八年级数学下册 12.3 二次根式的加减导学案(无答案)(新版)苏科版
- 格式:doc
- 大小:89.50 KB
- 文档页数:2
16.3二次根式的加减第1课时【教学目标】知识与技能:1.理解二次根式合并的原理,能进行二次根式的合并.2.掌握二次根式加减的法则,会运用法则进行二次根式的加减.过程与方法:先提出问题,分析问题,在分析问题中,渗透对二次根式进行加减的方法的理解.再总结经验,用它来指导二次根式的计算和化简.培养学生较熟练的运算能力.情感态度与价值观:帮助学生正确对待学习,养成良好的学习习惯,寻找有效的学习方法.【重点难点】重点:理解二次根式合并的原理,掌握二次根式加减的法则,会运用法则进行二次根式的加减.难点:掌握二次根式加减的法则,能熟练运用法则进行二次根式的加减.【教学过程】一、创设情境,导入新课:[问题情境]如图,面积为48 cm2的正方形四个角是面积为3 cm2的小正方形,现将四个角剪掉,制作一个无盖的长方体盒子,求这个长方体的底面边长和高分别是多少?解:原大正方形边长为=4(cm),小正方形边长为 cm.长方体的底面的边长为4-2.接下来怎样计算呢?这就是这节课我们要学习的二次根式的加减.二、探究归纳活动1:二次根式的合并的条件1.(1)什么是最简二次根式?(2)化简二次根式并找出被开方数相同的二次根式:①②③④⑤⑥⑦(3)上面二次根式哪些能合并?答案:①与⑥③与⑤④与⑦.2.归纳:二次根式的合并的条件把二次根式化成最简二次根式,被开方数相同的二次根式能合并.活动2:探索二次根式加减的法则1.填空:3+2=(3+2),其运算根据是______答案:分配律2.+=4+3①=(4+3)②=7.问题:(1)其中第①步是怎样运算的?______ ;答案:化成最简二次根式(2)第②步运算根据是________.答案:分配律3.思考:同类项可以合并,被开方数相同的最简二次根式能合并吗?提示:能.4.归纳:二次根式加减的法则:二次根式加减时,可以先将二次根式化成最简二次根式,再将被开方数相同的二次根式进行合并.活动3:例题讲解【例1】确定下列哪组二次根式能合并.(1),(2),(3),(4),分析:化成最简二次根式后,被开方数相同的二次根式可以合并.解:(1)=3与不能合并;(2)=与能合并;(3)=5,=10,5与10不能合并;(4)与不能合并.点拨:二次根式合并的方法1.将二次根式都化为最简二次根式;2.把被开方数相同的二次根式合并.【例2】计算:(1)+2+-.(2)a+-.分析:先把各二次根式化成最简二次根式,再把被开方数相同的二次根式合并.解:(1)+2+-=++2-=++2-=+.(2)a+-=+2-+=+(2+1)=+3.总结:二次根式加减的步骤:1.化简:将每一个二次根式都化为最简二次根式.2.判断:判断哪些二次根式的被开方数相同,把被开方数相同的二次根式结合在一起.3.合并:合并被开方数相同的二次根式,将二次根式的系数相加,被开方数不变.三、交流反思这节课我们学习了二次根式的加减运算,在运算时要注意按照:“一化二找三合并”的步骤进行,细心运算.四、检测反馈1.计算:-=________.A.B.2 C.D.2+2.化简-(-1)的结果是()A.2-1B.2-C.1D.2+3.下列根式中,不能与合并的是()A.B.C.D.4.计算-9的结果是()A.-B.C.-D.5.下列计算正确的是()A.4-3=1B.+=C.2=D.3+2=56.已知最简二次根式与能合并,则a的值可以是()A.5B.3C.7D.87.请确定下列二次根式是否能合并,说明理由.(1)和;(2)和;(3)和.8.计算:(1)-(2)+6-3x五、布置作业教科书第15页习题16.3第1,2,3题六、板书设计七、教学反思本节课学习了二次根式加减,关键是掌握二次根式加减的步骤:(1)化:将每一个二次根式都化为最简二次根式;(2)找:找出被开方数相同的二次根式,把被开方数相同的二次根式结合在一起;(3)合并:将被开方数相同的二次根式的系数相加,被开方数不变.并能运用步骤进行计算.。
第5课时:二次根式【课前预习】(一)知识梳理1、平方根与立方根:①平方根定义;②算术平方根定义;③立方根定义.2、二次根式的有关概念:①二次根式定义;②最简二次根式;③同类二次根式;④分母有理化.3、二次根式的性质:①;(a ≥0);② ()=2a (a ≥0);③ =2a ;④ =ab (0,0≥≥b a ); ⑤ =ba (0,0>≥b a ). 4、二次根式的运算:①二次根式的加减;②二次根式的乘除.(注意:计算结果必须是最简二次根式)(二)课前练习1、16的平方根是_ __,-27的立方根是__ _,36的算术平方根是_ _.2、当x ______x ______时,代数式x -21有意义.3、下列根式:①②③④中不是..最简二次根式的是 .4、在下列各组根式中,是同类二次根式的是( )A C 5、已知012=-++b a ,那么2007)(b a +=__________;=-+-x x 22 .6、化简:2)2(-= ,24= ,= ,312= ,321-= .7= ;=÷⨯263_________.8、如图,在数轴上点A 和点B 之间的整数是 .【解题指导】例1 x 是怎样的实数时,下列各式在实数范围内有意义?①()22+x ; ② 53--x x ; ③ xx ---512; ④ 32-+x x ; ⑤ 231--x .例2 计算:(1)24-32+23-2 16 ; (2)⎪⎭⎫ ⎝⎛-⨯÷3232292443.例3 已知b a a b a b ==-求的值.【巩固练习】 1、下列计算正确的是( )=B 4= D 3=-2、设a >0,b >0,则下列运算错误的是( )A ..2=a D3、对于实数a 、b b -a ,则( )A .a >bB .a <bC .a ≥bD .a ≤b4、使2-x 有意义的x 的取值范围是 .5、25的平方根是 ,()24-的算术平方根是 ,16的算术平方根是_______.6、16-= ,412-= ,24)(- .7、若最简根式1+x 和y 3是同类根式,则 x y +=______.834请你将发现的规律用含自然数n (n ≥1)的等式表示出来______________________9、化简或计算:(1) -3018⨯752⨯ (2)【课后作业】 班级 姓名一、必做题:1、函数y =x 的取值范围是( )A .12x -≥B .12x ≥C .12x -≤D .12x ≤22()x y =+,则x -y 的值为( )A .-1B .1C .2D .33、下列根式中,不是..最简二次根式的是( )A B . C D 4、 16的平方根是 ;函数y =自变量x 的取值范围是 .5= ;= ;= .6、当x ≤0时,化简1x -的结果是 .7、有这样一个问题:与下列哪些数相乘,结果是有理数? (只需填字母).A ..2E .08小的整数 .9、对于任意不相等的两个数a 、b ,定义一种运算※如下:a ※b =b a b a -+,如3※2=52323=-+. 那么12※4=10、计算:(1)(2)24616323252⨯⎪⎭⎫ ⎝⎛-÷(3)2;11、先化简再求值:33)225(423-=---÷--a a a a a ,其中.o二、选做题:12的值( )A .在1到2之间B .在2到3之间C .在3到4之间 D .在4到5之间2、若x y=xy 的值是( )A .B .C .m n + D.m n -3、实数,,a b ca -b │.4、若y =3x -6+6-3x +x 3,则10x +2y 的平方根为________;5、已知||6-3m +(n -5)2=3m -6-(m -3)n 2,则m -n =________.6、计算12121...571351131-+++++++++n n .7、已知:a =12+3,求a 2-1a +1-a 2-2a +1a 2-a 的值.。
