_第六章实数单元测试题_
- 格式:doc
- 大小:287.00 KB
- 文档页数:4
人教版七年级数学下册第六章实数。
单元测试题精选(Word版附答案)人教版七年级数学第6章《实数》单元测试题精选完成时间:120分钟满分:150分得分评卷人:______________ 姓名:______________ 成绩:______________一、选择题(本大题10小题,每小题4分,共40分。
每小题给出的四个选项中,只有一个选项是符合题意的,请将该选项的标号填入表格内)题号 1 2 3 4 5 6 7 8 9 10答案 B A D A A C D C B B二、填空题(每题5分,共20分)11.m = 3.n = 1.(m+n)^5 = 243.12.(1) 0.000 521 7 (2) 0.002 284.13.3.14.x = 8.三、解答题(共90分)15.1) x = ±5/3;2) x = 3/5.16.1.17.a = 9.b = -8.3a+b的算术平方根为 5.18.已知 $m=\lfloor 313\rfloor$。
$n=0.13$,求 $m-n$ 的值。
19.如图,计划围一个面积为 $50\text{ m}^2$ 的长方形场地,一边靠旧墙(墙长为 $10$ m),另外三边用篱笆围成,并且它的长与宽之比为 $5:2$。
讨论方案时,XXX说:“我们不可能围成满足要求的长方形场地。
”小军说:“面积和长宽比例是确定的,肯定可以围得出来。
”请你判断谁的说法正确,为什么?解:设长为 $5x$,宽为 $2x$,则面积为 $10x^2$,另一条边长为 $10-5x$,由题意得 $10x^2=(10-5x)\times2x$,解得$x=1$,长为 $5$,宽为 $2$,可以围成满足要求的长方形场地,小军的说法正确。
20.若 $x+3+(y-3)^2=3$,则 $(xy)^{\frac{2015}{3}}$ 等于多少?解:移项得 $(y-3)^2=3-x-3=-x$,所以 $xy=\frac{3-x}{y-3}$,将其代入 $(xy)^{\frac{2015}{3}}$ 得 $\left(\frac{3-x}{y-3}\right)^{\frac{2015}{3}}$,根据乘方的运算法则,得$\left(\frac{3-x}{y-3}\right)^{671}$。
人教版七年级下册第六章实数单元同步测试一、选择题1、以下说法正确的选项是()A.负数没有立方根B.一个正数的立方根有两个,它们互为相反数C.假如一个数有立方根,则它必有平方根D.不为 0 的任何数的立方根,都与这个数自己的符号同号2、以下语句中正确的选项是()A.-9 的平方根是 -3B.9 的平方根是 3C.9 的算术平方根是3D.9 的算术平方根是 33、以下说法中正确的选项是()A、若 a 为实数,则a0 B 、若 a 为实数,则 a 的倒数为1aC、若 x,y 为实数,且x=y ,则x y D 、若 a 为实数,则a204、估量287 的值在A. 7和8之间B. 6和 7之间C. 3和4之间D. 2和 3之间5、以下各组数中,不可以作为一个三角形的三边长的是()A、 1、 1000、 1000B、 2、 3、5C、32,42,52D、38 , 327 , 3646、以下说法中,正确的个数是()(1)- 64 的立方根是- 4;( 2)49的算术平方根是7 ;(3)1的立方根为1;(4)1是27341的平方根。
16A 、1B 、2C 、3D 、47、一个数的平方根与立方根相等,则这个数是( )A.1B. ±1C.0D. —18、假如 3 2.37 1.333 , 3 23.7 2.872 ,那么 3 0.0237 约等于().A. 13.33B. 28.72C. 0.1333D. 0.28729、若x 1 +( y+2 ) 2=0,则( x+y ) 2017=( )A .﹣ 1B . 1C . 32017D .﹣ 3201710、若 0a 1,则 a, a 2, 1的大小关系是 ()a二、填空题11、 0.0036 的平方根 是,81 的算术平方根是.12、若a 的平方根为 3 ,则 a=.13、假如一个数的平方根是 a+6 和 2a-15 ,则这个数为。
14、比较大小:5 11(填“>”、“<”或“ =”).15、比较大小: 3 10 ________5 ( 填“>”或 “<” ) .16、立方等于它自己的数是。
第六章实数达标检测一、单选题:1.在实数,,,,,3.212212221…中,无理数的个数是()个.A.1B.2C.3D.4【答案】D【分析】无理数常见的三种类型(1)开不尽的方根;(2)特定结构的无限不循环小数;(3)含有π的绝大部分数,如2π.【详解】−1.414是有限小数,是有理数,是无理数,π是无理数,无限循环小数是有理数,是无理数,3.212212221…是无限不循环小数是无理数,故选:D.【点睛】本题主要考查的是无理数的认识,掌握无理数的常见类型是解题的关键.2.下列各式中,正确的是( )A.B.C.D.【答案】A【分析】根据立方根,算术平方根逐项判断即可.【详解】解:A. ,故该选项正确;B. ,故该选项错误;C. ,故该选项错误;D. ,故该选项错误.故选:A.【点睛】本题考查立方根,算术平方根,解题关键是理解立方根与算术平方根的意义.3.下列说法正确的是()A.平方根是B.的平方根是C.平方根等于它本身的数是1和0D.一定是正数【答案】D【分析】A、根据平方根的概念即可得到答案;B、的平方根其实是9的平方根;C、平方根等于它本身的数与算术平方根是它本身的数要分清楚;D、先判断出,再利用算术平方根的性质直接得到答案.【详解】A、是负数,负数没有平方根,不符合题意;B、,9的平方根是,不符合题意;C、平方根等于它本身的数是0,1的平方根是,不符合题意;D、,正数的算术平方根大于0,符合题意.故选:D.【点睛】此题考查了平方根及算术平方根的定义及性质,熟练掌握相关知识是解题关键.4.下列关于的说法中,错误的是()A.是无理数B.C.5的平方根是D.【答案】C【分析】根据无理数的定义,算术平方根的估算,平方根和化简绝对值依次判断即可.【详解】解:A、是无理数,说法正确,不符合题意;B、2<<3,说法正确,不符合题意;C、5的平方根是±,故原题说法错误,符合题意;D、,说法正确, 不符合题意;故选C.【点睛】本题考查了平方根、算术平方根的估算,无理数的定义.注意一个正数的平方根有两个,它们互为相反数.5.计算:-+-的结果是( )A.1B.-1C.5D.-3【答案】D【分析】首先求出各个根式的值,进而即可求解.【详解】-+-,=-3+2-2,=-3.故选D.【点睛】此题主要考查了实数的运算,解题关键是能够求解一些简单的二次根式的加减问题.6.如图,在数轴上表示实数的点可能().A.点P B.点Q C.点M D.点N【答案】C【分析】确定是在哪两个相邻的整数之间,然后确定对应的点即可解决问题.【详解】解:∵9<15<16,∴3<<4,∴对应的点是M.故选:C.【点睛】本题考查实数与数轴上的点的对应关系,解题关键是应先看这个无理数在哪两个有理数之间,进而求解.7.有一个数值转换器,原理如下:当输入的x为4时,输出的y是()A.4B.2C.D.-【答案】C【分析】直接利用规定的运算顺序计算得出答案.【详解】解:4的算术平方根为:=2,则2的算术平方根为:,是无理数.故选C.【点睛】本题考查算术平方根、有理数和无理数定义,正确把握运算顺序是解题关键.8.若与互为相反数,则的值为().A.B.C.D.【答案】A【分析】根据相反数与立方根的性质计算即可得答案.【详解】解:∵与是相反数,∴==∴3x-1=2y-1,整理得:3x=2y,即,故选A.【点睛】本题主要考查立方根的性质,正数的立方根是正数,负数的立方根还是负数,一个数只有一个立方根,熟练掌握立方根的性质是解题关键.9.如图所示,直径为单位1的圆从原点沿着数轴无滑动的逆时针滚动一周到达A点,则A点表示的数是( )A.﹣2π﹣1B.﹣1+πC.﹣1+2πD.﹣π【答案】D【分析】先求出圆的周长π,即得到OA的长,然后根据数轴上的点与实数一一对应的关系即可得到点A表示的数.【详解】∵直径为单位1的圆的周长=π×1=π,∴OA=π,∴点A表示的数为﹣π,故选D.【点睛】本题考查了实数与数轴,解题的关键是熟知数轴上的点与实数一一对应.10.如图,是按一定规律排成的三角形数阵,按图中数阵的排列规律,第9行从左至右第5个数是( )A.2B.C.5D.【答案】B【分析】根据三角形数列的特点,归纳出每一行第一个数的通用公式,即可求出第9行从左至右第5个数.【详解】根据三角形数列的特点,归纳出每n行第一个数的通用公式是,所以,第9行从左至右第5个数是=.【点睛】本题主要考查归纳推理的应用,根据每一行第一个数的取值规律,利用累加法求出第9行第五个数的数值是解决本题的关键,考查学生的推理能力.二、填空题:11.的算术平方根是_________;的平方根是____________.【答案】 2【分析】根据算术平方根和平方根的定义求解即可.【详解】解∵,∴的算术平方根是2,的平方根是±3.故答案为:2,±3.【点睛】本题主要考查了算术平方根,平方根的定义,解题的关键在于能够熟练掌握平方根和算术平方根的定义.12._____;______;______;______.【答案】 2 3.5【分析】根据平方根的定义、算术平方根的定义以及立方根的定义,即如果一个数的平方等于a,这个数就叫做a的平方根;一般地,如果一个正数x的平方等于a,即,那么这个正数x叫做a的算术平方根,记作;如果一个数的立方等于a,那么这个数叫做a的立方根或三次方根.这就是说,如果,那么x叫做a的立方根,记作:.计算即可.【详解】原式=2;原式;原式;原式;故答案为:2,,,.【点睛】本题主要考查了平方根,算术平方根以及立方根,熟记相关定义是解答本题的关键.13.若将三个数,,表示在数轴上,其中一个数被墨迹覆盖(如图所示),则这个被覆盖的数是______.【分析】根据被覆盖的数的范围求出被开方数的范围,然后即可得解.【详解】设被覆盖的数是,根据图形可得,∴,∴三个数,,中符合范围的是.故答案为:.【点睛】本题考查了实数与数轴的关系,根据数轴确定出被覆盖的数的取值范围是解题的关键.14.若一个正数的平方根是2a+1和﹣a+2,则a=_____,这个正数是_____.【答案】 -3 25【分析】根据已知得出方程2a+1﹣a+2=0,求出即可.【详解】解:∵一个正数的平方根是2a+1和﹣a+2,∴2a+1﹣a+2=0,解得:a=﹣3,即这个正数是[2×(﹣3)+1]2=25,故答案为:﹣3;25.【点睛】本题考查了对平方根的应用,注意:正数有两个平方根,它们互为相反数,0的平方根是0,负数没有平方根.15.计算:=___.【答案】3【分析】原式利用绝对值的代数意义,以及二次根式性质化简即可得到结果.【详解】解:∵>0,<0,﹣2<0,∴原式=﹣()+|﹣2|=﹣2+3-+2=3,故答案为:3.【点睛】本题考查了绝对值的化简,二次根式的性质,准确掌握性质是解题的关键.16.比较大小:____;____;____;____.【答案】 <, <, >, >【分析】根据实数的比较大小,将根指数不同的根式化为与之相等的同根式比较,利用放缩法比较,利用中间过渡法比较,利用有理数化为根式形式比较.【详解】解:∵,,8<9,∴_<_;∵,即,∴_<___;∵,,∴,∴__>__;∵7=,_>__.故答案为<;<;>;>.【点睛】本题考查实数的大小比较,掌握实数的比较方法,化为同次根式,比较被开方数大小,放缩法比较大小,中间过渡法比较是解题关键.17.若与互为相反数,则________.【答案】2.【分析】根据相反数的概念列式,根据非负数的性质列出方程求出a、b的值,代入所求代数式计算即可.【详解】解:由题意得:,则:a−1=0,b+1=0,解得:a=1,b=−1,则1+1=2,故答案为:2.【点睛】本题考查了非负数的性质.解题的关键是掌握非负数的性质:几个非负数的和为0时,这几个非负数都为0.18.若2+的小数部分为a,5-的小数部分为b,则a+b的值为______.【答案】1【分析】估算确定出a与b的值,即可求出所求.【详解】解:∵4<6<9,∴2<<3,即4<2+<5,2<5-<3,则a=2+-4,b=5--2,则a+b=2+-4+5--2=1.故答案为1.【点睛】本题考查有理数的大小,弄清估算的方法是解本题的关键.19.已知的立方根是3,的算术平方根是4,c是的整数部分,则的平方根为___________.【答案】±4【分析】利用立方根的意义、算术平方根的意义、无理数的估算方法,求出a、b、c的值,代入代数式求出值后,进一步求得平方根即可.