽象出一元二次方程,正确理解题意是解题关键.8.(3分)a是不为1的有理数,我们把称为a的差倒数,如2的差倒数为=﹣1,﹣1的差倒数=,已知a1=5,a2是a1的差倒数,a3是a2的差倒数,a4是a3的差倒数…,依此类推,a2019的值是()A.5B.﹣C.D.【分析】根据差倒数的定义分别求出前几个数便不难发现,每3个数为一个循环组依次循环,用2019除以3,根据余数的情况确定出与a2019相同的数即可得解.【解答】解:∵a1=5,a2===﹣,a3===,a4===5,…∴数列以5,﹣,三个数依次不断循环,∵2019÷3=673,∴a2019=a3=,故选:D.【点评】本题是对数字变化规律的考查,理解差倒数的定义并求出每3个数为一个循环组依次循环是解题的关键.9.(3分)如图,边长都为4的正方形ABCD和正三角形EFG如图放置,AB与EF在一条直线上,点A与点F重合.现将△EFG沿AB方向以每秒1个单位的速度匀速运动,当点F与B重合时停止.在这个运动过程中,正方形ABCD和△EFG重叠部分的面积S与运动时间t的函数图象大致是()A.B.C.D.【分析】根据题意和函数图象可以写出各段对应的函数解析式,从而可以判断哪个选项中的图象符合题意,本题得以解决.【解答】解:当0≤t≤2时,S==,即S与t是二次函数关系,有最小值(0,0),开口向上,当2<t≤4时,S=﹣=,即S与t是二次函数关系,开口向下,由上可得,选项C符合题意,故选:C.【点评】本题考查动点问题的函数过图象,解答本题的关键是明确题意,利用数形结合的思想解答.10.(3分)矩形OABC在平面直角坐标系中的位置如图所示,已知B(2,2),点A在x 轴上,点C在y轴上,P是对角线OB上一动点(不与原点重合),连接PC,过点P作PD⊥PC,交x轴于点D.下列结论:①OA=BC=2;②当点D运动到OA的中点处时,PC2+PD2=7;③在运动过程中,∠CDP是一个定值;④当△ODP为等腰三角形时,点D的坐标为(,0).其中正确结论的个数是()A.1个B.2个C.3个D.4个【分析】①根据矩形的性质即可得到OA=BC=2;故①正确;②由点D为OA的中点,得到OD=OA=,根据勾股定理即可得到PC2+PD2=CD2=OC2+OD2=22+()2=7,故②正确;③如图,过点P作PF⊥OA于F,FP的延长线交BC于E,PE=a,则PF=EF﹣PE=2﹣a,根据三角函数的定义得到BE=PE=a,求得CE=BC﹣BE=2﹣a=(2﹣a),根据相似三角形的性质得到FD=,根据三角函数的定义得到∠PDC=60°,故③正确;④当△ODP为等腰三角形时,Ⅰ、OD=PD,解直角三角形得到OD=OC=,Ⅱ、OP=OD,根据等腰三角形的性质和四边形的内角和得到∠OCP=105°>90°,故不合题意舍去;Ⅲ、OP=PD,根据等腰三角形的性质和四边形的内角和得到∠OCP=105°>90°,故不合题意舍去;于是得到当△ODP为等腰三角形时,点D的坐标为(,0).故④正确.【解答】解:①∵四边形OABC是矩形,B(2,2),∴OA=BC=2;故①正确;②∵点D为OA的中点,∴OD=OA=,∴PC2+PD2=CD2=OC2+OD2=22+()2=7,故②正确;③如图,过点P作PF⊥OA于F,FP的延长线交BC于E,∴PE⊥BC,四边形OFEC是矩形,∴EF=OC=2,设PE=a,则PF=EF﹣PE=2﹣a,在Rt△BEP中,tan∠CBO===,∴BE=PE=a,∴CE=BC﹣BE=2﹣a=(2﹣a),∵PD⊥PC,∴∠CPE+∠FPD=90°,∵∠CPE+∠PCE=90°,∴∠FPD=∠ECP,∵∠CEP=∠PFD=90°,∴△CEP∽△PFD,∴=,∴=,∴FD=,∴tan∠PDC===,∴∠PDC=60°,故③正确;④∵B(2,2),四边形OABC是矩形,∴OA=2,AB=2,∵tan∠AOB==,∴∠AOB=30°,当△ODP为等腰三角形时,Ⅰ、OD=PD,∴∠DOP=∠DPO=30°,∴∠ODP=60°,∴∠ODC=60°,∴OD=OC=,Ⅱ、OP=OD,∴∠ODP=∠OPD=75°,∵∠COD=∠CPD=90°,∴∠OCP=105°>90°,故不合题意舍去;Ⅲ、OP=PD,∴∠POD=∠PDO=30°,∴∠OCP=150°>90°故不合题意舍去,∴当△ODP为等腰三角形时,点D的坐标为(,0).