上海市北初级中学数学旋转几何综合单元测试卷附答案
- 格式:doc
- 大小:1.16 MB
- 文档页数:29
一、选择题1.如图,已知直线上顺次三个点A 、B 、C ,已知AB =10cm ,BC =4cm .D 是AC 的中点,M 是AB 的中点,那么MD =( )cmA .4B .3C .2D .12.观察下列图形,其中不是正方体的表面展开图的是( )A .B .C .D .3.已知点P 是CD 的中点,则下列等式中正确的个数是( )①PC CD =;②12PC CD =;③2PC PD =;④PC PD CD += A .1个B .2个C .3个D .4个 4.已知:∠AOC =90°,∠AOB :∠AOC =2:3,则∠BOC 的度数是( ) A .30°B .60°C .30°或60°D .30°或150° 5.平面内有两两相交的七条直线,若最多有m 个交点,最少有n 个交点,则m+n 等于( )A .16B .22C .20D .186.已知线段AB =6cm ,反向延长线段AB 到C ,使BC =83AB ,D 是BC 的中点,则线段AD 的长为____cmA .2B .3C .5D .6 7.在钟表上,1点30分时,时针与分针所成的角是( ).A .150°B .165°C .135°D .120° 8.下列平面图形中不能围成正方体的是( )A .B .C .D .9.两个锐角的和是( )A .锐角B .直角C .钝角D .锐角或直角或钝角 10.下列图形中,是圆锥的表面展开图的是( )A .B .C .D . 11.小陆制作了一个如图所示的正方体礼品盒,其对面图案都相同,那么这个正方体的表面展开图可能是( )A .B .C .D .12.下列说法不正确的是( )A .两条直线相交,只有一个交点B .两点之间,线段最短C .两点确定一条直线D .过平面上的任意三点,一定能作三条直线二、填空题13.硬币在桌面上快速地转动时,看上去象球,这说明了_________________. 14.长方体、四面体、圆柱、圆锥、球等都是_____,简称____.包围着体的是______.面有____的面与______的面两种.15.(1)375324'''°=________°;(2)1.45︒=________′.16.如图,直线AB ,CD 交于点O ,射线OM 平分,若,则等于________.17.如图,记以点A 为端点的射线条数为x ,以点D 为其中一个端点的线段的条数为y ,则x y -的值为________.18.(1)比较两条线段的长短,常用的方法有_________,_________.(2)比较两条线段a 和b 的大小,结果可能有 种情况,它们是_______________. 19.如图所示,能用一个字母表示的角有________个,以点A 为顶点的角有________个,图中所有大于0°小于180°的角有________个.20.如图,C 岛在A 岛的北偏东60°方向,在B 岛的北偏西45°方向,则从C 岛看A 、B 两岛的视角∠ACB =_______.三、解答题21.马小虎准备制作一个封闭的正方体盒子,他先用5个大小一样的正方形制成如下图所示拼接图形(实线部分),经折叠后发现还少一个面,请你在下图中的拼接图形上再接一个正方形,使新拼接成的图形经过折叠后能成为一个封闭的正方体盒子.(添加所有符合要求的正方形,添加的正方形用阴影表示)22.已知:O 是直线AB 上的一点,COD ∠是直角,OE 平分BOC ∠.(1)如图1.若30AOC ∠=︒.求DOE ∠的度数;(2)在图1中,AOC a ∠=,直接写出DOE ∠的度数(用含a 的代数式表示);(3)将图1中的DOC ∠绕顶点O 顺时针旋转至图2的位置,探究AOC ∠和DOE ∠的度数之间的关系.写出你的结论,并说明理由.23.如图,射线OA 的方向是北偏东15°,射线OB 的方向是北偏西40°,∠AOB =∠AOC ,射线OE 是射线OB 的反向延长线.(1)求射线OC 的方向角;(2)求∠COE 的度数;(3)若射线OD 平分∠COE ,求∠AOD 的度数.24.将一副三角尺叠放在一起:(1)如图①,若∠1=4∠2,请计算出∠CAE 的度数;(2)如图②,若∠ACE =2∠BCD ,请求出∠ACD 的度数.25.古时候,传说捷克的公主柳布莎曾出过这样一道有趣的题:“一只篮子中有若干李子,取它的一半又一个给第一个人,再取余下的一半又两个给第二个人,又取最后所余的一半又三个给第三个人,那么篮内的李子就没有剩余,篮中原有李子多少个?”26.