分布式光纤传感器共25页
- 格式:pptx
- 大小:1.15 MB
- 文档页数:25
分布式光纤传感技术介绍哎呀,说起这个分布式光纤传感技术,我可得好好给你掰扯掰扯。
这玩意儿,听起来挺高大上的,其实呢,就是用光纤来感知周围环境的变化,比如温度啊、压力啊、振动啊这些。
你可能会想,这不就是一根线嘛,能有啥大不了的?嘿,别小看这根线,它可聪明着呢!首先,咱们得聊聊光纤是啥。
光纤,就是那种细细的、透明的玻璃丝,你家里宽带上网用的那种。
但是,分布式光纤传感技术用的光纤,可比那个高级多了。
这种光纤,里面可以传递光信号,而且,这些光信号在光纤里走的时候,会因为周围环境的变化而改变。
这就是分布式光纤传感技术的核心。
比如说,你把光纤埋在地下,用来监测管道有没有泄漏。
如果管道漏了,周围的温度、压力就会变化,这些变化就会影响光纤里的光信号。
光纤里的光信号一变,咱们的设备就能检测到,然后发出警报。
这就是分布式光纤传感技术的一个应用。
再给你举个栗子,我有个朋友在建筑工地上工作,他们就用这个技术来监测建筑结构的安全。
你想想,建筑工地上那么多大型机械,万一哪个地方没搞好,那可不是闹着玩的。
他们就把光纤埋在混凝土里,一旦有裂缝或者变形,光纤里的光信号就会变化,设备就能检测到,及时采取措施。
这个技术还有个好处,就是它可以覆盖很长的距离。
不像传统的传感器,只能监测很小的区域。
分布式光纤传感技术,一根光纤可以拉很长,监测的范围自然就广了。
而且,它还很耐用,不怕风吹日晒,也不怕腐蚀。
说到这儿,你可能会觉得,这玩意儿这么厉害,肯定很贵吧?其实,随着技术的发展,成本已经降低了很多。
而且,因为它可以减少维护成本和提高安全性,长远来看,还是挺划算的。
总之,分布式光纤传感技术,就是用光纤来感知世界的一种高科技。
它虽然听起来有点复杂,但其实原理挺简单的,就是利用光信号的变化来监测环境。
这技术在很多领域都有应用,比如石油、天然气、土木工程、环境监测等等。
随着技术的不断发展,我相信它会越来越普及,给我们的生活带来更多便利和安全。
分布式光纤传感器原理一、分布式光纤传感器原理分布式光纤传感器(Distributed Optical Fiber Sensor,DOFS)是一种新型传感技术,它利用光纤原理监测、测量被测目标的参数。
传感器通过植入光纤改变或分析光纤内传播的光脉冲,根据数学模型和算法从光脉冲的改变中分析出被测参数,从而达到监测或测量的目的。
传统的光纤传感器主要分为单点检测和分布式传感两类。
单点检测只能检测光纤段的一点,而分布式传感则可以同时监测整个光纤段的参数,如压力、温度、振动等。
分布式光纤传感器主要有两种:光纤Brillouin散射传感器(Fiber Brillouin Scattering Sensor)和光纤Raman散射传感器(Fiber Raman Scattering Sensor)。
1. 光纤Brillouin散射传感器光纤Brillouin散射传感器是利用光纤内固有的acoustic-optic 效应(Brillouin散射)来测量光纤内部的物理参数,如压力、温度、拉力等。
光纤Brillouin散射是指一束光线入射至光纤材料或结构中,由于光纤材料的内部固有声子和光子的相互作用,使得光子的波长会发生微小的变化,即光子的波长会发生一个内部固有的 Brillouin 光谱线,里面包含着光纤的特征参数,例如压力、拉力、温度等。
2. 光纤Raman散射传感器光纤Raman散射传感器是基于光纤Raman散射原理,利用激光激发出的光纤中的能量状态的微小变化来测量物理参数,如温度、压力、拉力等。
光纤Raman散射(Fiber Raman Scattering)是指一束激光入射至光纤中,由于光子和光纤中的自由电子的相互作用,使得激光光子中的能量状态发生微小的变化,从而产生一条Raman光谱线。
里面包含着光纤的特征参数,如温度、压力、拉力等。
二、分布式光纤传感器的应用分布式光纤传感器在工程和科学研究中有着广泛的应用,如用于: 1. 架构监测:可为大型结构物提供细节的分布式监测,如桥梁、建筑物等;2. 海洋和河流监测:可以实现实时的海洋流速和河流溯源的监测;3. 地质监测:可以检测地表或地下的地质变化,如地震、地质构造变化等;4. 军事和安全监控:可以检测活动的物体,如坦克、舰船等;5. 工厂设备监控:可以实现机器的实时监控,如机床、发动机等。
光纤分布式声波传感技术刘德中通信学院 2013010917006内容摘要声波属于物质波,其实质是质点振动、应力、压力等在弹性介质中的多样表现形式。
在声学的研究领域中,声波的产生机制、传播形式以及检测方法是会共同涉及的内容。
目前的声波检测技术就是利用声波信号在弹性介质内的传播变化实现对检测目标的测探、准确识别、定位等。
在光纤传感领域,当前的一个研究热点就是光纤声波检测,它可以用作水听器,应用于海洋、陆地石油、天然气勘探输油管道实时检测预警系统;也可用作光纤麦克风,用光纤光栅制成的声波传感探头基元以光纤光栅的中心波长调制来获得传感信息的,它具有灵敏度高、抗干扰能力强、全光纤的特点,同时还具有能够实现波分复用、检测探头的微型化等特点。