故④正确,故选:D.【点评】此题主要考查了矩形的性质,锐角三角函数的定义,相似三角形的判定和性质,勾股定理,等腰三角形的性质,构造出相似三角形表示出CP和PD是解本题的关键.二、填空题(每小题3分,共18分)11.(3分)2018年,中国贸易进出口总额为4.62万亿美元(美国约为4.278万亿美元),同比增长12.6%,占全球贸易总额的11.75%,贸易总额连续两年全球第一!数据4.62万亿用科学记数法表示为 4.62×1012.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:4.62万亿=4.62×1012,故答案为:4.62×1012【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.(3分)如图所示的电路中,当随机闭合开关S1、S2、S3中的两个时,能够让灯泡发光的概率为.【分析】根据题意可得:随机闭合开关S1,S2,S3中的两个,有3种方法,其中有两种能够让灯泡发光,故其概率为.【解答】解:因为随机闭合开关S1,S2,S3中的两个,有3种方法,其中有2种能够让灯泡发光所以P(灯泡发光)=.故本题答案为:.【点评】本题考查的是概率的求法.如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.13.(3分)如图所示,点C位于点A、B之间(不与A、B重合),点C表示1﹣2x,则x 的取值范围是﹣<x<0.【分析】根据题意列出不等式组,求出解集即可确定出x的范围.【解答】解:根据题意得:1<1﹣2x<2,解得:﹣<x<0,则x的范围是﹣<x<0,故答案为:﹣<x<0【点评】此题考查了解一元一次不等式组,以及数轴,熟练掌握运算法则是解本题的关键.14.(3分)如图,▱ABCD的对角线AC、BD相交于点O,点E是AB的中点,△BEO的周长是8,则△BCD的周长为16.【分析】根据平行四边形的性质可得BO=DO=BD,进而可得OE是△ABC的中位线,由三角形中位线定理得出BC=2OE,再根据平行四边形的性质可得AB=CD,从而可得△BCD的周长=△BEO的周长×2.【解答】解:∵▱ABCD的对角线AC、BD相交于点O,∴BO=DO=BD,BD=2OB,∴O为BD中点,∵点E是AB的中点,∴AB=2BE,BC=2OE,∵四边形ABCD是平行四边形,∴AB=CD,∴CD=2BE.∵△BEO的周长为8,∴OB+OE+BE=8,∴BD+BC+CD=2OB+2OE+2BE=2(OB+OE+BE)=16,∴△BCD的周长是16,故答案为16.【点评】此题考查了平行四边形的性质,三角形中位线定理以及线段中点的定义.关键是掌握平行四边形的性质:①边:平行四边形的对边平行且相等.②角:平行四边形的对角相等;③对角线:平行四边形的对角线互相平分.15.(3分)如图,A、B两点在反比例函数y=的图象上,C、D两点在反比例函数y=的图象上,AC⊥x轴于点E,BD⊥x轴于点F,AC=2,BD=4,EF=3,则k2﹣k1=4.【分析】设出A(a,),C(a,),B(b,),D(b,),由坐标转化线段长,从而可求出结果等于4.【解答】解:设A(a,),C(a,),B(b,),D(b,),则CA=﹣=2,∴,得a=同理:BD=,得b=又∵a﹣b=3∴﹣=3解得:k2﹣k1=4【点评】本题考查反比例函数上点的坐标关系,根据坐标转化线段长是解题关键.16.(3分)如图,抛物线y=﹣x2+2x+m+1(m为常数)交y轴于点A,与x轴的一个交点在2和3之间,顶点为B.①抛物线y=﹣x2+2x+m+1与直线y=m+2有且只有一个交点;②若点M(﹣2,y1)、点N(,y2)、点P(2,y3)在该函数图象上,则y1<y2<y3;③将该抛物线向左平移2个单位,再向下平移2个单位,所得抛物线解析式为y=﹣(x+1)2+m;④点A关于直线x=1的对称点为C,点D、E分别在x轴和y轴上,当m=1时,四边形BCDE周长的最小值为+.其中正确判断的序号是①③④.