如图,点B和点C为线段AD上两点,点B、C将AD分成2︰3︰4三部分,M是AD 的中点,若MC=2,求AD的长.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】由AB=10cm,BC=4cm.于是得到AC=AB+BC=14cm,根据线段中点的定义由D是AC的中点,得到AD,根据线段的和差得到MD=AD﹣AM,于是得到结论.【详解】解:∵AB=10cm,BC=4cm,∴AC=AB+BC=14cm,∵D是AC的中点,∴AD=1AC=7cm;2∵M是AB的中点,∴AM=1AB=5cm,2∴DM=AD﹣AM=2cm.故选:C.【点睛】此题主要考查了两点之间的距离,线段的和差、线段的中点的定义,利用线段差及中点性质是解题的关键.2.B解析:B【分析】利用正方体及其表面展开图的特点解题.【详解】解:A、C、D均是正方体表面展开图;B、是凹字格,故不是正方体表面展开图.故选:B.【点睛】本题考查了正方体的展开图,熟记展开图的11种形式是解题的关键,利用不是正方体展开图的“一线不过四、田凹应弃之”(即不能出现同一行有多于4个正方形的情况,不能出现田字形、凹字形的情况)判断也可.3.C解析:C【分析】根据线段中点的性质、结合图形解答即可.【详解】如图,∵P 是CD 中点,∴PC=PD ,12PC CD =,CD=2PD ,PC+PD=CD , ∴正确的个数是①②④,共3个;故选:C .【点睛】 本题考查的是两点间的距离的计算,掌握线段中点的概念和性质、灵活运用数形结合思想是解题的关键.4.D解析:D【分析】根据两角的比和两角的和即可求得两个角的度数.【详解】由∠AOC =90°,∠AOB :∠AOC =2:3,可得当B 在∠AOC 内侧时,可以知道∠AOB 23=⨯90°=60°,∠BOC =30°; 当B 在∠AOC 外侧时,∠BOC =150°.故选:D .【点睛】本题考查了三角形中角的求法,解题的关键是分两种情况讨论. 5.B解析:B【分析】由题意可得7条直线相交于一点时交点最少,任意两直线相交都产生一个交点时交点最多,由此可得出m ,n 的值,进而可得答案.【详解】解:根据题意可得:7条直线相交于一点时交点最少,此时交点为1个,即n =1;任意两直线相交都产生一个交点时,交点最多,此时交点为:7×(7﹣1)÷2=21,即m =21;则m +n =21+1=22.故选:B.【点睛】本题考查了直线的交点问题,注意掌握直线相交于一点时交点最少,任意n条直线两两相交时交点最多为12n(n﹣1)个.6.A解析:A 【分析】由BC=83AB可求出BC的长,根据中点的定义可求出BD的长,利用线段的和差关系求出AD的长即可.【详解】∵BC=83AB,AB=6cm,∴BC=6×83=16cm,∵D是BC的中点,∴BD=12BC=8cm,∵反向延长线段AB到C,∴AD=BD-AB=8-6=2cm,故选A.【点睛】本题考查了比较线段的长短,理解线段中点的概念,利用中点的性质转化线段之间的倍分关系是解题关键.7.C解析:C【分析】根据钟表上每个大格30°,1点30分时针与分针之间共4.5个大格即可求解.【详解】钟表上12个大格把一个周角12等分,每个大格30°.1点30分时针与分针之间共4.5个大格,故时针与分针所成的角是4.5×30°=135°.故选C.【点睛】此题考查的是角的运算,钟表上每个大格30°,明确1点30分时针与分针之间共4.5个大格是解题的关键.8.C解析:C【分析】根据常见的正方体展开图的11种形式以及不能围成正方体的展开图解答即可.【详解】根据常见的不能围成正方体的展开图的形式是“一线不过四,田、凹应弃之”,只有C选项不能围成正方体.故选C.【点睛】此题考查展开图折叠成几何体,解题关键在于掌握正方体展开图的11种形式即可.9.D解析:D【分析】在0度到90度之间的叫锐角,可以用赋值法讨论.【详解】解:当∠A=10°,∠B=20°时,∠A+∠B=30°,即两锐角的和为锐角;当∠A=30°,∠B=60°时,∠A+∠B=90°,即两锐角的和为直角;当∠A=50°,∠B=60°时,∠A+∠B=110°,即两锐角的和为钝角;综上所述,两锐角的和可能是锐角,可能是直角,也可能是钝角故选D.【点睛】利用赋值法解题,可以使一些难以直接证明的问题简单易解.10.A解析:A【分析】结合圆锥的平面展开图的特征,侧面展开是一个扇形,底面展开是一个圆.【详解】解:圆锥的展开图是由一个扇形和一个圆形组成的图形.