数学八年级下册第九章《二次根式》第三节《二次根式乘除法》第1课时教学设计数学八年级下册第九章《二次根式》第三节《二次根式乘除法》第1课时学情分析一、思想状况分析八年级10班大部分学生的学习目的性明确、学习积极性高,能主动地学习,部分同学有上进心,但主动性不够,需要老师的引导。
八年级10班的学生学习目的不明确,不能积极主动地完成学业,甚至不能完成老师布置的作业。
大部分学生正处在生长发育的高峰期,一方面他们对因青春期生理、心理急剧变化而产生的丰富而深刻的感受和体验,有诸多成长的烦恼;另一方面面对沉重的学习、开放的社会环境带来的各种刺激和诱惑,难免不知所措。
二、学习状况分析八年级是一个产生剧烈变化的时期,更是一个危险的时期,也是一个爬坡的时期,是一个分水岭。
第一类:学习有一定的基础和很浓厚的兴趣.学生成绩稳定.第二类:基础差,但热情高,方法不当第三类:学习有一定的基础,但因各种原因成绩(如懒、上课纪律差易开小差注意力不集中、不想上学的思想作怪等)就是提不上来。
第四类:基础差,没有太大的兴趣,但尽量跟住老师.这些孩子的家长当然也在督促。
第五类:跟不上正常的进度.另外,大部分学生有学习目标,学习态度端正,学习积极性高,有一定的理解能力和分析判断推理能力,但学习自主性不太强,基础较薄弱,通过小学的精心培养,学生们已经养成了良好的学习习惯和行为习惯。
语言文明,思想健康,积极、认真、扎实。
但有的学生对自己的学习没信心,在自动放弃学习。
三、今后措施1、在教学中必须立足基础知识,加强基础知识的教学,要让学生通过历史知识的学习,养成良好的思维习惯,培养学生良好的学习习惯和严谨认真的学习态度,加强规范语言训练,提高答题得分率。
2、运用科学探究的方法,获取相应的知识,培养学生的情感和态度,扎扎实实打好基础,引领学生进入阅读世界、注重文献史料的积累借鉴,引导学生系统、牢固地掌握各课的知识考点,并培养他们运用所学知识分析问题、解决问题的能力。
苏科新版八年级下学期《12.3 二次根式的加减》同步练习卷一.选择题(共5小题)1.若与是同类二次根式,则x可以是()A.0.5B.50C.125D.252.下列根式中,能与合并的二次根式为()A.B.C.D.3.下列根式中,与是同类二次根式的是()A.B.C.D.4.下列计算正确的是()A.B.C.D.5.下列运算正确的是()A.+=B.3﹣=3C.2+=2D.+=5二.填空题(共7小题)6.计算的结果为.7.若|2﹣a|+﹣2=a,则a=.8.计算﹣=.9.计算﹣=.10.计算﹣2+7=.11.计算4﹣3的结果是.12.3﹣=.三.解答题(共22小题)13.若最简二次根式和是同类二次根式.(1)求x,y的值;(2)求的值.14.如果最简二次根式与是同类二次根式.(1)求出a的值;(2)若a≤x≤2a,化简:|x﹣2|+.15.最简二次根式与是同类二次根式,求3a﹣b的值.16.计算:﹣+2﹣.17.计算:(1)2+﹣(2)18.计算﹣4()19.计算:(1)﹣+﹣(2)﹣﹣+220.计算:2﹣6﹣(﹣)21.计算下列各题:(1)÷×;(2)(﹣1)2+;(3)(﹣)×(﹣)+|﹣1|+(5﹣2π)0.22.计算:(1)+﹣;(2)(﹣2)×﹣6;(3)(﹣)(+)+2.23.计算:(1)++(2)(+5)(3)﹣﹣+(4)(+)(﹣)24.计算(1)3﹣9﹣(2﹣)﹣|2﹣5|(2)(﹣1)101+(π﹣3)0+()﹣1﹣25.计算:﹣14++()﹣2+(﹣2)2008•(+2)2007﹣(π﹣)0 26.已知x=,y=,求:(1)x2y﹣xy2的值;(2)x2﹣xy+y2的值.27.已知:x=﹣2,y=+2,分别求下列代数式的值(1)x2﹣y2(2)x2+2xy+y228.已知:x=,y=.求下列代数式x2﹣3xy+y2的值.29.已知:2a+b+5=4(+),先化简再求值﹣30.已知x=2+,y=2﹣,求下列各式的值:(1)x2﹣y2;(2)x2+y2﹣3xy.31.高空抛物极其危险,是我们必须杜绝的行为.据研究,高空抛物下落的时间t(单位:s)和高度h(单位:m)近似满足公式t=(不考虑风速的影响)(1)从50m高空抛物到落地所需时间t1是多少s,从100m高空抛物到落地所需时间t2是多少s;(2)t2是t1的多少倍?(3)经过1.5s,高空抛物下落的高度是多少?32.解不等式:x+1>2x+33.已知一个三角形的三边长分别为:5,,x,求这个三角形的周长(要求结果化简).34.(1)计算:①;②(+)2﹣6.(2)海伦公式是利用三角形三条边长求三角形面积的公式,用符号表示为:S =(其中a,b,c为三角形的三边长,p=,S为三角形的面积).下面是利用海伦公式求a=,b=3,c=2时的三角形面积S的过程,请认真阅读并完成相应任务.解:∵a=,b=3,c=2,∴P==.【任务①:直接写出p的化简结果】∴S=【任务②:写出计算S值的过程】=苏科新版八年级下学期《12.3 二次根式的加减》同步练习卷参考答案与试题解析一.选择题(共5小题)1.若与是同类二次根式,则x可以是()A.0.5B.50C.125D.25【分析】分别将四个选项中x的值代入化简,再根据同类二次根式的定义判断即可得.【解答】解:A.=,不符合题意;B.=5,不符合题意;C.=5,符合题意;D.=5,不符合题意;故选:C.【点评】本题主要考查同类二次根式,解题的关键是掌握同类二次根式的定义:一般地,把几个二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式.2.下列根式中,能与合并的二次根式为()A.B.C.D.【分析】分别化简二次根式进而得出能否与合并.【解答】解:A、=2,故不能与合并,不合题意;B、=,不能与合并,不合题意;C、=2,能与合并,符合题意,D、=3,不能与合并,不合题意;故选:C.【点评】此题主要考查了同类二次根式,正确化简二次根式是解题关键.3.下列根式中,与是同类二次根式的是()A.B.C.D.【分析】先化简为最简二次根式后即可判定.【解答】解:=2,(A)原式=,故A与2不是同类二次根式;(B)原式=2,故B与2不是同类二次根式;(C)原式=4,故C与2不是同类二次根式;(D)原式=3,故D与2是同类二次根式;故选:D.