水电站的水锤与调节保证计算
- 格式:ppt
- 大小:3.69 MB
- 文档页数:85
可编辑修改精选全文完整版青羊沟水电站水锤及调节保证计算1概述青羊沟水电站工程位于甘肃省酒泉市肃北蒙古族自治县鱼儿红乡境内的疏勒河干流上,为甘肃省境内疏勒河干流昌马水库以上河段水电开发规划中的梯级电站之一。
电站厂房距玉门镇约109km,距玉门市昌马乡38km,距肃北县鱼儿红乡政府约52km,对外交通便利。
电站采用有压引水式开发方式,是以发电为主的日调节中型水电站工程,电站额定水头116m。
主厂房装设2台单机容量为23MW(以下称大机)和1台单机容量为10MW(以下称小机)共3台混流式水轮发电机组,并要求大、小机在运行水头介于116m至133.42m范围内能超额定出力运行,其超额定出力范围为10%(机组具有10%的超发能力),即大机为26.356 MW、小机为11.583MW。
电站保证出力为10.23MW,多年平均年发电量为2.131亿kW.h,装机年利用小时数为3805h。
电站引水发电系统由进水口、引水发电隧洞、调压井、压力管道主管、压力管道支管组成,水流通过水轮发电机组后由尾水渠流入河道。
引水发电隧洞长7177.59m,设计流量55.3m3/s,隧洞为圆形有压洞,纵坡1/265.837,洞径D=4.6m,设计流速3.33m/s。
调压井布置于副厂房上游侧,调压井型式为阻抗式调压井,竖井内径10.0m,阻抗孔直径1.98m,底部高程2286.00m,顶部高程2335.50m。
调压井底部垂直接压力管道主管,压力主管由垂直管、弯管和水平管组成,其中垂直管长85.5m,弯管长18.85m(R=12m,a=900),水平管长205.65m,主管总长310m,主管内径4.0m(暂定),设计流速4.40m/s。
压力主管末端3条支管为“卜”型布置,1#大机支管长31m,内径2.5m,2#大机支管长24m,内径2.5m,3#小机支管长30m,内径1.6m。
厂内安装2台23MW和1台10MW共3台混流式水轮发电机组,水轮机型号分别为HLA685-LJ-177和HLA685-LJ-122;单机引用流量22.65m3/s和10m3/s,额定水头116m。
第一节概述一、水电站的不稳定工况机组在稳定运行时,水轮机的出力与负荷相互平衡,这时机组转速不变,水电站有压引水系统(压力隧洞、压力管道、蜗壳及尾水管)中水流处于恒定流状态。
在实际运行过程中,电力系统的负荷有时会发生突然变化(如因事故突然丢弃负荷,或在较短的时间内启动机组或增加负荷),破坏了水轮机与发电机负荷之间的平衡,机组转速就会发生变化。
此时水电站的自动调速器迅速调节导叶开度,改变水轮机的引用流量,使水轮机的出力与发电机负荷达到新的平衡,机组转速恢复到原来的额定转速.由于负荷的变化而引起导水叶开度、水轮机流量、水电站水头、机组转速的变化,称为水电站的不稳定工况。
其主要表现为:(1)引起机组转速的较大变化由于发电机负荷的变化是瞬时发生的,而导叶的启闭需要一定时间,水轮机出力不能及时地发生相应变化,因而破坏了水轮机出力和发电机负荷之间的平衡,导致了机组转速的变化.丢弃负荷时,水轮机在导叶关闭过程中产生的剩余能量将转化为机组转动部分的动能,从而使机组转速升高。
反之增加负荷时机组转速降低。
(2) 在有压引水管道中发生“水锤”现象当水轮机流量发生变化时,管道中的流量和流速也要发生急剧变化,由于水流惯性的影响,流速的突然变化使压力水管、蜗壳及尾水管中的压力随之变化,即产生水锤。
导叶关闭时,在压力管道和蜗壳中将引起压力上升,尾水管中则造成压力下降。