【分析】①把y=m+2代入y=﹣x2+2x+m+1中,判断所得一元二次方程的根的情况便可得判断正确;②根据二次函数的性质进行判断;③根据平移的公式求出平移后的解析式便可;④因BC边一定,只要其他三边和最小便可,作点B关于y轴的对称点B′,作C点关于x轴的对称点C′,连接B′C′,与x轴、y轴分别交于D、E点,求出B′C′便是其他三边和的最小值.【解答】解:①把y=m+2代入y=﹣x2+2x+m+1中,得x2﹣2x+1=0,∵△=4﹣4=0,∴此方程两个相等的实数根,则抛物线y=﹣x2+2x+m+1与直线y=m+2有且只有一个交点,故此小题结论正确;②∵抛物线的对称轴为x=1,∴点P(2,y3)关于x=1的对称点为P′(0,y3),∵a=﹣1<0,∴当x<1时,y随x增大而减小,又∵﹣2<0<,点M(﹣2,y1)、点N (,y2)、点P′(0,y3)在该函数图象上,∴y2<y3<y1,故此小题结论错误;③将该抛物线向左平移2个单位,再向下平移2个单位,抛物线的解析式为:y=﹣(x+2)2+2(x+2)x+m+1﹣2,即y=﹣(x+1)2+m,故此小题结论正确;④当m=1时,抛物线的解析式为:y=﹣x2+2x+2,∴A(0,2),C(2,2),B(1,3),作点B关于y轴的对称点B′(﹣1,3),作C点关于x轴的对称点C′(2,﹣2),连接B′C′,与x轴、y轴分别交于D、E点,如图,则BE+ED+CD+BC=B′E+ED+C′D+BC=B′C′+BC,根据两点之间线段最短,知B′C′最短,而BC的长度一定,∴此时,四边形BCDE周长=B′C′+BC最小,为:,故此小题结论正确;故答案为:①③④.【点评】本题考查二次函数的应用、二次函数的图象与性质、二次函数与坐标轴的交点、求线段和的最小值等知识,解题的关键是灵活运用所学知识解决问题,属于中考填空题中的压轴题.三、解答题:解答时应写出必要的文字说明、证明过程或演算步骤(共72分)17.(5分)计算:(π﹣3.14)0﹣()﹣2+﹣.【分析】直接利用零指数幂的性质以及负指数幂的性质和立方根的性质分别化简得出答案.【解答】解:原式=1﹣4+3﹣2=﹣2.【点评】此题主要考查了实数运算,正确化简各数是解题关键.18.(7分)先化简:(﹣)÷,再选取一个适当的x的值代入求值.【分析】先对括号里的分式进行整理,,,两式相减进行通分即可进行化简,再代入适当的值即可.【解答】解:化简得,原式===﹣取x=1得,原式=﹣=﹣【点评】此题主要考查分式的化简求值,掌握运用分式的通分技巧及分解因式是解题的关键.19.(7分)随机抽取某小吃店一周的营业额(单位:元)如下表:星期一星期二星期三星期四星期五星期六星期日合计540680640640780111010705460(1)分析数据,填空:这组数据的平均数是780元,中位数是680元,众数是640元.(2)估计一个月的营业额(按30天计算):①星期一到星期五营业额相差不大,用这5天的平均数估算合适么?答(填“合适”或“不合适”):不合适.②选择一个你认为最合适的数据估算这个小吃店一个月的营业额.【分析】(1)根据平均数的定义、中位数的定义、众数的定义进行解答即可;(2)①从极端值对平均数的影响作出判断即可;②可用该店本周一到周日的日均营业额估计当月营业额.【解答】解:(1)这组数据的平均数==780(元);按照从小到大排列为540、640、640、680、780、1070、1110,中位数为680元,众数为640元;故答案为:780,680,640;(2)①因为在周一至周日的营业额中周六、日的营业额明显高于其他五天的营业额,所以去掉周六、日的营业额对平均数的影响较大,故用该店本周星期一到星期五的日平均营业额估计当月的营业总额不合适;故答案为:不合适;②用该店本周一到周日的日均营业额估计当月营业额,当月的营业额为30×780=23400(元).【点评】本题主要考查了众数、平均数、中位数及样本估计总体,解题的关键是掌握算术平均数的定义与样本估计总体思想的运用.20.(7分)如图,在Rt△ABC中,∠ACB=90°,AC=2,BC=3.(1)尺规作图:不写作法,保留作图痕迹.①作∠ACB的平分线,交斜边AB于点D;②过点D作BC的垂线,垂足为点E.(2)在(1)作出的图形中,求DE的长.