【点评】本题考查同类二次根式的定义,解题的关键是熟练运用同类二次根式的定义,本题属于基础题型.4.下列计算正确的是()A.B.C.D.【分析】利用二次根式的加减的运算法则及二次根式的性质分别计算后即可确定正误.【解答】解:A、=4,故错误;B、==,故错误;C、﹣=﹣,故错误;D、﹣=2﹣=,正确,故选:D.【点评】本题考查了二次根式的加减法及其化简的知识,属于基础题,比较简单.5.下列运算正确的是()A.+=B.3﹣=3C.2+=2D.+=5【分析】直接利用二次根式的加减运算法则计算得出答案.【解答】解:A、+不能合并,故此选项错误;B、3﹣=2,故此选项错误;C、2+不能合并,故此选项错误;D、+=2+3=5,故此选项正确.故选:D.【点评】此题主要考查了二次根式的加减运算,正确掌握运算法则是解题关键.二.填空题(共7小题)6.计算的结果为.【分析】先化简各二次根式,再合并同类二次根式即可得.【解答】解:=3﹣4×=3﹣2=,故答案为:.【点评】本题主要考查二次根式的加减法,解题的关键是掌握二次根式的加减运算顺序和运算法则.7.若|2﹣a|+﹣2=a,则a=19.【分析】先根据二次根式成立的条件得:a﹣3≥0,则a≥3,将原式中的绝对值化去得:a﹣2+=a+2,计算a的值.【解答】解:∵|2﹣a|+﹣2=a,∴a﹣3≥0,a≥3,∴a﹣2+=a+2,=4,a=19,故答案为:19.【点评】本题考查了二次根式的意义和二次根式的计算,熟练掌握二次根式成立的条件是关键.8.计算﹣=﹣.【分析】直接化简二次根式进而计算得出答案.【解答】解:原式=2﹣3=﹣.故答案为:﹣.【点评】此题主要考查了二次根式的加减运算,正确化简二次根式是解题关键.9.计算﹣=0.【分析】依据二次根式的性质进行化简即可.【解答】解:﹣=﹣4+4=0,故答案为:0.【点评】本题主要考查了二次根式的性质与化简,解决问题的关键是掌握二次根式的性质.10.计算﹣2+7=37.【分析】直接化简二次根式进而利用二次根式的加减运算法则计算得出答案.【解答】解:﹣2+7=4﹣2+7×5=37.故答案为:37.【点评】此题主要考查了二次根式的加减运算,正确化简二次根式是解题关键.11.计算4﹣3的结果是﹣.【分析】先化简二次根式,再依次计算乘法和减法可得.【解答】解:原式=4×﹣3=2﹣3=﹣,故答案为:﹣【点评】本题主要考查二次根式的加减法,二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变.12.3﹣=8.【分析】直接化简二次根式进而得出答案.【解答】解:3﹣=9﹣=8.故答案为:8.【点评】此题主要考查了二次根式的加减运算,正确化简二次根式是解题关键.三.解答题(共22小题)13.若最简二次根式和是同类二次根式.(1)求x,y的值;(2)求的值.【分析】(1)根据同类二次根式的定义:①被开方数相同;②均为二次根式;列方程解组求解;(2)根据x,y的值和算术平方根的定义即可求解.【解答】解:(1)根据题意知,解得:;(2)当x=4、y=3时,===5.【点评】此题主要考查了同类二次根式和算术平方根的定义,属于基础题,解答本题的关键是掌握被开方数相同的二次根式叫做同类二次根式.14.如果最简二次根式与是同类二次根式.(1)求出a的值;(2)若a≤x≤2a,化简:|x﹣2|+.【分析】(1)根据最简二次根式以及同类二次根式的定义即可求出答案.(2)根据绝对值的性质以及二次根式的性质即可求出答案.【解答】解:(1)由题意可知:4a﹣5=13﹣2aa=3(2)∵a=3,∴3≤x≤6∴x﹣2≥1,x﹣6≤0原式=|x﹣2|+|x﹣6|=x﹣2﹣(x﹣6)=4【点评】本题考查二次根式,解题的关键是熟练运用绝对值的性质以及二次根式的性质,本题属于基础题型.15.最简二次根式与是同类二次根式,求3a﹣b的值.【分析】根据题意,它们的被开方数相同,列出方程求解.【解答】解:由最简二次根式与是同类二次根式,得,解得,所以3a﹣b=2.【点评】本题考查同类二次根式的概念,同类二次根式是化为最简二次根式后,被开方数相同的二次根式称为同类二次根式.16.计算:﹣+2﹣.【分析】先把二次根式化为最简二次根式,再合并同类二次根式..【解答】解:原式=﹣+2×4﹣=﹣+8﹣=7+【点评】本题考查了二次根式的加减,解决本题的关键是把二次根式化为最简二次根式.17.计算:(1)2+﹣(2)【分析】(1)首先化简二次根式进而计算得出答案;(2)直接利用平方差公式计算得出答案.【解答】解:(1)2+﹣=2+3﹣=;(2)==×=9×7=63.【点评】此题主要考查了二次根式的加减,正确化简二次根式是解题关键.18.计算﹣4()【分析】直接化简二次根式进而计算得出答案.【解答】解:原式=2﹣﹣4(﹣﹣3)=﹣+2+12=+13.【点评】此题主要考查了二次根式的加减,正确化简二次根式是解题关键.19.计算:(1)﹣+﹣(2)﹣﹣+2【分析】(1)首先化简二次根式进而合并得出答案;(2)首先化简二次根式进而合并得出答案.【解答】解:(1)原式=6﹣4+3﹣5=﹣;(2)原式=﹣﹣+10=9.【点评】此题主要考查了二次根式的加减运算,正确化简二次根式是解题关键.20.计算:2﹣6﹣(﹣)【分析】首先化简二次根式进而计算得出答案.【解答】解:原式=4﹣2﹣3+3=+.【点评】此题主要考查了二次根式的加减运算,正确化简二次根式是解题关键.21.计算下列各题:(1)÷×;(2)(﹣1)2+;(3)(﹣)×(﹣)+|﹣1|+(5﹣2π)0.【分析】(1)根据二次根式的乘除法则运算;(2)利用完全平方公式计算;(3)根据二次根式的乘法法则、绝对值的意义和零指数幂的意义运算;【解答】解:(1)原式==3;(2)原式=3﹣2+1+2=4;(3)原式=+﹣1+1=3+=4.【点评】本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.22.计算:(1)+﹣;(2)(﹣2)×﹣6;(3)(﹣)(+)+2.【分析】(1)先把各二次根式化简为最简二次根式,然后合并即可;(2)先进行二次根式的乘法法则运算,然后化简后合并即可;(3)利用平方差公式计算.【解答】解:(1)原式=2+4﹣=5;(2)原式=﹣2﹣3=3﹣2﹣3=﹣2;(3)原式=6﹣7+2=1.【点评】本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.23.计算:(1)++(2)(+5)(3)﹣﹣+(4)(+)(﹣)【分析】(1)根据二次根式的加法可以解答本题;(2)根据二次根式的乘法和加法可以解答本题;(3)根据二次根式的加减法可以解答本题;(4)根据平方差公式可以解答本题.【解答】解:(1)++==3+2;(2)(+5)==6+10;(3)﹣﹣+==+2;(4)(+)(﹣)=2﹣3=﹣1.【点评】本题考查二次根式的混合运算,解答本题的关键是明确二次根式混合运算的计算方法.24.计算(1)3﹣9﹣(2﹣)﹣|2﹣5|(2)(﹣1)101+(π﹣3)0+()﹣1﹣【分析】(1)根据二次根式的乘法、加减法和绝对值可以解答本题;(2)根据零指数幂、负整数指数幂可以解答本题.