反之导叶开启时,在压力管道和蜗壳内引起压力下降,而在尾水管中引起压力上升.(3)在无压引水系统(渠道、压力前池)中产生水位波动现象.无压引水系统中产生的水位波动计算在第八章已介绍。
二、调节保证计算的任务水锤压力和机组转速变化的计算,一般称为调节保证计算。
调节保证计算的任务及目的是:(1)计算有压引水系统的最大和最小内水压力。
最大内水压力作为设计或校核压力管道、蜗壳和水轮机强度的依据之一;最小内水压力作为压力管道线路布置、防止压力管道中产生负压和校核尾水管内真空度的依据。
第四章水电站的水击及调节保证计算本章重点内容:水电站有压引水系统非恒定流现象和调节保证计算的任务、单管水击简化计算、复杂管路的水击解析计算及适用条件、机组转速变化的计算方法和改善调节保证的措施。
第一节概述一、水电站的不稳定工况由于负荷的变化而引起导水叶开度、水轮机流量、水电站水头、机组转速的变化,称为水电站的不稳定工况。
其主要表现为:(1) 引起机组转速的较大变化丢弃负荷:剩余能量→机组转动部分动能→机组转速升高增加负荷:与丢弃负荷相反。
(2) 在有压引水管道中发生“水击”现象管道末端关闭→管道末端流量急剧变化→管道中流速和压力随之变化→“水击”。
导时关闭时,在压力管道和蜗壳中将引起压力上升,尾水管中则造成压力下降。
导叶开启时则相反,将在压力管道和蜗壳内引起压力下降,而在尾水管中则引起压力上升。
(3) 在无压引水系统(渠道、压力前池)中产生水位波动现象。
二、调节保证计算的任务(一) 水击的危害(1) 压强升高过大→水管强度不够而破裂;(2) 尾水管中负压过大→尾水管汽蚀,水轮机运行时产生振动;(3) 压强波动→机组运行稳定性和供电质量下降。
(二) 调节保证计算水击和机组转速变化的计算,一般称为调节保证计算。
1.调节保证计算的任务:(1) 计算有压引水系统的最大和最小内水压力。
最大内水压力作为设计或校核压力管道、蜗壳和水轮机强度的依据;最小内水压力作为压力管道线路布置,防止压力管道中产生负压和校核尾水管内真空度的依据;(2) 计算丢弃负荷和增加负荷时转速变化率,并检验其是否在允许的范围内。
(3) 选择调速器合理的调节时间和调节规律,保证压力和转速变化不超过规定的允许值。
(4) 研究减小水击压强及机组转速变化的措施。
2.调节保证计算的目的正确合理地解决导叶启闭时间、水击压力和机组转速上升值三者之间的关系,最后选择适当的导叶启闭时间和方式,使水击压力和转速上升值均在经济合理的允许范围内。
第二节水击现象及其传播速度1、一、水击现象1.定义在水电站运行过程中,为了适应负荷变化或由于事故原因,而突然启闭水轮机导叶时,由于水流具有较大的惯性,进入水轮机的流量迅速改变,流速的突然变化使压力水管、蜗壳及尾水管中的压力随之变化,这种变化是交替升降的一种波动,如同锤击作用于管壁,有时还伴随轰轰的响声和振动,这种现象称为水击。
第一节概述一、水电站的不稳定工况机组在稳定运行时,水轮机的出力与负荷相互平衡,这时机组转速不变,水电站有压引水系统(压力隧洞、压力管道、蜗壳及尾水管)中水流处于恒定流状态。
在实际运行过程中,电力系统的负荷有时会发生突然变化(如因事故突然丢弃负荷,或在较短的时间内启动机组或增加负荷),破坏了水轮机与发电机负荷之间的平衡,机组转速就会发生变化。
此时水电站的自动调速器迅速调节导叶开度,改变水轮机的引用流量,使水轮机的出力与发电机负荷达到新的平衡,机组转速恢复到原来的额定转速.由于负荷的变化而引起导水叶开度、水轮机流量、水电站水头、机组转速的变化,称为水电站的不稳定工况。
其主要表现为:(1)引起机组转速的较大变化由于发电机负荷的变化是瞬时发生的,而导叶的启闭需要一定时间,水轮机出力不能及时地发生相应变化,因而破坏了水轮机出力和发电机负荷之间的平衡,导致了机组转速的变化.丢弃负荷时,水轮机在导叶关闭过程中产生的剩余能量将转化为机组转动部分的动能,从而使机组转速升高。
