2010年杭州市数学中考卷及答案
- 格式:doc
- 大小:305.50 KB
- 文档页数:10
2010年某某5月份中考模拟考试数学试卷考生须知:1.本科目试卷分试题卷和答题卷两部分.满分为120分,考试时间100分钟. 2.答题前,必须在答题卷的密封区内填写班级和某某.3.所有答案都必须做在答题卷指定的位置,务必注意试题序号和答题序号相对应. 4.考试结束后,只需上交答题卷.一.仔细选一选(本题有10个小题,每小题3分,共30分) 1.下列运算正确的是( )A .523x x x=+ B .x x x =-23C .623x x x =⋅ D .x x x =÷232.在函数21-=x y 中,自变量x 的取值X 围是( ) A .2-≠x B .2≠x C .x ≤2D .x ≥23.今年我市初中毕业生约有25000人,该数据用科学记数法表示为( ) A .31025⨯ B .61025.0⨯ C .4105.2⨯ D .41025.0⨯ 4.我市去年6月上旬日最高气温如下表所示:日 期12345678910最高气温(℃) 30 28 30 32 34 32 26 30 33 35那么这10天的日最高气温的平均数和众数分别是( )A.32,30 B.31,30 C.32,32 D.30,305.如图,已知⊙O 的两条弦AC ,BD 相交于点E ,∠A=75o ,∠C=45o, 那么sin ∠AEB 的值为( )A.21B.33C.22D.236.由若干个相同的小立方体搭成的几何体的三视图如图所示,则搭成 这个几何体的小立方体的个数是( )A .3B .4C .5D .6主视图左视图 俯视图7.下列命题,正确的是( ) A .如果|a |=|b |,那么a =b(第5题图)B .等腰梯形的对角线互相垂直C .顺次连结四边形各边中点所得到的四边形是平行四边形D .相等的圆周角所对的弧相等8.若不等式组0,122x a x x +⎧⎨->-⎩≥有解,则a 的取值X 围是( )A .a >-1B .a ≥-1C .a ≤1D .a <19.如图,点A ,B ,C 的坐标分别为(0,1),(0,2),(3,0)-.从下面四个点(3,3)M ,(3,3)N -,(3,0)P -,(3,1)Q -中选择一个点,以A ,B ,C 与该点为顶点的四边形不是中心对称图形,则该点是( ) A .M B .N C .P D .Q10.如图,ABC ∆中,BC AB ⊥,4==BC AB ,D 为BC 的中点,在AC边上存在一点E ,连结EB ED ,,则BDE ∆周长的最小值为( ) A .52 B .32 C .252+ D .232+二. 认真填一填(本题有6个小题,每小题4分,共24分) 11.因式分解23xy x -=.221x y -=12.如图,⊙O 的半径为2,C 1是函数y =12x 2的图象,C 2是函数的图象,则阴影部分的面积是.13.豆豆沿着有一定坡度的坡面前进了10米,此时他与水平地面的垂直距离为52米,则这个坡面的坡度为.14. “五·一”节,某超市开展“有奖促销”活动,凡购物不少于30元的顾客均有一次转动转盘的机会(如图,转盘被分为8个全等的小扇形),当指针最终指向数字8时,该顾客获一等奖;当指针最终指向3或5时,该顾客获二等奖(若指针指向分界线则重转). 经统计,当天发放一、二等奖奖品共600份,那么据此估计参与此次活动的顾客为人次.15.如图,菱形ABCD 的对角线AC 、BD 交于点O ,其中AC =8,BD =6,以OC 、OB 为边作矩形OBEC ,矩形OBEC 的对角线OE 、BC 交于点F ,再以CF 、FE 为边作第一个菱形CFEG ,菱形CFEG 的对角线FG 、CE 交于点H ,如此继续,得到第n 个菱形的周长等于.K P NMLKJHG F EO BDAC(第16题图)12 34567 8第14题(第10题图) (第14题图)(第12题图)ABC DE16. 如图,在矩形ABCD 中,AD =5,AB =4,点E 、G 、H 、F 分别在AB 、BC 、CD 、AD 上,且AF =CG =2,BE =DH =1,点P 是直线EF 、GH 之间任意一点,连结PE 、PF 、PG 、PH ,则△PEF 和△PGH 的面积和等于.三. 全面答一答(本题有8个小题,共66分) 17.(本题6分) (11122323tan 30--;(2)方程0652=--x x .18.(本题6分)请把下面的直角进行三等分.(要求用尺规作图,不写作法,但要保留作图痕迹.)19.(本题6分)如图,直线b kx y +=与反比例函数ky x=(x <0)的图象相交于点A 、B ,与x 轴交于点C ,其中A 点坐标为(-2,4),点B 的横坐标为-4. (1)试确定反比例函数解析式 (2)求△AOC 的面积20.(本题8分)典典同学学完统计知识后,随机调查了她所在辖区若干名居民的年龄,将调查数据绘制成如下扇形和条形统计图:请根据以上不完整的统计图提供的信息,解答ba46%22%0~14岁60岁以41~5915~40200 250 150100 300 0~14 15~40 41~59 60岁以上 年龄60230100(第15题图)下列问题:(1)典典同学共调查了名居民的年龄,扇形统计图中a =,b =;(2)补全条形统计图; (3)若该辖区在0~14岁的居民约有3500人,请估计年龄在15~59岁的居民的人数.21.(本题8分)如图,在△ABC 和△DCB 中,AB = DC ,AC = DB ,AC 与DB 交于点M . (1)求证:△ABC ≌△DCB ;(2)过点C 作∥BD ,过点B 作BN ∥AC ,与BN 交于点N ,试判断线段BN 与的数量关系,并证明你的结论.22.(本题10分)阅读材料并解答问题:与正三角形各边都相切的圆叫做正三角形的内切圆,与正四边形各边都相切的圆叫做正四边形的内切圆,,与正n 边形各边都相切的圆叫做正n 边形的内切圆,设正(3)n n ≥边形的面积为边形正n S ,其内切圆的半径为r ,试探索正n 边形的面积.(结果可用三角函数表示)如图①,当3n =时,设AB 切圆O 于点C ,连结OC OA OB ,,,OC AB ⊥∴, OA OB =∴,12AOC AOB ∠=∴,2AB BC =∴. 在Rt AOC △中,60336021=⋅=∠AOC ,OC r =,,, 60tan 260tan ⋅=⋅=∴r AB r AC ,60tan 60tan 2212r r r S OAB =⋅⋅=∴∆ 60tan 332⋅==∴∆r S S OAB 正三角形.(1) 如图②,当4n =时,仿照(1)中的方法和过程可求得:=正四边形S; (2)如图③,当5n =时,仿照(1)中的方法和过程求.正五边形S ; (3)如图④,根据以上探索过程,请直接写出=边形正n S .BCA DMN BC 图①23. (本题10分)某校原有600X 旧课桌急需维修,经过A 、B 、C 三个工程队的竞标得知,A 、B 的工作效率相同,且都为C 队的2倍,若由一个工程队单独完成,C 队比A 队要多用10天.学校决定由三个工程队一齐施工,要求至多6天完成维修任务.三个工程队都按原来的工作效率施工2天时,学校又清理出需要维修的课桌360X ,为了不超过6天时限,工程队决定从第3天开始,各自都提高工作效率,A 、B 队提高的工作效率仍然都是C 队提高的2倍.这样他们至少还需要3天才能完成整个维修任务. ⑴求工程队A 原来平均每天维修课桌的X 数;⑵求工程队A 提高工作效率后平均每天多维修课桌X 数的取值X 围.24.(本题12分)已知:如图,直线l :13y x b =+,经过点104M ⎛⎫⎪⎝⎭,,一组抛物线的顶点112233(1)(2)(3)()n n B y B y B y B n y ,,,,,,,,(n 为正整数)依次是直线l 上的点,这组抛物线与x 轴正半轴的交点依次是:11223311(0)(0)(0)(0)n n A x A x A x A x ++,,,,,,,,(n 为正整数),设101x d d =<<().(1)求b 的值;(2)求经过点112A B A 、、的抛物线的解析式(用含d 的代数式表示);(3)定义:若抛物线的顶点..及抛物线与x 轴的两个交点....构成的三角形是直角三角形,则这种抛物线就称为:“美丽抛物线”.探究:当01d d <<()的大小变化时,这组抛物线中是否存在美丽抛物线?若存在,请你求出相应的d 的值.n 2202010年某某5月份中考模拟考试数学 参考答案一、选择题(共10题,每题3分,共30分.)二、填空题(共6题,每题4分,共24分.)11.___________________ ___1600_三、解答题(共8题,共66分.) 17.(1)原式=3322132--+- (2分) =23(3分) (2) 1,621-==x x (6分)18.(1)作等边三角形3分。
2010年萧山区中考数学试卷参考答案一、选择题(本题有10小题,每题3分,共30分)二、填空题(本题有6小题,每题4分,共24分)11.减小 12. 5 13.0120 14. 2 15. 16.3n+1三、解答题(本题有8小题,17-19题各6分,20-22题各8分,23题10分,24题14分,共66分)17.(本题6分)解:原式=4a 2+4a+1-4a-2+3 ————————————2分 =4a 2+2 ————————————— 2分 当a=2时,4a 2+2=4102)2(2=+⨯———————2分18.(本题6分)解:方程两边同乘(x-1)(x+1),得2(x-1)-x=0————————————————2分解这个方程,得x=2——————————————2分检验:当x=2时,0)1)(1(≠+-x x所以x=2是原方程的解————————————2分19.(本题答案不唯一,每个2分,总计6分)20.(本题8分)解:(1)图略;—————————————————(2分)(2)200×12%=24(户).—————————————————(2分) 答:回答“非常满意”的居民有24户.————————————(1分)(3)185********8023=⨯+(户).————————————————(2分) 答:对“违章搭建情况”不满意或非常不满意的居民估计有1854户.————(1分)21.(本题8分)解:(1)依题意得y=2x 350-————————————————(2分) (2)根据题意列不等式组图甲(是中心对称图形 但不是轴对称图形)图乙(是轴对称图形但不是中心对称图形) 图丙(既是轴对称图形 又是中心对称图形)150x+140×2350x -<3000 x ≤2350x -——————————(2分) 解这个不等式组325<x ≤10 ————————————(1分) ∴x 取9或10又∵x=9时 y=29350⨯-=223不为整数 ∴舍去。
浙江省杭州市中考数学试题分类解析 专题11 圆一、选择题1. (2002年浙江杭州3分)过⊙O 内一点M 的最长的弦长为6cm ,最短的弦长为4cm .则OM 的长为【 】. (A )3cm (B )5cm(C )2cm(D )3cm【答案】B 。
【考点】垂径定理,勾股定理。
【分析】⊙O 内一点M 的最长的弦是过点M 的直径;最短的弦是过点M 垂直于过点M 的直径的弦。
如图,AB 是最长的弦,CD 是最短的弦,连接OC 。
∵AB=6cm,CD=4cm ;∴OC=OA=3cm,CM=2cm 。
∴2222OM OC CM 325=-=-=(cm )。
故选B 。
2. (2003年浙江杭州3分)如图,点C 为⊙O 的弦AB 上的一点,点P 为⊙O 上一点,且OC⊥CP,则 有【 】(A )OC 2=CA•CB (B )OC 2=PA•PB (C )PC 2=PA•PB (D )PC 2=CA•CB【答案】D。
【考点】垂径定理,相交弦定理。
【分析】延长PC交圆于D,连接OP,OD。
根据相交弦定理,得CP•CD=CA•CB。
∵OP=OD,OC⊥PC,∴PC=CD。
∴PC2=CA•CB。
故选D。
3. (2004年浙江杭州3分)如图,三个半径为3的圆两两外切,且ΔABC的每一边都与其中的两个圆相切,那么ΔABC的周长是【】(A)12+63(B)18+63(C)18+123(D)12+123【答案】B。
【考点】相切圆的性质,等边三角形、矩形的判定和性质,锐角三角函数定义,特殊角的三角函数值。
【分析】∵三圆两两相切,∴外切的△ABC为等边三角形(证明略)。
如图,连接 BO 2,CO 3,分别过点O 1,O 2作BC 的垂线,垂足为D ,E 。
∴BO 2平分∠ABC,∠O 2BC =30° 。
∵O 2D⊥BD ,∴22O D 3tan O BC tan30BD 3∠︒===。
∵O 2D=3,∴2O D 3BD 33333===。
word 2010年某某市各类高中招生文化考试数学答题纸姓名某某号考生禁填缺考考生,由监考员用2B铅笔填涂下面的缺考标记缺考标记注意事项1.答题前,考生先将自己的某某、某某号填写清楚,请认真核对条形码上的某某号、某某。
2.1-10题必须使用2B铅笔填涂;其它题答案必须使用黑色字迹的钢笔或签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.作图时,仍使用2B铅笔。
5.保持清洁,不要折叠,不要弄破。
填涂样例正确填涂12345678910A A A A A A A A A AB B B B B B B B B BC C C C C C C C C CD D D D D D D D D D123456A A A A A AB B B B B BC C C C C CD D D D D D11..12..13..14..15. 、.16.;;.17.(本小题6分)18.(本小题6分)(1)(2)19.(本小题6分)(1)(2)20.(本小题8分)边长:21. (本小题8分)(1)表中的a ;(2)请把频数分布直方图补充完整;(3)第组;(4)条合理化建议:22.(本小题10分)(1)(2)贴条形码区a主视图左视图俯视图18151296350 100 120 140 160 180跳绳次数频数(人数)A D B北C东45°60°word23.(本小题10分)请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效24.(本小题12分)(1)(2)(3)请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效请勿在此区域内作答DAP↓C图2G2 4 6 8 1012108642yO x图1。