【解答】解:(1)3﹣9﹣(2﹣)﹣|2﹣5|=12﹣3﹣2+9﹣(5﹣2)=12﹣3﹣2+9﹣5+2=9+4;(2)(﹣1)101+(π﹣3)0+()﹣1﹣=(﹣1)+1+2﹣()=(﹣1)+1+2﹣+1=3﹣.【点评】本题考查二次根式的混合运算、零指数幂、负整数指数幂,解答本题的关键是明确二次根式混合运算的计算方法.25.计算:﹣14++()﹣2+(﹣2)2008•(+2)2007﹣(π﹣)0【分析】利用乘方的意义、零指数幂、负整数指数幂和积的乘方法则运算.【解答】解:原式=﹣1+2+4+[(﹣2)(+2)]2007(﹣2)﹣1=3+2﹣+2﹣1=4+.【点评】本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.26.已知x=,y=,求:(1)x2y﹣xy2的值;(2)x2﹣xy+y2的值.【分析】先将x和y的值分母有理化后,计算xy和x+y的值,再分别代入(1)和(2)问代入计算即可.【解答】解:∵x===3+2,y===3﹣2,∴xy==1,x+y=3+2+3﹣2=6,∴(1)x2y﹣xy2,=xy(x﹣y),=1×,=4;(2)x2﹣xy+y2,=(x+y)2﹣3xy,=62﹣3×1,=36﹣3,=33.【点评】本题主要考查了二次根式的化简求值,在解答时应先化简x和y的值,并利用提公因式法和完全平方公式将所求式子进行变形是关键.27.已知:x=﹣2,y=+2,分别求下列代数式的值(1)x2﹣y2(2)x2+2xy+y2【分析】根据二次根式的运算以及乘法公式即可求出答案.【解答】解:(1)∵x=﹣2,y=+2,∴x+y=2,x﹣y=﹣4∴原式=(x+y)(x﹣y)=2×(﹣4)=﹣8;(2)原式=(x+y)2=(2)2=20.【点评】本题考查学生的运算能力,解题的关键是熟练运用乘法公式以及二次根式的运算法则,本题属于基础题型.28.已知:x=,y=.求下列代数式x2﹣3xy+y2的值.【分析】先将x,y分母有理化,再将其代入到原式=(x﹣y)2﹣xy,计算可得.【解答】解:x====11+2,y====11﹣2,∴原式=(x﹣y)2﹣xy=(11+2﹣11+2)2﹣(11+2)×(11﹣2)=(4)2﹣(121﹣120)=480﹣1=479.【点评】本题主要考查二次根式的化简求值,解题的关键是熟练掌握二次根式的混合运算顺序和运算法则.29.已知:2a+b+5=4(+),先化简再求值﹣【分析】由已知等式得出(﹣2)2+(﹣2)2=0,由非负数的性质得出a,b的值,再代入计算可得.【解答】解:2a+b+5=4(+),2a﹣2﹣4+4+b﹣1﹣4+4=0,则(﹣2)2+(﹣2)2=0,∴=2,=2,解得:a=3,b=5,原式=﹣=+=+===.【点评】本题主要考查二次根式的化简求值,解题的关键是熟练掌握二次根式的混合运算顺序和运算法则及非负数的性质.30.已知x=2+,y=2﹣,求下列各式的值:(1)x2﹣y2;(2)x2+y2﹣3xy.【分析】先计算x、y两个数的和、差、积;(1)利用平方差公式进行因式分解,然后代入求值;(2)变形为完全平方公式与积的差(或和)的形式,整体代入求值.【解答】解:由已知可得:x+y=4,x﹣y=2,xy=1(1)x2﹣y2=(x+y)(x﹣y)=4×2=8;(2)x2﹣2xy+y2﹣xy=(x﹣y)2﹣xy=(2)2﹣1=12﹣1=11.【点评】本题考查了二次根式的运算,完全平方公式的变形、平方差公式等知识点.题目难度不大,注意整体代入思想的运用.31.高空抛物极其危险,是我们必须杜绝的行为.据研究,高空抛物下落的时间t(单位:s)和高度h(单位:m)近似满足公式t=(不考虑风速的影响)(1)从50m高空抛物到落地所需时间t1是多少s,从100m高空抛物到落地所需时间t2是多少s;(2)t2是t1的多少倍?(3)经过1.5s,高空抛物下落的高度是多少?【分析】(1)将h=50代入t1=进行计算即可;将h=100代入t2=进行计算即可;(2)计算t2与t1的比值即可得出结论;(3)将t=1.5代入公式t=进行计算即可.【解答】解:(1)当h=50时,t1==(秒);当h=100时,t2===2(秒);(2)∵==,∴t2是t1的倍.(3)当t=1.5时,1.5=,解得h=11.25,∴下落的高度是11.25米.【点评】本题主要考查了二次根式的应用,二次根式的应用主要是在解决实际问题的过程中用到有关二次根式的概念、性质和运算的方法.32.解不等式:x+1>2x+【分析】依据解一元一次不等式的基本步骤依次计算,最后系数化为1后将分母有理化可得最后答案.【解答】解:移项,得:x﹣2x>﹣1,合并同类项,得:(﹣2)x>﹣1,系数化为1,得:x<,即x<﹣1﹣.【点评】本题主要考查二次根式的应用及解一元一次不等式,解题的关键是熟练掌握解一元一次不等式的基本步骤和二次根式分母有理化方法.33.已知一个三角形的三边长分别为:5,,x,求这个三角形的周长(要求结果化简).【分析】根据题目中的数据可以求得该三角形的周长;【解答】解:∵这个三角形的三边长分别为:5,,x,∴这个三角形的周长是:5++=++=++=.【点评】本题考查二次根式的性质与化简,解答本题的关键是明确二次根式的意义.34.(1)计算:①;②(+)2﹣6.(2)海伦公式是利用三角形三条边长求三角形面积的公式,用符号表示为:S =(其中a,b,c为三角形的三边长,p=,S为三角形的面积).下面是利用海伦公式求a=,b=3,c=2时的三角形面积S的过程,请认真阅读并完成相应任务.解:∵a=,b=3,c=2,∴P==+.【任务①:直接写出p的化简结果】∴S=【任务②:写出计算S值的过程】=【分析】(1)根据根式的性质进行化简计算.(2)利用乘法公式进行二次根式的化简计算【解答】解:(1)①=2+=5②(+)2﹣6=5+2﹣6×=5(2)P==S=====3【点评】本题考查了二次根式的应用,二次根式的混合运算,关键是利用乘法公式对二次根式进行化简计算.。
苏科版数学八年级下册《12.3 二次根式的加减》说课稿一. 教材分析苏科版数学八年级下册《12.3 二次根式的加减》这一节,主要介绍了二次根式加减法的运算方法。
这是学生在学习了二次根式的性质和二次根式的乘除法之后,进一步深化对二次根式知识的理解和运用。
教材通过具体的例题和练习,使学生掌握二次根式加减法的运算规则,培养学生的运算能力和逻辑思维能力。
二. 学情分析学生在学习这一节之前,已经掌握了二次根式的基本性质,以及二次根式的乘除法运算。
但学生在进行二次根式的加减法运算时,可能会遇到一些困难,如分母有理化、根式的合并等问题。
因此,在教学过程中,教师需要引导学生运用已学的知识,解决新的问题,提高学生的知识运用能力和解决问题的能力。
三. 说教学目标1.知识与技能目标:使学生掌握二次根式加减法的运算方法,能正确进行二次根式的加减运算。
2.过程与方法目标:通过小组合作、讨论交流的方式,培养学生合作学习的能力和解决问题的能力。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的自信心,使学生感受到数学的价值。