【分析】(1)利用基本作图,先画出CD平分∠ACB,然后作DE⊥BC于E;(2)利用CD平分∠ACB得到∠BCD=45°,再判断△CDE为等腰直角三角形,所以DE=CE,然后证明△BDE∽△BAC,从而利用相似比计算出DE.【解答】解:(1)如图,DE为所作;(2)∵CD平分∠ACB,∴∠BCD=∠ACB=45°,∵DE⊥BC,∴△CDE为等腰直角三角形,∴DE=CE,∵DE∥AC,∴△BDE∽△BAC,∴=,即=,∴DE=.【点评】本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.21.(7分)端午节前后,张阿姨两次到超市购买同一种粽子.节前,按标价购买,用了96元;节后,按标价的6折购买,用了72元,两次一共购买了27个.这种粽子的标价是多少?【分析】设这种粽子的标价是x元/个,则节后的价格是0.6x元/个,根据数量=总价÷单价结合两次一共购买了27个,即可得出关于x的分式方程,解之经检验后即可得出结论.【解答】解:设这种粽子的标价是x元/个,则节后的价格是0.6x元/个,依题意,得:+=27,解得:x=8,经检验,x=8是原方程的解,且符合题意.答:这种粽子的标价是8元/个.【点评】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.22.(8分)如图,⊙O是△ABC的外接圆,∠BAC的平分线交⊙O于点D,交BC于点E,过点D作直线DF∥BC.(1)判断直线DF与⊙O的位置关系,并说明理由;(2)若AB=6,AE=,CE=,求BD的长.【分析】(1)连接OD,根据角平分线的定义得到∠BAD=∠CAD,求得=,根据垂径定理得到OD⊥BC,根据平行线的性质得到OD⊥DF,于是得到DF与⊙O相切;(2)根据相似三角形的判定和性质即可得到结论.【解答】解:(1)DF与⊙O相切,理由:连接OD,∵∠BAC的平分线交⊙O于点D,∴∠BAD=∠CAD,∴=,∴OD⊥BC,∵DF∥BC,∴OD⊥DF,∴DF与⊙O相切;(2)∵∠BAD=∠CAD,∠ADB=∠C,∴△ABD∽△AEC,∴,∴=,∴BD=.【点评】本题主要考查的是直线与圆的位置关系,相似三角形的性质和判定、等腰三角形的性质、切线的判定,证得∠BAD=∠DAC是解题的关键.23.(8分)渠县賨人谷是国家AAAA级旅游景区,以“奇山奇水奇石景,古賨古洞古部落”享誉巴渠,被誉为川东“小九寨”.端坐在观音崖旁的一块奇石似一只“啸天犬”,昂首向天,望穿古今.一个周末,某数学兴趣小组的几名同学想测出“啸天犬”上嘴尖与头顶的距离.他们把蹲着的“啸天犬”抽象成四边形ABCD,想法测出了尾部C看头顶B 的仰角为40°,从前脚落地点D看上嘴尖A的仰角刚好60°,CB=5m,CD=2.7m.景区管理员告诉同学们,上嘴尖到地面的距离是3m.于是,他们很快就算出了AB的长.你也算算?(结果精确到0.1m.参考数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84.≈1.41,≈1.73)【分析】作BF⊥CE于F,根据正弦的定义求出BF,利用余弦的定义求出CF,利用正切的定义求出DE,结合图形计算即可.【解答】解:作BF⊥CE于F,在Rt△BFC中,BF=BC•sin∠BCF≈3.20,CF=BC•cos∠BCF≈3.85,在Rt△ADE中,DE===≈1.73,∴BH=BF﹣HF=0.20,AH=EF=CD+DE﹣CF=0.58,由勾股定理得,AB=≈0.6(m),答:AB的长约为0.6m.【点评】本题考查的是解直角三角形的应用﹣仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.24.(11分)箭头四角形模型规律如图1,延长CO交AB于点D,则∠BOC=∠1+∠B=∠A+∠C+∠B.因为凹四边形ABOC形似箭头,其四角具有“∠BOC=∠A+∠B+∠C”这个规律,所以我们把这个模型叫做“箭头四角形”.模型应用(1)直接应用:①如图2,∠A+∠B+∠C+∠D+∠E+∠F=2α.②如图3,∠ABE、∠ACE的2等分线(即角平分线)BF、CF交于点F,已知∠BEC=120°,∠BAC=50°,则∠BFC=85°.