【详解】∵5a+2的立方根是3,3a+b-1的算术平方根是4,∴5a+2=27,3a+b-1=16,∴a=5,b=2,∵c是的整数部分,∴c=3,∴∴的平方根是±4.故答案为:±4.【点睛】本题主要考查的知识点是立方根的意义、算术平方根的意义、无理数的估算方法、平方根的意义、代数式求值,解题关键是读懂题意,掌握解答顺序,正确计算即可.20.已知,若,则______;________;_________;若,则_______.【答案】 214000 214【分析】根据平方根、算术平方根、立方根的概念依次求解即可.【详解】解:∵,且,∴,∵,∴,∵,∴,∵且,∴,故答案为:214000,±0.1463,-0.1289,214.【点睛】本题考查了平方根、算术平方根、立方根的概念等,属于基础题,熟练掌握其定义是解决本类题的关键.三、解答题:21.把下列各数分别填入相应的集合中:-(-230),,0,-0.99,1.31,5,,3.14246792…,-.(1)整数集合:{…}(2)非正数集合:{…}(3)正有理数集合:{…}(4)无理数集合:{…}【答案】(1)整数集合:{-(-230),0,5,…};(2)非正数集合:{0,-0.99,-,…};(3)正有理数集合:{-(-230),,1.31,5,…};(4)无理数集合:{,3.142 467 92…,…}【分析】根据整数、非负数、有理数、无理数的定义判断可得答案.【详解】解:根据整数、非负数、有理数、无理数的定义可得:(1)整数集合:{-(-230),0,5,…};(2)非正数集合:{0,-0.99,-,…};(3)正有理数集合:{-(-230),,1.31,5,…};(4)无理数集合:{,3.142 467 92…,…}【点睛】本题主要考查整数、非负数、有理数、无理数的定义.22.求下列各式的值:(1);(2);(3);(4).【答案】(1);(2);(3)0.4;(4)0.3【分析】根据平方根和立方根的定义,即可求解.【详解】解:(1);(2);(3);(4).【点睛】本题主要考查了平方根和立方根的定义,熟练掌握一般地,如果一个数的平方等于,则称是的一个平方根,记作:;如果一个数的立方等于,则称是的一个立方根,记作:是解题的关键.23.比较下列各组数的大小:(1)与6;(2)与;(3)与.【答案】(1);(2);(3)【分析】(1)直接化简二次根式进而比较得出答案;(2)直接估算无理数的取值范围进而比较即可;(3)直接估算无理数的取值范围进而比较即可.【详解】解:(1)∵,∴;(2)∵,∴;(3)∵,∴,∵,∴,∴.【点睛】本题主要考查了实数比较大小,正确估算无理数取值范围是解题关键.24.计算:(1)(2)【答案】(1)(2)9【分析】(1)根据绝对值的意义去绝对值,然后合并即可;(2)先进行开方运算,然后进行加法运算.【详解】解:(1)原式==2-4;(2)原式=-(-2)+5+2=2+5+2=9.25.求下列各式中的x:(1);(2)(3);(4).【答案】(1);(2);(3)或;(4)【分析】(1)先移项,系数化为1,再根据平方根定义进行解答.(2)由得=,再根据立方根定义即可解答.(3)由得:,再开平方后解一元一次方程即可.(4)由得:,再开平方后解一元一次方程即可.【详解】(1)移项得:,系数化为1:,∵,∴.(2)由得:,∵,∴,解得:.(3)由得:,∴或,解得:或.(4)由得:,,∴或,解得:.【点睛】本题考查平方根、立方根的意义,等式的性质,掌握等式的性质和平方根、立方根的求法是正确计算的前提.26.已知的平方根是,的算术平方根是4,求的平方根.【答案】【分析】根据平方根和算术平方根的定义即可求出和的值,进而求出a和b的值,将a和b的值代入即可求解.【详解】解:∵的平方根是,的算术平方根是4,∴=9,=16,∴a=4,b=-1把a=4,b=-1代入得:3×4-4×(-1)=16,∴的平方根为:.【点睛】本题主要考查了算术平方根和平方根,熟练掌握算术平方根和平方根的定义是解题的关键.注意:一个正数有两个平方根,它们互为相反数.27.已知M是m+3的算术平方根,N是n﹣2的立方根.求(n﹣m)2008.【答案】【分析】由M是m+3的算术平方根,N是n﹣2的立方根,建立方程组:,解方程组可得答案.【详解】解:M是m+3的算术平方根,N是n﹣2的立方根.即:解得:,【点睛】本题考查的是算术平方根,立方根的含义,二元一次方程组的解法,乘方符号的确定,掌握以上知识是解题的关键.28.观察下列各式,并用所得出的规律解决问题:(1),,,……,,,……由此可见,被开方数的小数点每向右移动______位,其算术平方根的小数点向______移动______位.(2)已知,,则_____;______.(3),,,……小数点的变化规律是_______________________.(4)已知,,则______.【答案】(1)两;右;一;(2)12.25;0.3873;(3)被开方数的小数点向右(左)移三位,其立方根的小数点向右(左)移动一位;(4)-0.01【分析】(1)观察已知等式,得到一般性规律,写出即可;(2)利用得出的规律计算即可得到结果;(3)归纳总结得到规律,写出即可;(4)利用得出的规律计算即可得到结果.【详解】解:(1),,,……,,,……由此可见,被开方数的小数点每向右移动两位,其算术平方根的小数点向右移动一位.故答案为:两;右;一;(2)已知,,则;;故答案为:12.25;0.3873;(3),,,……小数点的变化规律是:被开方数的小数点向右(左)移三位,其立方根的小数点向右(左)移动一位;(4)∵,,∴,∴,∴y=-0.01.【点睛】此题考查了立方根,以及算术平方根,弄清题中的规律是解本题的关键.。
第6章 实数 单元测试卷一、单选题1.关于√8的叙述正确的是( )A .在数轴上不存在表示√8的点B .√8=√2+√6C .与√8最接近的整数是2D .√8=2√22.在25-,π-,0,3.14,,0.33333133中,无理数的个数有( )A .1个B .2个C .3个D .4个3.在﹣1.732π,3.14••,,3.212212221……,56,这些数中,有理数的个数为()A .2B .3C .4D .54的值是( )A .2BC .±2D .5.下列说法正确的 ( )A .任何实数aB .任何实数aC .任何实数a 的绝对值是aD .任何实数a 的倒数是1a6.下列实数是无理数的是( )A .-1B .0CD .327.下列各数中最小的数是( )A .π-B .0C .D .18.下列说法正确的是( )A .14是0.5的一个平方根B .()22-的平方根是-2C .正数有两个平方根,且这两个平方根之和等于0D .负数有一个平方根9.如图,在数轴上,点A 与点C 到点B 的距离相等,A ,B 两点所对应的实数分别是1,则点C 对应的实数是( )A .1B .2C .1D .1二、填空题 10.已知2x 3-是81的算术平方根,则x 的值为______.11.数轴上点A ,B -110,则点A 距点B 的距离为_________.12.在数轴上,实数2﹣√5对应的点在原点的_____侧.(填“左”、“右”)13.2(4)-的算术平方根为__________14.已知一个正数的平方根是3a+4和5-6a ,则这个正数是___.15=x y +,则x y -=______.16.比较3(填“<”或“>”)17.已知m ,n 是两个连续整数,且m <n ,则m +n =_____.18.把下列各数的序号填入相应的括号内.①10,①π-,① 3.14-,①0,①113,①1-,①1.3,①1.8080080008…(相邻两个8之间依次多一个0)整数集合_________________________负分数集合_________________________正有理数集合_________________________无理数集合_________________________19.规定a*b=5×a-12×b(其中a,b是自然数),求(1)10*6=_______,(2)6*10=______三、解答题20.(1)的近似值的过程,请你仔细阅读并补充完整:我们知道,面积是2的正方,1,1+x(0<x<1),可画出如图所示的示意图.由各部分面积之和等于总面积.可列方程为:x2++1=2,①0<x<1,①认为x2是个较为接近于0的数,令x2≈0,因此省略x2后,得到方程:,解得,x=,即=1+x≈.(2)请仿照(1) 1.7+y(0<y<1)的近似值(精确到千分位)2122.阅读材料:对于任何数,我们规定一种运算a bad bc c d=-.例如:121423234=⨯-⨯=-.(1)按照这个规定,请你计算10634-的值. (2)请计算当21(2)02x y ++-=时,22232x y -的值.23.用“①”表示一种新的运算,对于正实数 a ,b ,都有 a ①b b , 例如 25①88=13. (1)求 1①5 的值;(2)若 16①(m 3-1)=11,求 m 的值24.(1-2(2)求x 的值:225(2)360x +-=25.计算:(1)()178-++ (2)()222169333÷-⨯--(3)(2332⨯++-26.在一次“智慧课堂”教学比武的课堂上,李老师说:是无理数,无理数就是无限不循环小数,同学们,你能的小数部分全部写出来吗?”大家议论纷纷,张晶同学说:“要把它的小数部分全部写出来是非常难的,但我们可以用1)-表示它的小数部分.”李老师说:“的整数部分是1,将这个数减去其整数部分,差就是小数部分,”请你解答:已知8x y +=+,其中x 是一个整数,且01y <<,请你求出20122)x y +的值.27.求下列各式中的x .(1)2528x -=;(2)()3164x -=-.28.计算:求下列各式的值.(2(3) 31(2)2⎛⎫-- ⎪⎝⎭. (4) ||2|+29.计算:(1)232111(2)83-+-⨯+ ;(2)23346()()a a a a a a --+-g g g参考答案一、选择题1.D 2.B 3.B 4.A 5.B6.C 7.A 8.C 9.B二、填空题10.6 11.11 12.左13.4 14.169. 15.10 16.>17.518.①①① ①① ①①① ①①① 19.47 25三、解答题20.(1)2x,2x+1=2,0.5,1.5;(2)1.732.【解析】【分析】(1)解方程即可得到结论;(2)解方程即可得到结论.【详解】(1)由面积公式,可得x2+2x+1=2.略去x2,得方程2x+1=2.解得x=0.5;故答案为:2x,2x+1=2,0.5,1.5;(2)由面积公式,可得x2+2×1.7x+1.72=3.略去x2,得方程2×1.7x+1.72=2.解得x=0.32≈1.732;【点睛】本题考查了估算无理数的大小,正确的解方程是解题的关键.21.4.【解析】【分析】分别根据算术平方根和立方根的意义进行求解,然后再进行加减运算即可.【详解】,=4-3+3=4.【点睛】本题主要考查了实数的混合运算,熟练掌握算术平方根和立方根的意义是解此题的关键.22.(1)58;(2)-13.【解析】【分析】(1)根据题目的意思,掌握新运算的实际运算方法,按照新运算的方法进行计算即可(2)利用非负性,得出x 、y 的值,然后按照新运算的顺序进行代入计算即可【详解】解:(1)1061046(3)34=⨯-⨯--,4018=+,58=.(2)由21(2)02x y ++-=得:1 2.2x y =-=, 222222(2)332x y x y =---, 2214()322=-⨯--⨯,112=--, .13=-.【点睛】本题主要考查了新运算的实际运用,读懂题中所给的新运算是关键23.(1)6;(2)m=2.【解析】【分析】(1)根据定义的运算法则进行计算即可;(2)由新定义的运算法则可得关于m 的方程,解方程即可求得答案.【详解】(1)①a ①b b ,+5=1+5=6;(2)①a ①b b ,16①(m 3-1)=11,m 3-1)=11,即4+m 3-1=11,①m 3=8,①m=2.【点睛】本题考查了新定义运算,涉及了算术平方根,利用立方根的概念解方程等,弄清新定义运算的运算法则,熟练掌握相关知识是解题的关键.24.(1)-3;(2)145x =-,2165x =-. 【解析】【分析】(1)原式利用立方根的定义及算术平方根的意义化简,计算即可得到结果;(2)方程整理后,利用平方根定义开方即可求出解.