四. 说教学重难点1.教学重点:二次根式加减法的运算方法。
2.教学难点:分母有理化、根式的合并。
五. 说教学方法与手段1.教学方法:采用引导发现法、合作交流法、实践操作法等,引导学生主动探究,发现二次根式加减法的运算规律。
2.教学手段:利用多媒体课件,直观展示二次根式加减法的运算过程,帮助学生理解和掌握。
六. 说教学过程1.导入:通过复习二次根式的性质和二次根式的乘除法,引出二次根式的加减法。
2.探究:引导学生分组讨论,探索二次根式加减法的运算方法。
3.展示:各小组展示探究结果,讲解二次根式加减法的运算方法。
4.练习:让学生进行二次根式加减法的运算练习,巩固所学知识。
5.总结:对本节课的内容进行总结,强调二次根式加减法的运算规则。
七. 说板书设计板书设计如下:12.3 二次根式的加减1.二次根式加减法的运算方法:(1)同底数相加减,直接相加减。
专题16.7 二次根式的加减(知识讲解)【学习目标】1、理解并掌握同类二次根式的概念和二次根式的加减法法则,会合并同类二次根式,进行简单的二次根式加减运算;2、会利用运算律和运算法则进行二次根式的混合运算.【要点梳理】要点一、同类二次根式1.定义:几个二次根式化成最简二次根式后,如果被开方数相同,那么这几个二次根式就叫做同类二次根式.特别说明:(1)判断几个二次根式是否是同类二次根式,必须先将二次根式化成最简二次根式,再看被开方数是否相同;(2)几个二次根式是否是同类二次根式,只与被开方数及根指数有关,而与根号外的因式无关.2.合并同类二次根式合并同类二次根式,只把系数相加减,根指数和被开方数不变.(合并同类二次根式的方法与整式加减运算中的合并同类项类似)特别说明:(1)根号外面的因式就是这个根式的系数;(2)二次根式的系数是带分数的要变成假分数的形式.要点二、二次根式的加减1.二次根式的加减实质就是合并同类二次根式,即先把各个二次根式化成最简二次根式,再把其中的同类二次根式进行合并.对于没有合并的二次根式,仍要写到结果中.特别说明:(1)在进行二次根式的加减运算时,整式加减运算中的交换律、结合律及去括号、添括号法则仍然适用.(2)二次根式加减运算的步骤:1)将每个二次根式都化简成为最简二次根式;2)判断哪些二次根式是同类二次根式,把同类的二次根式结合为一组;3)合并同类二次根式.要点三、二次根式的混合运算二次根式的混合运算是对二次根式的乘除及加减运算法则的综合运用.特别说明:(1)二次根式的混合运算顺序与实数中的运算顺序一样,先乘方,后乘除,最后算加减,有括号要先算括号里面的;(2)在实数运算和整式运算中的运算律和乘法公式在二次根式的运算中仍然适用;(3)二次根式混合运算的结果要写成最简形式.【典型例题】类型一、二次根式➽➼概念➽➼同类二次根式✭✭分母有理化1.判断下列二次根式中哪些是同类二次根式:举一反三:【变式1a的值.【点拨】本题考查同类二次根式,掌握同类二次根式的定义,即“被开方数相同的几个最简二次根式是同类二次根式”正确解答的前提.【变式2】分别求出满足下列条件的字母a的取值:(1)(2)2.【阅读材料】把分母中的根号化去,使分母转化为有理数的过程,叫做分母有理化.通常把分子、分母乘以同一个不等于0的式子,以达到化去分母中根号的目的..=【理解应用】(1) 化简: ∵∵ (2)2020++ 2020++【点拨】本题考查了分母有理化,正确的计算是解题的关键.举一反三:【变式1)3x x ≤【变式2【点拨】本题考查根式的运算,解题的关键是熟练掌握根式的运算及根式分母有理化.类型二、二次根式➽➼二次根式的加减运算-+-+.3.计算:38|32|12举一反三:【变式1】计算:6-【变式2】计算:(1)(2) )011+类型三、二次根式➽➼二次根式的混合运算4.计算下列各式.(1)1)举一反三:.【变式1|1【分析】先运用二次根式乘法法则计算,并化简二次根式,去绝对值符号,最后合并同类二次根式即可.【点拨】本题考查二次根式的混合运算,化简绝对值,熟练掌握二次根式的运算法则是解题的关键. 【变式2】计算:(1)1 (2))21+.类型四、二次根式➽➼二次根式的化简求值5.解答下列各题(1) 已知2x =,2y =.求22x xy y ++的值.(2) 若2y =,求y x 的平方根.【答案】(1) 19; (2) 3±.【分析】(1)分别求出22,,x y xy ,再代入到代数式求值即可;举一反三:【变式1】已知x =y 22205520x xy y ++的值.【点拨】本题主要考查了分母有理化,正确化简各数是解题关键.【变式2】已知3x =+3y =-(1) x y +=______;x y -=______;xy =______.(2) 根据以上的计算结果,利用整体代入的数学方法,计算式子223x xy y x y -+--的值.【点拨】本题考查了二次根式的化简求值问题,正确对所求式子变形是解本题的关键.类型五、二次根式➽➼应用6.阅读材料并回答问题肖博睿同学发现如下正确结论:材料一:若0A B ->,则A B >;若0A B -=,则A B =;若0A B -<,则A B <;材料二:完全平方公式:(1)()2222a ab b a b ++=+;(2)()2222a ab b a b -+=-.(1)(2) 2912x x ++___________()2______2=+;(3) 试比较142x x y ⎛⎫- ⎪⎝⎭与()2y x y -的大小(写出相应的解答过程). )解:又32>(322-)解:根据题意,)解:4又()22x y -142x x y ⎛- ⎝【点拨】本题考查利用作差法解代数式比较大小,整式混合运算、合并同类项、完全平方公式因式分解、平方式的非负性等知识,读懂材料,掌握作差法比较代数式大小的方法是解决问题的关键.举一反三:【变式1】设一个三角形的三边分别为a ,b ,c ,p =12(a +b +c ),则有下列面积公式:S S (1) 一个三角形的三边长依次为3,5,6,任选以上一个公式求这个三角形的面积;(2)任选以上一个公式求这个三角形的面积.解题的关键.【变式2】某居民小区有一块形状为长方形ABCD的绿地,长方形绿地的长BC为,宽AB,现要在长方形绿地中修建一个长方形花坛(即图中阴影部分),长方形花坛的长为m,宽为1)m.(1)长方形ABCD的周长是多少?(2)除去修建花坛的地方,其他地方全修建成通道,通通上要铺上造价为2元的地砖,5/m要铺完整个通道,则购买地砖需要花费多少元?答:购买地砖需要花费660元.【点拨】本题考查二次根式的应用,长方形的周长和面积,平方差公式.解题的关键是掌握二次根式的混合运算顺序和运算法则及其性质.。
——二次根式的概念和性质1.理解二次根式的概念;2.能根据二次根式中被开方数应满足的条件,判断或确定所含字母的取值范围;3.掌握二次根式性质的基本运用;4.理解最贱二次根式,同类二次根式,有理化因式的意义,会将二次根式化为最简二次根式,会判断同类二次根式,会进行分母有理化.毕达哥拉斯这一不可公度性与毕氏学派“万物皆为数”(指有理数)的哲理大相径庭。