反之增加负荷时机组转速降低。
(2) 在有压引水管道中发生“水锤”现象当水轮机流量发生变化时,管道中的流量和流速也要发生急剧变化,由于水流惯性的影响,流速的突然变化使压力水管、蜗壳及尾水管中的压力随之变化,即产生水锤。
导叶关闭时,在压力管道和蜗壳中将引起压力上升,尾水管中则造成压力下降。
反之导叶开启时,在压力管道和蜗壳内引起压力下降,而在尾水管中引起压力上升.(3)在无压引水系统(渠道、压力前池)中产生水位波动现象.无压引水系统中产生的水位波动计算在第八章已介绍。
二、调节保证计算的任务水锤压力和机组转速变化的计算,一般称为调节保证计算。
调节保证计算的任务及目的是:(1)计算有压引水系统的最大和最小内水压力。
最大内水压力作为设计或校核压力管道、蜗壳和水轮机强度的依据之一;最小内水压力作为压力管道线路布置、防止压力管道中产生负压和校核尾水管内真空度的依据。
第九章水电站的水锤及调节保证计算本章重点内容:水电站有压引水系统非恒定流现象和调节保证计算的任务、单管水锤简化计算、复杂管路的水锤解析计算及适用条件、机组转速变化的计算方法和改善调节保证的措施。
第一节概述一、水电站的不稳定工况由于负荷的变化而引起导水叶开度、水轮机流量、水电站水头、机组转速的变化,称为水电站的不稳定工况。
其主要表现为:(1) 引起机组转速的较大变化丢弃负荷:剩余能量→机组转动部分动能→机组转速升高增加负荷:与丢弃负荷相反。
(2) 在有压引水管道中发生“水锤”现象管道末端关闭→管道末端流量急剧变化→管道中流速和压力随之变化→“水锤”。
导时关闭时,在压力管道和蜗壳中将引起压力上升,尾水管中则造成压力下降。
导叶开启时则相反,将在压力管道和蜗壳内引起压力下降,而在尾水管中则引起压力上升。
(3) 在无压引水系统(渠道、压力前池)中产生水位波动现象。
二、调节保证计算的任务(一) 水锤的危害(1) 压强升高过大→水管强度不够而破裂;(2) 尾水管中负压过大→尾水管汽蚀,水轮机运行时产生振动;(3) 压强波动→机组运行稳定性和供电质量下降。
(二) 调节保证计算水锤和机组转速变化的计算,一般称为调节保证计算。
1.调节保证计算的任务:(1) 计算有压引水系统的最大和最小内水压力。
最大内水压力作为设计或校核压力管道、蜗壳和水轮机强度的依据;最小内水压力作为压力管道线路布置,防止压力管道中产生负压和校核尾水管内真空度的依据;(2) 计算丢弃负荷和增加负荷时转速变化率,并检验其是否在允许的范围内。
(3) 选择调速器合理的调节时间和调节规律,保证压力和转速变化不超过规定的允许值。
(4) 研究减小水锤压强及机组转速变化的措施。
2.调节保证计算的目的正确合理地解决导叶启闭时间、水锤压力和机组转速上升值三者之间的关系,最后选择适当的导叶启闭时间和方式,使水锤压力和转速上升值均在经济合理的允许范围内。
第二节 水锤现象及其传播速度一、 水锤现象1.定义在水电站运行过程中,为了适应负荷变化或由于事故原因,而突然启闭水轮机导叶时,由于水流具有较大的惯性,进入水轮机的流量迅速改变,流速的突然变化使压力水管、蜗壳及尾水管中的压力随之变化,这种变化是交替升降的一种波动,如同锤击作用于管壁,有时还伴随轰轰的响声和振动,这种现象称为水锤。
第一节概述一、水电站的不稳定工况机组在稳定运行时,水轮机的出力与负荷相互平衡,这时机组转速不变,水电站有压引水系统(压力隧洞、压力管道、蜗壳及尾水管)中水流处于恒定流状态。