2010年杭州市各类高中招生文化考试数学参考答案一. 选择题(每小题3分, 共30分)二. 填空题(每小题4分, 共24分)11. 6 12. 110° 13. 5或9 14.x >43 15.cm 3,6 16. 13,3n+1,2)1)(83(++n n 三. 解答题(8小题共66分) 17. (本小题满分6分) ①x 2-2xy+y 2=(x-y)2②x 2-4=(x+2)(x-2) ③x 2-2xy=x(x-2) ④y 2-4=(y+2)(y-2) 等( 每个等式得2分,答对3个得满分)18. (本小题满分6分) x11-x (1)解 x 2―1 1 =x ·1―(x 2―1)·11-x ……………… 1分 =x ―(x+1)(x ―1)·11-x …………… 1分=x ―(x+1)=―1 ………………………… 1分(2)根据|b a21| = 1003得:b ―2a = 1003 …… 1分原式=2(2a ―b)+2007=2×(―1003)+2007 ……………………1分=―2006+2007=1 ………………………1分 19.解:(本小题满分6分)(1)5个……………………………………………2分 (2)220a s =表(方法不限)……………………4分20. (本小题满分8分)画出圆的等分 …………………………………… 2分 画出圆的内接正多边形 …………………………………… 2分 (若其他方法画出内接正多边形正确的得3分)写出结论 ………………………………………… 1分 写出对应正多边形的边长 ………………………………………… 3分 21. (本小题满分8分)(1) a = 12 ; ………………………………………… 2分 (2) 画图答案如图所示: ………………………………………… 2分 (3) 中位数落在第 3 组 ; ………………………………………… 2分 (4) 只要是合理建议. ………………………………………… 2分 22. (本小题满分10分)解:(1)设CD 为x 千米,由题意得,∠CBD =30°,∠CAD =45° ∴AD =CD =x .................... 1分在Rt △BCD 中,tan30°=xBD∴ BD................... 1分AD +DB =AB =40∴ 40x = ............... 2分解得 x ≈14.7∴ 牧民区到公路的最短距离CD 为14.7千米. ........................ 1分 (2)设汽车在草地上行驶的速度为v ,则在公路上行驶的速度为3v ,在Rt △ADC 中,∠CAD =45°,∴ AC方案I 用的时间134333AD CD AD CD CDt v v v v +=+==....................... 1分 方案II用的时间2ACt v==.................................... 1分∴ 2143CDt t v-=-................................................... 2分∵ 4>0 ∴ 21t t ->0ADB第22题图∴方案I 用的时间少,方案I 比较合理 .............................. 1分 23. (本小题满分10分) 解:(1)w=12t ×4.8=52t………………………………………(3分) (2)解:设出租车日平均行驶路程为x 公里 则电动出租车的油费W 1=12x ×4.8×(1-40%)+10=256x+10…(3分) ∴ 要使电动装置的出租车比普通出租车合算,则W 1<W,∴256x +10<52x, ………………………………………………(2分) ∴ x>2125…………………………………………………………(1分)答:当日里程数满足大于2125公里时,选择电动装置的出租车合算…(1分)24(本小题满分12分) 解:⑴∵CD CQ S DCQ⋅⋅=∆21,CD =3,CQ =x , ∴x y 231=.…………………2分图象如图所示。
2010年浙江省杭州市各类高中招生文化考试语文考生须知:1.本试卷满分120分, 考试时间100分钟.2.答题前, 在答题纸上写姓名和准考证号.3.必须在答题纸的对应答题位置上答题,写在其他地方无效. 答题方式详见答题纸上的说明.4.考试结束后, 试题卷和答题纸一并上交.试题卷一、语文知识及运用(30分)1.下面加点的字注音全都正确的一项是()(3分)A.闷热(mèn)伫立(zhù) 擎天撼地(qíng)B.酝酿(niàng) 炽热(chì)锲而不舍(qiè)C.馈赠(kuì) 栖息(xī)颔首低眉(hàn)D.狡黠(xiá) 稽首(jī)忧心忡忡(chōng)2.下列词语没有别字的一项是()(3分)A.岌取汲汲可危泛滥粗制滥造B.修炼袖手旁观愕然怒不可愕C.矫健一代天娇腻烦繁花似锦D.阴晦讳莫如深诓骗恃才放旷3.依次填入下列句子横线处的词语,最恰当的一项是()(3分)①毋庸__________,杭州有着良好的治安环境和丰富的旅游资源。
②谁来为这些弱势人群___________正义?③我正在欣赏着这里的景致,一位穿长袍戴小帽的老先生骑着一头小毛驴走过我的身旁。
A.质疑声张泰然自若B.置疑声张泰然自若C.置疑伸张悠然自得D.质疑伸张悠然自得4、填入下面文字中横线上的语句,与上下文衔接最恰当的一项是()(3分)四月春风里摇曳的青草嫩尖,柔软的扫帚草丛,①,②。
究竟是为什么踏上了脚下这块沉默而坚硬的土地的呢?A、①接骨木与羊齿的清香,由阳光与清晨的雾气酿成的烈性美酒②让他深深地沉醉,又让他轻轻地漂浮。
B、①接骨木与羊齿的清香,烈性美酒般的阳光与清晨的雾气②让他深深地沉醉,又让他轻轻地漂浮。
C、①由阳光与清晨的雾气酿成的烈性美酒,接骨木与羊齿的清香②让他深深地沉醉,又让他轻轻地漂浮。
D、①接骨木与羊齿的清香,烈性美酒般的阳光与清晨的雾气②让他轻轻地漂浮,又让他深深地沉醉。
2010年杭州市各类高中招生文化考试上城区一模试卷数 学考生须知:1.本科目试卷分试题卷和答题卷两部分.满分为120分,考试时间100分钟. 2.答题前,必须在答题卷的密封区内填写校名、姓名和准考证号.3.所有答案都必须做在答题卷标定的位置上,务必注意试题序号和答题序号相对应. 4.考试结束后,只需上交答题卷.试 题 卷一.仔细选一选 (本题有10个小题, 每小题3分, 共30分)下面每小题给出的四个选项中, 只有一个是正确的, 请把正确选项前的字母填在 答题卷中相应的格子内. 注意可以用多种不同的方法来选取正确答案. 1.下列判断中,你认为正确的是( ) A .0的倒数是0B.2π是分数 C. 1.2大于1 D.4的值是±22.2010年某市启动了历史上规模最大的轨道交通投资建设,预计某市轨道交通投资将达 到51 800 000 000元人民币. 将51 800 000 000用科学记数法表示正确的是( ) A. 5.18×1010 B. 51.8×109 C. 0.518×1011 D. 518×108 3.下面四个几何体中,左视图是四边形的几何体共有( )A. 1个B. 2个C. 3个D. 4个4.下列函数的图象,经过原点的是( )A.x x y 352-=B.12-=x yC.xy 2=D.73+-=x y 5.为了调查某小区居民的用水情况,随机抽查了10户家庭的月用水量,结果如下表:月用水量(吨)4 5 6 9 户数3421则关于这10户家庭的月用水量,下列说法错误..的是( ) A .中位数是5吨 B .众数是5吨 C .极差是3吨 D .平均数是5.3吨6.如图,顺次连结圆内接矩形各边的中点,得到菱形ABCD ,若 BD =6,DF =4,则菱形ABCD 的边长为( ) A.42 B.32C.5D.7A BCDEFO (第6题)(第10题) 7.Rt △ABC 中,∠C =90°,a 、b 、c 分别是∠A 、∠B 、∠C 的对 边,那么c 等于( )A.cos sin a A b B +B.sin sin a A b B +C.sin sin a b A B +D.cos sin a b A B+8.已知下列命题:①若00a b >>,,则0a b +>;②若22a b ≠,则a b ≠;③角平分线上的点到这个角的两边距离相等;④平行四边形的对角线互相平分; ⑤直角三角形斜边上的中线等于斜边的一半.其中原命题与逆命题均为真命题的是( ) A. ① ③④B. ①②④C. ③④⑤D. ②③⑤9.甲、乙两个工程队完成某项工程,首先是甲单独做了10天, 然后乙队加入合做,完成剩下的全部工程,设工程总量为单位1, 工程进度满足如图所示的函数关系,那么实际完成这项工程所用 的时间比由甲单独完成这项工程所需时间少( ) A.12天B.14天C.16天D.18天10.梯形ABCD 中AB ∥CD ,∠ADC +∠BCD =90°,以AD 、AB 、BC 为斜边向形外作等腰直角三角形,其面积分别是S 1、S 2、S 3 ,且S 1 +S 3 =4S 2,则CD =( ) A. 2.5AB B. 3AB C. 3.5AB D. 4AB二.认真填一填(本题有6个小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案. 11.分解因式:244x y xy y -+= .12.如图,△OPQ 是边长为2的等边三角形,若反比例函数的图象过点P ,则它的解析式是 .13.如图是与杨辉三角有类似性质的三角形数垒,a b c d 、、、是相邻两行的前四个数(如图所示),那么当a =8时,c = ,d = .14.如图所示,圆锥的母线长OA =8,底面的半径r =2,若一只小虫从A 点出发,绕圆锥 的侧面爬行一周后又回到A 点,则小虫爬行的最短路线的长是.(第9题)O PQ xy(第12题)(第13题)(第19题)15.将三角形纸片(△ABC)按如图所示的方式折叠,使点B 落在边AC 上,记为点B ′,折痕为EF .已知AB =AC =6,BC =8,若以点B ′,F ,C 为顶点的三角形与△ABC 相似,那么BF 的长度是 .16.如图,已知△OP 1A 1、△A 1P 2A 2、△A 2P 3A 3、……均为等腰直角三角形,直角顶点P 1、P 2、 P 3、……在函数4y x=(x >0)图象上,点A 1、A 2、 A 3、……在x 轴的正半轴上,则点P 2010的横坐标为 . 三.全面答一答(本题有8个小题,共66分)解答应写出文字说明、证明过程或推演步骤.如果觉得有的题目有点困难,那么把自己能写出的解答写出一部分也可以. 17.(本小题满分6分) (1)计算:21()4sin 302-︒-2009(1)+-+0(2)π-;(2)已知x 2-5x =3,求()()()212111x x x ---++的值. 18.(本小题满分6分)AB 是⊙O 的直径,BD 是⊙O 的弦,延长BD 到点C ,使DC =BD ,连结AC ,过点D 作DE ⊥AC ,垂足为E .(1)求证:AB =AC ; (2)求证:DE 为⊙O 的切线. 19.(本小题满分6分)在如图的方格纸中,每个小正方形的边长都为l. (1)画出将△A 1B 1C 1,沿直线DE 方向向上平移5格得到的△A 2B 2C 2;(2)要使△A 2B 2C 2与△CC 1C 2重合,则△A 2B 2C 2绕点C 2顺时针方向旋转,至少要旋转多少度?(直接写出答案) 20.(本小题满分8分)有A 、B 两个黑布袋,A 布袋中有两个完全相同的小球,分别标有数字1和2.B 布袋中有三个完全相同的小球,分别标有数字2-,3-和-4.小明从A 布袋中随机取出一个小球,记录其标有的数字为x ,再从B 布袋中随机取出一个小球,记录其标有的数字为y ,这(第18题)EAB ′CF B(第15题)(第14题)P 1OA 1A 2A 3P 3P 2yx510(第16题)样就确定点Q 的一个坐标为(x ,y ).(1)用列表或画树状图的方法写出点Q 的所有可能坐标; (2)求点Q 落在直线y =2x --上的概率. 21.(本小题满分8分)由于电力紧张,某地决定对工厂实行“峰谷”用电.规定:在每天的8:00至22:00为“峰电”期,电价为a 元/度;每天22:00至8:00为为“谷电”期,电价为b 元/度.下表为某厂4、5月份的用电量和电费的情况统计表:月份 用电量(万度)电费(万元)4 12 6.4 5168.8(1)若4月份“谷电”的用电量占当月总电量的13,5月份“谷电”的用电量占当月总用电量的41,求a 、b 的值. (2)若6月份该厂预计用电20万度,为将电费控制在10万元至10.6万元之间(不含10万元和10.6万元),那么该厂6月份在“谷电”的用电量占当月用电量的比例应在什么范围?22.(本小题满分10分)观察与思考:阅读下列材料,并解决后面的问题.在锐角△ABC 中,∠A 、∠B 、∠C 的对边分别是a 、b 、c ,过A 作AD ⊥BC 于D (如图),则sinB =c AD ,sinC =bAD,即AD =c sin B ,AD =bsinC ,于是csinB =bsinC ,即C c B b sin sin =.同理有:A a C c sin sin =,BbA a sin sin =, 所以CcB b A a sin sin sin == 即:在一个三角形中,各边和它所对角的正弦的比相等.在锐角三角形中,若已知三个元素(至少有一条边),运用上述结论和有关定理就可以求出其余三个未知元素.根据上述材料,完成下列各题.(1)如图,△ABC 中,∠B =450,∠C =750,BC =60,则∠A = ;AC =;(2)如图,一货轮在C 处测得灯塔A 在货轮的北偏西30°的方向上,随后货轮以60海里/时的速度按北偏东30°的方向航行,半小时后到达B 处,此时又测得灯塔A 在货轮的北偏西75°的方向上(如图),求此时货轮距灯塔A 的距离AB . 23.(本小题满分10分)已知四边形ABCD ,E 是CD 上的一点,连接AE 、BE .(第22题)ABCDE(第23题(1))(1)给出四个条件: ① AE 平分∠BAD ,② BE 平分∠ABC , ③ AE ⊥EB ,④ AB =AD +BC .请你以其中三个作为命题的条件,写出一个能推出AD ∥BC 的正确命题,并加以证明; (2)请你判断命题“AE 平分∠BAD ,BE 平分∠ABC ,E 是CD 的中点,则AD ∥BC ”是否正确,并说明理由.24.(本小题满分12分)如图所示,在平面直角坐标系xOy 中,正方形OABC 的边长为2cm ,点A 、C 分别在y 轴的负半轴和x 轴的正半轴上,抛物线y =ax 2+bx +c 经过点A 、B 和D 2(4,)3-. (1)求抛物线的解析式.