暨南大学709数学分析2020到2010十一套考研真题
- 格式:pdf
- 大小:1.38 MB
- 文档页数:22
2019暨南大学考研709数学分析与810高等代数复习全析(含真题)《2019暨南大学考研709数学分析复习全析(含真题,共三册)》《2019暨南大学考研709数学分析复习全析(含历年真题,共三册)》由鸿知暨大考研网依托多年丰富的教学与辅导经验,与该专业课优秀研究生合作汇编而成。
全书内容紧凑权威细致,编排结构科学合理,为参加2019暨南大学考研的考生量身定做的必备专业课资料。
《2019暨南大学考研709数学分析复习全析(含历年真题)》全书编排根据:《数学分析》(华东师大,高教第四版,上下册)2018暨南大学709数学分析考试大纲官方规定的参考书目为:《数学分析》(华东师范大学,高教第四版,上下册)结合提供的往年暨大考研真题内容,帮助报考暨南大学硕士研究生的同学通过暨大教材章节框架分解、配套的课后习题讲解及相关985、211名校考研真题与解答,帮助考生梳理指定教材的各章节内容,深入理解核心重难点知识,把握考试要求与考题命题特征。
通过研读演练本书,达到把握教材重点知识点、适应多样化的专业课考研命题方式、提高备考针对性、提升复习效率与答题技巧的目的。
同时,透过测试演练,以便查缺补漏,为初试高分奠定坚实基础。
适用院系:经济学院:071400统计学(数学方向)信息科学技术学院:基础数学、计算数学、概率论与数理统计、应用数学、运筹学与控制论适用科目:709数学分析内容详情本书包括以下几个部分内容:Part 1 - 考试重难点:通过总结和梳理《数学分析》(华东师大,高教第四版,上册)、《数学分析》(华东师大,高教第四版,下册)各章节复习和考试的重难点,建构教材宏观思维及核心知识框架,浓缩精华内容,令考生对各章节内容考察情况一目了然,从而明确复习方向,提高复习效率。
Part 2 - 教材课后习题与解答针对《数学分析》(华东师大,高教第四版,上册)、《数学分析》(华东师大,高教第四版,下册)教材课后习题配备详细解读,以供考生加深对教材基本知识点的理解掌握,做到对暨大考研核心考点及参考书目内在重难点内容的深度领会与运用。
2015年招收攻读硕士学位研究生入学考试试题(B 卷)********************************************************************************************学科、专业名称:统计学、基础数学、计算数学、概率论与数理统计、应用数学、运筹学与控制论研究方向:各方向考试科目名称:709数学分析考生注意:所有答案必须写在答题纸(卷)上,写在本试题上一律不给分。
一、计算题(共10小题,每小题8分,共80分)(1)求数列⎭⎬⎫⎩⎨⎧+=4cos 122πn n n a n 的上、下极限。
(2)⎪⎭⎫ ⎝⎛--→x x x ln 2111lim 21(3)⎪⎭⎫ ⎝⎛+++∞→n n n n n n 3cos 32cos 3cos 1lim πππ (4)⎰-+10x x e e dx (5)⎰xdx 4cos (6)将函数]),[(||)(ππ-∈=x x x f 展开成傅里叶级数,并求级数∑∞=-12)12(1n n 的和。
(7)确定幂级数∑∞=++11)1(n nn x 的收敛域,并求其和函数。
(8)求函数xy y x y x f 3),(33-+=的极值点,并判断是极小值点还是极大值点。
(9)求三重积分⎰⎰⎰+Vdxdydz y x )(22,其中V 由)(322y x z +≥和1222≤++z y x 所确定。
(10)计算曲线积分⎰++++++-+-+-L dz y x dy z x dx z y ])3(2)2[(])1()3(2[])2(2)1[(222222,其中L 为1=++z y x 与三坐标面的交线,从上方看取逆时针方向。
考试科目:709数学分析共2页,第1页二、讨论题(共2小题,每小题8分,共16分)(1)p 为实常数,讨论函数⎩⎨⎧=≠=00sin )(21x x x x f x p (a)当p 取何值时在0=x 连续?(b)当p 取何值时在0=x 可导?(c)当p 取何值时导函数在0=x 连续?(2)讨论无穷积分()⎰+∞--+111dx x x α在α取何值时收敛。
2010年考研数学三真题及答案解析2010年考研数学三真题⼀.选择题1.若1])1(1[lim =--→xox e a xx 则a =A0 B1 C2 D32.设21,y y 是⼀阶线性⾮齐次微分⽅程)()(x q y x p y =+'的两个特解,若常数µλ,使21y y µλ+是该⽅程的解,21y y µλ-是该⽅程对应的齐次⽅程的解,则A 21,21==µλ B 21,21-=-=µλ C 31,32==µλ D 32,32==µλ3.