【详解】解:(1)原式2833=-+=-;(2)225(2)360x +-= 方程整理得:236(2)25x +=, 开平方得:625x +=±, 解得:145x =-,2165x =-.【点睛】此题考查了实数的运算,以及平方根,熟练掌握运算法则是解本题的关键.25.(1)2;(2)﹣27;(3)9.【解析】【分析】(1)根据有理数的加减运算法则进计算即可;(2)先算乘方,再算乘除,然后进行加减运算即可;(3)先去括号,再进行加减运算即可.【详解】解:(1)原式=1﹣7+8=2;(2)原式=6×32﹣13×81﹣9=9﹣27﹣9=﹣27;(3)原式=6+﹣【点睛】本题主要考查实数的混合运算解此题的关键在于熟练掌握各个运算法则.26.19.【解析】【分析】x y的值,最后代入求出即可.【详解】①12,①9<810,①8x +y ,其中x 是一个整数,且0<y <1,①x =9,y =8,①2x )2012=2×9+−1)]2012=18+1=19.【点睛】本题考查了估算无理数的大小和实数的混合运算的应用,关键是求出x,y 的值.27.(1)x=;(2)x= -3.【解析】【分析】(1)先变形得到x 2=2,然后根据平方根的定义即可得到x 的值;(2)根据立方根的定义得到x -1=-4,然后解一次方程即可得到x 的值.【详解】解:(1)2528x -=2510x =,22x = ,所以x=;(2)()3164x -=-x -1=-4,所以x= -3.【点睛】本题考查立方根:如果一个数的立方等于a ,那么这个数叫做a28.(1)0.7;(2)53;(3)30;(4)4; 【解析】【分析】(1)根据算术平方根的性质可求解;(2)根据立方根的性质可得答案;(3)根据立方根、算术平方根的性质,可得答案;(4)根据绝对值、算术平方根的性质,可得答案【详解】(1=0.9-0.2,=0.7;(2=53;(3) 31(2)2⎛⎫-- ⎪⎝⎭=184(4)()2-⨯+-⨯-,=-32+2=-30.(4) ||2|+22=4.【点睛】本题考查了实数的运算,熟记法则并根据法则计算是解决此题的关键.29.(1)-1;(2)5a【解析】【分析】(1)根据实数的性质进行化简即可求解;(2)根据幂的运算公式即可求解.【详解】(1)232111(2)83-+-⨯-+ =111(8)3283-+-⨯-⨯+ =1112---+=-1;(2)23346()()a a a a a a --+-g g g=577a a a +-=5a【点睛】此题主要考查实数的运算,解题的关键是熟知实数的性质及幂的运算法则.。
第六章 实数 单元测试卷一、选择题1. 25 的平方根是 ( )A . 5B . −5C . ±√5D . ±5 2. 下列等式正确的是 ( )A . ±√(−2)2=2B . √(−2)2=−2C . √−83=−2D . √0.013=0.1 3. 下列各数中,无理数的个数是 ( )3.141,−227,√−273,π,0,0.1010010001⋯A . 2B . 3C . 4D . 5 4. 设 7−√10 的整数部分为 a ,小数部分为 b ,则 (a +√10)(b −1) 的值是 ( ) A . 6 B . 2−√10 C . 1 D . −1 5. 若 a ,b 为实数,且满足 ∣a −2∣+√3−b =0,则 b −a 的值为 ( ) A . 1 B . 0 C . −1 D .以上都不对 6. 计算 ∣∣√6−3∣∣+∣∣2−√6∣∣ 的值为 ( )A . 5B . 5−2√6C . 1D . 2√6−1 7. 下列说法不正确的有 ( )①任何数都有算术平方根;②一个数的算术平方根一定是正数;③ a 2 的算术平方根是 a ;④ (π−4)2 的算术平方根是 π−4;⑤算术平方根不可能是负数.A . 5 个B . 4 个C . 3 个D . 2 个 8. 若 √a 2=−a ,则实数 a 在数轴上的对应点一定在 ( )A .原点左侧B .原点右侧C .原点或原点左侧D .原点或原点右侧二、填空题9. 比较大小:√5−3 √5−22(填“>”“<”或“=”).10. 下列关于 √13 的说法中,正确的有 (填序号).① 13 的平方根是 √13;② √13 是 13 的算术平方根;③ √13 是无理数;④ 3<√13<4.11. 若 √2+a 的值为有理数,请你写出一个符合条件的实数 a 的值 . 12. 若 y =√x −12+√12−x −6,则 xy 的值为 . 13. 若 a <√6<b ,且 a ,b 是两个连续的整数,则 a b = .14. 大家知道 √2 是无理数,而无理数是无限不循环小数,因此 √2 的小数部分我们不可能全部写出来,于是小林用 √2−1 来表示 √2 的小数部分.事实上,小林的表示方法是有道理的,因为 1<√2<2,即 √2 的整数部分是 1,所以将这个数减去其整数部分就是小数部分.如果 √5 的小数部分为 a ,√13 的整数部分为 b ,那么 a +b −√5= .15. 规定用符号 [m ] 表示一个实数 m 的整数部分,例如:[23]=0,[3.14]=3.按此规定,[√10+1] 的值为 .三、解答题16. 把下列各数填入相应的大括号内.√3,−2,√93,0,√−83,16113,3.1415,3−π,√144,3−√29,3√2,0.2121121112⋯ 整数集合:{ ⋯};非负数集合:{ ⋯};无理数集合:{ ⋯}.17. 计算:(1) √144−√169+√83;(2) ∣∣√3−2∣∣+√3;(3) √−13−√16−√(−6)2+∣∣√2−1∣∣.18. 求 x 的值:(1) x 2−24=25; (2) 8x 3=125; (3) (x −2)2=25.19. 计算并回答问题:(1) √169= ,√1.69= ,√0.0169= .(2) √21973= ,√2.1973= ,√0.0021973= .(3) 根据上述结果你发现了什么规律?请用语言概括出来;(4) 根据你发现的规律填空:如果 √15≈3.873,√150≈12.25,√613≈3.936,√6103≈8.481,则 √1.5≈ ,√0.0613≈ .20. 已知一个正方体的棱长是 7 cm ,要再做一个正方体,使它的体积是原正方体体积的 8倍,求新做的正方体的棱长.(提示:设未知数列方程)21. 若 √2a +b 与 √c −b 的值互为相反数,√1−3b 3 与 √b +13 互为相反数,求 a ,b ,c 的值.22. 已知 a 是 √10 的整数部分,b 是它的小数部分,求 (−a )3+(b +3)2 的值.23. 王老师给同学们布置了这样一道习题:一个数的算术平方根为 2m −6,它的平方根为±(m −2),求这个数.小张的解法如下:依题意可知,2m −6 是 m −2,−(m −2) 两数中的一个. ⋯⋯(1)当 2m −6=m −2 时,解得 m =4. ⋯⋯(2)所以这个数为 2m −6=2×4−6=2. ⋯⋯(3)当 2m −6=−(m −2) 时,解得 m =83. ⋯⋯(4)所以这个数为 2m −6=2×83−6=−23. ⋯⋯(5)综上可得,这个数为 2 或 −23. ⋯⋯(6)王老师看后说,小张的解法是错误的.你知道小张错在哪里吗?为什么?请改正.24.先阅读,然后解答提出的问题.设a,b是有理数,且满足a+√2b=3−2√2,求b a的值.解:由题意得(a−3)+(b+2)√2=0,因为a,b都是有理数,所以a−3,b+2也是有理数,又因为√2是无理数,所以a−3=0,b+2=0,所以a=3,b=−2,所以b a=(−2)3=−8.问题:设x,y都是有理数,且满足x2−2y+√5y=10+3√5,求x+y的值.。
人教版七年级数第二学期第6章《实数》单元测试题及答案一.选择题(共10小题)1.若m,n满足(m﹣1)2+=0,则的平方根是()A.±4B.±2C.4D.22.下列几个数中,属于无理数的数是()A.0.1 B.C.πD.3.下列各组数中互为相反数的是()A.﹣2与B.﹣2与C.﹣2与D.2与|﹣2|4.下列计算正确的是()A.B.=﹣2C.D.(﹣2)3×(﹣3)2=725.实数a,b,c,d在数轴上对应点的位置如图所示,则正确的结论是()A.a>﹣4B.bd>0C.b+c>0D.|a|>|b|6.9的平方根是()A.B.81C.±3D.37.的算术平方根是()A.±B.C.±D.58.实数的算术平方根是()A.2B.C.±2D.±9.下列实数中,最大的是()A.﹣0.5B.﹣C.﹣1D.﹣10.估算7﹣的值在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间二.填空题(共8小题)11.实数a、b在数轴上的位置如图所示,则①a+b<0;②a﹣b>0;③|a|<|b|;④a2<b2;⑤ab>b2.以上说法正确的有(在横线上填写相应的序号)12.﹣1的相反数是.13.下列各数:3.146,,0.010010001,3﹣π,.其中,无理数有个.14.与最接近的整数是.15.比较大小:.16.已知2a﹣1的平方根是±3,3a﹣b﹣1的立方根是2,a+b的平方根.17.有一个数值转换器,原理如图:当输入的x=4时,输出的y等于.18.计算:=.三.解答题(共7小题)19.计算:+×﹣6+.20.求下列各式中的x.(1)3x2﹣12=0(2)(x﹣1)3=﹣6421.若5x﹣19的算术平方根是4,求3x+9的平方根.22.已知2b+1的平方根为±3,3a+2b﹣1的算术平方根为4,求3a﹣2b的立方根.23.实数a,b,c在数轴上的位置如图,化简|b+c|﹣|b+a|+|a﹣c|.24.天气晴朗时,一个人能看到大海的最远距离S(单位:km)可用公式S2=1.7h米估计,其中h(单位:m)是眼睛离海平面的高度.(1)如果一个人站在岸边观察,当眼睛离海平面的高度是1.7m时,能看到多远?(2)若登上一个观望台,使看到的最远距离是(1)中的3倍,已知眼睛到脚底的高度为1.7m,求观望台离海平面的高度?25.已知5+和5﹣的小数部分分别为a,b,试求代数式ab﹣a+4b﹣3的值.参考答案与试题解析一.选择题(共10小题)1.若m,n满足(m﹣1)2+=0,则的平方根是()A.±4B.±2C.4D.2【分析】根据非负数的性质列式求出m、n,根据平方根的概念计算即可.【解答】解:由题意得,m﹣1=0,n﹣15=0,解得,m=1,n=15,则=4,4的平方根的±2,故选:B.【点评】本题考查的是非负数的性质、平方根的概念,掌握非负数之和等于0时,各项都等于0是解题的关键.2.下列几个数中,属于无理数的数是()A.0.1 B.C.πD.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此解答即可.【解答】解:A.0.1是有限小数,属于有理数,故本选项不合题意;B.,是整数,属于有理数,故本选项不合题意;C.π是无理数,故本选项符合题意;D.是分数,属于有理数,故本选项不合题意.故选:C.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.3.下列各组数中互为相反数的是()A.﹣2与B.﹣2与C.﹣2与D.2与|﹣2|【分析】根据只有符号不同的两个数叫做互为相反数对各选项分析判断后利用排除法求解.【解答】解:A、=2,﹣2与是互为相反数,故本选项正确;B、=﹣2,﹣2与相等,不是互为相反数,故本选项错误;C、﹣2与﹣是互为倒数,不是互为相反数,故本选项错误;D、|﹣2|=2,2与|﹣2|相等,不是互为相反数,故本选项错误.故选:A.【点评】本题考查了实数的性质,对各项准确计算是解题的关键.4.下列计算正确的是()A.B.=﹣2C.D.(﹣2)3×(﹣3)2=72【分析】A、根据算术平方根的定义即可判定;B、根据立方根的定义即可判定;C、根据立方根的定义即可判定;D、根据乘方运算法则计算即可判定.【解答】解:A、=3,故选项A错误;B、=﹣2,故选项B正确;C、=,故选项C错误;D、(﹣2)3×(﹣3)2=﹣8×9=﹣72,故选项D错误.故选:B.【点评】本题主要考查实数的运算能力,解决此类题目的关键是熟记二次根式、三次根式和立方、平方的运算法则.开平方和开立方分别和平方和立方互为逆运算.立方根的性质:任何数都有立方根,①正数的立方根是正数,②负数的立方根是负数,③0的立方根是0.5.实数a,b,c,d在数轴上对应点的位置如图所示,则正确的结论是()A.a>﹣4B.bd>0C.b+c>0D.|a|>|b|【分析】观察数轴,找出a、b、c、d四个数的大概范围,再逐一分析四个选项的正误,即可得出结论.