③如图4,BO i、CO i分别为∠ABO、∠ACO的2019等分线(i=1,2,3, (2017)2018).它们的交点从上到下依次为O1、O2、O3、…、O2018.已知∠BOC=m°,∠BAC =n°,则∠BO1000C=(m+n)度.(2)拓展应用:如图5,在四边形ABCD中,BC=CD,∠BCD=2∠BAD.O是四边形ABCD内一点,且OA=OB=OD.求证:四边形OBCD是菱形.【分析】(1)①由∠A+∠B+∠C=∠BOC=α,∠D+∠E+∠F=∠DOE=α可得答案;②由∠BEC=∠EBF+∠ECF+∠F,∠F=∠ABF+∠ACF+∠A且∠EBF=∠ABF,∠ECF =∠ACF知∠BEC=∠F﹣∠A+∠F,从而得∠F=,代入计算可得;③由∠BOC=∠OBO1000+∠OCO1000+∠BO1000C=(∠ABO+∠ACO)+∠BO1000C,∠BO1000C=∠ABO1000+∠ACO1000+∠BAC=(∠ABO+∠ACO)+∠BAC知∠ABO+∠ACO=(∠BO1000C﹣∠BAC),代入∠BOC=(∠ABO+∠ACO)+∠BO1000C 得∠BOC=×(∠BO1000C﹣∠BAC)+∠BO1000C,据此得出∠BO1000C=(∠BOC+∠BAC)=∠BOC+∠BAC,代入可得答案;(2)由∠OAB=∠OBA,∠OAD=∠ODA知∠BOD=∠BAD+∠ABO+∠ADO=2∠BAD,结合∠BCD=2∠BAD得∠BCD=∠BOD,连接OC,根据全等三角形的判定和性质以及菱形的判定解答即可.【解答】解:(1)①如图2,在凹四边形ABOC中,∠A+∠B+∠C=∠BOC=α,在凹四边形DOEF中,∠D+∠E+∠F=∠DOE=α,∴∠A+∠B+∠C+∠D+∠E+∠F=2α;②如图3,∵∠BEC=∠EBF+∠ECF+∠F,∠F=∠ABF+∠ACF+∠A,且∠EBF=∠ABF,∠ECF =∠ACF,∴∠BEC=∠F﹣∠A+∠F,∴∠F=,∵∠BEC=120°,∠BAC=50°,∴∠F=85°;③如图3,由题意知∠ABO1000=∠ABO,∠OBO1000=∠ABO,∠ACO1000=∠ACO,∠OCO1000=∠ACO,∴∠BOC=∠OBO1000+∠OCO1000+∠BO1000C=(∠ABO+∠ACO)+∠BO1000C,∠BO1000C=∠ABO1000+∠ACO1000+∠BAC=(∠ABO+∠ACO)+∠BAC,则∠ABO+∠ACO=(∠BO1000C﹣∠BAC),代入∠BOC=(∠ABO+∠ACO)+∠BO1000C得∠BOC=×(∠BO1000C ﹣∠BAC)+∠BO1000C,解得:∠BO1000C=(∠BOC+∠BAC)=∠BOC+∠BAC,∵∠BOC=m°,∠BAC=n°,∴∠BO1000C=m°+n°;故答案为:①2α;②85°;③(m+n);(2)如图5,连接OC,∵OA=OB=OD,∴∠OAB=∠OBA,∠OAD=∠ODA,∴∠BOD=∠BAD+∠ABO+∠ADO=2∠BAD,∵∠BCD=2∠BAD,∴∠BCD=∠BOD,∵BC=CD,OA=OB=OD,OC是公共边,∴△OBC≌△ODC(SSS),∴∠BOC=∠DOC,∠BCO=∠DCO,∵∠BOD=∠BOC+∠DOC,∠BCD=∠BCO+∠DCO,∴∠BOC=∠BOD,∠BCO=∠BCD,又∠BOD=∠BCD,∴∠BOC=∠BCO,∴BO=BC,又OB=OD,BC=CD,∴OB=BC=CD=DO,∴四边形OBCD是菱形.【点评】本题主要考查四边形的综合问题,解题的关键是掌握“箭头四角形”的性质∠BOC=∠A+∠B+∠C及其运用,全等三角形的判定与性质、菱形的判定等知识点.25.(12分)如图1,已知抛物线y=﹣x2+bx+c过点A(1,0),B(﹣3,0).(1)求抛物线的解析式及其顶点C的坐标;(2)设点D是x轴上一点,当tan(∠CAO+∠CDO)=4时,求点D的坐标;(3)如图2.抛物线与y轴交于点E,点P是该抛物线上位于第二象限的点,线段P A 交BE于点M,交y轴于点N,△BMP和△EMN的面积分别为m、n,求m﹣n的最大值.