(2)如果点P 由点A 出发沿AB 边以2cm /s 的速度向点B 运动,同 时点Q 由点B 出发沿BC 边以1cm /s 的速度向点C 运动,当其中一点到达终点时,另一点也随之停止运动. 设S =PQ 2(cm 2)①试求出S 与运动时间t 之间的函数关系式,并写出t 的取值范围; ②当S 取54时,在抛物线上是否存在点R ,使得以P 、B 、Q 、R 为顶点的四边形是平行四边形? 如果存在,求出R 点的坐标;如果不存在,请说明理由.(3)在抛物线的对称轴上求点M ,使得M 到D 、A 的距离之差最大,求出点M 的坐标.中考一模参考答案及评分标准一.选择题:(本大题10个小题,每小题3分,共30分)题号 1 2 3 4 5 6 7 8 9 10 答案CABACDBCDB二.填空题:(本大题6个小题,每小题4分,共24分) 11、2(2)y x - 12、y=x313、9,37 (每空2分) 14、82 15、4 ,724(答对1个得2分,答错不扣分) 16、2(2009+2010) 三.解答题:(共66分) 17、(本题每小题3分,共6分)(1) 原式 = 4 – 2 – 1 + 1 ……………2分 = 2……………1分(2) 原式=x 2-5x+1……………2分= 3+1 = 4 ……………1分18、(本题每小题3分,共6分)(第24题)ABCO B1C1A1C2B2A2DE(1)证明:连接AD,∵AB是⊙O的直径,∴∠ADB=90°,……1分又∵BD=CD,∴AD是BC的垂直平分线,……………1分∴AB=AC ……………1分(2)连接OD,∵点O、D分别是AB、BC的中点,∴OD∥AC又DE⊥AC,∴OD⊥DE ……………2分∴DE为⊙O的切线.……………1分19、(本题每小题3分,共6分)解:(1)图形正确……………2分结论……………1分(2)至少旋转90.…………3分20.(本小题满分8分)(1)或……………4分(对1个得1分;对2个或3个,对2分;对4个或5个得3分;全对得4分)(2)落在直线y=2x--上的点Q有:(1,-3);(2,-4) ……………2分∴P=62=31……………2分21. (本小题满分8分)(1) 由题意,得32×12a+31×12b=6.4 8a+4b=6.443×16a+41×16b=8.8 12a+4b=8.8 ……………2分(列对1个得1分)解得a=0.6 b=0.4 ……………2分(每个1分)(2)设6月份“谷电”的用电量占当月总电量的比例为k.由题意,得10<20(1-k)×0.6+20k×0.4<10.6 ……………1分解得0.35<k<0.5 ……………2分答:该厂6月份在平稳期的用电量占当月用电量的比例在35%到50%之间(不含35%和50%).BA-2 -3 -41 (1,-2) (1,-3) (1,-4)2 (2,-2) (2,-3) (2,-4)0045sin 3060sin sin sin =∠=∠AB A BC ACB AB 即 ……………1分22、(本小题满分10分)解:(1)∠A=600,AC=620 ……………2分 (2)如图,依题意:BC=60×0.5=30(海里)……………1分 ∵CD ∥BE , ∴∠DCB+∠CBE=1800 ∵∠DCB=300,∴∠CBE=1500∵∠ABE=750。
2010年杭州市中考数学试卷简评_名师指点立足教材考查能力导向教学2010年杭州市各类高中招生文化考试数学试卷,以教育部制订《全日制义务教育数学课程标准(实验稿)》为依据,结合本市初中数学教学实际情况,严格按照杭州市各类高中招生《文化考试命题实施细则(数学)》实施命题。
试卷目标明确,重点突出,分布合理。
考试范围涉及义务教育数学学习的四个领域,考试形式保持相对稳定,考试目标注意到层次性和相关性。
考查内容既考虑到知识的覆盖面,又突出了重点知识和核心内容的考查,试题源于教材,立足数学通性、通法,具有公平性,既紧扣双基,贴近生活,又突出能力要求,形式多样,试卷在注意控制难度的同时,又有恰当的区分度,能对义务教育阶段的数学教学产生良好的导向作用,也有利于各类高中的招生需要。
试卷在保持前些年命题思路的连续和稳定的同时,还具有以下几个特点:一、试卷紧扣课标,试题源于教材1、考试内容分布合理,符合课标要求。
四大领域内容所占比例恰当,数与代数和空间与图形领域的内容约各占40%,统计与概率领域内容占15%,课题学习领域内容占5%。
其中课题学习的考查结合在前三大学习领域中进行,如在第19题中,考查研究问题的方法与经验,在第23题中,考查建立数学模型,综合应用已有知识解决问题的过程。
2、试卷结构稳定,难度上升平缓。
整份试卷中,三种类型的试题题量保持稳定,试题由浅渐深安排,起点低,上升平缓,基础知识题占到整卷的60%以上,重点、主干知识仍得到重视。
3、大部分试题的编制源于教材,试题情景自然流畅,合乎逻辑,无偏、怪、繁题,有些题则直接来自于教材问题的改编,如选择题的第4题,填空题的第14题,解答题的第17题等。
据统计,今年试题中涉及的知识点,在初一的14个章节中,涉及了12章;在初二的12个章节中,涉及了11章;初三的8个章节则全部涉及.知识内容覆盖初中所学章节的90%以上,这使得试题既全面考查了数学知识、方法,又能具有良好的教学导向作用。
2007年杭州市数学中考试题一. 仔细选一选 (本题有10个小题, 每小题3分, 共30分)下面每小题给出的四个选项中, 只有一个是正确的, 请把正确选项前的字母填在 答题卷中相应的格子内. 注意可以用多种不同的方法来选取正确答案. 1.下列运算的结果中,是正数的是( ) A.()12007-- B.()20071- C.()()12007-⨯- D.()20072007-÷2.点P 在第二象限内,P 到x 轴的距离是4,到y 轴的距离是3,那么点P 的坐标为( ) A.()4,3- B.()3,4-- C.()3,4- D.()3,4-3.如图,用放大镜将图形放大,应该属于( ) A.相似变换 B.平移变换 C.对称变换 D.旋转变换4.有一组数据如下:3,6,5,2,3,4,3,6。
那么这组 数据的中位数是( )A.3或4B.4C.3D.3.5 5.因式分解()219x --的结果是( )A.()()81x x ++B.()()24x x +-C.()()24x x -+D.()()108x x -+ 6.如图,正三角形A B C 内接于圆O ,动点P 在圆周的劣弧AB 上,且不与,A B 重合,则B PC ∠等于( )A.30︒B.60︒C.90︒D.45︒7.如图,在高楼前D 点测得楼顶的仰角为30︒,向高楼前进60米到C 点,又测得仰角为45︒,则该高楼的高度大约为( )A.82米B.163米C.52米D.70米(第6题)A C O BP(第7题)45︒30︒BAD C(第3题)8.如果函数()0,0y ax b a b =+<<和()0y kx k =>的图象交于点P ,那么点P 应该位于( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限9.右图背景中的点均为大小相同的小正方形的顶点,其中画有两个四边形,下列叙述中正确的是( )A.这两个四边形面积和周长都不相同B. 这两个四边形面积和周长都相同C. 这两个四边形有相同的面积,但Ⅰ的周长大于Ⅱ的周长D. 这两个四边形有相同的面积,但Ⅰ的周长小于Ⅱ的周长10.将三粒均匀的分别标有1,2,3,4,5,6的正六面体骰子同时掷出,出现的数字分别为,,a b c ,则,,a b c 正好是直角三角形三边长的概率是( )A.1216B.172C.136D.112二. 认真填一填 (本题有6个小题, 每小题4分, 共24分)要注意认真看清题目的条件和要填写的内容, 尽量完整地填写答案.11.两圆的半径分别为3和5,当这两圆相交时,圆心距d 的取值范围是 。
浙江省杭州市2010年中考模拟卷数学参考答一. 选择题 (本题有10小题,每小题3分,共30分)二.填空题(本题有6小题,每小题4分,共24分)11.a(a+2)(a-2) 12. 22 13. (5+1 ,0) 14. 56º 15. 1月、2月、12月 16. 4+32;三. 全面答一答 (本题有8个小题, 共66分) 17.(本小题满分6分)由已知条件可知(也可以是2x+y=-1与它们之一的组合,得出一个方;解正程给2分,共4分)解得.(确给2分)18. (本小题满分6分)解:(1)画图——4分(2)不一定。
三种可能。
可能一个三角形。
可能两个三角形。
可能没有。
——2分 19.(本小题满分6分)解:(1)在BCD Rt ∆中,︒=12sin BC CD1.221.010=⨯≈(米). ………………………………2分 (2)在BCD Rt ∆中,︒=12cos BC BD8.998.010=⨯≈(米); ………………………………2分 在ACD Rt ∆中,︒=5tan CD AD 2.123.330.09≈≈(米), ……………………1分 23.339.813.5313.5AB AD BD =-≈-=≈(米). ………………………1分答:坡高2.1米,斜坡新起点与原起点的距离为13.5米 20.(本小题满分8分). 解(1)100 ……………………2分 (2)85.5 ,85 . ……………………2分题号 12345678910答案BCAADDBCCB(3)八年级第一次测试中分以上的学生共有200人(图补正确即给分)…………2分(4)合理就可……………………2分21.(本小题满分8分)思考:原点问题1:②④;①③ 2:略(如反比例函数1yx等)(每空2分)22.(本小题满分10分)(1)节能灯:49+0.0045x 白炽灯:18+0.02x …………2分(2)当 49+0.0045x=18+0.02x 解得X=2000 ;…………1分当使用时间小于2000小时时选白炽灯,当使用时间大于2000小时时选节能灯,当使用时间等于2000小时时两者均可。
2010年浙江省杭州市中考数学试卷一、选择题(共10小题,每小题3分,满分30分)1.(3分)计算(﹣1)2+(﹣1)3=()A.﹣2 B.﹣1 C.0 D.22.(3分)4的平方根是()A.±2 B.2 C.﹣2 D.163.(3分)方程x2+x﹣1=0的根是()A.1﹣B .C.﹣1+D .4.(3分)“a是实数,|a|≥0”这一事件是()A.必然事件B.不确定事件C.不可能事件D.随机事件5.(3分)若一个所有棱长相等的三棱柱,它的主视图和俯视图分别是正方形和正三角形,则左视图是()A.矩形B.正方形C.菱形D.正三角形6.(3分)16位参加百米半决赛同学的成绩各不相同,按成绩取前8位进入决赛.如果小刘知道了自己的成绩后,要判断能否进入决赛,其他15位同学成绩的下列数据中,能使他得出结论的是()A.平均数B.极差C.中位数D.方差7.(3分)如图,5个圆的圆心在同一条直线上,且互相相切,若大圆直径是12,4个小圆大小相等,则这5个圆的周长的和为()A.48πB.24πC.12πD.6π8.(3分)如图,在△ABC中,∠CAB=70°.在同一平面内,将△ABC绕点A旋转到△AB′C′的位置,使得CC′∥AB,则∠BAB′=()A.30°B.35°C.40°D.50°9.(3分)已知a,b为实数,则解可以为﹣2<x<2的不等式组是()A .B .C .D .10.(3分)定义[a,b,c]为函数y=ax2+bx+c的特征数,下面给出特征数为[2m,1﹣m,﹣1﹣m]的函数的一些结论:①当m=﹣3时,函数图象的顶点坐标是(,);②当m>0时,函数图象截x 轴所得的线段长度大于;③当m<0时,函数在x >时,y随x的增大而减小;④当m≠0时,函数图象经过同一个点.其中正确的结论有()A.①②③④B.①②④C.①③④D.②④二、填空题(共6小题,每小题4分,满分24分)11.(4分)至2009年末,杭州市参加基本养老保险约有3 422 000人,用科学记数法表示应为人.12.(4分)分解因式:m3﹣4m=.13.(4分)如图,已知∠1=∠2=∠3=62°,则∠4=度.14.(4分)一个密码箱的密码,每个数位上的数都是从0到9的自然数,若要使不知道密码的人一次就拨对密码的概率小于,则密码的位数至少需要位.15.(4分)先化简﹣(﹣),再求得它的近似值为(精确到0.01,≈1.414,≈1.732).16.(4分)如图,已知△ABC,AC=BC=6,∠C=90°.O是AB的中点,⊙O与AC,BC分别相切于点D与点E.点F是⊙O与AB的一个交点,连DF并延长交CB的延长线于点G.则CG=.三、解答题(共8小题,满分66分)17.(6分)常用的确定物体位置的方法有两种.如图,在4×4个边长为1的正方形组成的方格中,标有A,B两点.请你用两种不同方法表述点B相对点A的位置.18.(6分)如图,在平面直角坐标系xOy中,点A(0,8),点B(6,8).(1)只用直尺(没有刻度)和圆规,求作一个点P,使点P同时满足下列两个条件(要求保留作图痕迹,不必写出作法):①点P到A,B两点的距离相等;②点P到∠xOy的两边的距离相等.(2)在(1)作出点P后,写出点P的坐标.19.(6分)给出下列命题:命题1:点(1,1)是直线y=x与双曲线y=的一个交点;命题2:点(2,4)是直线y=2x与双曲线y=的一个交点;命题3:点(3,9)是直线y=3x与双曲线y=的一个交点;(1)请观察上面命题,猜想出命题n(n是正整数);(2)证明你猜想的命题n是正确.20.(8分)统计2010年上海世博会前20天日参观人数,得到如下频数分布表和频数分布直方图(部分未完成):上海世博会前20天日参观人数的频数分布表:(1)请补全频数分布表和频数分布直方图;(2)求出日参观人数不低于22万的天数和所占的百分比;(3)利用以上信息,试估计上海世博会(会期184天)的参观总人数.21.(8分)已知直四棱柱的底面是边长为a的正方形,高为h,体积为V,表面积等于S.(1)当a=2,h=3时,分别求V和S;(2)当V=12,S=32时,求+的值.22.(10分)如图,AB=3AC,BD=3AE,又BD∥AC,点B,A,E在同一条直线上.(1)求证:△ABD∽△CAE;(2)如果AC=BD,AD=2BD,设BD=a,求BC的长.23.(10分)如图,台风中心位于点P,并沿东北方向PQ移动,已知台风移动的速度为40千米/时,受影响区域的半径为260千米,B市位于点P的北偏东75°方向上,距离P点480千米.(1)说明本次台风是否会影响B市;(2)若这次台风会影响B市,求B市受台风影响的时间.24.