【解答】解:A、∵a<﹣4,∴结论A错误;B、∵b<﹣1,d=4,∴bd<0,结论B错误;C、∵﹣2<b<﹣1,0<c<1,∴b+c<0,结论C错误;D、∵a<﹣4,b>﹣2,∴|a|>|b|,结论D正确.故选:D.【点评】本题考查了实数与数轴以及绝对值,观察数轴,逐一分析四个选项的正误是解题的关键.6.9的平方根是()A.B.81C.±3D.3【分析】根据平方根的定义即可解答.【解答】解:9的平方根是±3,故选:C.【点评】此题主要考查了平方根.解题的关键是掌握平方根的定义,注意一个正数的平方根有两个,且互为相反数.7.的算术平方根是()A.±B.C.±D.5【分析】直接根据算术平方根的定义计算即可.【解答】解:因为=5,所以的算术平方根是,故选:B.【点评】此题主要考查了算术平方根,关键是掌握算术平方根的概念:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根.8.实数的算术平方根是()A.2B.C.±2D.±【分析】首先得出=4,进而利用算术平方根的定义得出答案.【解答】解:∵=4,∴的算术平方根是:2.故选:A.【点评】此题主要考查了立方根和算术平方根的定义,正确理解算术平方根与立方根的定义是解题关键.9.下列实数中,最大的是()A.﹣0.5B.﹣C.﹣1D.﹣【分析】根据实数的比较大小即可求出答案.【解答】解:由于﹣0.5>﹣1>>﹣,故选:A.【点评】本题考查实数,解题的关键是熟练运用实数比较的方法,本题属于基础题型.10.估算7﹣的值在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间【分析】先估算出的范围,再估算出7﹣的范围即可.【解答】解:∵4<<5,∴7﹣的值在2和3之间;故选:A.【点评】此题主要考查了估计无理数,得出的取值范围是解题关键.二.填空题(共8小题)11.实数a、b在数轴上的位置如图所示,则①a+b<0;②a﹣b>0;③|a|<|b|;④a2<b2;⑤ab>b2.以上说法正确的有①⑤(在横线上填写相应的序号)【分析】根据图示,可得a<b<0,﹣a<﹣b,据此逐项判断即可.【解答】解:∵a<b<0,∴a+b<0,∴选项①正确;∵a<b<0,∴a﹣b<0,∴选项②错误;∵a<b<0,∴|a|>|b|;∴选项③错误;∵a<b<0,﹣a>﹣b,∴a2>b2,∴选项④错误;∵a<b<0,﹣a>﹣b,∴ab>b2,∴选项⑤正确,∴正确的结论有3个:①、⑤.故答案为:①⑤.【点评】此题主要考查了有理数大小比较的方法,以及数轴的特征和应用,要熟练掌握.12.﹣1的相反数是1﹣.【分析】根据只有符号不同的两个数互为相反数,可得一个数的相反数.【解答】解:﹣1的相反数是1﹣,故答案为:1﹣.【点评】本题考查了实数的性质,在一个数的前面加上负号就是这个数的相反数.13.下列各数:3.146,,0.010010001,3﹣π,.其中,无理数有1个.【分析】无理数常见的三种类型(1)开不尽的数;(2)特定结构的无限不循环小数;(3)含有π的绝大部分数.【解答】解:3.146是有限小数,属于有理数;是分数,属于有理数;0.010010001是有限小数,属于有理数;是循环小数,属于有理数.∴无理数有3﹣π共1个.故答案为:1【点评】本题主要考查的是无理数的认识,掌握无理数的常见类型是解题的关键.14.与最接近的整数是2.【分析】直接利用的取值范围进而得出答案.【解答】解:∵<<,∴1<<2,∴与最接近的整数是:2.故答案为:2.【点评】此题主要考查了估算无理数的大小,正确得出的取值范围是解题关键.15.比较大小:<.【分析】首先分别求出+、的平方的值各是倒数;然后比较出它们的大小关系,再根据:两个正数,平方大的,原来的数也大,判断出原来的两个数的大小关系即可.【解答】解:=11+2=22∵11+2<11+2×5.5=22,∴<,∴<.故答案为:<.【点评】此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:两个正数,平方大的,原来的数也大.16.已知2a﹣1的平方根是±3,3a﹣b﹣1的立方根是2,a+b的平方根±.【分析】先根据平方根、立方根的定义得到关于a、b的二元一次方程组,解方程组即可求出a、b的值,进而得到2﹣b的平方根.【解答】解:由题意,有,解得.则a+b=5+6=11,所以a+b的平方根±.故答案为:±.【点评】本题考查了平方根、立方根的定义.解题的关键是掌握平方根、立方根的定义.如果一个数的平方等于a,这个数就叫做a的平方根,也叫做a的二次方根.如果一个数x的立方等于a,那么这个数x就叫做a的立方根.17.有一个数值转换器,原理如图:当输入的x=4时,输出的y等于.【分析】根据转换程序把4代入求值即可.【解答】解:4的算术平方根为:=2,则2的算术平方根为:.故答案为:.【点评】此题主要考查了算术平方根,正确把握运算规律是解题关键.18.计算:=6.【分析】根据算术平方根和立方根的定义计算可得.【解答】解:原式=9﹣3=6,故答案为:6.【点评】本题主要考查实数的运算,解题的关键是熟练掌握平方根和立方根的定义.三.解答题(共7小题)19.计算:+×﹣6+.【分析】直接利用二次根式的性质和立方根的性质分别化简得出答案.【解答】解:原式===.【点评】此题主要考查了实数运算,正确化简各数是解题关键.20.求下列各式中的x.(1)3x2﹣12=0(2)(x﹣1)3=﹣64【分析】(1)根据平方根定义开方,再求出方程的解即可;(2)根据立方根定义开方,再求出方程的解即可.【解答】解:(1)3x2﹣12=0,3x2=12,x2=4,x=±2;(2)(x﹣1)3=﹣64,x﹣1=﹣4,x=﹣3.【点评】本题考查了立方根和平方根定义的运用,解此题的关键是能根据平方根和立方根定义得出一元一次方程.21.若5x﹣19的算术平方根是4,求3x+9的平方根.【分析】由题意得4的平方是16,那么5x﹣19=16,即可求得x,进而求得3x+9的平方根.【解答】解:∵5x﹣19的算术平方根是4∴5x﹣19=16∴x=7∴3x+9=30,其平方根为±.【点评】此题主要考查了算术平方根、平方根的定义,注意:被开方数应等于它的算术平方根的平方.一个正数的平方根有2个.22.已知2b+1的平方根为±3,3a+2b﹣1的算术平方根为4,求3a﹣2b的立方根.【分析】分别根据2a﹣1的平方根是±3,3a+2b﹣1的算术平方根是4,求出a、b的值,再求出3a﹣2b的值,求出其立方根即可.【解答】解:∵2b﹣1的平方根是±3,∴2b+1=(±3)2,解得b=4;∵3a+2b﹣1的算术平方根是4,∴3a+2b﹣1=16,把b=4代入得,3a+2×4﹣1=16,解得a=3,∴3a﹣2b=3×3﹣2×4=1.∵13=1,∴3a﹣2b的立方根是1.【点评】本题考查的是立方根、平方根及算术平方根的定义,根据题意列出关于a、b的方程,求出a、b的值是解答此题的关键.23.实数a,b,c在数轴上的位置如图,化简|b+c|﹣|b+a|+|a﹣c|.【分析】观察数轴,可得出b<c<0<a<﹣b,进而可得出b+c<0,b+a<0,a﹣c>0,再结合绝对值的定义即可求出结论.【解答】解:观察数轴,可知:b<c<0<a<﹣b,∴b+c<0,b+a<0,a﹣c>0,∴原式=﹣b﹣c+b+a+a﹣c=2a﹣2c.【点评】本题考查了实数与数轴以及绝对值,观察数轴找出b+c,b+a,a﹣c的正负是解题的关键.24.天气晴朗时,一个人能看到大海的最远距离S(单位:km)可用公式S2=1.7h米估计,其中h(单位:m)是眼睛离海平面的高度.(1)如果一个人站在岸边观察,当眼睛离海平面的高度是1.7m时,能看到多远?(2)若登上一个观望台,使看到的最远距离是(1)中的3倍,已知眼睛到脚底的高度为1.7m,求观望台离海平面的高度?【分析】(1)求出h=1.7时S的值即可得;(2)求出S=1.7×3=5.1时h的值,再减去1.7米即可得答案.【解答】解:(1)当h=1.7时,S2=1.7×1.7,∴S=﹣1.7(舍)或S=1.7,答:当眼睛离海平面的高度是1.7m时,能看到1.7m远;(2)当S=1.7×3=5.1时,可得5.12=1.7h,解得h=15.3,15.3﹣1.7=13.6(米),答:观望台离海平面的高度为13.6米.【点评】本题主要考查的是算术平方根.解题的关键是掌握算术平方根的定义.25.已知5+和5﹣的小数部分分别为a,b,试求代数式ab﹣a+4b﹣3的值.【分析】先估算出的大小,然后求得a、b的值,最后利用二次根式的乘法法则进行计算即可.【解答】解:∵1<3<4,∴1<<2,∴,,∴a=5+﹣6=,b==,∴ab﹣a+4b﹣3===1﹣.【点评】本题主要考查的是估算无理数的大小、二次根式的混合运算,求得a、b的值是解题的关键.。
第6章实数单元综合测试卷班级:姓名:一、选择题(每小题3分,共30分)1.144的算术平方根是()A.12B.-12C.±12D.122.下列各数是无理数的是()A.0B.-1C.2D.373.83=()A.±2B.-2C.2D.224.一个实数a的相反数是10,则a等于()A.110B.10C.-110D.-105.下列各式正确的是()A.16=±4B.(-3)2=-3C.±81=±9D.-4=-26.估计23的值()A.在2到3之间B.在3到4之间C.在4到5之间D.在5到6之间7.下列说法正确的是()A.-1的倒数是1B.-1的相反数是-1C.1的算术平方根是1D.1的立方根是±18.下列说法错误的是()A.16的平方根是±2B.2是无理数C.-273是有理数9.有下列说法:①有理数和数轴上的点一一对应;②不带根号的数一定不是无理数;③负数没有立方根;④-19是19的平方根,其中正确的说法有()A.0个B.1个C.2个D.3个10.实数a,b在数轴上的位置如图所示,下列各式正确的是()A.a+b>0B.ab>0C.|a|+b<0D.a-b>0二、填空题(每小题3分,共30分)11.49的平方根是,216的立方根是.12.若一个数的算术平方根等于它本身,则这个数的立方根是.13.显示的结果是.14.写出一个大于3小于5的无理数:.15.实数a在数轴上的位置如图,则|a-3|=.16.13是m的一个平方根,则m的另一个平方根是,m=.17.273的平方根是,-64的立方根是.18.关于12的叙述,有下列说法,其中正确的说法有个.(1)12是有理数;(2)面积为12的正方形边长是12;(3)在数轴上可以找到表示12的点.19.一个数值转换器,原理如下:当输入的x=16时,输出的y等于.20.若实数x,y满足(2x+3)2+|9-4y|=0,则xy的立方根为.三、解答题(共60分)21.(6分)计算:(1)求252-242的平方根;(2)求338的立方根.22.(6分)计算:(1)(-2)2-(3-5)-4+2×(-3).(2)-643-9+23.(6分)已知一个正数的平方根是3x-2和5x+6,求这个数.24.(6分)求下列各式中的x 的值:(1)25x 2=36;(2)(x+1)3=8.25.(6分)已知2a-3的平方根是±5,2a+b+4的立方根是3,求a+b 的平方根.26.(8分)一个圆形铁板的面积是424cm 2,求圆形铁板的半径.(精确到0.1)27.(12分)根据下表回答问题:xx 2x x 216.0256.0016.6275.5616.1259.2116.7278.8916.2262.4416.8282.2416.3265.6916.9285.6116.4268.9617.0289.0016.5272.25(1)268.96的平方根是多少?(2)285.6≈;(3)270在哪两个数之间?为什么?(4)表中与260最接近的是哪个数?28.(10分)(1)在实数范围内定义运算“ ”,其法则为:ab=a 2-b 2,求方程(4 3) x=24的解;(2)已知2a 的平方根是±2,3是3a+b 的立方根,求a-2b 的值.第6章实数单元综合测试卷答案与点拨1.A(点拨:144的算术平方根是144=12.)2.C(点拨:0,-1是整数,是有理数;37是分数,是有理数;2是开方开不尽的数,是无限不循环小数,是无理数.)3.C(点拨:83表示求8的立方根,故83=2.)4.D(点拨:因为-10的相反数是10,所以a 等于-10.)5.C(点拨:16表示16的算术平方根,16=4;(-3)2表示(-3)2(即9)的算术平方根,(-3)2=3;负数没有算术平方根.)6.C(点拨:因为16<23<25,所以16<23<25,即4<23<5,所以23的值在4到5之间.)7.C(点拨:-1的倒数是-1,相反数是1;1的算术平方根是1,立方根是1.)8.D(点拨:16=4,4的平方根是±2;2是无理数;-273=-3是有理数,不是分数.)9.B(点拨:④正确.)10.A(点拨:由数轴知a<0,b>0,|b|>|a|,所以a+b>0,ab<0,|a|+b>0,a-b<0.