【分析】(1)利用待定系数法,将A,B的坐标代入y=﹣x2+bx+c即可求得二次函数的解析式;(2)设抛物线对称轴与x轴交于点H,在Rt△CHO中,可求得tan∠COH=4,推出∠ACO=∠CDO,可证△AOC∽△ACD,利用相似三角形的性质可求出AD的长度,进一步可求出点D的坐标,由对称性可直接求出另一种情况;(3)设P(a,﹣a2﹣2a+3),P(a,﹣a2﹣2a+3),A(1,0)代入y=kx+b,求出直线P A的解析式,求出点N的坐标,由S△BPM=S△BP A﹣S四边形BMNO﹣S△AON,S△EMN=S△EBO ﹣S四边形BMNO,可推出S△BPM﹣S△EMN=S△BP A﹣S△EBO﹣S△AON,再用含a的代数式表示出来,最终可用函数的思想来求出其最大值.【解答】解:(1)由题意把点(1,0),(﹣3,0)代入y=﹣x2+bx+c,。
2019年四川省宜宾市中考数学试卷一、选择题:(本大题共8小题,每小题3分,共24分)在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项填涂在答题卡对应题目上。
1.(3分)2的倒数是()A .B.﹣2C .D .2.(3分)人体中枢神经系统中约含有1千亿个神经元,某种神经元的直径约为52微米,52微米为0.000052米.将0.000052用科学记数法表示为()A.5.2×10﹣6B.5.2×10﹣5C.52×10﹣6D.52×10﹣5 3.(3分)如图,四边形ABCD是边长为5的正方形,E是DC上一点,DE=1,将△ADE 绕着点A顺时针旋转到与△ABF重合,则EF=()A .B .C.5D.24.(3分)一元二次方程x2﹣2x+b=0的两根分别为x1和x2,则x1+x2为()A.﹣2B.b C.2D.﹣b5.(3分)已知一个组合体是由几个相同的正方体叠合在一起组成,该组合体的主视图与俯视图如图所示,则该组合体中正方体的个数最多是()A.10B.9C.8D.76.(3分)如表记录了两位射击运动员的八次训练成绩:根据以上数据,设甲、乙的平均数分别为、,甲、乙的方差分别为s 甲2,s乙2,则下列结论正确的是()A.=,s 甲2<s乙2B.=,s甲2>s乙2C.>,s 甲2<s乙2D.<,s甲2<s乙27.(3分)如图,∠EOF的顶点O是边长为2的等边△ABC的重心,∠EOF的两边与△ABC 的边交于E,F,∠EOF=120°,则∠EOF与△ABC的边所围成阴影部分的面积是()A.B.C.D.8.(3分)已知抛物线y=x2﹣1与y轴交于点A,与直线y=kx(k为任意实数)相交于B,C两点,则下列结论不正确的是()A.存在实数k,使得△ABC为等腰三角形B.存在实数k,使得△ABC的内角中有两角分别为30°和60°C.任意实数k,使得△ABC都为直角三角形D.存在实数k,使得△ABC为等边三角形二、填空题:(本大题共8小题,每小题3分,共24分)请把答案直接填在答题卡对应题中横上。
9.(3分)分解因式:b2+c2+2bc﹣a2=.10.(3分)如图,六边形ABCDEF的内角都相等,AD∥BC,则∠DAB=°.11.(3分)将抛物线y=2x2的图象,向左平移1个单位,再向下平移2个单位,所得图象的解析式为.12.(3分)如图,已知直角△ABC中,CD是斜边AB上的高,AC=4,BC=3,则AD=.13.(3分)某产品每件的生产成本为50元,原定销售价65元,经市场预测,从现在开始的第一季度销售价格将下降10%,第二季度又将回升5%.若要使半年以后的销售利润不变,设每个季度平均降低成本的百分率为x,根据题意可列方程是.14.(3分)若关于x的不等式组有且只有两个整数解,则m的取值范围是.15.(3分)如图,⊙O的两条相交弦AC、BD,∠ACB=∠CDB=60°,AC=2,则⊙O 的面积是.16.(3分)如图,△ABC和△CDE都是等边三角形,且点A、C、E在同一直线上,AD与BE、BC分别交于点F、M,BE与CD交于点N.下列结论正确的是(写出所有正确结论的序号).①AM=BN;②△ABF≌△DNF;③∠FMC+∠FNC=180°;④=三、解答题:(本大题共8小题,共72分)解答应写出文字说明、证明过程或演算步骤。