关键词:声波检测光纤传感技术分布式震动传感布里渊散射一、技术原理(一)基于光纤光栅的传感器基于光纤光栅的传感器的原理是当温度、应变、折射率、应力、浓度等外界环境因素出现变化时,光纤光栅的有效折射率或者是光纤光栅周期就会发生改变,从而使得光纤光栅的中心波长出现变化,对这一变化量经过信号处理之后,就能够获得所需要检测的参数。
这一过程中,传感信号的获得方式是通过光纤光栅中心波长的调制实现的,相比于强度调制传感器而言,光纤光栅传感器的灵敏度更高,更广的动态测量范围。
所以,基于光纤光栅的传感器以其自身强大的抗干扰能力、高灵敏度以及对光源的稳定性及能量特征要求低的特性,使其在精确、精密测量方面十分合适,光纤光栅传感器目前已经占据了以光纤为主要材料的44%左右。
(二)光纤声波传感器声音属于微压动态信号,要想测量声音信号,可以通过监测频率或声压来实现。
一般情况下,人们在传递和探测声信号时,会使用电子式传声器,该传声器具有声-电换能原理,然而在一些特殊的环境中,如在核磁共振、强电磁干扰或易燃易爆环境中,一些电子式传声器会失去作用,加之信号衰减会给传感器端的弱电量信号带来不利影响,所以在较远的距离间无法使用电子式传声器,这给远距测量带来了诸多难题。
分布式光纤传感技术瑞利散射是入射光与介质中的微观粒子发生弹性碰撞引起的,散射光的频率与入射光的频率相同。
一般采用光时域反射(OTDR )结构来实现被测量的空间定位。
瑞利散射的原理是沿光纤传播的光在纤芯内各点都会有损耗,一部分光沿着与光纤传播方向成180°的方向散射,返回光源。
利用分析光纤中后向散射光的方法测量因散射、吸收等原因产生的光纤传输损耗和各种结构缺陷引起的结构性损耗,通过显示损耗与光纤长度的关系来检测外界信号场分布于光纤上的扰动信息。
由于瑞利散射属于本征损耗,因此可以作为应变场检测参量的信息载体,提供沿光路全程的单值连续检测信号。
利用光时域反射(OTDR )原理来实现对空间分布的温度的测量。
当窄带光脉冲被注入到光纤中去时,该系统通过测后向散射光强随时间变化的关系来检查光纤的连续性并测出其衰减。
入射光经背向散射返回到光纤入射端所需的时间为t ,激光脉冲在光纤中所走过的路程为2L=v*t 。
v 是光在光纤中传播的速度,v=c/n ,c 为真空中的光速,n 为光纤的折射率。
在t 时刻测量的是离光纤入射端距离为L 处局域的背向散射光。
采用OTDR 技术,可以确定光纤处的损耗,光纤故障点、断点的位置。
可以看出,在光纤背向散射谱分布图中,激发线0v 两侧的频谱是成对出现的。
在低频一侧频率为0v v -∆的散射光为斯托克斯光Stokes ;在高频的一侧频率为0v v +∆的散射光为反斯托克斯光anti-Stoke ,它们同时包含在拉曼散射和布里渊散射谱中。
光纤中的散射光谱1. 基于瑞利散射的光纤传感技术原理瑞利散射主要特点有:(1) 瑞利散射属于弹性散射,不改变光波的频率,即瑞利散射光与入射光具有相同的波长。
(2) 散射光强与入射光波长的四次方成反比,即上式表明,入射光的波长越长,瑞利散射光的强度越小。
(3) 散射光强随观察方向而变,在不同的观察方向上,散射光强不同,可表示为 其中,θ为入射光方向与散射光方向的夹角;0I 是/2θπ=方向上的散射光强。
分布式光纤传感技术近年来,随着物联网的快速发展,分布式光纤传感技术越来越受到人们的关注。
它是一种新型的传感技术,可以大幅度提高光纤传感的灵敏度和距离,实现对物理环境的实时监测和分布式测量。
本文将从分布式光纤传感技术的基本原理、优点和应用领域等方面进行详细介绍。
一、分布式光纤传感技术的基本原理分布式光纤传感技术是利用纤芯中的散射光和弯曲光来实现对物理环境的实时监测和分布式测量的一种技术。
采用光纤作为传感器,不仅可以实现具有高灵敏度和高精度的测量,而且可以全方位地对物理环境进行监测。
与传统传感技术相比,分布式光纤传感技术具有以下两个特点:1. 分布式感知:分布式光纤传感技术采用一根连续的光纤,通过对光纤的每一段进行监测和测量,达到对整个传感区域进行实时监测和分布式测量的效果,从而可以得到因信号变化而产生的光纤的相应变化。
2. 时间域分析:分布式光纤传感技术是一种基于时间域反射和散射的技术,通过光纤中的微小变化来反映被传感物理量的变化。
采用这种方法可以实现实时监测和分布式测量,同时还可以根据散射和反射光的性质得到更高精度的测量结果。
二、分布式光纤传感技术的优点分布式光纤传感技术具有以下三个优点:1. 高精度:分布式光纤传感技术可以实现对很小的信号和变化的测量,能够达到高精度的检测目的。
它可以实现对多个物理参量的同时测量,并从各个方向和位置监测。
2. 长距离:分布式光纤传感技术的传输距离很远,传感器仅需要一根连续的光纤即可实现全方位的物理参数监测,无需增加其它传感器或者设备,可以节约大量的成本。
3. 实时性:分布式光纤传感技术可以实现对物理环境的实时监测和分布式测量,这一优点也是区别于传统传感技术的重要因素之一。
三、分布式光纤传感技术的应用领域1. 油田勘探:分布式光纤传感技术可以应用于油田勘探,实现对油井,油管,地层渗透率等参数的实时监测和分布式测量。
可以及时掌握油田的状态,提高油田勘探和开发的效率。