故选A.)11.±23612.0,1(点拨:算术平方根等于本身的数是0和1,所以它们的立方根分别为0和1.)13.-2(点拨:本题就是求36-8的值,即-2.)14.13或π(答案不唯一)15.3-a(点拨:由数轴上点的位置关系,得a<3,所以|a-3|=3-a.)16.-13169(点拨:由平方根的性质,一个正数的两个平方根互为相反数,得另一个平方根是-13,m=132=169.)17.±3-2(点拨:273=3,所以它的平方根是±3;-64是-8,所以它的立方根是-2.)18.2(点拨:12是无理数,不是有理数,故(1)不正确.)19.2(点拨:根据图中的步骤,把16输入,可得其算术平方根为4,把4再输入得其算术平方根是2,再将2输入得算术平方根是2,是无理数则输出.)20.-32(点拨:根据非负数的性质结合(2x+3)2+|9-4y|=0,得2x+3=0且9-4y=0,解得x=-32,y=94,所以xy=-32×94=-278,所以xy 的立方根为-32.)21.(1)因为252-242=49,而(±7)2=49,所以252-242的平方根是±7.(2)因为338=278,而()323=278,所以338的立方根是32.22.(1)原式=4-(-2)-2-6=-2.(2)原式=-4-3+35=-625.23.由正数平方根的性质得3x-2=-(5x+6),解得x=-12,∴这个数是(3x-2)2=éëêùûú3×()-12-22=494.24.(1)方程两边同时除以25得x2=3625.∴x=±65.(2)开立方,得x+1=83,∴x+1=2.解得x=1.25.由题意有{2a-3=25,2a+b+4=27,解得{a=14,b=-5.∴±a+b=±14-5=±3.故a+b的平方根为±3.26.设圆形铁板的半径为r cm,则πr2=424.解得r≈11.6.答:圆形铁板的半径约为11.6cm.27.(1)±16.4;(2)16.9;(3)由表知268.96<270<272.25,所以16.4<270<16.5,即270在16.4和16.5之间;(4)16.1.28.(1)∵a b=a2-b2,∴(4 3) x=(42-32) x=7 x=72-x2.∴72-x2=24.∴x2=25.∴x=±5.(2)由题意得2a=(±2)2,∴a=2.当a=2时,3a+b=6+b,由于33=6+b,∴b=21,∴a-2b=2-2×21=-40.。
第六章《实数》测试卷(四)一、选择题(每小题4分,共16分) 1. 有下列说法:(1)无理数就是开方开不尽的数; (2)无理数是无限不循环小数;(3)无理数包括正无理数、零、负无理数; (4)无理数都可以用数轴上的点来表示。
其中正确的说法的个数是( )A .1B .2C .3D .4 2.()20.7-的平方根是( )A .0.7-B .0.7±C .0.7D .0.493.若=,则a 的值是( )A .78 B .78- C .78± D .343512- 4.若225a =,3b =,则a b +=( ) A .-8 B .±8 C .±2 D .±8或±2 二、判断题(1分×10=10分)1. 3是9的算术平方根 ( ) 2. 0的平方根是0,0的算术平方根也是0 ( ) 3. (-2)2的平方根是2- ( ) 4. -0.5是0.25的一个平方根 ( ) 5.a 是a 的算术平方根 ( )6. 64的立方根是4± ( )7. -10是1000的一个立方根 ( ) 8. -7是-343的立方根 ( ) 9. 无理数也可以用数轴上的点表示出来 ( ) 10.有理数和无理数统称实数 ( 三、填空题(每小题3分,共18分) 5.在-52,3π3.14,01-,21中,其中: 整数有 ; 无理数有 ; 有理数有 。
6.2-的相反数是 ;绝对值是 。
7.在数轴上表示的点离原点的距离是 。
8= 。
910.1== 。
10.若一个数的立方根就是它本身,则这个数是 。
11.9 的算术平方根是 ;2)3(-的算术平方根 ;3的平方根是12.0的立方根是 ;-8的立方根是 ;4的立方根是13.一个数的平方等于它本身,这个数是 ;一个数的平方根等于它本身,这个数是 ,一个数的算术平方根等于它本身,这个数是 14.若x x =3,则=x ;若x x =3,则=x 15.比较下列各组数的大小:⑴ 5.1- 5.1 ⑵215- 21⑶ π 14.3四、解答题(本大题共66分) 11.计算(每小题5分,共20分) (1)(2)2+-0. 01);(3(4))11-(保留三位有效数字)。
第六章 实数单元测试题一、选择题1.下列说法正确的个数有( )①过一点有且只有一条直线与已知直线平行;②垂线段最短;③坐标平面内的点与有序实数对是一一对应的;④算术平方根和立方根都等于它本身的数是0和1; ⑤5的小数部分是51-.A .1B .2C .3D .42.如图将1、2、3、6按下列方式排列.若规定(,)m n 表示第m 排从左向右第n 个数,则(5,4)与(15,8)表示的两数之积是( ).A .1B .2C .3D .6 3.已知280x y -++=,则x y +的值为( ) A .10B .-10C .-6D .不能确定 4.下列各式的值一定为正数的是 ( )A .aB .2aC .2(100)a -D .20.01a + 5.按照下图所示的操作步骤,若输出y 的值为22,则输入的值x 为( )A .3B .-3C .±3D .±96.观察下列各等式:231-+=-5-6+7+8=4-10-l1-12+13+14+15=9-17-18-19-20+21+22+23+24=16……根据以上规律可知第11行左起第11个数是( )A .-130B .-131C .-132D .-1337.下列命题中,①81的平方根是916±2;③−0.003没有立方根;④−64的立方根为±45 )A .1B .2C .3D .48.如图,数轴上,A B两点表示的数分别为1,2--,点B关于点A的对称点为点C,则点C所表示的数是()A.12-B.21-C.22-D.22-9.若33=0x y+,则x和y的关系是( ).A.x=y=0B.x和y互为相反数C.x和y相等D.不能确定10.估计20的算术平方根的大小在()A.2与3之间B.3与4之间C.4与5之间D.5与6之间二、填空题11.已知a n=()211n+(n=1,2,3,…),记b1=2(1-a1),b2=2(1-a1)(1-a2),…,b n=2(1-a1)(1-a2)…(1-a n),则通过计算推测出表达式b n=________ (用含n的代数式表示).12.若已知x-1+(y+2)2=0,则(x+y)2019等于_____.13.一个正数的平方根是21x-和2x-,则x的值为_______.14.若|x|=3,y2=4,且x>y,则x﹣y=_____.15.2(2)-的平方根是 _______ ;38a的立方根是 __________.16.对任意两个实数a,b定义新运算:a⊕b=()()a a bb a b≥⎧⎨⎩若若<,并且定义新运算程序仍然是先做括号内的,那么(5⊕2)⊕3=___.17.27的立方根为.18.比较大小:512-__________0.5.(填“>”“<”或“=”)19.将2π,93,3-272这三个数按从小到大的顺序用“<”连接________.20.已知实数x的两个平方根分别为2a+1和3-4a,实数y的立方根为-a,则2x y+的值为______.三、解答题21.如图,长方形ABCD的面积为300cm2,长和宽的比为3:2.在此长方形内沿着边的方向能否并排裁出两个面积均为147cm2的圆(π取3),请通过计算说明理由.22.据说,我国著名数学家华罗庚在一次访问途中,看到飞机邻座的乘客阅读的杂志上有一道智力题:一个数32768,它是一个正数的立方,希望求它的立方根,华罗庚不假思索给出了答案,邻座乘客非常惊奇,很想得知其中的奥秘,你知道华罗庚是怎样准确计算出的吗?请按照下面的问题试一试:(1)由33101000,1001000000==,因为1000327681000000<<______位数;(2)由32768的个位上的数是8________,划去32768后面的三位数768得到32,因为333=27,4=64_____________(3)已知13824和110592-分别是两个数的立方,仿照上面的计算过程,请计算:________=23.阅读下面文字: 对于5231591736342⎛⎫⎛⎫⎛⎫-+-++- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 可以如下计算:原式()()()5231591736342⎡⎤⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-+-+++-+- ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦⎣⎦ ()()()5231591736342⎡⎤⎛⎫⎛⎫⎛⎫=-+-++-+-+-++-⎡⎤ ⎪ ⎪ ⎪⎢⎥⎣⎦⎝⎭⎝⎭⎝⎭⎣⎦ 1014⎛⎫=+- ⎪⎝⎭ 114=- 上面这种方法叫拆项法,你看懂了吗?仿照上面的方法,计算:(1)115112744362⎛⎫⎛⎫-+-++- ⎪ ⎪⎝⎭⎝⎭ (2)235120192018201720163462⎛⎫⎛⎫-++-+ ⎪ ⎪⎝⎭⎝⎭ 24.数轴是一个非常重要的数学工具,它使数和数轴上的点建立起对应关系,揭示了数与点之间的内在联系,它是“数形结合”的基础.小白在草稿纸上画了一条数轴进行操作探究:操作一:(1)折叠纸面,若使表示的点1与﹣1表示的点重合,则﹣2表示的点与 表示的点重合;操作二:(2)折叠纸面,若使1表示的点与﹣3表示的点重合,回答以下问题:①3表示的点与数 表示的点重合;②若数轴上A 、B 两点之间距离为8(A 在B 的左侧),且A 、B 两点经折叠后重合,则A 、B 两点表示的数分别是__________________;操作三:(3)在数轴上剪下9个单位长度(从﹣1到8)的一条线段,并把这条线段沿某点折叠,然后在重叠部分某处剪一刀得到三条线段(如图). 若这三条线段的长度之比为1:1:2,则折痕处对应的点所表示的数可能是_________________________.25.计算:(1)()()232018311216642⎛⎫-+-- ⎪⎝⎭ (253532326.已知2+a b 312b +(1)求2a -3b 的平方根;(2)解关于x 的方程2420ax b +-=.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据平行公理的推论,垂线的性质,估算无理数的大小,算术平方根和立方根逐个判断即可.【详解】①过直线外一点有且只有一条直线与已知直线平行,故①错误;②垂线段最短,故②正确;③坐标平面内的点与有序实数对是一一对应的,故③正确;④算术平方根和立方根都等于它本身的数是0和1,故④正确;552,故⑤错误;即正确的个数是3个,故答案为:C .本题考查了平行公理的推论,垂线的性质,估算无理数的大小,算术平方根和立方根等知识点,能熟记知识点的内容是解此题的关键.2.B解析:B【分析】首先从排列图中可知:第1排有1个数,第2排有2个数,第3排有3个数,然后抽象出第5排第4个数,第15排第8个数,然后可以得到答案.【详解】解:(5,4)表示第5排从左往右第4,(15,8)表示第15排第8个数,从上面排列图中可以看出奇数行1排在最中间,所以第15行最中间是1,且为第8个,所以1和.故本题选B.【点睛】本题是规律题的呈现,考查学生的从具体情境中抽象出一般规律,考查学生观察与归纳能力.3.C解析:C【分析】根据算术平方根的非负性求出x,y,然后再求x+y即可;【详解】解:由题意得:x-2=0,y+8=0∴x=2,y=-8∴x+y=2+(-8)=-6故答案为C.【点睛】本题考查了算术平方根的非负性,掌握若干个非负数之和为0,则每个非负数都为0是解答本题的关键.4.D解析:D【分析】任何数的绝对值都是一个非负数.非负数(正数和0)的绝对值是它本身,非正数(负数和0)的绝对值是它的相反数.任何数的平方都是大于等于0的.【详解】选项A中,当a=0,则a=0;选项B中,当a=0,则a²=0;选项C中,当a=100,则(a-100)²=0;选项D中,无论a取何值,a²+0.01始终大于0.