17.(10分)(1)计算:(2019﹣)0﹣2﹣1+|﹣1|+sin245°(2)化简:÷(+)18.(6分)如图,AB=AD,AC=AE,∠BAE=∠DAC.求证:∠C=∠E.19.(8分)某校在七、八、九三个年级中进行“一带一路”知识竞赛,分别设有一等奖、二等奖、三等奖、优秀奖、纪念奖.现对三个年级同学的获奖情况进行了统计,其中获得纪念奖有17人,获得三等奖有10人,并制作了如图不完整的统计图.(1)求三个年级获奖总人数;(2)请补全扇形统计图的数据;(3)在获一等奖的同学中,七年级和八年级的人数各占,其余为九年级的同学,现从获一等奖的同学中选2名参加市级比赛,通过列表或者树状图的方法,求所选出的2人中既有七年级又有九年级同学的概率.20.(8分)甲、乙两辆货车分别从A、B两城同时沿高速公路向C城运送货物.已知A、C 两城相距450千米,B、C两城的路程为440千米,甲车比乙车的速度快10千米/小时,甲车比乙车早半小时到达C城.求两车的速度.21.(8分)如图,为了测得某建筑物的高度AB,在C处用高为1米的测角仪CF,测得该建筑物顶端A的仰角为45°,再向建筑物方向前进40米,又测得该建筑物顶端A的仰角为60°.求该建筑物的高度AB.(结果保留根号)22.(10分)如图,已知反比例函数y=(k>0)的图象和一次函数y=﹣x+b的图象都过点P(1,m),过点P作y轴的垂线,垂足为A,O为坐标原点,△OAP的面积为1.(1)求反比例函数和一次函数的解析式;(2)设反比例函数图象与一次函数图象的另一交点为M,过M作x轴的垂线,垂足为B,求五边形OAPMB的面积.23.(10分)如图,线段AB经过⊙O的圆心O,交⊙O于A、C两点,BC=1,AD为⊙O 的弦,连结BD,∠BAD=∠ABD=30°,连结DO并延长交⊙O于点E,连结BE交⊙O 于点M.(1)求证:直线BD是⊙O的切线;(2)求⊙O的半径OD的长;(3)求线段BM的长.24.(12分)如图,在平面直角坐标系xOy中,已知抛物线y=ax2﹣2x+c与直线y=kx+b 都经过A(0,﹣3)、B(3,0)两点,该抛物线的顶点为C.(1)求此抛物线和直线AB的解析式;(2)设直线AB与该抛物线的对称轴交于点E,在射线EB上是否存在一点M,过M作x轴的垂线交抛物线于点N,使点M、N、C、E是平行四边形的四个顶点?若存在,求点M的坐标;若不存在,请说明理由;(3)设点P是直线AB下方抛物线上的一动点,当△P AB面积最大时,求点P的坐标,并求△P AB面积的最大值.2019年四川省宜宾市中考数学试卷参考答案与试题解析一、选择题:(本大题共8小题,每小题3分,共24分)在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项填涂在答题卡对应题目上。
1.(3分)2的倒数是()A.B.﹣2C.D.【分析】根据倒数的定义,可以求得题目中数字的倒数,本题得以解决.【解答】解:2的倒数是,故选:A.【点评】本题考查倒数,解答本题的关键是明确倒数的定义.2.(3分)人体中枢神经系统中约含有1千亿个神经元,某种神经元的直径约为52微米,52微米为0.000052米.将0.000052用科学记数法表示为()A.5.2×10﹣6B.5.2×10﹣5C.52×10﹣6D.52×10﹣5【分析】由科学记数法可知0.000052=5.2×10﹣5;【解答】解:0.000052=5.2×10﹣5;故选:B.【点评】本题考查科学记数法;熟练掌握科学记数法a×10n中a与n的意义是解题的关键.3.(3分)如图,四边形ABCD是边长为5的正方形,E是DC上一点,DE=1,将△ADE 绕着点A顺时针旋转到与△ABF重合,则EF=()A.B.C.5D.2【分析】根据旋转变换的性质求出FC、CE,根据勾股定理计算即可.【解答】解:由旋转变换的性质可知,△ADE≌△ABF,∴正方形ABCD的面积=四边形AECF的面积=25,∴BC=5,BF=DE=1,∴FC=6,CE=4,∴EF===2.故选:D.【点评】本题考查的是旋转变换的性质、勾股定理的应用,掌握性质的概念、旋转变换的性质是解题的关键.4.(3分)一元二次方程x2﹣2x+b=0的两根分别为x1和x2,则x1+x2为()A.﹣2B.b C.2D.﹣b【分析】根据“一元二次方程x2﹣2x+b=0的两根分别为x1和x2”,结合根与系数的关系,即可得到答案.