(12分)在平面直角坐标系xOy中,抛物线的解析式是y=+1,点C的坐标为(﹣4,0),平行四边形OABC的顶点A,B在抛物线上,AB与y轴交于点M,已知点Q(x,y)在抛物线上,点P(t,0)在x轴上.(1)写出点M的坐标;(2)当四边形CMQP是以MQ,PC为腰的梯形时.①求t关于x的函数解析式和自变量x的取值范围;②当梯形CMQP的两底的长度之比为1:2时,求t的值.2010年浙江省杭州市中考数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.(3分)(2010•杭州)计算(﹣1)2+(﹣1)3=()A.﹣2 B.﹣1 C.0 D.2【分析】此题比较简单.先算乘方,再算加法.【解答】解:(﹣1)2+(﹣1)3=1﹣1=0.故选C.【点评】此题主要考查了乘方运算,乘方的意义就是求几个相同因数积的运算.注意负数的奇数次幂是负数,负数的偶数次幂是正数;﹣1的奇数次幂是﹣1,﹣1的偶数次幂是1.2.(3分)(2011•呼伦贝尔)4的平方根是()A.±2 B.2 C.﹣2 D.16【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的一个平方根.【解答】解:∵(±2 )2=4,∴4的平方根是±2.故选:A.【点评】本题主要考查平方根的定义,解题时利用平方根的定义即可解决问题.3.(3分)(2010•杭州)方程x2+x﹣1=0的根是()A.1﹣B .C.﹣1+D .【分析】观察原方程,可用公式法求解.【解答】解:a=1,b=1,c=﹣1,b2﹣4ac=1+4=5>0,x=;故选D.【点评】本题考查了一元二次方程的解法.正确理解运用一元二次方程的求根公式是解题的关键.4.(3分)(2013•衡阳)“a是实数,|a|≥0”这一事件是()A.必然事件B.不确定事件C.不可能事件D.随机事件【分析】根据必然事件、不可能事件、随机事件的概念和绝对值的定义可正确解答.【解答】解:因为数轴上表示数a的点与原点的距离叫做数a的绝对值,因为a是实数,所以|a|≥0.故选:A.【点评】用到的知识点为:必然事件指在一定条件下一定发生的事件.5.(3分)(2010•杭州)若一个所有棱长相等的三棱柱,它的主视图和俯视图分别是正方形和正三角形,则左视图是()A.矩形B.正方形C.菱形D.正三角形【分析】柱体的左视图一定是矩形或正方形,判断出这个长方形的边长即可.【解答】解:三棱柱的左视图的高一定是棱长,而宽等于俯视图正三角形的高,这个高一定小于棱长,那么左视图为矩形.故选A.【点评】解决本题的难点是判断出柱体的左视图的宽与棱长的大小比较.6.(3分)(2010•杭州)16位参加百米半决赛同学的成绩各不相同,按成绩取前8位进入决赛.如果小刘知道了自己的成绩后,要判断能否进入决赛,其他15位同学成绩的下列数据中,能使他得出结论的是()A.平均数B.极差C.中位数D.方差【分析】15人成绩的中位数是第8名的成绩.参赛选手要想知道自己是否能进入前8名,只需要了解自己的成绩与全部成绩的中位数的大小即可.【解答】解:由于总共有15个人,且他们的分数互不相同,第8的成绩是中位数,要判断是否进入前8名,只要把自己的成绩与中位数进行大小比较.故应知道中位数的多少.故选C.【点评】此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.7.(3分)(2010•杭州)如图,5个圆的圆心在同一条直线上,且互相相切,若大圆直径是12,4个小圆大小相等,则这5个圆的周长的和为()A.48πB.24πC.12πD.6π【分析】由图可知,四个小圆的直径和等于大圆直径,4个小圆大小相等,故小圆直径为12÷4=3,根据周长公式求解.【解答】解:大圆周长为12π,四个小圆周长和为4×(12÷4)π=12π,5个圆的周长的和为12π+12π=24π.故选B.【点评】本题主要考查相切两圆的性质,解题的关键是熟记圆周长的计算公式:直径×π.8.(3分)(2013•攀枝花)如图,在△ABC中,∠CAB=70°.在同一平面内,将△ABC绕点A旋转到△AB′C′的位置,使得CC′∥AB,则∠BAB′=()A.30°B.35°C.40°D.50°【分析】旋转中心为点A,B与B′,C与C′分别是对应点,根据旋转的性质可知,旋转角∠BAB′=∠CAC′,AC=AC′,再利用平行线的性质得∠C′CA=∠CAB,把问题转化到等腰△ACC′中,根据内角和定理求∠CAC′.【解答】解:∵CC′∥AB,∠CAB=70°,∴∠C′CA=∠CAB=70°,又∵C、C′为对应点,点A为旋转中心,∴AC=AC′,即△ACC′为等腰三角形,∴∠BAB′=∠CAC′=180°﹣2∠C′CA=40°.故选:C.【点评】本题考查了旋转的基本性质,对应点到旋转中心的距离相等,对应点与旋转中心的连线的夹角为旋转角.同时考查了平行线的性质.9.(3分)(2010•杭州)已知a,b为实数,则解可以为﹣2<x<2的不等式组是()A .B .C .D .【分析】可根据不等式组解集的求法得到正确选项.【解答】解:A、所给不等式组的解集为﹣2<x<2,那么a,b为一正一负,设a>0,则b<0,解得x >,x<,∴原不等式组无解,同理得到把2个数的符号全部改变后也无解,故错误,不符合题意;B、所给不等式组的解集为﹣2<x<2,那么a,b同号,设a>0,则b>0,解得x >,x <,解集都是正数;若同为负数可得到解集都是负数;故错误,不符合题意;C、理由同上,故错误,不符合题意;D、所给不等式组的解集为﹣2<x<2,那么a,b为一正一负,设a>0,则b<0,解得x <,x >,∴原不等式组有解,可能为﹣2<x<2,把2个数的符号全部改变后也如此,故正确,符合题意.故选D.【点评】此题考查学生逆向思维,由解来判断不等式,是一道好题;用到的知识点为:大小小大中间找;大大小小无解.10.(3分)(2010•杭州)定义[a,b,c]为函数y=ax2+bx+c的特征数,下面给出特征数为[2m,1﹣m,﹣1﹣m]的函数的一些结论:①当m=﹣3时,函数图象的顶点坐标是(,);②当m>0时,函数图象截x轴所得的线段长度大于;③当m<0时,函数在x >时,y随x的增大而减小;④当m≠0时,函数图象经过同一个点.其中正确的结论有()A.①②③④B.①②④C.①③④D.②④【分析】①当m=﹣3时,根据函数式的对应值,可直接求顶点坐标;②当m>0时,直接求出图象与x轴两交点坐标,再求函数图象截x轴所得的线段长度,进行判断;③当m<0时,根据对称轴公式,进行判断;④当m≠0时,函数图象经过同一个点.【解答】解:根据定义可得函数y=2mx2+(1﹣m)x+(﹣1﹣m),①当m=﹣3时,函数解析式为y=﹣6x2+4x+2,∴=﹣=,==,∴顶点坐标是(,),正确;②函数y=2mx2+(1﹣m)x+(﹣1﹣m)与x轴两交点坐标为(1,0),(﹣,0),当m>0时,1﹣(﹣)=+>,正确;③当m<0时,函数y=2mx2+(1﹣m)x+(﹣1﹣m)开口向下,对称轴x=﹣>,∴x可能在对称轴左侧也可能在对称轴右侧,错误;④y=2mx2+(1﹣m)x+(﹣1﹣m)=m(2x2﹣x﹣1)+x﹣1,若使函数图象恒经过一点,m≠0时,应使2x2﹣x﹣1=0,可得x1=1,x2=﹣,当x=1时,y=0,当x=﹣时,y=﹣,则函数一定经过点(1,0)和(﹣,﹣),正确.故选B.【点评】公式法:y=ax2+bx+c 的顶点坐标为(,),对称轴是x=.二、填空题(共6小题,每小题4分,满分24分)11.(4分)(2010•杭州)至2009年末,杭州市参加基本养老保险约有3 422 000人,用科学记数法表示应为 3.422×106人.【分析】科学记数法的一般形式为:a×10n,在本题中a应为3.422,10的指数为7﹣1=6.【解答】解:3 422 000人=3.422×106人.【点评】将一个绝对值较大的数写成科学记数法a×10n的形式时,其中1≤|a|<10,n为比整数位数少1的数.12.(4分)(2013•泰安)分解因式:m3﹣4m=m(m﹣2)(m+2).【分析】当一个多项式有公因式,将其分解因式时应先提取公因式,再对余下的多项式利用平方差公式继续分解.【解答】解:m3﹣4m,=m(m2﹣4),=m(m﹣2)(m+2).【点评】本题考查提公因式法分解因式,利用平方差公式分解因式,熟记公式是解题的关键,要注意分解因式要彻底.13.(4分)(2010•杭州)如图,已知∠1=∠2=∠3=62°,则∠4=118度.【分析】因为∠1=∠2=∠3=62°,所以可知两直线a、b平行,由同旁内角互补求得∠4结果.【解答】解:∵∠1=∠3,∴两直线a、b平行;∴∠2=∠5=62°,∵∠4与∠5互补,∴∠4=180°﹣62°=118°.【点评】本题考查平行线的判定与性质,正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键.14.(4分)(2010•杭州)一个密码箱的密码,每个数位上的数都是从0到9的自然数,若要使不知道密码的人一次就拨对密码的概率小于,则密码的位数至少需要4位.【分析】分别求出取一位数、两位数、三位数、四位数时一次就拨对密码的概率,再根据所在的范围解答即可.【解答】解:因为取一位数时一次就拨对密码的概率为;取两位数时一次就拨对密码的概率为;取三位数时一次就拨对密码的概率为;取四位数时一次就拨对密码的概率为.故密码的位数至少需要4位.【点评】本题考查概率的求法与运用,一般方法为:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.15.(4分)(2010•杭州)先化简﹣(﹣),再求得它的近似值为 5.20(精确到0.01,≈1.414,≈1.732).【分析】根据a=化简原式后再解答.【解答】解:原式=﹣(﹣)=﹣(﹣)=﹣+=3≈3×1.732≈5.196≈5.20【点评】在根式的解答过程中,经常遇到类似本题的题型,在解答此类题型时,化简时,先把分数化成根式形式后,再去解答会比较容易一些.16.(4分)(2010•杭州)如图,已知△ABC,AC=BC=6,∠C=90°.O是AB的中点,⊙O与AC,BC 分别相切于点D与点E.点F是⊙O与AB的一个交点,连DF并延长交CB的延长线于点G.则CG= 3+3.【分析】连接OD,则OD⊥AC、OD∥CB,易证得OD是△ABC的中位线,则OD=3;由此可求得OF、BF的长;根据OD ∥CB,可证得△ODF、△BFG都是等腰三角形,所以BF=BG=3﹣3,再由CG=BC+BG即可求出CG的长.【解答】解:连接OD,则OD⊥AC;∵∠C=90°,∴OD∥CB;∵O是AB 的中点,∴OD是△ABC的中位线,即OD=BC=3;∵AC=BC=6,∠C=90°,∴AB=6,则OB=3,∵OD∥CG,∴∠ODF=∠G;∵OD=OF,则∠ODF=∠OFD,∴∠BFG=∠OFD=∠G,∴BF=BG=OB﹣OF=3﹣3,∴CG=BC+BG=6+3﹣3=3+3.【点评】此题主要考查了切线的性质,三角形中位线定理及等腰三角形的性质等知识的综合应用,能够发现△BFG是等腰三角形是解答此题的关键.三、解答题(共8小题,满分66分)17.(6分)(2010•杭州)常用的确定物体位置的方法有两种.如图,在4×4个边长为1的正方形组成的方格中,标有A,B两点.请你用两种不同方法表述点B相对点A的位置.【分析】方法1:用有序实数对(a,b)表示;方法2:用方向和距离表示.【解答】解:方法1:用有序实数对(a,b)表示.比如:以点A为原点,水平方向为x轴,建立直角坐标系,则B(3,3).方法2:用方向和距离表示.比如:B点位于A点的东北方向(北偏东45°等均可),距离A点3处.【点评】本题考查了确定物体位置的两种方法.无论运用哪种方法表示一个点在平面中的位置,都要用两个数据才能表示.18.(6分)(2010•杭州)如图,在平面直角坐标系xOy中,点A(0,8),点B(6,8).(1)只用直尺(没有刻度)和圆规,求作一个点P,使点P同时满足下列两个条件(要求保留作图痕迹,不必写出作法):①点P到A,B两点的距离相等;②点P到∠xOy的两边的距离相等.(2)在(1)作出点P后,写出点P的坐标.【分析】(1)点P到A,B两点的距离相等,即作AB的垂直平分线,点P到∠xOy的两边的距离相等,即作角的平分线,两线的交点就是点P的位置.(2)根据坐标系读出点P的坐标.【解答】解:(1)作图如右,点P即为所求作的点.(2)设AB的中垂线交AB于E,交x轴于F,由作图可得,EF⊥AB,EF⊥x轴,且OF=3,∵OP是坐标轴的角平分线,∴P(3,3),同理可得:P(3,﹣3),综上所述:符合题意的点的坐标为:(3,3),(3,﹣3).【点评】本题主要考查了线段垂直平分线上的点到线段两端的距离相等和角平分线上的点到角两边的距离相等.19.(6分)(2010•杭州)给出下列命题:命题1:点(1,1)是直线y=x与双曲线y=的一个交点;命题2:点(2,4)是直线y=2x与双曲线y=的一个交点;命题3:点(3,9)是直线y=3x与双曲线y=的一个交点;(1)请观察上面命题,猜想出命题n(n是正整数);(2)证明你猜想的命题n是正确.【分析】(1)由已知的命题1,命题2,命题3要猜想出命题n,首先要发现它们的共同点或不变的内容:叙述的都是点(x,y)是直线y=kx 与双曲线的交点,然后要找到它们变化的内容及变化的规律:这个点的坐标在变,其中横坐标x=n,纵坐标y=n2;直线的解析式在变,其中k=n,双曲线的解析式也在变,其中m=n3.从而写出命题n;(2)把x=n分别代入y=nx与y=,分别计算出对应的y值,然后与n2比较即可.【解答】解:(1)命题n:点(n,n2)是直线y=nx与双曲线y=的一个交点(n是正整数);(2)把代入y=nx,左边=n2,右边=n•n=n2,∵左边=右边,∴点(n,n2)在直线上.同理可证:点(n,n2)在双曲线上,∴点(n,n2)是直线y=nx与双曲线y=的一个交点,命题正确.【点评】对于这类寻找规律的题目,首先要仔细研究已知条件,找到它们的共同点,发现它们变化的内容及变化的规律,才能由特殊推到一般,从而得到正确结论.注意总结出的一般规律应满足题目给出的特殊子,此法也常用来检验总结出的一般规律是否正确.本题考查了学生分析问题、解决问题的能力.20.(8分)(2010•杭州)统计2010年上海世博会前20天日参观人数,得到如下频数分布表和频数分布直方图(部分未完成):上海世博会前20天日参观人数的频数分布表:(1)请补全频数分布表和频数分布直方图;(2)求出日参观人数不低于22万的天数和所占的百分比;(3)利用以上信息,试估计上海世博会(会期184天)的参观总人数.