【点睛】此题考查绝对值的非负性,算术平方根的非负性,解题关键在于掌握其性质.5.C解析:C【分析】根据操作步骤列出方程,然后根据平方根的定义计算即可得解.【详解】由题意得:23522x -=,∴29x =,∵2(39)±=,∴3x =±,故选:C .【点睛】此题考查平方根的定义,求一个数的平方根,利用平方根的定义解方程,正确理解计算的操作步骤得到方程是解题的关键. 6.C解析:C【分析】通过观察发现:每一行等式右边的数就是行数的平方,故第n 行右边的数就是n 的平方,而左起第一个数的绝对值比右侧的数大1,并且左边的项数是行数的2倍,前一半的符号为负,后一半的符号为正.【详解】解:第一行:211=;第二行:224=;第三行:239=;第四行:2416=;……第n 行:2n ;∴第11行:211121=.∵左起第一个数的绝对值比右侧的数大1,并且左边的项数是行数的2倍,前一半的符号为负,后一半的符号为正.∴第11行左起第1个数是-122,第11个数是-132.故选:C .【点睛】此题主要考查探索数与式的规律,正确找出规律是解题关键.7.A解析:A根据平方根的定义对①②进行判断;根据立方根的定义对③④进行判断;根据命题的定义对⑤进行判断.【详解】解:81的平方根是±9,所以①错误;±2,所以②正确;-0.003有立方根,所以③错误;−64的立方根为-4,所以④错误;故选:A .【点睛】本题考查了立方根和平方根的应用,主要考查学生的辨析能力,题目比较典型,但是一道比较容易出错的题目.8.D解析:D【分析】设点C 的坐标是x ,根据题意列得12x =-,求解即可. 【详解】解:∵点A 是B ,C 的中点.∴设点C 的坐标是x ,则12x =-,则2x =-+∴点C 表示的数是2-+故选:D .【点睛】此题考查数轴上两点的中点的计算公式:两点的中点所表示的数等于两点所表示的数的平均数,正确掌握计算公式是解题的关键.9.B解析:B【解析】分析:先移项,再两边立方,即可得出x=-y ,得出选项即可.详解:,=∴x=-y ,即x 、y 互为相反数,故选B .点睛:考查了立方根,相反数的应用,解此题的关键是能得出x=-y .10.C解析:C【解析】试题分析:∵16<20<25, ∴∴4<5.故选C .考点:估算无理数的大小.二、填空题11..【解析】【详解】根据题意按规律求解:b1=2(1-a1)=,b2=2(1-a1)(1-a2)=,…,所以可得:bn=. 解:根据以上分析bn=2(1-a1)(1-a2)…(1-an )=.“ 解析:12++n n . 【解析】【详解】 根据题意按规律求解:b 1=2(1-a 1)=131221-4211+⎛⎫⨯== ⎪+⎝⎭,b 2=2(1-a 1)(1-a 2)=314221-29321+⎛⎫⨯== ⎪+⎝⎭,…,所以可得:b n =12++n n . 解:根据以上分析b n =2(1-a 1)(1-a 2)…(1-a n )=12++n n . “点睛”本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.本题中表示b 值时要先算出a 的值,要注意a 中n 的取值.12.-1【分析】根据非负数的性质先求出x 与y ,然后代入求解即可.【详解】解:∵+(y+2)2=0∴(x+y)2019=-1故答案为:-1.【点睛】本题主要考查了非负数的性质,熟解析:-1【分析】根据非负数的性质先求出x与y,然后代入求解即可.【详解】(y+2)2=0∴1020 xy-=+=⎧⎨⎩12 xy=⎧∴⎨=-⎩∴(x+y)2019=-1故答案为:-1.【点睛】本题主要考查了非负数的性质,熟练掌握性质,并求出x与y是解题的关键.13.-1【分析】根据“一个正数有两个平方根,这两个平方根互为相反数”列出方程求解即可.【详解】解:∵一个正数的平方根是2x-1和2-x,∴2x-1+2-x=0,解得:x=-1.故答案为:-解析:-1【分析】根据“一个正数有两个平方根,这两个平方根互为相反数”列出方程求解即可.【详解】解:∵一个正数的平方根是2x-1和2-x,∴2x-1+2-x=0,解得:x=-1.故答案为:-1.【点睛】本题主要考查的是平方根的性质以及解一元一次方程,熟练掌握平方根的性质是解题的关14.1或5.【分析】根据题意,利用绝对值的代数意义及平方根定义求出x与y的值,代入原式计算即可得到结果.【详解】解:根据题意得:x=3,y=2或x=3,y=﹣2,则x﹣y=1或5.故答案为1解析:1或5.【分析】根据题意,利用绝对值的代数意义及平方根定义求出x与y的值,代入原式计算即可得到结果.【详解】解:根据题意得:x=3,y=2或x=3,y=﹣2,则x﹣y=1或5.故答案为1或5.【点睛】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.15.2a【分析】根据平方根的定义及立方根的定义解答.【详解】的平方根是,的立方根是2a,故答案为:,2a.【点睛】此题考查平方根及立方根的定义,利用定义求一个数的平方根及立解析:【分析】根据平方根的定义及立方根的定义解答.【详解】38a的立方根是2a,故答案为:,2a.【点睛】此题考查平方根及立方根的定义,利用定义求一个数的平方根及立方根.16.【分析】根据“⊕”的含义,以及实数的运算方法,求出算式的值是多少即可.【详解】(⊕2)⊕3=⊕3=3,故答案为3.【点睛】本题考查了定义新运算,以及实数的运算,要熟练掌握,解答此题的关解析:【分析】根据“⊕”的含义,以及实数的运算方法,求出算式的值是多少即可.【详解】2)⊕3=3,故答案为3.【点睛】本题考查了定义新运算,以及实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.17.3【解析】找到立方等于27的数即可.解:∵33=27,∴27的立方根是3,故答案为3.考查了求一个数的立方根,用到的知识点为:开方与乘方互为逆运算解析:3【解析】找到立方等于27的数即可.解:∵33=27,∴27的立方根是3,故答案为3.考查了求一个数的立方根,用到的知识点为:开方与乘方互为逆运算18.>【分析】首先把两个数采用作差法相减,根据差的正负情况即可比较两个实数的大小.【详解】∵,∵-2>0,∴>0.故>0.5.故答案为:>.【点睛】此题考查实数大小比较,解题关键在于解析:>【分析】首先把两个数采用作差法相减,根据差的正负情况即可比较两个实数的大小.【详解】∵1112-0.5=-=2222,>0,>0.>0.5. 故答案为:>.【点睛】此题考查实数大小比较,解题关键在于掌握比较两个实数的大小,可以采用作差法、取近似值法等.19.<<【分析】先根据数的开方法则计算出和的值,再比较各数大小即可.【详解】==,==,∵>3>2,∴<<,即<<,故答案为:<<【点睛】本题考查实数的大小比较,正确化简得出和的值是解<2π 【分析】先根据数的开方法则计算出3的值,再比较各数大小即可.【详解】3=33=22=32-=32, ∵π>3>2,∴22<32<2π<2π,故答案为:3<2π 【点睛】的值是解题关键. 20.3【分析】 利用平方根、立方根的定义求出x 与y 的值,即可确定的值.【详解】解:根据题意的2a+1+3-4a=0,解得a=2,∴,,故答案为:3.【点睛】本题考查了平方根和立方根,熟解析:3【分析】利用平方根、立方根的定义求出x 与y 的值.【详解】解:根据题意的2a+1+3-4a=0,解得a=2,∴25,8x y ==-,∴=,故答案为:3.【点睛】 本题考查了平方根和立方根,熟练掌握相关的定义是解题的关键.三、解答题21.不能,说明见解析.【分析】根据长方形的长宽比设长方形的长DC为3xcm,宽AD为2xcm,结合长方形ABCD的面积为300cm2,即可得出关于x的一元二次方程,解方程即可求出x的值,从而得出AB的长,再根据圆的面积公式以及圆的面积147cm2,即可求出圆的半径,从而可得出两个圆的直径的长度,将其与AB的长进行比较即可得出结论.【详解】解:设长方形的长DC为3xcm,宽AD为2xcm.由题意,得3x•2x=300,∵x>0,∴x=∴AB=,BC=cm.∵圆的面积为147cm2,设圆的半径为rcm,∴πr2=147,解得:r=7cm.∴两个圆的直径总长为28cm.<=⨯=<,∵382428∴不能并排裁出两个面积均为147cm2的圆.22.(1)两;(2)2,3;(3)24,-48.【分析】(1)根据题中所给的分析方法先求出这32768的立方根都是两位数;(2)继续分析求出个位数和十位数即可;(3)利用(1)(2)中材料中的过程进行分析可得结论.【详解】解:(1)由103=1000,1003=1000000,∵1000<32768<100000,∴10100,故答案为:两;(2)∵只有个位数是2的立方数是个位数是8,2划去32768后面的三位数768得到32,因为33=27,43=64,∵27<32<64,∴3040.3.故答案为:2,3;(3)由103=1000,1003=1000000,1000<13824<1000000,∴10100,∵只有个位数是4的立方数是个位数是4,4划去13824后面的三位数824得到13,因为23=8,33=27,∵8<13<27,∴2030.;由103=1000,1003=1000000,1000<110592<1000000,∴10100,∵只有个位数是8的立方数是个位数是2,8,划去110592后面的三位数592得到110,因为43=64,53=125,∵64<110<125,∴4050.;故答案为:24,-48.【点睛】此题考查立方根,解题关键在于理解一个数的立方的个位数就是这个数的个位数的立方的个位数.23.(1)14-(2)124- 【分析】(1)根据例子将每项的整数部分相加,分数部分相加即可解答;(2)根据例子将每项的整数部分相加,分数部分相加即可解答.【详解】(1)115112744362⎛⎫⎛⎫-+-++- ⎪ ⎪⎝⎭⎝⎭()115112744362⎛⎫=--+-+--+- ⎪⎝⎭104⎛⎫=+- ⎪⎝⎭ 14=- (2)原式()235120192018201720163462⎛⎫=-+-++-+-+ ⎪⎝⎭ 124⎛⎫=-+- ⎪⎝⎭ 124=- 【点睛】此题考察新计算方法,正确理解题意是解题的关键,根据例子即可仿照计算.24.(1)2 (2)①2--5,3(3)71937,,288 【分析】(1)根据对称性找到折痕的点为原点O ,可以得出-2与2重合;(2)根据对称性找到折痕的点为-1,a 表示的点重合,根据对称性列式求出a 的值;②因为AB=8,所以A 到折痕的点距离为4,因为折痕对应的点为-1,由此得出A 、B 两点表示的数;(3)分三种情况进行讨论:设折痕处对应的点所表示的数是x ,如图1,当AB :BC :CD=1:1:2时,所以设AB=a ,BC=a ,CD=2a ,得a+a+2a=9,a=94,得出AB 、BC 、CD 的值,计算也x 的值,同理可得出如图2、3对应的x 的值.【详解】操作一,(1)∵表示的点1与-1表示的点重合,∴折痕为原点O ,则-2表示的点与2表示的点重合,操作二:(2)∵折叠纸面,若使1表示的点与-3表示的点重合,则折痕表示的点为-1,表示的点与数a 表示的点重合,(-1)=-1-a ,②∵数轴上A 、B 两点之间距离为8,∴数轴上A 、B 两点到折痕-1的距离为4,∵A 在B 的左侧,则A、B两点表示的数分别是-5和3;操作三:(3)设折痕处对应的点所表示的数是x,如图1,当AB:BC:CD=1:1:2时,设AB=a,BC=a,CD=2a,a+a+2a=9,a=94,∴AB=94,BC=94,CD=92,x=-1+94+98=198,如图2,当AB:BC:CD=1:2:1时,设AB=a,BC=2a,CD=a,a+a+2a=9,a=94,∴AB=94,BC=92,CD=94,x=-1+94+94=72,如图3,当AB:BC:CD=2:1:1时,设AB=2a,BC=a,CD=a,a+a+2a=9,a=94,∴AB=92,BC=CD=94,x=-1+92+98=378, 综上所述:则折痕处对应的点所表示的数可能是198或72或378.25.(1)-34;(2)3【分析】(1)利用乘方、立方、二次根式、开立方等概念分别化简每项,再整理计算即可; (2)利用绝对值的意义化简每一项,再整理计算即可.【详解】解:(1)()2320181122⎛⎫-+- ⎪⎝⎭ ()()118444=-+-⨯+-⨯()1321=--+-=-34;(233=-+-+-3=【点睛】此题考查了有理数的混合运算,以及实数的运算,熟练掌握运算法则是解本题的关键.26.(1)23a b -的平方根为4±;(2)3x =±.【分析】(1)先由相反数的定义列出等式,再根据绝对值的非负性、算术平方根的非负性求出a 、b 的值,然后代入,根据平方根的定义求解即可;(2)先将a 、b 的值代入,再利用平方根的性质求解即可. 【详解】(1)由相反数的定义得:20a b ++=由绝对值的非负性、算术平方根的非负性得:203120a b b +=⎧⎨+=⎩解得24a b =⎧⎨=-⎩则23223(4)41216a b -=⨯-⨯-=+=故23a b -的平方根为4±;(2)方程2420ax b +-=可化为224(4)20x +⨯--=整理得22180x -=29x=x=±.解得3【点睛】本题考查了相反数的定义、绝对值的非负性、算术平方根的非负性、平方根的定义等知识点,利用绝对值的非负性、算术平方根的非负性求解是常考知识点,需重点掌握.。