这一发现使该学派领导人惶恐、恼怒,认为这将动摇他们在学术界的统治地位。
希勃索斯因此被囚禁,受到百般折磨,最后竞采用课堂提问的方式,提问内容涵盖本节课的基本知识点。
建议7分钟知识梳理二次根式的概念:形如)0 (≥aa的代数式,叫做二次根式。
二次根式的性质性质(0)a a=≥性质2. 2(0)a a=≥(0)0(0)(0)a aa aa a>⎧⎪===⎨⎪-<⎩性质3.,0)ab=≥≥性质4.0,0)a b=≥>把二次根式里被开方数所含的完全平方因式移到根号外,或者化去被开方数的分母的过程,称为“化简二次根式”。
通常把形如0)a ≥的式子也叫做二次根式。
如:最简二次根式: 化简后的二次根式:1、被开方数中各因式的指数为2、 被开方数不含字母被开方数同时符合上述两个条件的二次根式,叫做最简二次根式。
如:同类二次根式:几个二次根式化成最简二次根式后,如果被开方数相同,那么这几个二次根式叫做同类二次根式。
最简二次根式及同类二次根式1、掌握判断最简二次根式的依据:二次根式里被开方数中各因式的指数都为1且被开方数不含分母2、化简二次根式时,要特别注意判断根号内字母的取值范围,从而正确化简3、掌握判断同类二次根式的依据:即先化成最简二次根式,再看被开方数是否相同4、合并同类二次根式时,可类比合并同类项建议20分钟题型Ⅰ二次根式的概念下列式子0),a b <≥是二次根式的是 (★★).下列各式中,不是二次根式的是( )(★★).A B C求下列各式有意义的条件(1 (2(3 (★★) .题型Ⅱ二次根式的性质及化简求下列二次根式的值:(1 (2 (3 (4 (★★).化简下列二次根式: (★★).化简:若1a <== (★★).如果等式24x =-成立,那么x 应满足的条件是 (★★) .下列式子中一定成立的是 ( ) (★★) .a =, Bb = 22.C a a = =题型Ⅲ最简二次根式、同类二次根式下列根式中,最简二次根式的是()(★★).B C)(★★).B C D下列二次根式中,与a是同类二次根式的是()C D(★★).最简二次根式是同类二次根式,求a的值(★★★★★).题型Ⅳ二次根式的运用用<.的整数部分是,小数部分是(★★).1.求代数式有意义的取值范围,对于单个的二次根式来说只需满足被开方数为非负数;对于多个二次根式的代数和的,则是多个被开方数同时为非负数;对于含有分母的,则还须考虑分母不能为零。
1《16.3二次根式的加减》本课在学习二次根式乘除运算及化简的基础上,本课在学习二次根式乘除运算及化简的基础上,从算术平方根的运算出发,从算术平方根的运算出发,研究二次根式的加减运算.二次根式的运算方法与数的运算方法本质上是一致的.二次根式的运算方法与数的运算方法本质上是一致的.实数的运算律对二次根式的运算仍实数的运算律对二次根式的运算仍然适用.结合二次根式的化简、乘除和加减运算,利用交换律、结合律、分配律及多项式乘法公式进行二次根式的混合运算.进行二次根式的混合运算.1. 1. 探索二次根式加减运算的方法和步骤;探索二次根式加减运算的方法和步骤;2.2. 会进行二次根式的加减运算.会进行二次根式的加减运算.3.3. 通过探究二次根式的加减运算体会数学中的类比思想通过探究二次根式的加减运算体会数学中的类比思想. .4.4. 类比有理数混合运算和整式混合运算,探索二次根式的加、减、乘、除混合运算顺序的步骤和方法方法. .5.5. 能熟练地进行二次根式的加、减、乘、除混合运算能熟练地进行二次根式的加、减、乘、除混合运算. .6.6. 通过学习二次根式的加、减、乘、除混合运算的学习,培养学生的运算能力、推理能力.1.1. 在化简二次根式的基础上,应用分配律进行二次根式的加减运算.在化简二次根式的基础上,应用分配律进行二次根式的加减运算.2.2. 熟练并准确地进行二次根式的加、减、乘、除混合运算熟练并准确地进行二次根式的加、减、乘、除混合运算. .课件课件◆ 教材分析 ◆ 教学目标◆ 教学重难点 ◆◆ 课前准备◆◆ 教学过程第一课时一、复习引入:一、复习引入:问题1:什么叫最简二次根式?你能将18,8,23化为最简二次根式吗?化为最简二次根式吗? 问题2:现有一块长7.5dm,7.5dm,宽宽5dm 的木板的木板,,能否采用如图的方式能否采用如图的方式,,在这块木板上截出两个面积分别是8dm 2和18dm 2的正方形木板的正方形木板? ? 提问提问::①大、小正方形木板的边长分别为18dm 和8dm,dm,木板是木板是否够宽否够宽??②木板是否够长呢②木板是否够长呢??③怎样计算818+的结果呢的结果呢? ?问题3:计算下列各式:(1)a+2a a+2a;;(2)3x-2x 3x-2x;;解:(1)a+2a=(1+2)a=3a a+2a=(1+2)a=3a;;(2)3x-2x=(3-2)x=x 3x-2x=(3-2)x=x;;【设计意图】回顾整式的加减及合并同类项法则,为后续学习二次根式的合并做准备【设计意图】回顾整式的加减及合并同类项法则,为后续学习二次根式的合并做准备. .二、新课讲解:1.1.探究二次根式的加法探究二次根式的加法探究二次根式的加法. .问题4:请类比整式的加减,计算下列各式::请类比整式的加减,计算下列各式:(1)323+;(2)52-53.解:(1)333)21(323=+=+;(2)55)23(52-53=-=.【点拨】最简二次根式中,被开方数相同的二次根式的加减,直接把系数相加减,根号和根号内的数不变内的数不变. .问题5:53+能合并吗?为什么?82+呢?呢?解:53+不能合并,因为它们被开方数不相同;不能合并,因为它们被开方数不相同;232)21(22282=+=+=+.【小结】(1)二次根式能够进行合并的条件:①首先将二次根式化成最简二次根式;②观察被开方数是否相同开方数是否相同. .(2)二次根式加减时,可以先将二次根式化成最简二次根式,再将被开方数相同的二次根式合并式合并. .练习1:下列各组二次根式中,能够合并的一组二次根式是(:下列各组二次根式中,能够合并的一组二次根式是( )A .xy 与y x 2B .22y x +与22y x - C .mn 与n m + D.ab 2与ba 2 练习练习:2:2:2::(教材P13练习)下列计算是否正确?为什么?练习)下列计算是否正确?为什么?(1)3838-=-;(2)9494+=+;(3)22223=-.解:(1)∵228=和3的被开方数不相同,的被开方数不相同,∴不能合并∴不能合并,,故错误故错误. .(2)∵53294=+=+,1394=+,故9494+¹+,故错误;,故错误;(3)∵22)23(2223=-=-,故正确故正确. .[点拨点拨]]化为最简二次根式后,只有被开方数相同的二次根式才能合并化为最简二次根式后,只有被开方数相同的二次根式才能合并. .2.2.二次根式加法的运用二次根式加法的运用二次根式加法的运用. .问题7:(教材例题)计算:(1)4580-;(2)a a 259+;(3)483316122+-;(4))53()2012(-++.