【分析】(1)根据表格的数据求出14.5﹣21.5小组的组中值,最后即可补全频数分布表和频数分布直方图;(2)根据表格知道日参观人数不低于22万的天数有两个小组,共9天,除以总人数即可求出所占的百分比;(3)利用每一组的组中值和每一组的频数可以求出上海世博会(会期184天)的参观总人数.【解答】解:(1)(14.5+21.5)÷2=18,1﹣0.25﹣0.3﹣0.3=0.15,上海世博会前20天日参观人数的频数分布表:频数分布表,频数分布直方图;(2)依题意得,日参观人数不低于22万有6+3=9天,所占百分比为9÷20=45%;(3)∵世博会前20天的平均每天参观人数约为==20.45(万人),∴上海世博会(会期184天)的参观总人数约为20.45×184=3762.8(万人).【点评】本题主要考查读频数分布直方图的能力和利用统计图获取信息的能力.也运用了样本估计总体的思想.21.(8分)(2010•杭州)已知直四棱柱的底面是边长为a的正方形,高为h,体积为V,表面积等于S.(1)当a=2,h=3时,分别求V和S;(2)当V=12,S=32时,求+的值.【分析】(1)体积=底面积×高;表面积=4个侧面积+2个底面积.(2)把所给数值代入(1)得到的公式计算即可.【解答】解:(1)当a=2,h=3时,V=a2h=12;S=2a2+4ah=32;(2)∵a2h=12,2a(a+2h)=32,∴h=,a+2h=,∴+===.【点评】本题主要考查直棱柱的体积与表面积的求法及灵活运用能力.22.(10分)(2010•杭州)如图,AB=3AC,BD=3AE,又BD∥AC,点B,A,E在同一条直线上.(1)求证:△ABD∽△CAE;(2)如果AC=BD,AD=2BD,设BD=a,求BC的长.【分析】(1)由BD∥AC,得∠EAC=∠B;根据已知条件,易证得AB:AC和BD:AE的值相等,由此可根据SAS判定两个三角形相似.(2)首先根据已知条件表示出AB、AD、AC的值,进而可由勾股定理判定∠D=∠E=90°;根据(1)得出的相似三角形的相似比,可表示出EC、AE的长,进而可在Rt△BEC中,根据勾股定理求出BC 的长.【解答】(1)证明:∵BD∥AC,点B,A,E在同一条直线上,∴∠DBA=∠CAE,又∵==3,∴△ABD∽△CAE;(4分)(2)连接BC,解:∵AB=3AC=3BD,AD=2BD,∴AD2+BD2=8BD2+BD2=9BD2=AB2,∴∠D=90°,由(1)得△ABD∽△CAE∴∠E=∠D=90°,∵AE=BD,EC=AD=BD,AB=3BD,∴在Rt△BCE中,BC2=(AB+AE)2+EC2=(3BD +BD)2+(BD)2=BD2=12a2,∴BC=2a.(6分)【点评】此题主要考查了相似三角形的判定和性质,以及勾股定理的应用.能够由勾股定理判断出△ABD和△AEC是直角三角形,是解答(2)题的关键.23.(10分)(2010•杭州)如图,台风中心位于点P,并沿东北方向PQ移动,已知台风移动的速度为40千米/时,受影响区域的半径为260千米,B市位于点P的北偏东75°方向上,距离P点480千米.(1)说明本次台风是否会影响B市;(2)若这次台风会影响B市,求B市受台风影响的时间.【分析】(1)作BH⊥PQ于点H,在Rt△BHP中,利用特殊角的三角函数值求出BH的长与260千米相比较即可.(2)以B为圆心,以260为半径作圆交PQ于P1、P2两点,根据垂径定理即可求出P1P2的长,进而求出台风影响B市的时间.【解答】解:(1)作BH⊥PQ于点H.在Rt△BHP中,由条件知,PB=480,∠BPQ=75°﹣45°=30°,∴BH=480sin30°=240<260,∴本次台风会影响B市.(2)如图,若台风中心移动到P1时,台风开始影响B市,台风中心移动到P2时,台风影响结束.由(1)得BH=240,由条件得BP1=BP2=260,∴P1P2=2=200,∴台风影响的时间t==5(小时).故B市受台风影响的时间为5小时.【点评】本题考查的是直角三角形的性质及垂径定理在实际生活中的运用,解答此题的关键是构造出直角三角形及圆.24.(12分)(2010•杭州)在平面直角坐标系xOy中,抛物线的解析式是y=+1,点C的坐标为(﹣4,0),平行四边形OABC的顶点A,B在抛物线上,AB与y轴交于点M,已知点Q(x,y)在抛物线上,点P(t,0)在x轴上.(1)写出点M的坐标;(2)当四边形CMQP是以MQ,PC为腰的梯形时.①求t关于x的函数解析式和自变量x的取值范围;②当梯形CMQP的两底的长度之比为1:2时,求t的值.【分析】(1)由于四边形ABCO是平行四边形,那么对边AB和OC相等,由此可求出AB的长,由于A、B关于抛物线的对称轴(即y轴)对称,由此可得到A、B的横坐标,将它们代入抛物线的解析式中即可求出A、B的坐标,也就得到了M点的坐标;(2)①根据C、M的坐标,易求得OM、OC的长;过Q作QH⊥x轴于H,易证得△HQP∽△OMC,根据相似三角形得到的比例线段,即可求出t、x的函数关系式;在求自变量的取值范围时,可参考两个方面:一、P、C重合时,不能构成四边形PCMQ;二、Q与B或A重合时,四边形PCMQ是平行四边形;只要x不取上述两种情况所得的值即可;②由于CM、PQ的长不确定,因此要分类讨论:一、CM>PQ,则CM:PQ=2:1,由(2)的相似三角形知OM=2QH,即M点纵坐标为Q点纵坐标的2倍,由此可求得t的值;二、CM<PQ,则CM:PQ=1:2,后同一.【解答】解:(1)∵OABC是平行四边形,∴AB∥OC,且AB=OC=4,∵A,B在抛物线上,y轴是抛物线的对称轴,∴A,B的横坐标分别是2和﹣2,代入y=+1得,A(2,2),B(﹣2,2),∴M(0,2),(2)①过点Q作QH⊥x轴,连接MC.∵CM∥PQ,∴∠QPC=∠MCO,∵∠COM=∠PHQ=90°,∴△HQP∽△OMC,设垂足为H,则HQ=y,HP=x﹣t,由△HQP∽△OMC,得:=,即:t=x﹣2y,∵Q(x,y)在y=+1上,∴t=﹣+x﹣2.当点P与点C重合时,梯形不存在,此时,t=﹣4,解得x=1±,当Q与B或A重合时,四边形为平行四边形,此时,x=±2∴x的取值范围是x≠1±,且x≠±2的所有实数;②分两种情况讨论:(1)当CM>PQ时,则点P在线段OC上,∵CM∥PQ,CM=2PQ,∴点M纵坐标为点Q纵坐标的2倍,即2=2(+1),解得x=0,∴t=﹣+0﹣2=﹣2;(2)当CM<PQ时,则点P在OC的延长线上,∵CM∥PQ,CM=PQ,∴点Q纵坐标为点M纵坐标的2倍,即+1=2×2,解得:x=±2;(2分)当x=﹣2时,得t=﹣﹣2﹣2=﹣8﹣2,当x=2时,得t=2﹣8.【点评】此题主要考查了平行四边形的性质、抛物线的对称性、梯形的判定和性质以及相似三角形的性质等知识的综合应用能力.参与本试卷答题和审题的老师有:Liuzhx;算术;开心;MMCH;CJX;lanchong;bjy;zhangCF;hbxglhl;王岑;疯跑的蜗牛;HLing;蓝月梦;py168;Linaliu;nhx600;fuaisu;HJJ(排名不分先后)菁优网2017年3月6日。
【十年中考真题系列】杭州卷 第五章 圆1.圆内接四边形ABCD 中,已知∠A =70°,则∠C =( )(A )20°(B )30°(C )70°(D )110°2.若两圆的半径分别为2cm 和6cm ,圆心距为4cm ,则这两圆的位置关系是( )(A )内含(B )内切(C )外切(D )外离3.在平面直角坐标系xOy 中,以点(-3,4)为圆心,4为半径的圆( )(A )与x 轴相交,与y 轴相切 (B )与x 轴相离,与y 轴相交 (C )与x 轴相切,与y 轴相交(D )与x 轴相切,与y 轴相离4.如图,5个圆的圆心在同一条直线上, 且互相相切,若大圆直径是12,4个小圆大小相等,则这5个圆的周长的和为( )(A )48π (B )24π(C )12π(D )6π5.在一个圆中,给出下列命题,其中正确的是( )(A )若圆心到两条直线的距离都等于圆的半径,则这两条直线不可能垂直(B )若圆心到两条直线的距离都小于圆的半径,则这两条直线与圆一定有4个公共点 (C )若两条弦所在直线不平行,则这两条弦可能在圆内有公共点(D )若两条弦平行,则这两条弦之间的距离一定小于圆的半径6.如图,已知AC 是⊙O 的直径,点B 在圆周上(不与A 、C 重合),点D 在AC 的延长线上,连接BD交⊙O 于点E ,若∠AOB =3∠ADB ,则( )(A )DE =EB (B )2DE =EB(C )3DE =DO(D )DE =OB7.如图,点A ,B ,C ,D 都在⊙O 上,CD ︵的度数等于84°,CA 是∠OCD 的平分线,则∠ABD +∠CAO =________°.8.如图,AT切⊙O于点A,AB是⊙O的直径.若∠ABT=40°,则∠ATB=________.(第8题)(第9题)(第10题)(第11题)9.如图,AB是⊙的直径,点C是半径OA的中点,过点C作DE⊥AB,交O于点D、E两点,过点D 作直径DF,连结AF,则∠DFA=________.10.如图,已知△ABC,AC=BC=6,∠C=90°.O是AB的中点,⊙O与AC,BC分别相切于点D与点E.点F是⊙O与AB的一个交点,连DF并延长交CB的延长线于点G.则CG=________.11.如图,AB为半圆的直径,C是半圆弧上一点,正方形DEFG的一边DG在直径AB上,另一边DE 过ΔABC的内切圆圆心O,且点E在半圆弧上.①若正方形的顶点F也在半圆弧上,则半圆的半径与正方形边长的比是______________;②若正方形DEFG的面积为100,且ΔABC的内切圆半径r=4,则半圆的直径AB=__________.12.点A,B,C都在半径为r的圆上,直线AD⊥直线BC,垂足为D,直线BE⊥直线AC,垂足为E,直线AD与BE相交于点H,若BH=3AC,则∠ABC所对的弧长等于____________.13.射线QN与等边△ABC的两边AB,BC分别交于点M,N,且AC∥QN,AM=MB=2cm,QM=4cm.动点P从点Q出发,沿射线QN以每秒1cm的速度向右移动,经过t秒,以点P为圆心,3cm为半径的圆与△ABC的边相切(切点在边上),请写出t可取的一切值______________.(单位:秒)14.如图,有一个圆O和两个正六边形T1,T2.T1的6个顶点都在圆周上,T2的6条边都和圆O相切(我们称T1,T2分别为圆O的内接正六边形和外切正六边形).(1)设T1,T2的边长分别为a,b,圆O的半径为r,求r∶a及r∶b的值;(2)求正六边形T1,T2的面积比S1∶S2的值.15.如图,台风中心位于点P,并沿东北方向PQ移动,已知台风移动的速度为30千米/时,受影响区域的半径为200千米,B市位于点P的北偏东75°方向上,距离点P 320千米处.(1)说明本次台风会影响B市;(2)求这次台风影响B市的时间.16.在直角坐标系中,设x轴为直线l,函数y=-3x,y=3x的图像分别是l1,l2,半径为1的⊙P与直线l,l1,l2中的两条相切,例如(3,1)是其中一个⊙P的圆心坐标.(1)写出其余满足条件的⊙P的圆心坐标;(2)在图中标出所有圆心,并用线段依次连结各圆心,求所得几何图形的周长.17.如图1,⊙O 的半径为r (r >0),若点P ′在射线OP 上,满足OP ′•OP =r 2,则称点P ′是点P 关于⊙O的“反演点”,如图2,⊙O 的半径为4,点B 在⊙O 上,∠BOA =60°,OA =8,若点A ′、B ′分别是点A ,B 关于⊙O 的反演点,求A ′B ′的长.图2图118.如图,AE 切⊙O 于点E ,AT 交⊙O 于点M ,N ,线段OE 交AT 于点C ,OB ⊥AT 于点B ,已知∠EAT=30°,AE =33,MN =222. (1)求∠COB 的度数; (2)求⊙O 的半径R ;(3)点F 在⊙O 上(FME ︵是劣弧),且EF =5,把△OBC 经过平移、旋转和相似变换后,使它的两个顶点分别与点E ,F 重合.在EF 的同一侧,这样的三角形共有多少个?你能在其中找出另一 个顶点在⊙O 上的三角形吗?请在图中画出这个三角形,并求出这个三角形与△OBC 的周长之 比.19.如图,已知△ABC内接于⊙O,点C在劣弧AB上(不与点A,B重合),点D为弦BC的中点,DE ⊥BC,DE与AC的延长线交于点E,射线AO与射线EB交于点F,与⊙O交于点G,设∠GAB=ɑ,∠ACB=β,∠EAG+∠EBA=γ.(1)点点同学通过画图和测量得到以下近似数据:猜想:β关于ɑ的函数表达式,γ关于ɑ的函数表达式,并给出证明;(2)若γ=135°,CD=3,△ABE的面积为△ABC的面积的4倍,求⊙O半径的长.。