第六章 实数单元测试及答案一、选择题1.一列数1a , 2a , 3a ,…… n a ,其中1a =﹣1, 2a =111a -, 3a =211a -,……, n a =111n a --,则1a ×2a ×3a ×…×2017a =( )A .1B .-1C .2017D .-20172.圆的面积增加为原来的m 倍,则它的半径是原来的( )A .m 倍B .2m 倍 C倍 D .2m 倍3.下列命题中,真命题是( )A .实数包括正有理数、0和无理数B .有理数就是有限小数C .无限小数就是无理数D .无论是无理数还是有理数都是实数4.下列说法中正确的个数有( )①0是绝对值最小的有理数;②无限小数是无理数;③数轴上原点两侧的数互为相反数;④相反数等于本身的数是0;⑤绝对值等于本身的数是正数;A .2个B .3个C .4个D .5个5.若a ,b均为正整数,且a >b <+a b 的最小值是( ) A .3 B .4 C .5 D .66.有下列四种说法:①数轴上有无数多个表示无理数的点;②带根号的数不一定是无理数;③平方根等于它本身的数为0和1;④没有最大的正整数,但有最小的正整数;其中正确的个数是( )A .1B .2C .3D .47.已知|x |=2,y 2=9,且xy <0,则x +y 的值为( )A .1或﹣1B .-5或5C .11或7D .-11或﹣7830b -=)A .0B .±2C .2D .49.下列各数中3.14,0.1010010001…,﹣17,2π有理数的个数有()A .1个B .2个C .3个D .4个10.已知m 是整数,当|m ﹣40|取最小值时,m 的值为( ) A .5 B .6 C .7 D .8二、填空题11.若x +1是125的立方根,则x 的平方根是_________.12.若()2320m n ++-=,则m n 的值为 ____.13.估计51-与0.5的大小关系是:51-_____0.5.(填“>”、“=”、“<”) 14.观察下列各式:(1)123415⨯⨯⨯+=;(2)2345111⨯⨯⨯+=;(3)3456119⨯⨯⨯+=;根据上述规律,若121314151a ⨯⨯⨯+=,则a =_____.15.比较大小:512-__________0.5.(填“>”“<”或“=”) 16.已知31.35 1.105≈,3135 5.130≈,则30.000135-≈________.17.已知a 、b 为两个连续的整数,且a <19<b ,则a +b =_____.18.如图,直径为1个单位长度的半圆,从原点沿数轴向右滚动一周,圆上的一点由原点O 到达点'O ,则点'O 对应的数是_______.19.若一个正数的平方根是21a +和2a +,则这个正数是____________.20.若x ,y 为实数,且|2|30x y ++-=,则(x+y) 2012的值为____________.三、解答题21.先阅读然后解答提出的问题:设a 、b 是有理数,且满足2322+=-a b b a 的值.解:由题意得(3)(20-++=a b ,因为a 、b 都是有理数,所以a ﹣3,b+2也是有理数,2是无理数,所以a-3=0,b+2=0,所以a=3,b=﹣2, 所以3(2)8=-=-a b .问题:设x 、y 都是有理数,且满足225y 1035x y -+=+x+y 的值.22.阅读下面文字:对于5231591736342⎛⎫⎛⎫⎛⎫-+-++- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭可以如下计算: 原式()()()5231591736342⎡⎤⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-+-+++-+- ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦⎣⎦ ()()()5231591736342⎡⎤⎛⎫⎛⎫⎛⎫=-+-++-+-+-++-⎡⎤ ⎪ ⎪ ⎪⎢⎥⎣⎦⎝⎭⎝⎭⎝⎭⎣⎦ 1014⎛⎫=+- ⎪⎝⎭ 114=- 上面这种方法叫拆项法,你看懂了吗?仿照上面的方法,计算:(1)115112744362⎛⎫⎛⎫-+-++- ⎪ ⎪⎝⎭⎝⎭ (2)235120192018201720163462⎛⎫⎛⎫-++-+ ⎪ ⎪⎝⎭⎝⎭ 23.阅读理解: 计算1111234⎛⎫+++ ⎪⎝⎭×11112345⎛⎫+++ ⎪⎝⎭﹣111112345⎛⎫++++ ⎪⎝⎭×111234⎛⎫++ ⎪⎝⎭时,若把11112345⎛⎫+++ ⎪⎝⎭与111234⎛⎫++ ⎪⎝⎭分别各看着一个整体,再利用分配律进行运算,可以大大简化难度.过程如下: 解:设111234⎛⎫++ ⎪⎝⎭为A ,11112345⎛⎫+++ ⎪⎝⎭为B , 则原式=B (1+A )﹣A (1+B )=B+AB ﹣A ﹣AB=B ﹣A=15.请用上面方法计算: ①11111123456⎛⎫+++++ ⎪⎝⎭×111111234567⎛⎫+++++ ⎪⎝⎭-1111111234567⎛⎫++++++ ⎪⎝⎭×1111123456⎛⎫++++ ⎪⎝⎭②111123n ⎛⎫++++ ⎪⎝⎭111231n ⎛⎫+++ ⎪+⎝⎭-1111231n ⎛⎫++++ ⎪+⎝⎭11123n ⎛⎫+++ ⎪⎝⎭. 24.你能找出规律吗?(1= ,= ;= ,= .“<”).(2)请按找到的规律计算:;(3)已知:a,b= (可以用含a ,b 的式子表示).25.阅读理解.23.∴11<21的整数部分为1,12.解决问题:已知a﹣3的整数部分,b﹣3的小数部分.(1)求a ,b 的值;(2)求(﹣a )3+(b +4)22=17.26.阅读下列解题过程:为了求23501222...2+++++的值,可设23501222...2S =+++++,则2345122222...2S =+++++,所以得51221S S -=-,所以5123505121:1222...221S =-+++++=-,即;仿照以上方法计算:(1)2320191222...2+++++= .(2)计算:2320191333...3+++++(3)计算:101102103200555...5++++【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】因为1a =﹣1,所以2a =11111112a ==---(),3 a =21121112a ==--,4 a =3111112a ==---,通过观察可得:1 a ,2a ,3a ,4 a ……的值按照﹣1,1 2, 2三个数值为一周期循环,将2017除以3可得372余1,所以2017a 的值是第273个周期中第一个数值﹣1,因为每个周期三个数值的乘积为: 11212-⨯⨯=-,所以1a ×2a ×3a ×…×2017a =()()372111,-⨯-=-故选B. 2.C解析:C【分析】设面积增加后的半径为R ,增加前的半径为r ,根据题意列出关系式计算即可.【详解】设面积增加后的半径为R ,增加前的半径为r ,根据题意得:πR 2=mπr 2,∴,故选:C .【点睛】此题主要考查了实数的运算,要注意,圆的面积和半径之间是平方关系而非正比例关系.3.D解析:D【分析】直接利用实数以及有理数、无理数的定义分析得出答案.【详解】A 、实数包括有理数和无理数,故此命题是假命题;B 、有理数就是有限小数或无限循环小数,故此命题是假命题;C 、无限不循环小数就是无理数,故此命题是假命题;D 、无论是无理数还是有理数都是实数,是真命题.故选:D .【点睛】此题主要考查了命题与定理,正确掌握相关定义是解题关键.4.A解析:A【分析】分别利用绝对值的定义、无理数、有理数的定义、相反数的定义分别进行判断即可得出答案.【详解】①0是绝对值最小的有理数;根据绝对值的性质得出,故此选项正确;②无限小数是无理数;根据无限循环小数是有理数判断,故此选项错误;③数轴上原点两侧的数互为相反数;根据到原点距离相等的点是互为相反数,故此选项错误;④相反数等于本身的数是0;根据相反数的定义判断,故此选项正确;⑤绝对值等于本身的数是正数;还有0的绝对值也等于本身,故此选项错误.∴正确的个数有2个故选:A.【点睛】本题主要考查了绝对值的定义、无理数、有理数的定义、相反数的定义等知识,熟练掌握其性质是解题关键.5.B解析:B【分析】的范围,然后确定a、b的最小值,即可计算a+b的最小值.【详解】23.∵a a为正整数,∴a的最小值为3.12.∵b b为正整数,∴b的最小值为1,∴a+b的最小值为3+1=4.故选B.【点睛】本题考查了估算无理数的大小,解题的关键是:确定a、b的最小值.6.C解析:C【分析】根据实数的定义,实数与数轴上的点一一对应,平方根的定义可得答案.【详解】①数轴上有无数多个表示无理数的点是正确的;;2③平方根等于它本身的数只有0,故本小题是错误的;④没有最大的正整数,但有最小的正整数,是正确的.综上,正确的个数有3个,故选:C.【点睛】本题主要考查了实数的有关概念,正确把握相关定义是解题关键.7.A解析:A【分析】根据题意,利用平方根定义,绝对值的代数意义,以及有理数的乘法法则判断确定出x与y 的值即可.【详解】解:∵|x |=2,y 2=9,且xy <0,∴x=2或-2,y=3或-3,当x=2,y=-3时,x+y=2-3=-1;当x=-2,y=3时,原式=-2+3=1,故选:A .【点睛】此题考查了有理数的乘方,绝对值,以及有理数的加法,熟练掌握运算法则是解本题的关键.8.C解析:C【分析】由算术平方根和绝对值的非负性,求出a 、b 的值,然后进行计算即可.【详解】解:根据题意,得a ﹣1=0,b ﹣3=0,解得:a =1,b =3,∴a +b =1+3=4,∴2.故选:C .【点睛】本题考查了算术平方根和绝对值的非负性,解题的关键是正确求出a 、b 的值.9.C解析:C【分析】直接利用有理数的定义进而判断得出答案.【详解】解:3.14,0.1010010001…,-17 ,2π 3.14,-17=-2共3个.故选C .【点睛】此题主要考查了有理数,正确把握有理数的定义是解题关键. 10.B解析:B【分析】根据绝对值是非负数,所以不考虑m 为整数,则m 取最小值是0,又0的绝对值为0,令0m=,得出m=m的整数可得:m =6.【详解】解:因为m取最小值,m∴=,∴=,m解得:m=240m=,∴<<,且m更接近6,67m∴当6m=时,m有最小值.故选:B.【点睛】本题考查绝对值的非负性,以及估算二次根式的大小,理解并熟练掌握绝对值的非负性是本题解题关键;在估算二次根式大小的时候,先算出二次根式的平方,再看这个平方在哪两个平方数之间,就相应的得出二次根式在哪两个整数之间,即可估算出二次根式的大小.二、填空题11.±2【分析】先根据立方根得出x的值,然后求平方根.【详解】∵x+1是125的立方根∴x+1=,解得:x=4∴x的平方根是±2故答案为:±2【点睛】本题考查立方根和平方根,注意一个正解析:±2【分析】先根据立方根得出x的值,然后求平方根.【详解】∵x+1是125的立方根∴x=4∴x的平方根是±2故答案为:±2本题考查立方根和平方根,注意一个正数的平方根有2个,算术平方根只有1个.12.【分析】根据非负数的性质列式求出m 、n 的值,然后代入代数式进行计算即可得解.【详解】由题意得,m+3=0,n-2=0,解得m=-3,n=2,所以,mn=(-3)2=9.故答案为9.【解析:【分析】根据非负数的性质列式求出m 、n 的值,然后代入代数式进行计算即可得解.【详解】由题意得,m+3=0,n-2=0,解得m=-3,n=2,所以,m n =(-3)2=9.故答案为9.