在实际运行过程中,电力系统的负荷有时会发生突然变化(如因事故突然丢弃负荷,或在较短的时间内启动机组或增加负荷),破坏了水轮机与发电机负荷之间的平衡,机组转速就会发生变化。
此时水电站的自动调速器迅速调节导叶开度,改变水轮机的引用流量,使水轮机的出力与发电机负荷达到新的平衡,机组转速恢复到原来的额定转速。
由于负荷的变化而引起导水叶开度、水轮机流量、水电站水头、机组转速的变化,称为水电站的不稳定工况。
其主要表现为:(1) 引起机组转速的较大变化由于发电机负荷的变化是瞬时发生的,而导叶的启闭需要一定时间,水轮机出力不能及时地发生相应变化,因而破坏了水轮机出力和发电机负荷之间的平衡,导致了机组转速的变化。
丢弃负荷时,水轮机在导叶关闭过程中产生的剩余能量将转化为机组转动部分的动能,从而使机组转速升高。
反之增加负荷时机组转速降低。
(2) 在有压引水管道中发生“水锤”现象当水轮机流量发生变化时,管道中的流量和流速也要发生急剧变化,由于水流惯性的影响,流速的突然变化使压力水管、蜗壳及尾水管中的压力随之变化,即产生水锤。
导叶关闭时,在压力管道和蜗壳中将引起压力上升,尾水管中则造成压力下降。
反之导叶开启时,在压力管道和蜗壳内引起压力下降,而在尾水管中引起压力上升。
(3) 在无压引水系统(渠道、压力前池)中产生水位波动现象。
无压引水系统中产生的水位波动计算在第八章已介绍。
二、调节保证计算的任务水锤压力和机组转速变化的计算,一般称为调节保证计算。
调节保证计算的任务及目的是:(1) 计算有压引水系统的最大和最小内水压力。
最大内水压力作为设计或校核压力管道、蜗壳和水轮机强度的依据之一;最小内水压力作为压力管道线路布置、防止压力管道中产生负压和校核尾水管内真空度的依据。
论水电站中引水系统的调节保证计算对于水电站引水系统,利用美国垦务局等经验公式对引水管道经济直径进行分析使相应调保计算成果满足要求,为电站安全运行提供可靠的依据。
关键词:水电站引水系统设计调节保证计算5.水锤及调节保证计算5.1调节保证计算的任务和标准水锤及调节保证计算,是水电站设计的重要内容之一。
它不仅影响压力管道、机组、蜗壳等过流部件的强度,而且关系到电站运行的安全和机组运行的稳定性。
调节保证计算是机组负荷在较大范围内突然变化的情况下,考虑到调速器的影响以进行限制水锤压力和机组装机变化值的计算,解决水力惯性、机组惯性和调整性能三者之间的矛盾,以期达到电能质量最佳、机组运行经济合理、安全可靠的目的。
5.1.1水锤及调节保证计算的目的和任务1、水锤计算的目的决定管道内的最大内水压力,作为设计或校核压力管道、蜗壳和水轮机强度的依据;决定管道内最小内水压力,作为管线布置,防止压力管道中产生负压和校核尾水管内真空度的依据;研究水锤与机组运行的关系。
2、调节保证计算的目的通过调节保证计算和分析,正确合理地解决导叶启闭时间、水锤压力和机组转速上伸值三者之间的关系,最后选择适当的导叶启闭时间和方式,水锤压力和转速上伸值均在经济合理的允许范围内。
3、水锤及调节保证计算的任务根据水电站压力引水系统和水轮发电机组的特性,合理选择调速器的调节时间调节规律,进行水锤压力和机组转速变化值的计算,使二者均在允许内,并尽可能地降低水锤压力。
5.1.2 调节保证计算的标准调节保证计算标准,是指水锤压力和转速变化在技术经济上合理的允许值。
标准在规范中有所规定,但这是在一定时期和一定技术水平和经济条件下制定的,用时应结合具体情况加以确定。
1、水锤压力的计算标准甩全负荷时,允许的相对压力升高max ξ一般可按以下不同情况考虑:表5-1: max ξ取值表当设置减压阀或折流板时,max ξ=20%对于增加负荷时的负水锤,以压力水管顶部任何一点不出现负压并保持有2m 以上的余压为限。