2010-2023历年初中毕业升学考试(浙江杭州卷)数学第1卷一.参考题库(共12题)1.已知一次函数y=x+b的图象经过第一、二、三象限,则b的值可以是( ). A.-2B.-1C.0D.22.下列运算正确的是().A.a+b=abB.a2·a3=a5C.a2+2ab-b2=(a-b)2D.3a-2a=13.(2011•滨州)如图,在△ABC中,点O是AC边上(端点除外)的一个动点,过点O作直线MN∥BC.设MN交∠BCA的平分线于点E,交∠BCA的外角平分线于点F,连接AE、AF.那么当点O运动到何处时,四边形AECF是矩形?并证明你的结论.4.如图,四边形ABCD为菱形,已知A(0,4),B(-3,0).(1)求点D的坐标;(2)求经过点C的反比例函数解析式.5.解方程组:6.如图,在△ABC中,点P是△ABC的内心,则∠PBC+∠PCA+∠PAB=__________度.7.(2011•滨州)根据给出的下列两种情况,请用直尺和圆规找到一条直线,把△ABC恰好分割成两个等腰三角形(不写做法,但需保留作图痕迹);并根据每种情况分别猜想:∠A与∠B有怎样的数量关系时才能完成以上作图?并举例验证猜想所得结论.(1)如图①△ABC中,∠C=90°,∠A=24°①作图:②猜想:③验证:(2)如图②△ABC中,∠C=84°,∠A=24°.①作图:②猜想:③验证:8.甲、乙、丙、丁四位同学进行一次乒乓球单打比赛,要从中选出两位同学打第一场比赛.(1)请用树状图法或列表法,求恰好选中甲、乙两位同学的概率.(2)若已确定甲打第一场,再从其余三位同学中随机选取一位,求恰好选中乙同学的概率.9.(2011•滨州)如图,某广场设计的一建筑物造型的纵截面是抛物线的一部分,抛物线的顶点O落在水平面上,对称轴是水平线OC.点A、B在抛物线造型上,且点A到水平面的距离AC=4米,点B到水平面距离为2米,OC=8米.(1)请建立适当的直角坐标系,求抛物线的函数解析式;(2)为了安全美观,现需在水平线OC上找一点P,用质地、规格已确定的圆形钢管制作两根支柱PA、PB对抛物线造型进行支撑加固,那么怎样才能找到两根支柱用料最省(支柱与地面、造型对接方式的用料多少问题暂不考虑)时的点P (无需证明)(3)为了施工方便,现需计算出点O、P之间的距离,那么两根支柱用料最省时点O、P之间的距离是多少?(请写出求解过程)10.先化简,再求值:,其中11.如图所示,两块完全相同的含30°角的直角三角板叠放在一起,∠DAB=30°,有以下四个结论:①AF⊥BC ②△ADG≌△ACF③O为BC的中点④AG︰DE=,其中正确结论的序号是 ..12.不等式8-2x>0的解集在数轴上表示正确的是().第1卷参考答案一.参考题库1.参考答案:D2.参考答案:B3.参考答案:当点O运动到AC的中点(或OA=OC)时,四边形AECF是矩形.证明:∵CE平分∠BCA,∴∠1=∠2,又∵MN∥BC,∴∠1=∠3,∴∠3=∠2,∴EO=CO,同理,FO=CO,∴EO=FO,又∵OA=OC,∴四边形AECF是平行四边形,又∵∠1=∠2,∠4=∠5,∴∠1+∠5=∠2+∠4,又∵∠1+∠5+∠2+∠4=180°,∴∠2+∠4=90°,∴四边形AECF是矩形.4.参考答案:解:(1)∵,∴∴.在菱形中,, ∴, ∴. ………………3分(2)∵∥, ,∴.设经过点C的反比例函数解析式为.把代入中,得:,∴,∴. …………6分5.参考答案:6.参考答案:907.参考答案:解:(1)①作图:痕迹能体现作线段AB(或AC、或BC)的垂直平分线,或作∠ACD=∠A(或∠BCD=∠B)两类方法均可,在边AB上找出所需要的点D,则直线CD即为所求(2分)②猜想:∠A+∠B=90°,(4分)③验证:如在△ABC中,∠A=30°,∠B=60°时,有∠A+∠B=90°,此时就能找到一条把△ABC恰好分割成两个等腰三角形的直线.(5分)(2)答:①作图:痕迹能体现作线段AB(或AC、或BC)的垂直平分线,或作∠ACD=∠A或在线段CA上截取CD=CB三种方法均可.在边AB上找出所需要的点D,则直线CD即为所求(6分)②猜想:∠B=3∠A(8分)③验证:如在△ABC中,∠A=32°,∠B=96,有∠B=3∠A,此时就能找到一条把△ABC恰好分割成两个等腰三角形的直线.(9分).8.参考答案:.解:(1)方法一画树状图如下:所有出现的等可能性结果共有12种,其中满足条件的结果有2种.∴P(恰好选中甲、乙两位同学)=. ………………4分方法二列表格如下:甲乙丙丁甲甲、乙甲、丙甲、丁乙乙、甲乙、丙乙、丁丙丙、甲丙、乙丙、丁丁丁、甲丁、乙丁、丙所有出现的等可能性结果共有12种,其中满足条件的结果有2种.∴P(恰好选中甲、乙两位同学)=. ………………4分(2)P(恰好选中乙同学)=. ………………6分9.参考答案:解:(1)以点O为原点、射线OC为y轴的正半轴建立直角坐标系,设抛物线的函数解析式为y=ax2,由题意知点A的坐标为(4,8).∵点A在抛物线上,∴8=a×42,解得a=,∴所求抛物线的函数解析式为:y=x2;(2)找法:延长AC,交建筑物造型所在抛物线于点D,则点A、D关于OC对称.连接BD交OC于点P,则点P即为所求.(3)由题意知点B的横坐标为2,∵点B在抛物线上,∴点B的坐标为(2,2),又∵点A的坐标为(4,8),∴点D的坐标为(﹣4,8),设直线BD的函数解析式为y=kx+b,∴,解得:k=﹣1,b=4.∴直线BD的函数解析式为y=﹣x+4,把x=0代入y=﹣x+4,得点P的坐标为(0,4),两根支柱用料最省时,点O、P之间的距离是4米.10.参考答案:解:原式=. ………………3分当时,原式=………………5分11.参考答案:①②③④12.参考答案:C。
2010中考数学模拟试卷 数学试卷考生须知:1、 本试卷分试题卷和答题卷两部分,满分120分,考试时间100分钟.2、 答题前,必须在答题卷密封区内填写校名、某某和某某号.3、 所有答案都必须做在答题卷标定的位置上,务必注意试题序号和答题序号相对应.4、 考试结束后,上交试题卷和答题卷.一.仔细选一选(本大题共10道小题,每小题3分,共30分.)下面给出的四个选项中,只有一个是正确的,请把正确选项前的字母填在答题卷中相应的格子内.注意可以用多种不同的方法来选取正确的答案. 1.下列计算结果为负数的是( )A.-|-3|B.(-3)0C.(-3)2D.(-3)-2 ×107千克,下列可将其一次性运走的合适运输工具是( )3. 下列各式计算结果正确的是( ) A 、a +a =a 2 B 、(3a )2=6a 2 C 、(a +1)2=a 2+1 D 、a ·a =a 24.甲、乙两超市为了促销一种定价相同的商品,甲超市连续两次降价10%,乙超市一次性降价20%,在哪家超市购买此种商品更合算( )5.在闭合电路中,电压U(V)一定时,电流I (A )关于电阻R (Ω)的函数图象是( )6.已知x+y= -5,xy=6, 则x 2+y 2的值是( ) A.1 B. 13 C°,它的面积是3πcm 2,用这个扇形作为一个圆锥侧面,则该圆锥的底面半径是( ) A.3cm B.2cm C.1cm D.4cm 8.下列事件中是必然事件的是( )C.通过长期努力学习,一定会考上重点大学D.下雨天,每个人都打着雨伞9.如图,圆内接四边形ABCD 是由四个全等的等腰梯形组成,AD 是⊙O 的直径,则∠BEC 的度数为( )A .15°B.30°C.45°D.60°10.矩形ABCD 中,8cm 6cm AD AB ==,.动点E 从点C 开始沿边CB 向点B 以2cm/s 的速度运动,动点F 从点C 同时出发沿边CD 向点D 以1cm/s 的速度运动至点D 停止.可得到矩形CFHE ,设运动时间为x (单位:s ),此时矩形ABCD 去掉矩形CFHE 后剩余部分的面积为y (单位:cm 2),第9题则y 与x 之间的函数关系用图象表示大致是下图中的( )(本题有6个小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案。
2010年部分省市中考数学试题分类汇编整式与因式分解12. (2010年浙江省东阳县)因式分解:x 3-x=___ ____ 【关键词】因式分解 【答案】x(x+1)(x-1)12. (2010年浙江省东阳县)因式分解:x 3-x=___ ____ 【关键词】因式分解 【答案】x(x+1)(x-1)1、(2010年宁波市)下列运算正确的是( )A 、22x x x =⋅B 、22)(xy xy =C 、632)(x x =D 、422x x x =+ 【关键词】整式运算 【答案】C2(2010年宁波市)、若3=+y x ,1=xy ,则=+22y x ___________。
【关键词】完全平方公式 【答案】71、(2010年宁波市)下列运算正确的是( )A 、22x x x =⋅B 、22)(xy xy =C 、632)(x x =D 、422x x x =+ 【关键词】整式运算 【答案】C2(2010年宁波市)、若3=+y x ,1=xy ,则=+22yx ___________。
【关键词】完全平方公式 【答案】711.(2010浙江省喜嘉兴市)用代数式表示“a 、b 两数的平方和”,结果为_______. 【关键词】代数式 【答案】22b a + 14.(2010浙江省喜嘉兴市)因式分解:2mx 2-4mx +2m = . 【关键词】提公因式、完全平方公式 【答案】2)1(2-x m17、(2010浙江省喜嘉兴市)计算:a (b +c )-ab 【关键词】单项式与多项式的积、整式加减 【答案】ab c b a -+)(ab ac ab -+=ac =.7(2010年浙江省金华). 如果33-=-b a ,那么代数式b a 35+-的值是( ▲ ) A .0 B .2 C .5 D .8 【关键词】整体带入、代数式 【答案】D11(2010年浙江省金华). 分解因式=-92x . 【关键词】分解因式 【答案】(x -3)(x +3);4.(2010年浙江台州市)下列运算正确的是(▲)A .22a a a =⋅B .33)(ab ab =C .632)(a a =D .5210a a a =÷ 【关键词】幂的有关运算 【答案】C12.(2010年浙江台州市)因式分解:162-x = ▲ . 【关键词】因式分解、平方差公式 【答案】)4)(4(-+x x9. (2010年益阳市)若622=-n m ,且3=-n m ,则=+n m . 【关键词】平方差 【答案】215.(2010年益阳市)已知31=-x ,求代数式4)1(4)1(2++-+x x 的值.【关键词】完全平方公式、整式加减【答案】15.解法一:原式=2)21(-+x =2)1(-x 原式= 2)3( =3 解法二:由31=-x 得13+=x化简原式=444122+--++x x x=122+-x x=1)13(2)13(2++-+=12321323+--++ =32. (2010江西) 计算 -(-3a)2的结果是( )A .-6a 2B . -9a 2C . 6a 2D . 9a 2 【关键词】有关幂的运算 【答案】B9.(2010江西) 因式分解:=-822a . 【关键词】因式分解、平方差公式 【答案】)2)(2(2-+a a(2010年广东省广州市)下列运算正确的是( )A .-3(x -1)=-3x -1B .-3(x -1)=-3x +1C .-3(x -1)=-3x -3D .-3(x -1)=-3x +3【关键词】去括号 【答案】D(2010年广东省广州市)因式分解:3ab 2+a 2b =_______.【关键词】提公因式法因式分解【答案】ab (3b +a )(2010年四川省眉山)下列运算中正确的是A .2325a a a +=B .22(2)(2)4a b a b a b +-=-C .23622a a a ⋅=D .222(2)4a b a b +=+ 【关键词】幂的运算 【答案】B(2010年四川省眉山)把代数式269mx mx m -+分解因式,下列结果中正确的是A .2(3)m x +B .(3)(3)m x x +-C .2(4)m x -D .2(3)m x - 【关键词】因式分解 【答案】D第3章 整式与因式分解2.(2010年重庆)计算232x x ⋅的结果是( )A .x 2B .52x C .62x D .5x 【答案】B2.(2010年重庆)计算232x x ⋅的结果是( )A .x 2B .52x C .62x D .5x 【答案】B(2010年广东省广州市)下列运算正确的是( )A .-3(x -1)=-3x -1B .-3(x -1)=-3x +1C .-3(x -1)=-3x -3D .-3(x -1)=-3x +3 【关键词】去括号 【答案】D(2010年广东省广州市)因式分解:3ab 2+a 2b =_______.【关键词】提公因式法因式分解【答案】ab (3b +a )(2010年四川省眉山)下列运算中正确的是A .2325a a a +=B .22(2)(2)4a b a b a b +-=-C .23622a a a ⋅=D .222(2)4a b a b +=+ 【关键词】幂的运算 【答案】B(2010年四川省眉山)把代数式269mx mx m -+分解因式,下列结果中正确的是A .2(3)m x +B .(3)(3)m x x +-C .2(4)m x -D .2(3)m x - 【关键词】因式分解 【答案】D12.(2010年安徽省芜湖市)因式分解:9x 2-y 2-4y -4=__________. 【关键词】分解因式、完全平方公式、平方差公式 【答案】)23)(23(--++y x y x12. (2010年浙江省东阳县)因式分解:x 3-x=___ ____ 【关键词】因式分解 【答案】x(x+1)(x-1)(2010年山东省济宁市)把代数式 322363x x y xy -+分解因式,结果正确的是A .(3)(3)x x y x y +-B .223(2)x x xy y -+ C .2(3)x x y - D .23()x x y - 【关键词】先运用提公因式法再运用完全平方公式 【答案】D12.(2010年山东省济宁市)若代数式26x x b -+可化为2()1x a --,则b a -的值是 .【关键词】配方法的应用 【答案】5(2010年山东省济宁市)把代数式 322363x x y xy -+分解因式,结果正确的是A .(3)(3)x x y x y +-B .223(2)x x xy y -+C .2(3)x x y -D .23()x x y - 【关键词】先运用提公因式法再运用完全平方公式 【答案】D12.(2010年山东省济宁市)若代数式26x x b -+可化为2()1x a --,则b a -的值是 .【关键词】配方法的应用 【答案】5(2010年山东省济宁市)把代数式 322363x x y xy -+分解因式,结果正确的是A .(3)(3)x x y x y +-B .223(2)x x xy y -+C .2(3)x x y -D .23()x x y - 【关键词】先运用提公因式法再运用完全平方公式 【答案】D12.(2010年山东省济宁市)若代数式26x x b -+可化为2()1x a --,则b a -的值是 .【关键词】配方法的应用 【答案】52.(2010重庆市)计算2x 3·x 2的结果是()A .2xB .2x 5C .2x 6D .x 5解析:由单项式乘法法则知, 2x 3·x 2=2x 5 . 答案:B.2.(2010重庆市)计算2x 3·x 2的结果是()A .2xB .2x 5C .2x 6D .x5解析:由单项式乘法法则知, 2x 3·x 2=2x 5 .答案:B. (2010日照市)10.由m (a +b +c )=ma +mb +mc ,可得:(a +b )(a 2-ab +b 2)=a 3-a 2b +ab 2+a 2b-ab 2+b 3=a 3+b 3,即(a +b )(a 2-ab +b 2)=a 3+b 3. ………………………①我们把等式①叫做多项式乘法的立方公式。
2010年杭州市各类高中招生文化考试数 学考生须知:1.本试卷分试题卷和答题卷两部分,满分120分,考试时间100分钟 .2.答题时,应该在答题卷指定位置内写明校名,姓名和准考证号 .3.所有答案都必须做在答题卷标定的位置上,请务必注意试题序号和答题序号相对应 .4.考试结束后,上交试题卷和答题卷试题卷一、仔细选一选(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的 .注意可以用多种不同的方法来选取正确答案 .1.如果b a =,那么a ,b 两个实数一定是( ▲ )(原创)A.都等于0B.一正一负C. 相等D.相等或互为相反数2.下面四个图案是某种衣物的洗涤说明标识。