【点睛】此题考查绝对值和算术平方根非负数的性质,解题关键在于掌握几个非负数的和为0时,这几个非负数都为0.13.>【解析】∵ . , ∴ , ∴ ,故答案为>.解析:>【解析】∵10.52-=-=20-> , ∴0> , ∴0.5> ,故答案为>.14.181【分析】观察各式得出其中的规律,再代入求解即可.【详解】由题意得将代入原式中故答案为:181.本题考查了实数运算类的规律题,掌握各式中的规律是解题的关键.解析:181【分析】观察各式得出其中的规律,再代入12n=求解即可.【详解】由题意得()31n n=⨯++将12n=代入原式中12151181a==⨯+=故答案为:181.【点睛】本题考查了实数运算类的规律题,掌握各式中的规律是解题的关键.15.>【分析】首先把两个数采用作差法相减,根据差的正负情况即可比较两个实数的大小.【详解】∵,∵-2>0,∴>0.故>0.5.故答案为:>.【点睛】此题考查实数大小比较,解题关键在于解析:>【分析】首先把两个数采用作差法相减,根据差的正负情况即可比较两个实数的大小.【详解】12>0,∴22>0.>0.5.故答案为:>.【点睛】此题考查实数大小比较,解题关键在于掌握比较两个实数的大小,可以采用作差法、取近似值法等.16.-0.0513【分析】根据立方根的意义,中,m的小数点每移动3位,n的小数点相应地移动1位.【详解】因为所以-0.0513故答案为:-0.0513【点睛】考核知识点:立方根.理解立方解析:-0.0513【分析】=中,m的小数点每移动3位,n的小数点相应地移动1位.n【详解】≈5.130≈-0.0513故答案为:-0.0513【点睛】考核知识点:立方根.理解立方根的定义是关键.17.9【分析】首先根据的值确定a、b的值,然后可得a+b的值.【详解】∵<,∴4<<5,∵a<<b,∴a=4,b=5,∴a+b=9,故答案为:9.【点睛】本题主要考查了估算无理数的解析:9【分析】a 、b 的值,然后可得a +b 的值.【详解】<∴45,∵a b ,∴a =4,b =5,∴a +b =9,故答案为:9.【点睛】本题主要考查了估算无理数的大小,关键是正确确定a 、b 的值. 18.【分析】点对应的数为该半圆的周长.【详解】解:半圆周长为直径半圆弧周长即故答案为:.【点睛】本题考查数轴上的点与实数的关系.明确的长即为半圆周长是解答的关键. 解析:12π+【分析】点O '对应的数为该半圆的周长.【详解】解:半圆周长为直径+半圆弧周长 即12π+ 故答案为:12π+.【点睛】 本题考查数轴上的点与实数的关系.明确OO '的长即为半圆周长是解答的关键. 19.1【分析】一个正数有两个平方根,它们互为相反数,由此即可列式2a+1+a+2=0,求出a 再代回一个根再平方即可得到该正数.【详解】由题意得2a+1+a+2=0,解得a=-1,∴a+2=1解析:1【分析】一个正数有两个平方根,它们互为相反数,由此即可列式2a+1+a+2=0,求出a 再代回一个根再平方即可得到该正数.【详解】由题意得2a+1+a+2=0,解得a=-1,∴a+2=1,∴这个正数是22(2)11a +==,故答案为:1.【点睛】此题考查平方根的性质:一个正数有两个平方根,它们互为相反数,0的平方根是0,负数没有平方根.20.1【分析】先根据绝对值的非负性、算术平方根的非负性求出x 、y 的值,再代入计算有理数的乘方即可.【详解】由绝对值的非负性、算术平方根的非负性得:解得则故答案为:1.【点睛】本题考查了解析:1【分析】先根据绝对值的非负性、算术平方根的非负性求出x 、y 的值,再代入计算有理数的乘方即可.【详解】由绝对值的非负性、算术平方根的非负性得:2030x y +=⎧⎨-=⎩解得23x y =-⎧⎨=⎩则201220122012()(23)11x y +=-+==故答案为:1.【点睛】本题考查了绝对值的非负性、算术平方根的非负性、有理数的乘方运算,利用绝对值的非负性、算术平方根的非负性求解是常考知识点,需重点掌握.三、解答题21.7或-1.【分析】根据题目中给出的方法,对所求式子进行变形,求出x 、y 的值,进而可求x+y 的值.【详解】解:∵2210x y -=+∴()22100x y --+-=,∴2210x y --=0-=0∴x=±4,y=3当x=4时,x+y=4+3=7当x=-4时,x+y=-4+3=-1∴x+y 的值是7或-1.【点睛】本题考查实数的运算,解题的关键是弄清题中给出的解答方法,然后运用类比的思想进行解答.22.(1)14-(2)124- 【分析】(1)根据例子将每项的整数部分相加,分数部分相加即可解答;(2)根据例子将每项的整数部分相加,分数部分相加即可解答.【详解】 (1)115112744362⎛⎫⎛⎫-+-++- ⎪ ⎪⎝⎭⎝⎭()115112744362⎛⎫=--+-+--+- ⎪⎝⎭ 104⎛⎫=+- ⎪⎝⎭ 14=- (2)原式()235120192018201720163462⎛⎫=-+-++-+-+ ⎪⎝⎭ 124⎛⎫=-+- ⎪⎝⎭124=- 【点睛】此题考察新计算方法,正确理解题意是解题的关键,根据例子即可仿照计算.23.(1)17;(2)11n +. 【解析】【分析】①根据发现的规律得出结果即可;②根据发现的规律将所求式子变形,约分即可得到结果.【详解】(1)设1111123456⎛⎫++++ ⎪⎝⎭为A ,111111234567⎛⎫+++++ ⎪⎝⎭为B , 原式=(1+A )B ﹣(1+B )A=B+AB ﹣A ﹣AB=B ﹣A=17; (2)设11123n ⎛⎫+++ ⎪⎝⎭为A ,111231n ⎛⎫+++ ⎪+⎝⎭为B , 原式=(1+A )B ﹣(1+B )A=B+AB ﹣A ﹣AB=B ﹣A=11n +. 【点睛】 考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.24.(1)6,6,20,20,=,=;(2)①10,②4;(3)2a b【分析】(1)0,0a b =≥≥,据此判断即可.(2=10===,4===,据此解答即可.(3)根据a =b =2a b ==,据此解答即可.【详解】解:(1236=⨯=6==;4520=⨯=20==.==故答案为:6,6,20,20,=,=;(210===;4===;(3)∵a =b =2a b ==, 故答案为:2a b .【点睛】 本题考查算数平方根,掌握求一个数算术平方根的方法为解题关键.25.(1)a =1,b ﹣4;(2)±4.【分析】(1)根据被开饭数越大算术平方根越大,可得a ,b 的值,(2)根据开平方运算,可得平方根.【详解】解:(1<,∴4<<5,∴1﹣3<2,∴a =1,b 4;(2)(﹣a )3+(b+4)2=(﹣1)3+﹣4+4)2=﹣1+17=16,∴(﹣a )3+(b+4)2的平方根是:±4.【点睛】本题考查了估算无理数的大小,利用被开方数越大算术平方根越大得出4<5是解题关键.26.(1)202021-;(2)2020312-;(3)201101554-. 【分析】仿照阅读材料中的方法求出所求即可.【详解】解:(1)根据2350511222...221+++++=-得:2320191222...2+++++=202021-(2)设2320191333...3S =+++++,则234202033333...3S =+++++,∴2020331S S -=-, ∴2020312S -= 即:2020232019311333 (32)-+++++= (3)设232001555...5S =+++++,则23420155555...5S =+++++,∴201551S S -=-,∴201514S -= 即:20123200511555 (5)4-+++++= 同理可求⸫10123100511555 (5)4-+++++= ∵1011021032002320023100555...51555...5)(1555...5)++++=+++++-+++++( 201101201101101102103200515155555 (5444)---∴++++=-= 【点睛】此题考查了规律型:数字的变化类,弄清题中的规律是解本题的关键.。
第六章实数单元测试题 姓名
一、选择题 (每题3分,共24分)
1. 下列实数
317
,π-,14159.3
,2
1中无理数有( ) A.2个 B.3个 C.4个 D.5个
2. 下列运算正确的是( )
A.39±=
B.33-=-
C.39-=-
D.932
=- 3. 下列各组数中互为相反数的是( )
A.-2
-2
C.-2 与1
2
- D.2与2-
4. 实数a,b 在数轴上的位置如图所示,则下列结论正确的是( )
A. 0a b +>
B. 0a b ->
C. 0>ab
D .0>b
a
5. 有如下命题:①负数没有立方根;②一个实数的立方根不是正数就是负数;③一个正数或负数的立方根与这个数同号;④如果一个数的立方根是这个数本身,那么这个数是1或0。
其中错误的是( )
A .①②③
B .①②④
C .②③④
D .①③④ 6. 若a 为实数,则下列式子中一定是负数的是( )
A .2
a - B .2)1(+-a C .2a - D .)1(+--a
7.
a =-,则实数a 在数轴上的对应点一定在( )
A .原点左侧
B .原点右侧
C .原点或原点左侧
D .原点或原点右侧
8. 请你观察、思考下列计算过程: 因为112
=121,所以121=11 ; 因为1112
=12321,所
以11112321=;……,由此猜想76543211234567898= ( ) A .111111 B .1111111 C .11111111 D .111111111 二、填空题(每题3分,共21) 9.81的平方根是 。
10.
_________。
11. 化简:332-= 。
12. 写出1到2之间的一个无理数___________。
13. 计算:3200989)1(+-- =____________。
14. 当x ≤0时,化简1x --
的结果是 。
15.如果一个数的平方根是6+a 和152-a ,则这个数为 。
三、解答题(共55分)
16. (9分)将下列各数填入相应的集合内。
-11124
π,..
0.23, 3.14 ①有理数集合{ … }
②无理数集合{ … } ③负实数集合{ … } 17. 计算:(12分)
(1) 2+32—52 (2) 6(6
1
-6)
(3) |23- | + |23-| + 2
)2(-
18. (10分)解方程:
(1)036252
=-x (2) 27)3(3=+x
19. (8分)已知a 、b 互为相反数,c 、d 互为倒数,求2
2
22b
a b a +--cd 的值.
20.(8分)已知:如图,AD ∥EF ,∠1=∠2.求证:AB∥DG.
21. (8分)已知a 、b 满足05102=-++b a ,解关于x 的方程()142
-=++a b x a
第六章实数参考答案
一、选择题
1.B 2.C 3.A 4.A 5.B 6.D 7. C 8.D 二、填空题
9.3± 10.5± 11.3 12.2或3 13.-2 14.1 15.2
x 16.01.1± 17.81 18. 2010 三、解答题
19.解: 有理数集合: {-1112
..
0.23,3.14 …}
无理数集合4
π
…}
负实数集合:{-11124
π
…}
20.解:(1)-2 (2)=5- (3) 24- 21.(1)解:5
6
±
=x (2)0=x 22.解:由a +b =0, cd =1得02
2
=+b a 原式=0-1=-1. 23.解:11=x
24.解:(1)n n -+1
(2)原式=)99100()24()23()12(-++-+-+-
= 99100342312-++-+-+-
=110- = 9
25.解:设在定价销售额为40010000⨯元的情况下,采用打折销售的实际销售金额为1W 元,采用有奖销售的实际销售金额为2W 元,
由题意有140010000953800000W =⨯⨯=%(元),
240010000(230001010002030010010020050500010)W =⨯-⨯+⨯+⨯+⨯+⨯+⨯ 3908000=(元),
比较知:21W W >. 在定价销售额相同的情况下,实际销售额大,收益就大,
∴就商场的收益而言,选用有奖销售方式,更为合算.
26. 解:(1)点B 坐标是(33,3);
(2)向左平移3个单位长度后,各点的纵坐标不变,横坐标都减少3,所以A ′(O,
3)、B ′(23,3)、C ′(3,0)
,O ′(-3,0). (3)平行四边形的面积为23·3=2(3)2
=2×3=6.。