解:(1)553-544580==-; (2)a a a a a 853259=+=+;(3)3102831232-28483316122+=+=+-; (4)533535232)53()2012(+=-++=-++.练习3:(教材P13练习2)计算:(1)4580-;(2)a a 9194+; (3)52080+-;(4))2798(18-+;(5))681()5.024(--+.解:(1)553-544580==-; (2)a a a a a =+=+31329194; (3)535525452080=+-=+-;(4)33210332723)2798(18-=-+=-+;.42636422262)642()2262()681()5.024(5+=+-+=--+=--+)(问题6:前面问题2中,怎样计算818+的结果呢的结果呢??木板长7.5dm,7.5dm,宽宽5dm 5dm,是否够长?,是否够长?,是否够长?解:818+=2223+···化为最简二次根式·化为最简二次根式=2)23(+···乘法分配率·乘法分配率=25≈7.077.07<<7.5故木板够长故木板够长. .练习4:(教材P13练习3)如果两个圆的圆心相同,他们的面积分别是12.56和25.1225.12,求圆环的,求圆环的宽度d (π取3.143.14,结果保留小数点后两位),结果保留小数点后两位),结果保留小数点后两位). .解:∵解:∵S S 圆=πr 2,∴d=r 大圆-r 小圆小圆=2224814.356.1214.312.25-=-=-=-ππ小圆大圆S S ≈0.83 答:圆环的宽度d 为0.83.三、课堂小结:三、课堂小结:1.1. 知识梳理:(1)二次根式合并的前提:化成最简二次根式之后,被开方数相同)二次根式合并的前提:化成最简二次根式之后,被开方数相同. .(2)二次根式加减的实质:合并被开方数相同的最简二次根式)二次根式加减的实质:合并被开方数相同的最简二次根式. .2.2.二次根式加减的实质是二次根式的合并,计算过程中容易出现以下错误:二次根式加减的实质是二次根式的合并,计算过程中容易出现以下错误:二次根式加减的实质是二次根式的合并,计算过程中容易出现以下错误:①化成最简二次根式后,如果被开方数不相同,则不能进行合并;①化成最简二次根式后,如果被开方数不相同,则不能进行合并;②合并被开方数相同的最简二次根式时,②合并被开方数相同的最简二次根式时,只合并根式外的因式,即系数相加减,被开方数和根指数只合并根式外的因式,即系数相加减,被开方数和根指数不变不变. .3.3. 二次根式加减运算的步骤:①去括号;②化简;③判断并合并.二次根式加减运算的步骤:①去括号;②化简;③判断并合并.4.4.二次根式的加减法与二次根式的乘除法的区别二次根式的加减法与二次根式的乘除法的区别二次根式的加减法与二次根式的乘除法的区别运算运算二次根式的乘除法二次根式的乘除法 二次根式的加减法二次根式的加减法 系数系数系数相乘除系数相乘除 系数相加减系数相加减被开方数被开方数 被开方数相乘除被开方数相乘除 被开方数不变被开方数不变化简化简 结果化成最简二次根式结果化成最简二次根式先化成最简二次根式先化成最简二次根式,,再合并被开方数相同的二次根式的二次根式((同类二次根式同类二次根式) )四、随堂测试:四、随堂测试:1.1.下列各式计算正确的是下列各式计算正确的是下列各式计算正确的是 ( () A.532=+ B.13334=- C.363332=´ D.3327=¸ 解析解析:A.:A.:A.不是同类二次根式,不能合并,故错误;不是同类二次根式,不能合并,故错误;不是同类二次根式,不能合并,故错误;B.B.合并同类二次根式时根号及根号下的被开方数不能丢掉,故错误;合并同类二次根式时根号及根号下的被开方数不能丢掉,故错误;合并同类二次根式时根号及根号下的被开方数不能丢掉,故错误;C.C.应为应为18363332=´=´´,故错误;,故错误;D.39327327==¸=¸,故正确,故正确. .故选D.2.2.以下二次根式以下二次根式以下二次根式::①12,②22,③32,④27中, 化简后能合并成一项的是化简后能合并成一项的是化简后能合并成一项的是( ( ( )A.A.①和②①和②①和②B. B.②和③②和③②和③C. C.①和④①和④D.D.③和④③和④③和④解析:①3212=;②222=;③3632=;④3327=. 3.3. 计算:2-23的值是(的值是() A.2 B.3 C.2 D.22 解析:解析:..222)13(2-23=-=.4.4. 一个等腰三角形的两边长分别为2332,, 则三角形的周长为则三角形的周长为则三角形的周长为. . 解析:分两种情况讨论:(1)当32为腰长,23为底边长时,周长为3423+;(2)当23为腰长,为32底边长时,周长为3226+.5.5. 若最简二次根式若最简二次根式14232+a 与16322-a 的被开方数相同的被开方数相同,,则a= a= . 解析:由题意得4a 2+1=6a 2-1-1,解得,解得a=a=±±1.6.6. 计算:(1)233-2332++; (2)101015-40+.第二课时一、复习引入:一、复习引入:1.1.计算:(1)728+;(2)68´;(3)324¸. 解:(1)282622728=+=+;(2)34486868==´=´;(3)228324324==¸=¸.【设计意图】复习二次根式的加减、乘除法则,为下面研究四则混合运算做准备【设计意图】复习二次根式的加减、乘除法则,为下面研究四则混合运算做准备. .2.2. 计算:(1)(2x-y)(2x-y)··zx zx;;(2)(2x 2y+3xy 2)÷xy xy;;(3)(2x+y)(x-3y) (3)(2x+3y)(2x-3y);(2x+3y)(2x-3y);((4)(2x+1)2+(2x-1)2.解:(1)(2x-y)(2x-y)··zx=2x 2z-xyz z-xyz;;(2)(2x 2y+3xy 2)÷xy=2x 2y ÷xy+3xy 2÷xy=2x+2y xy=2x+2y;;(3)(2x+y)(x-3y)=2x 2-6xy+xy-3y 2=2x 2-5xy-3y 2;(4)(2x+3y)(2x-3y)=(2x)2-(3y)2=4x 2-9y 2;(5)(2x+1)2+(2x-1)2=4x 2+4x+1+4x 2-4x+1=8x 2+2.提问:上面的运算用到了哪些法则和公式?提问:上面的运算用到了哪些法则和公式?学生回顾:多项式乘单项式,多项式除以单项式、多项式乘多项式法则和平方差、完全平方公式学生回顾:多项式乘单项式,多项式除以单项式、多项式乘多项式法则和平方差、完全平方公式. .【设计意图】复习整式的四则运算和乘法公式,类比学习二次根式的混合运算【设计意图】复习整式的四则运算和乘法公式,类比学习二次根式的混合运算. .二、新课讲解:二、新课讲解:问题1:如果把上面的x ,y ,z 改成二次根式呢?以上的运算法则是否仍然成立?改成二次根式呢?以上的运算法则是否仍然成立?例1.1.(教材(教材P14例题3)计算:(1)6)38(´+;(2)226324¸-)(.