其中没有..用到图形的平移、旋转或轴对称设计的是( ▲ )(原创)A B C D3.点K 在直角坐标系中的坐标是()4,3-,则点K 到x 轴和y 轴的距离分别是( ▲ ) (原创)A.3,4B.4,3C.3,-4D.-4,34.钟表的轴心到分针针端长为5cm ,经过40分钟,分针针端转过的弧长是 ( ▲ )(原创)A.103cm πB.203cm πC.253cm πD.503cm π5.已知AC 为矩形ABCD 的对角线,则图中1∠与2∠一定不相等的是 ( ▲ )(原创)A. B. C. D.6.一次数学课上,老师请同学们在一张长为18厘米,宽为16厘米的矩形纸板上,剪下一个腰长为10厘米的等腰三角形,且要求等腰三角形的一个顶点与矩形的一个顶点重合,其它两个顶点在矩形的边上,则剪下的等腰三角形的面积为( ▲ )平方厘米。
(模拟改编)A.50B.50或40C.50或40或30D.50或30或20BC1 2B ADC BAC 1 2D 12BAD C7. 甲、乙两名同学在一次用频率去估计概率的实验中统计了某一结果出现的频率,绘出的统计图如图所示,则符合这一结果的实验可能是( ▲ )(2010上海试题改编) A. 从一装有2个白球和1个红球的袋子中任取一球,取到红球的概率B. 掷一枚正六面体的骰子,出现1点的概率C. 抛一枚硬币,出现正面的概率D. 任意写一个整数,它能被2整除的概率8.如图,点D 在△ABC 边BC 上,且∠ADC=∠BAC ,若AC =x ,CD =x -2, BD =2x -2,则x 的值是---------------------------------------( ▲ )(原创)A. 4B. 3或4 D.339.思考下列命题: (1)等腰三角形一腰上的高线等于腰长的一半,则顶角为75度; (第8题) (2)两圆圆心距小于两圆半径之和,则两圆相交;(3)在反比例函数xy 2=中,如果函数值y < 1时,那么自变量x > 2; (4) 圆的两条不平行弦的垂直平分线的交点一定是圆心;(5)三角形的重心是三条中线的交点,而且一定在这个三角形的内部 ; 其中正确命题的有几个?( ▲ )(2010湖北试题改编)A . 1B . 2C . 3D . 4 10.某小区现有一块等腰直角三角形的绿地,腰长为100,直角顶点为A,小区物业管委会准备把它分割成面积相等的两块,有如下的分割方法:方法一:在底边BC 一点D,连接AD 作为分割线; 方法二:在腰AC 上找一点D,连接BD 作为分割线;方法三:在腰AB 上找一点D,作DE ∥BC,交AC 于点E,DE 作为分割线;方法四:以顶点A 为圆心,AD 为半径作弧,交AB 于点D,交AC 于点E,弧DE 作为分割线。
2010年浙江省杭州市上城区中考数学一模试卷一、选择题(共10小题,每小题3分,满分30分)C大于1 D.的值是±2是分数2.(3分)(2012•聊城一模)2009年北京启动了历史上规模最大的轨道交通投资建设,预计北京市轨道交通投资将3.(3分)(2012•张家界)下面四个几何体中,左视图是四边形的几何体共有()D10户家庭的月用水量,结果如下表:6.(3分)(2013•新华区一模)如图,顺次连接圆内接矩形各边的中点,得到菱形ABCD,若BD=6,DF=4,则菱形ABCD的边长为()D.8.(3分)(2010•上城区一模)已知下列命题:①若a>0,¬b>0,则a+b>0;②若a2≠b2,则a≠b;③角平分线上的点到这个角的两边距离相等;④平行四边形的对角线互相平分;9.(3分)(2004•武汉)甲、乙两个个队完成某项工程,首先是甲单独做了10天,然后乙队加入合做,完成剩下的全部工程,设工程总量为单位1,工程进度满足如图所示的函数关系,那么实际完成这项工程所用的时间比由甲单独完成这项工程所需时间少()10.(3分)(2011•惠山区模拟)梯形ABCD中AB∥CD,∠ADC+∠BCD=90°,以AD、AB、BC为斜边向外作等腰直角三角形,其面积分别是S1、S2、S3,且S1+S3=4S2,则CD=()二、填空题(共6小题,每小题4分,满分24分)11.(4分)(2011•广西)分解因式:x2y﹣4xy+4y=_________.12.(4分)(2002•太原)如图,△OPQ的边长为2的等边三角形,若反比例函数的图象过点P,则它的关系式是_________.13.(4分)(2005•南宁)如图是与杨辉三角有类似性质的﹣三角形数垒,a、b、c、d是相邻两行的前四个数(如图所示),那么当a=8时,c=_________,d=_________.14.(4分)(2005•河北)如图,已知圆锥的母线长OA=8,底面圆的半径r=2.若一只小虫从A点出发,绕圆锥的侧面爬行一周后又回到了A点,求小虫爬行的最短路线的长.15.(4分)(2012•邯郸二模)将三角形纸片(△ABC)按如图所示的方式折叠,使点B落在边AC上,记为点B′,折痕为EF.已知AB=AC=6,BC=8,若以点B′,F,C为顶点的三角形与△ABC相似,那么BF的长度是_________.16.(4分)(2011•昆山市模拟)如图,已知△OP1A1、△A1P2A2、△A2P3A3、…均为等腰直角三角形,直角顶点P1、P2、P3、…在函数(x>0)图象上,点A1、A2、A3、…在x轴的正半轴上,则点P2010的横坐标为_________.三、解答题(共8小题,满分66分)17.(6分)(2011•杭州一模)(1)计算:+(﹣1)2009+(π﹣2)0;(2)已知x2﹣5x=3,求(x﹣1)(2x﹣1)﹣(x+1)2+1的值.18.(6分)(2012•仪陇县模拟)如图所示,AB是⊙O的直径,BD是⊙O的弦,延长BD到点C,使DC=BD,连接AC,过点D作DE⊥AC于E.(1)求证:AB=AC;(2)求证:DE为⊙O的切线.19.(6分)(2012•瑶海区二模)在如图的方格纸中,每个小正方形的边长都为1.(1)画出将△A1B1C1,沿直线DE方向向上平移5格得到的△A2B2C2;(2)要使△A2B2C2与△CC1C2重合,则△A2B2C2绕点C2顺时针方向旋转,至少要旋转多少度?(直接写出答案)20.(8分)(2012•聊城一模)有A、B两个黑布袋,A布袋中有两个完全相同的小球,分别标有数字1和2.B布袋中有三个完全相同的小球,分别标有数字﹣2,﹣3和﹣4.小明从A布袋中随机取出一个小球,记录其标有的数字为x,再从B布袋中随机取出一个小球,记录其标有的数字为y,这样就确定点Q的一个坐标为(x,y).(1)用列表或画树状图的方法写出点Q的所有可能坐标;(2)求点Q落在直线y=﹣x﹣2上的概率.21.(8分)(2005•重庆)由于电力紧张,某地决定对工厂实行鼓励错峰用电.规定:在每天的7:00至24:00为用电高峰期,电价为a元/度;每天0:00至7:00为用电平稳期,电价为b元/度.下表为某厂4、5月份的用电量(1)若4月份在平稳期的用电量占当月用电量的,5月份在平稳期的用电量占当月用电量的,求a、b的值;(2)若6月份该厂预计用电20万度,为将电费控制在10万元至10.6万元之间(不含10万元和10.6万元),那么该厂6月份在平稳期的用电量占当月用电量的比例应在什么范围?22.(10分)(2010•上城区一模)观察与思考:阅读下列材料,并解决后面的问题.在锐角△ABC中,∠A、∠B、∠C的对边分别是a、b、c,过A作AD⊥BC于D(如图1),则sinB=,sinC=,即AD=csinB,AD=bsinC,于是csinB=bsinC,即.同理有:,,所以即:在一个三角形中,各边和它所对角的正弦的比相等.在锐角三角形中,若已知三个元素(至少有一条边),运用上述结论和有关定理就可以求出其余三个未知元素.根据上述材料,完成下列各题.(1)如图2,△ABC中,∠B=45°,∠C=75°,BC=60,则∠A=_________;AC=_________;(2)如图3,一货轮在C处测得灯塔A在货轮的北偏西30°的方向上,随后货轮以60海里/时的速度按北偏东30°的方向航行,半小时后到达B处,此时又测得灯塔A在货轮的北偏西75°的方向上(如图3),求此时货轮距灯塔A 的距离AB.23.(10分)(2011•闸北区二模)(1)如图,给出四个条件:①AE平分∠BAD,②BE平分∠ABC,③AE⊥EB,④AB=AD+BC.请你以其中三个作为命题的条件,写出一个能推出AD∥BC的正确命题,并加以证明;(2)请你判断命题“如图,AE平分∠BAD,BE平分∠ABC,E是CD的中点,则AD∥BC.”是否正确,并说明理由.24.(12分)(2011•兰州)如图所示,在平面直角坐标系xOy中,正方形OABC的边长为2cm,点A、C分别在y 轴的负半轴和x轴的正半轴上,抛物线y=ax2+bx+c经过点A、B和D.(1)求抛物线的解析式.(2)如果点P由点A出发沿AB边以2cm/s的速度向点B运动,同时点Q由点B出发沿BC边以1cm/s的速度向点C运动,当其中一点到达终点时,另一点也随之停止运动.设S=PQ2(cm2)①试求出S与运动时间t之间的函数关系式,并写出t的取值范围;②当S取时,在抛物线上是否存在点R,使得以P、B、Q、R为顶点的四边形是平行四边形?如果存在,求出R点的坐标;如果不存在,请说明理由.(3)在抛物线的对称轴上求点M,使得M到D、A的距离之差最大,求出点M的坐标.2010年浙江省杭州市上城区中考数学一模试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)C大于1 D.的值是±2是分数是无理数,所以也是无理数,而分数是有理数,故本选项错误;≈=22.(3分)(2012•聊城一模)2009年北京启动了历史上规模最大的轨道交通投资建设,预计北京市轨道交通投资将3.(3分)(2012•张家界)下面四个几何体中,左视图是四边形的几何体共有()D的图象是双曲线,不经过原点;故本选项错误;10户家庭的月用水量,结果如下表:6.(3分)(2013•新华区一模)如图,顺次连接圆内接矩形各边的中点,得到菱形ABCD,若BD=6,DF=4,则菱形ABCD的边长为()=2AD==D.•=,所以不对;8.(3分)(2010•上城区一模)已知下列命题:①若a>0,¬b>0,则a+b>0;②若a2≠b2,则a≠b;③角平分线上的点到这个角的两边距离相等;④平行四边形的对角线互相平分;9.(3分)(2004•武汉)甲、乙两个个队完成某项工程,首先是甲单独做了10天,然后乙队加入合做,完成剩下的全部工程,设工程总量为单位1,工程进度满足如图所示的函数关系,那么实际完成这项工程所用的时间比由甲单独完成这项工程所需时间少()解:根据图象可得:甲单独完天,甲乙合作,完工程量到的10.(3分)(2011•惠山区模拟)梯形ABCD中AB∥CD,∠ADC+∠BCD=90°,以AD、AB、BC为斜边向外作等腰直角三角形,其面积分别是S1、S2、S3,且S1+S3=4S2,则CD=()=,=,,+==二、填空题(共6小题,每小题4分,满分24分)11.(4分)(2011•广西)分解因式:x2y﹣4xy+4y=y(x﹣2)2.12.(4分)(2002•太原)如图,△OPQ的边长为2的等边三角形,若反比例函数的图象过点P,则它的关系式是(x>0).y==),把点,∴13.(4分)(2005•南宁)如图是与杨辉三角有类似性质的﹣三角形数垒,a、b、c、d是相邻两行的前四个数(如图所示),那么当a=8时,c=9,d=37.+114.(4分)(2005•河北)如图,已知圆锥的母线长OA=8,底面圆的半径r=2.若一只小虫从A点出发,绕圆锥的侧面爬行一周后又回到了A点,求小虫爬行的最短路线的长.r=×=815.(4分)(2012•邯郸二模)将三角形纸片(△ABC)按如图所示的方式折叠,使点B落在边AC上,记为点B′,折痕为EF.已知AB=AC=6,BC=8,若以点B′,F,C为顶点的三角形与△ABC相似,那么BF的长度是或4.=,=,;=,的长度是故答案为:16.(4分)(2011•昆山市模拟)如图,已知△OP1A1、△A1P2A2、△A2P3A3、…均为等腰直角三角形,直角顶点P1、P2、P3、…在函数(x>0)图象上,点A1、A2、A3、…在x轴的正半轴上,则点P2010的横坐标为2(+).))(﹣+()()三、解答题(共8小题,满分66分)17.(6分)(2011•杭州一模)(1)计算:+(﹣1)2009+(π﹣2)0;(2)已知x2﹣5x=3,求(x﹣1)(2x﹣1)﹣(x+1)2+1的值.)×﹣18.(6分)(2012•仪陇县模拟)如图所示,AB是⊙O的直径,BD是⊙O的弦,延长BD到点C,使DC=BD,连接AC,过点D作DE⊥AC于E.(1)求证:AB=AC;(2)求证:DE为⊙O的切线.19.(6分)(2012•瑶海区二模)在如图的方格纸中,每个小正方形的边长都为1.(1)画出将△A1B1C1,沿直线DE方向向上平移5格得到的△A2B2C2;(2)要使△A2B2C2与△CC1C2重合,则△A2B2C2绕点C2顺时针方向旋转,至少要旋转多少度?(直接写出答案)20.(8分)(2012•聊城一模)有A、B两个黑布袋,A布袋中有两个完全相同的小球,分别标有数字1和2.B布袋中有三个完全相同的小球,分别标有数字﹣2,﹣3和﹣4.小明从A布袋中随机取出一个小球,记录其标有的数字为x,再从B布袋中随机取出一个小球,记录其标有的数字为y,这样就确定点Q的一个坐标为(x,y).(1)用列表或画树状图的方法写出点Q的所有可能坐标;(2)求点Q落在直线y=﹣x﹣2上的概率.=.21.(8分)(2005•重庆)由于电力紧张,某地决定对工厂实行鼓励错峰用电.规定:在每天的7:00至24:00为用电高峰期,电价为a元/度;每天0:00至7:00为用电平稳期,电价为b元/度.下表为某厂4、5月份的用电量(1)若4月份在平稳期的用电量占当月用电量的,5月份在平稳期的用电量占当月用电量的,求a、b的值;(2)若6月份该厂预计用电20万度,为将电费控制在10万元至10.6万元之间(不含10万元和10.6万元),那么该厂6月份在平稳期的用电量占当月用电量的比例应在什么范围?月份在平稳期的用电量占当月用电量的,月份在平稳期的用电量占当月用电量的)由题意得方程组,.22.(10分)(2010•上城区一模)观察与思考:阅读下列材料,并解决后面的问题.在锐角△ABC中,∠A、∠B、∠C的对边分别是a、b、c,过A作AD⊥BC于D(如图1),则sinB=,sinC=,即AD=csinB,AD=bsinC,于是csinB=bsinC,即.同理有:,,所以即:在一个三角形中,各边和它所对角的正弦的比相等.在锐角三角形中,若已知三个元素(至少有一条边),运用上述结论和有关定理就可以求出其余三个未知元素.根据上述材料,完成下列各题.(1)如图2,△ABC中,∠B=45°,∠C=75°,BC=60,则∠A=60°;AC=20;(2)如图3,一货轮在C处测得灯塔A在货轮的北偏西30°的方向上,随后货轮以60海里/时的速度按北偏东30°的方向航行,半小时后到达B处,此时又测得灯塔A在货轮的北偏西75°的方向上(如图3),求此时货轮距灯塔A 的距离AB.AC=中,=,即=.AB=1523.(10分)(2011•闸北区二模)(1)如图,给出四个条件:①AE平分∠BAD,②BE平分∠ABC,③AE⊥EB,④AB=AD+BC.请你以其中三个作为命题的条件,写出一个能推出AD∥BC的正确命题,并加以证明;(2)请你判断命题“如图,AE平分∠BAD,BE平分∠ABC,E是CD的中点,则AD∥BC.”是否正确,并说明理由.24.(12分)(2011•兰州)如图所示,在平面直角坐标系xOy中,正方形OABC的边长为2cm,点A、C分别在y 轴的负半轴和x轴的正半轴上,抛物线y=ax2+bx+c经过点A、B和D.(1)求抛物线的解析式.(2)如果点P由点A出发沿AB边以2cm/s的速度向点B运动,同时点Q由点B出发沿BC边以1cm/s的速度向点C运动,当其中一点到达终点时,另一点也随之停止运动.设S=PQ2(cm2)①试求出S与运动时间t之间的函数关系式,并写出t的取值范围;②当S取时,在抛物线上是否存在点R,使得以P、B、Q、R为顶点的四边形是平行四边形?如果存在,求出R点的坐标;如果不存在,请说明理由.(3)在抛物线的对称轴上求点M,使得M到D、A的距离之差最大,求出点M的坐标.)代入得:,﹣抛物线的解析式为:.时,8t+4=t=t=,﹣,),﹣)满足题意;)代入,)满足题意.)k=,y=x的对称轴是,﹣,﹣)。