设函数f(x),g(x)具有⼆阶导数,且.0)(<''x g 若a x g =)(0是g(x)的极值,则f(g(x))在0x 取极⼤值的⼀个充分条件是A 0)(<'a fB 0)(>'a fC 0)(<''a fD 0)(>''a f 4设1010)(,)(,ln)(x e x h x x g x x f ===则当x 充分⼤时有Ag(x)Cf(x)5设向量组线性表⽰,,,:,可由向量组s I βββααα??21r 21II ,,:,下列命题正确的是: A 若向量组I 线性⽆关,则s r ≤ B 若向量组I 线性相关,则r>sC 若向量组II 线性⽆关,则s r ≤D 若向量组II 线性相关,则r>s 6.设A 为4阶实对称矩阵,且02=+A A ,若A 的秩为3,则A 相似于A ??????? ??0111B-0111 For personal use only in study and research; not for commercial useC ??????? ??--0111D---0111 7.设随机变量X 的分布函数≥-<≤<=-1,110,21,0)(x e x x x F x,则P (X=1)=A0 B 21 C 121--e D 11--e8.For personal use only in study and research; not for commercial use9.10.设)(1x f 为标准正态分布概率密度,)(2x f 为[-1,3]上均匀分布的概率密度,若<>≥≤=)0,0(0),(0),()(21b a x x bf x x af x f 为概率密度,则a,b 满⾜:A2a+3b=4 B3a+2b=4 Ca+b=1 Da+b=2 ⼆.填空题11.For personal use only in study and research; not for commercial use 12. 13.设可导函数y=y(x),由⽅程??=+-xyx t dt t x dt e 020sin 2确定,则____________0==x dxdy14.设位于曲线)()ln 1(12+∞<≤+=x e x x y 下⽅,x 轴上⽅的⽆界区域为G ,则G 绕x轴旋转⼀周所得空间区域的体积为____________15.设某商品的收益函数R(p),收益弹性为31p +,其中p 为价格,且R(1)=1,则R(p)=________________16.For personal use only in study and research; not for commercial use 17.18.若曲线123+++=bx ax x y 有拐点(-1,0),则b=_____________ 19.设A ,B 为3阶矩阵,且2,2,31 =+==-B A B A ,则_________1=+-B A20.For personal use only in study and research; not for commercial use 21. 22.设___________ET ,1T )0)(,(N ,,122321==>?∑=则计量的简单随机样本。
2010考研数学(一)真题及参考答案一、选择题 (1)、极限2lim ()()xx xx a x b →∞⎛⎫=⎪-+⎝⎭( C ) A 、1 B 、e C 、a be - D 、b ae-【详解】()()2222ln 1()()()()()()()()lim lim lim ()()lim lim xx x xx x a x b x a x b x x x a b x ab a b x abxx x a x b x a x b x x a bxe ex a x b ee e ⎛⎫⎛⎫-⎪ ⎪ ⎪ ⎪-+-+⎝⎭⎝⎭→∞→∞→∞-+⎛⎫-+ ⎪ ⎪-+-+⎝⎭→∞→∞-⎛⎫== ⎪-+⎝⎭===(2)、设函数(,)z z x y =,由方程(,)0y z F x x =确定,其中F 为可微函数,且20F '≠,则z z xy u y∂∂+=∂∂( B )A 、xB 、zC 、x -D z -【详解】 等式两边求全微分得:121212()()()0x x y y z z Fu F v dx Fu F v dy Fu F v dz ''''''+++++=,所以有,1212xx z z Fu F v z x Fu F v ''+∂=-''∂+,1212y yz zFu F v z y Fu F v ''+∂=-''∂+, 其中,2x y u x =-,1y u x =,0z u =,2x z v x =-,0yv =,1z v x=,代入即可。
(3)、设,m n是正整数,则反常积分⎰的收敛性( D )(A)仅与m 的取值有关 (B)仅与n 有关(C)与,m n 都有关 (D)都无关 【详解】:显然0,1x x ==是两个瑕点,有=+⎰对于的瑕点0x =,当0x +→21ln (1)mn x x -=-等价于221(1)m m nx--,而21120m nxdx -⎰收敛(因,m n 是正整数211m n ⇒->-),故收敛;对于的瑕点1x =,当1(1,1)(0)2x δδ∈-<<12122ln (1)2(1)n m n m x x <-<-,而2112(1)m x -⎰显然收敛,故收敛。