解:(1)6)38(´+=6368´+´=1848+=2334+;(2)2263-24¸)( =22632224¸-¸=3232-.【点拨】类比多项式乘单项式和多项式除以单项式法则计算,这里运用了分配率【点拨】类比多项式乘单项式和多项式除以单项式法则计算,这里运用了分配率. . 练习1:(教材P14练习1)计算:(1))53(2+;(2)5)4080(¸+; 解:(1))53(2+=5232´+´=106+;(2)5)4080(¸+=540580¸+¸=816+=224+.【小结】(1)与有理数、实数运算一样,在混合运算中先乘除,后加减;)与有理数、实数运算一样,在混合运算中先乘除,后加减;(2)最终的结果一定要化为最简二次根式)最终的结果一定要化为最简二次根式. . .问题2.2.(教材(教材P14面例4)例2.2. 计算:(1))52()32(-×+;(2))35)(35(-+. 解:(1))52()32(-×+=152523)2(2--+=15222--=2213--;(2))35)(35(-+=22)3()5(-=5-3=2.提问:你能说出上面两道题中每一步的依据是什么吗?提问:你能说出上面两道题中每一步的依据是什么吗?【小结】乘法公式使计算准确、简便,因此能用运算公式的,尽可能用运算公式.因为二次根式表示数,二次根式的运算也是实数的运算.根式表示数,二次根式的运算也是实数的运算.练习2:计算:(1))17(72--=;(2))2332)(2332(+-=.答案为:7214+-;6.练习3:计算2)322215324(×+-的结果是(的结果是( ) A. A. 303-3320 B.30-3320 C.332303- D.332302- 练习3 计算:(1))2762)(6227(-+;(2)2)377(-;(3)22)632()632(-+--+解:(1))2762)(6227(-+=222762)()(-=24-98=-74=-74;;(2)2)377(-=22)37(3772)7(+´´-=2114154-;(3)22)632()632(++--+=)]632()632)][(632()632[(++--++++-+ =)62()3222(-×+=21238--.练习4:已知4x 2+y 2-4x-6y+10=0-4x-6y+10=0,求下面式子的值,求下面式子的值,求下面式子的值. . )1()(2y x y x y x y y xx +-+解:由4x 2+y 2-4x-6y+10=0得到得到(2x-1)(2x-1)2+(y-3)2=0,∴2x-1=0,y-3=0.解得,解得,x=x=21,y=3. )1()(2yx y x y x y y xx +-+ =yx x y y x 12--+ =y y x x y y y x--+=x y -当x=21,y=3时,时, 原式原式==223213-=-. 三、课堂小结:三、课堂小结:师生共同回顾本节课所学主要内容师生共同回顾本节课所学主要内容: :关于二次根式的四则混合运算关于二次根式的四则混合运算,,实质上就是实数的混合运算.(1)(1)运算顺序与有理式的运算顺序相运算顺序与有理式的运算顺序相同;(2);(2)运算律仍然适用运算律仍然适用运算律仍然适用;(3);(3);(3)与多项式的乘法和因式分解类似与多项式的乘法和因式分解类似与多项式的乘法和因式分解类似,,可以利用乘法公式与因式分解的方法来简化二次根式的有关运算.四、随堂检测:1. 下列二次根式中可以进行合并的是下列二次根式中可以进行合并的是( ) ( )A. ab 与2abB. 22n m + 与22n m -C. mn 与nm 11+ D. 438b a 与432b a 【知识点:同类二次根式】【知识点:同类二次根式】【参考答案】D【思路点拨】先化简成最简二次根式,再看被开方数是否相同【思路点拨】先化简成最简二次根式,再看被开方数是否相同. .2.2.计算:计算:)12)(12(-+的结果是(的结果是(). A.23+ B.23- C.1D.3 【知识点:二次根式的混合运算】【知识点:二次根式的混合运算】【参考答案】【参考答案】C C【思路点拨】在整式运算中使用的公式在二次根式运算中照样适用,因此,【思路点拨】在整式运算中使用的公式在二次根式运算中照样适用,因此,本题利用平方差公式直本题利用平方差公式直接计算即可接计算即可. .3.3.若矩形相邻两边长分别是若矩形相邻两边长分别是cm 20和cm 125,则它们的周长是,则它们的周长是. .【知识点:二次根式混合运算】【知识点:二次根式混合运算】【参考答案】cm 514【思路点拨】矩形的周长【思路点拨】矩形的周长==(长(长++宽)×宽)×2 24. 计算:)4831375(12-+´的结果是(的结果是() A.23 B.32 C. 6D. 12 【知识点:二次根式的混合运算】【知识点:二次根式的混合运算】【参考答案】【参考答案】D D【思路点拨】123232)34335(12)4831375(12=´=-+´=-+´5. 计算:3)4841311527(¸+-【知识点:二次根式的混合运算】【知识点:二次根式的混合运算】【参考答案】1-【解析】原式=1333)33533(-=¸-=¸+-略。
12.3二次根式的加减
学习目标:
1. 进一步理解同类二次根式和最简二次根式的定义.
2. 熟练应用二次根式的加减乘除法法则及乘法公式(多项式乘法公式、平方差公式、 完全平方公式等)进行二次根式的混合运算.
3.能逆用二次根式运算的一些法则解决有关问题.
重点:熟练进行二次根式的混合运算
难点:混合运算的顺序、乘法公式的综合运用
学习过程
一.【预习练习】初步运用、生成问题
1. 下列计算正确的是 ( )
A B .(
C =
D =
2. ( )
A B C D .
3. ( ) A.6到7之间
B.7到8之间 C.8到9之间 D.9到10之间
4. =-⨯263_____ ()()=__________
5. 比较大小:(321-231
)______0
二.【新知探究】师生互动、揭示通法
问题1.化简:02)
(2)(2)2(7+2)(-2
问题2:周日,李同学的妈妈和恰同学做了一个小游戏,李同学的妈妈说:“你现在学
习了二次根式,若x y 代表它的小数部分,我这个纸包里的钱
是)x y 万元,你猜一猜这个纸包里的钱有多少?若猜对了,包里的钱全给你”, 你能帮李同学得到她妈妈包里的钱吗?并说明理由.
问题3: 已知()()x y =
+=-12751275,,求下列各式的值。
(1)x xy y 22-+ (2)
x y y x + 三.【变式拓展】能力提升、突破难点
问题4:看数学书第60页的“阅读”, 再完成下列各题
(1的有理化因式可以是 ,
(2)23-
的有理化因式可以是 , (3)521
=__________ (4) 131-=__________
四.【回扣目标】学有所成、悟出方法
1.二次根式的混合运算顺序是_____________________________________________.
2.乘法公式在二次根式的运算中依旧适用.
五.板书设计
六.教学反思。