2010年杭州市数学一. 仔细选一选 (本题有10个小题, 每小题3分, 共30分) 1. 计算 (– 1)2 + (– 1)3 =A.– 2B. – 1C. 0D. 2 2. 4的平方根是A. 2B. ± 2C. 16D. ±16 3. 方程 x 2 + x – 1 = 0的一个根是 A. 1 –5 B.251- C. –1+5 D. 251+- 4. “a 是实数, ||0a ≥”这一事件是A. 必然事件B. 不确定事件C. 不可能事件D. 随机事件5. 若一个所有棱长相等的三棱柱,它的主视图和俯视图分别是正方形和正三角形,则左视图是A. 矩形B. 正方形C. 菱形D. 正三角形6. 16位参加百米半决赛同学的成绩各不相同, 按成绩取前8位进入决赛. 如果小刘知道了自己 的成绩后, 要判断能否进入决赛,其他15位同学成绩的下列数据中,能使他得出结论的是 A. 平均数 B. 极差 C. 中位数 D. 方差7. 如图,5个圆的圆心在同一条直线上, 且互相相切,若大圆直径是12,4个 小圆大小相等,则这5个圆的周长的和为A. 48πB. 24πC. 12πD. 6π8. 如图,在△ABC 中,70=∠CAB . 在同一平面内, 将△ABC 绕点A 旋转到△//C AB 的位置, 使得AB CC ///, 则=∠/BABA. 30B. 35C.40 D.50 9. 已知a ,b 为实数,则解可以为 – 2 < x < 2的不等式组是 A.⎩⎨⎧>>11bx ax B.⎩⎨⎧<>11bx ax C. ⎩⎨⎧><11bx ax D. ⎩⎨⎧<<11bx ax 10. 定义[,,a b c ]为函数2y ax bx c =++的特征数, 下面给出特征数为 [2m ,1 – m , –1– m ] 的函数的一些结论:① 当m = – 3时,函数图象的顶点坐标是(31,38);(第7题)(第8题)② 当m > 0时,函数图象截x 轴所得的线段长度大于23; ③ 当m < 0时,函数在x >41时,y 随x 的增大而减小; ④ 当m ≠ 0时,函数图象经过同一个点. 其中正确的结论有A. ①②③④B. ①②④C. ①③④D. ②④ 二. 认真填一填 (本题有6个小题, 每小题4分, 共24分)要注意认真看清题目的条件和要填写的内容, 尽量完整地填写答案. 11. 至2009年末,杭州市参加基本养老保险约有3422000人,用科学记数 法表示应为 人. 12. 分解因式 m 3 – 4m = .13. 如图, 已知∠1 =∠2 =∠3 = 62°,则4∠= .14.一个密码箱的密码, 每个数位上的数都是从0到9的自然数, 若要使不知道密码的人一次 就拨对密码的概率小于20101, 则密码的位数至少需要 位. 15. 先化简)12232461(32--, 再求得它的近似值为 .(精确到0.01,2≈1.414,3≈1.732)16. 如图, 已知△ABC ,6==BC AC ,︒=∠90C .O 是AB 的中点, ⊙O 与AC ,BC 分别相切于点D 与点E .点F 是⊙O 与AB 的一 个交点,连DF 并延长交CB 的延长线于点G . 则CG = . 三. 全面答一答 (本题有8个小题, 共66分)解答应写出文字说明, 证明过程或推演步骤. 如果觉得有的题目有点困难, 那么把自己能写出的解答写出一部分也可以. 17.(本小题满分6分)常用的确定物体位置的方法有两种.如图,在4×4个边长为1的正方形组成的方格中,标有A ,B 两点. 请你用 两种不同方法表述点B 相对点A 的位置.18. (本小题满分6分)(第13题)(第16题)(第17题)如图, 在平面直角坐标系xOy 中, 点A (0,8), 点B (6 , 8 ). (1) 只用直尺(没有刻度)和圆规, 求作一个点P ,使点P 同时满足下 列两个条件(要求保留作图痕迹, 不必写出作法): 1)点P 到A ,B 两点的距离相等; 2)点P 到xOy 的两边的距离相等. (2) 在(1)作出点P 后, 写出点P 的坐标.19. (本小题满分6分)给出下列命题:命题1. 点(1,1)是直线y = x 与双曲线y = x1的一个交点; 命题2. 点(2,4)是直线y = 2x 与双曲线y = x8的一个交点; 命题3. 点(3,9)是直线y = 3x 与双曲线y = x27的一个交点; … … .(1)请观察上面命题,猜想出命题n (n 是正整数); (2)证明你猜想的命题n 是正确的.20. (本小题满分8分)(第18题).统计2010年上海世博会前20天日参观人数,得到如下频数分布表和频 数分布 直方图(部分未完成): (1)请补全频数分布表和频数分布直方图;(2)求出日参观人数不低于22万的天数和所占的百分比;(3)利用以上信息,试估计上海世博会(会期184天)的参观总人数.21. (本小题满分8分)已知直四棱柱的底面是边长为a 的正方形, 高为h , 体积为V, 表面积等于S. (1) 当a = 2, h = 3时,分别求V 和S ; (2) 当V = 12,S = 32时,求ha 12 的值.组别(万人) 组中值(万人)频数 频率 7.5~14.5 1150.25 14.5~21.5 60.30 21.5~28.5 25 0.30 28.5~35.5323上海世博会前20天日参观人数的频数分布表上海世博会前20天日参观人数的频数分布直方图如图,AB = 3AC,BD = 3AE,又BD∥AC,点B,A,E在同一条直线上.(1) 求证:△ABD∽△CAE;(2) 如果AC =BD,AD =22BD,设BD = a,求BC的长.23. (本小题满分10分)如图,台风中心位于点P,并沿东北方向PQ移动,已知台风移动的速度为30千米/时,受影响区域的半径为200千米,B市位于点P的北偏东75°方向上,距离点P 320千米处.(1) 说明本次台风会影响B市;(2)求这次台风影响B市的时间.(第22题) (第23题)在平面直角坐标系xOy 中,抛物线的解析式是y =241x +1, 点C 的坐标为(–4,0),平行四边形OABC 的顶点A ,B 在抛物 线上,AB 与y 轴交于点M ,已知点Q (x ,y )在抛物线上,点 P (t ,0)在x 轴上. (1) 写出点M 的坐标;(2) 当四边形CMQP 是以MQ ,PC 为腰的梯形时.① 求t 关于x 的函数解析式和自变量x 的取值范围; ② 当梯形CMQP 的两底的长度之比为1:2时,求t 的值.(第24题)2010年杭州市各类高中招生文化考试数学评分标准一. 仔细选一选 (本题有10个小题, 每小题3分, 共30分)题号 1 2 3 4 5 6 7 8 9 10 答案CBDAACBCDB二. 认真填一填 (本题有6个小题, 每小题4分, 共24分)11. 3.422⨯106 12. m (m +2)(m – 2) 13. 118° 14. 4 15. 5.20 16. 332+三. 全面答一答 (本题有8个小题, 共66分) 17.(本小题满分6分)方法1.用有序实数对(a ,b )表示.比如:以点A 为原点,水平方向为x 轴,建立直角坐标系,则B(3,3). --- 3分 方法2. 用方向和距离表示.比如: B 点位于A 点的东北方向(北偏东45°等均可),距离A点32处. --- 3分18. (本小题满分6分)(1) 作图如右, 点P 即为所求作的点; --- 图形2分, 痕迹2分 (2) 设AB 的中垂线交AB 于E ,交x 轴于F , 由作图可得, EF AB ⊥, EF x ⊥轴, 且OF =3, ∵OP 是坐标轴的角平分线,∴P (3,3). --- 2分19. (本小题满分6分)(1)命题n : 点(n , n 2) 是直线y = nx 与双曲线y =xn 3的一个交点(n 是正整数). --- 3分(2)把 ⎩⎨⎧==2ny n x 代入y = nx ,左边= n 2,右边= n ·n = n 2,∵左边 =右边, ∴点(n ,n 2)在直线上. --- 2分(第18题)同理可证:点(n ,n 2)在双曲线上,∴点(n ,n 2)是直线y = nx 与双曲线y = xn 3的一个交点,命题正确. --- 1分20. (本小题满分8分) (1)填频数分布表 --- 2分 频数分布直方图 --- 2分 (2)日参观人数不低于22万有9天, --- 1分所占百分比为45%. --- 1分(3)世博会前20天的平均每天参观人数约为2040920332625618511=+++⨯⨯⨯⨯=20.45(万人) ---1分20.45×184=3762.8(万人)∴ 估计上海世博会参观的总人数约为3762.8万人. --- 1分21. (本小题满分8分)(1) 当a = 2, h = 3时, V = a 2h = 12 ;S = 2a 2+ 4ah =32 . --- 4分 (2) ∵a 2h = 12, 2a (a + 2h ) =32, ∴ 212a h =, (a + 2h ) =a16, ∴ha 12+=ah a h +2=21216aa a ⋅=34. --- 4分组别(万人) 组中值(万人)频数 频率 7.5~14.5 11 5 0.25 14.5~21.5 18 6 0.30 21.5~28.5 25 6 0.30 28.5~35.53230.15上海世博会前20天日参观人数的频数分布表 上海世博会前20天日参观人数的频数分布直方图22. (本小题满分10分)(1) ∵ BD ∥AC ,点B ,A ,E 在同一条直线上, ∴ ∠DBA = ∠CAE , 又∵3==AEBDAC AB , ∴ △ABD ∽△CAE . --- 4分 (2) ∵AB = 3AC = 3BD ,AD =22BD ,∴ AD 2 + BD 2 = 8BD 2 + BD 2 = 9BD 2 =AB 2, ∴∠D =90°, 由(1)得 ∠E =∠D = 90°, ∵ AE =31BD , EC =31AD =232BD , AB = 3BD , ∴在Rt △BCE 中,BC 2 = (AB + AE )2 + EC 2 = (3BD +31BD )2 + (322BD )2 = 9108BD 2 = 12a 2 , ∴ BC =32 a . --- 6分23. (本小题满分10分)(1) 作BH ⊥PQ 于点H , 在Rt △BHP 中,由条件知, PB = 320, ∠BPQ = 30°, 得 BH = 320sin30° = 160 < 200,∴ 本次台风会影响B 市. ---4分 (2) 如图, 若台风中心移动到P 1时, 台风开始影响B 市, 台风中心移动到P 2时, 台风影响结束. 由(1)得BH = 160, 由条件得BP 1=BP 2 = 200,∴所以P 1P 2 = 222160200-=240,--- 4分 ∴台风影响的时间t = 30240= 8(小时). --- 2分24. (本小题满分12分)(1) ∵OABC 是平行四边形,∴AB ∥OC ,且AB = OC = 4, ∵A ,B 在抛物线上,y 轴是抛物线的对称轴, ∴ A ,B 的横坐标分别是2和– 2,代入y =241x +1得, A(2, 2 ),B(– 2,2),(第22题)(第23题)(第24题)∴M (0,2), ---2分 (2) ① 过点Q 作QH ⊥ x 轴,设垂足为H , 则HQ = y ,HP = x –t ,由△HQP ∽△OMC ,得:42tx y -=, 即: t = x – 2y , ∵ Q(x ,y ) 在y = 241x +1上, ∴ t = –221x + x –2. ---2分当点P 与点C 重合时,梯形不存在,此时,t = – 4,解得x = 1±5, 当Q 与B 或A 重合时,四边形为平行四边形,此时,x = ± 2∴x 的取值范围是x ≠ 1±5, 且x ≠± 2的所有实数. ---2分 ② 分两种情况讨论:1)当CM > PQ 时,则点P 在线段OC 上, ∵ CM ∥PQ ,CM = 2PQ ,∴点M 纵坐标为点Q 纵坐标的2倍,即2 = 2(241x +1),解得x = 0 , ∴t = –2021+ 0 –2 = –2 . --- 2分 2)当CM < PQ 时,则点P 在OC 的延长线上, ∵CM ∥PQ ,CM =21PQ , ∴点Q 纵坐标为点M 纵坐标的2倍,即241x +1=2⨯2,解得: x = ±32. ---2分 当x = –32时,得t = –2)32(21–32–2 = –8 –32, 当x =32时, 得t =32–8. ---2分。