【解答】解:根据题意得:x1+x2=﹣=2,故选:C.【点评】本题考查了根与系数的关系,正确掌握一元二次方程根与系数的关系是解题的关键.5.(3分)已知一个组合体是由几个相同的正方体叠合在一起组成,该组合体的主视图与俯视图如图所示,则该组合体中正方体的个数最多是()A.10B.9C.8D.7【分析】从俯视图中可以看出最底层小正方体的个数及形状,从主视图可以看出每一层小正方体的层数和个数,从而算出总的个数.【解答】解:从俯视图可得最底层有5个小正方体,由主视图可得上面一层是2个,3个或4个小正方体,则组成这个几何体的小正方体的个数是7个或8个或9个,组成这个几何体的小正方体的个数最多是9个.故选:B.【点评】本题考查三视图的知识及从不同方向观察物体的能力,解题中用到了观察法.确定该几何体有几列以及每列方块的个数是解题关键.6.(3分)如表记录了两位射击运动员的八次训练成绩:根据以上数据,设甲、乙的平均数分别为、,甲、乙的方差分别为s甲2,s乙2,则下列结论正确的是()A.=,s甲2<s乙2B.=,s甲2>s 乙2C.>,s甲2<s乙2D.<,s甲2<s乙2【分析】分别计算平均数和方差后比较即可得到答案.【解答】解:(1)=(10+7+7+8+8+8+9+7)=8;=(10+5+5+8+9+9+8+10)=8;s甲2=[(10﹣8)2+(7﹣8)2+(7﹣8)2+(8﹣8)2+(8﹣8)2+(8﹣8)2+(9﹣8)2+(7﹣8)2]=1;s乙2=[(10﹣8)2+(5﹣8)2+(5﹣8)2+(8﹣8)2+(9﹣8)2+(9﹣8)2+(8﹣8)2+(10﹣8)2]=,∴=,s甲2<s乙2,故选:A.【点评】本题考查了方差,方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.7.(3分)如图,∠EOF的顶点O是边长为2的等边△ABC的重心,∠EOF的两边与△ABC 的边交于E,F,∠EOF=120°,则∠EOF与△ABC的边所围成阴影部分的面积是()A.B.C.D.【分析】连接OB、OC,过点O作ON⊥BC,垂足为N,由点O是等边三角形ABC的内心可以得到∠OBC=∠OCB=30°,结合条件BC=2即可求出△OBC的面积,由∠EOF =∠BOC,从而得到∠EOB=∠FOC,进而可以证到△EOB≌△FOC,因而阴影部分面积等于△OBC的面积.【解答】解:连接OB、OC,过点O作ON⊥BC,垂足为N,∵△ABC为等边三角形,∴∠ABC=∠ACB=60°,∵点O为△ABC的内心∴∠OBC=∠OBA=∠ABC,∠OCB=∠ACB.∴∠OBA=∠OBC=∠OCB=30°.∴OB=OC.∠BOC=120°,∵ON⊥BC,BC=2,∴BN=NC=1,∴ON=tan∠OBC•BN=×1=,∴S△OBC=BC•ON=.∵∠EOF=∠AOB=120°,∴∠EOF﹣∠BOF=∠AOB﹣∠BOF,即∠EOB=∠FOC.在△EOB和△FOC中,,∴△EOB≌△FOC(ASA).∴S阴影=S△OBC=故选:C.【点评】此题考查了等边三角形的性质、等腰三角形的性质、三角函数的定义、全等三角形的判定与性质、三角形的内心、三角形的内角和定理,有一定的综合性,作出辅助线构建全等三角形是解题的关键.8.(3分)已知抛物线y=x2﹣1与y轴交于点A,与直线y=kx(k为任意实数)相交于B,C两点,则下列结论不正确的是()A.存在实数k,使得△ABC为等腰三角形B.存在实数k,使得△ABC的内角中有两角分别为30°和60°C.任意实数k,使得△ABC都为直角三角形D.存在实数k,使得△ABC为等边三角形【分析】通过画图可解答.【解答】解:A、如图1,可以得△ABC为等腰三角形,正确;B、如图3,∠ACB=30°,∠ABC=60°,可以得△ABC的内角中有两角分别为30°和60°,正确;C、如图2和3,∠BAC=90°,可以得△ABC为直角三角形,正确;D、不存在实数k,使得△ABC为等边三角形,不正确;本题选择结论不正确的,故选:D.【点评】本题考查了二次函数和正比例函数图象,等边三角形和判定,直角三角形的判定,正确画图是关键.二、填空题:(本大题共8小题,每小题3分,共24分)请把答案直接填在答题卡对应题中横上。