故选A.【点睛】本题考查了几何体的展开图,熟记常见立体图形的展开图的特征,是解决此类问题的关键.注意圆锥的平面展开图是一个扇形和一个圆组成.11.A解析:A【分析】对面图案均相同的正方体礼品盒,则两个相同的图案一定不能相邻,据此即可判断.【详解】解:根据分析,图A折叠成正方体礼盒后,心与心相对,笑脸与笑脸相对,太阳与太阳相对,即对面图案相同;图B、图C和图D中对面图案不相同;故选A.【点睛】本题考查了正方体的展开图,注意正方体的空间图形,从相对面入手,分析及解答问题.12.D解析:D【解析】【分析】根据直线公理、线段公理进行逐一分析判断.【详解】A. 根据直线公理“两点确定一条直线”,则两条直线相交,只有一个交点,故该选项正确;B.两点之间,线段最短,是线段公理,故该选项正确;C. 两点确定一条直线,是直线公理,故该选项正确;D. 当三点共线时,则只能确定一条直线,故该选项错误.故选 D.【点睛】此题考查直线、射线、线段,直线的性质:两点确定一条直线,线段的性质:两点之间线段最短,解题关键在于掌握各性质定义.二、填空题13.面动成体【分析】本题是面动成体的原理在现实中的具体表现根据面动成体原理解答即可【详解】硬币在桌面上快速地转动时看上去象球这说明了面动成体故答案为面动成体【点睛】本题考查了点线面体掌握面动成体原理是解解析:面动成体【分析】本题是面动成体的原理在现实中的具体表现,根据面动成体原理解答即可.【详解】硬币在桌面上快速地转动时,看上去象球,这说明了面动成体,故答案为面动成体.【点睛】本题考查了点、线、面、体,掌握面动成体原理是解题的关键.14.几何体体面平曲【解析】【分析】几何体又称为体包围着体的是面分为平的面和曲的面两种【详解】长方体四面体圆柱圆锥球等都是几何体几何体也简称为体包围着体的是面面有平面和曲面两种故答案为:(1)几何体(2)解析:几何体体面平曲【解析】【分析】几何体又称为体,包围着体的是面,分为平的面和曲的面两种【详解】长方体、四面体、圆柱、圆锥、球等都是几何体,几何体也简称为体,包围着体的是面,面有平面和曲面两种.故答案为:(1). 几何体(2). 体 (3). 面(4). 平(5). 曲【点睛】此题考查认识立体图形,解题关键在于掌握其性质定义.15.8987【解析】【分析】根据1°=60′1′=60″计算即可【详解】(1)==3789°;(2)=145×60′=87′故答案为:3789°87′【点睛】本题考查了度分秒的运算注意度分秒是60进制解析:89 87【解析】【分析】根据1°=60′,1′=60″,计算即可.【详解】(1)375324'''°=3753.4'°=37.89°;(2)1.45︒=1.45×60′=87′.故答案为:37.89°,87′.【点睛】本题考查了度分秒的运算.注意度分秒是60进制.16.142°【解析】【分析】根据对顶角相等求出∠AOC 的度数再根据角平分线的定义求出∠AOM 的度数然后根据平角等于180°列式计算即可得解【详解】解:∵∠BOD=76°∴∠AOC=∠BOD=76°∵射线解析:142°【解析】【分析】根据对顶角相等求出∠AOC 的度数,再根据角平分线的定义求出∠AOM 的度数,然后根据平角等于180°列式计算即可得解.【详解】解:∵∠BOD =76°,∴∠AOC=∠BOD =76°,∵射线OM 平分∠AOC ,∴∠AOM=∠AOC=×76°=38°,∴∠BOM=180°-∠AOM=180°-38°=142°.故答案为142°.【点睛】本题考查了对顶角相等的性质,角平分线的定义,准确识图是解题的关键.17.【分析】先根据射线和线段的定义求出xy 的值再代入求解即可【详解】以点为端点的射线有射线AC 和射线AB 共两条故点为其中一个端点的线段有线段ADODBDCD 共四条故将代入中原式故答案为:【点睛】本题考查解析:2-【分析】先根据射线和线段的定义求出x ,y 的值,再代入求解即可.【详解】以点A 为端点的射线有射线AC 和射线AB ,共两条,故2x =点D 为其中一个端点的线段有线段AD 、OD 、BD 、CD ,共四条,故4y =将2x =,4y =代入x y -中原式242=-=-故答案为:2-.【点睛】本题考查了代数式的运算,掌握射线和线段的定义是解题的关键.18.(1)度量比较法叠合比较法;(2)3a >ba=ba <b 【分析】(1)比较两条线段长短的方法有两种:度量比较法叠合比较法依此即可求解;(2)两条线段a 和b 的大小有三种情况【详解】(1)比较两条线段的大解析:(1)度量比较法,叠合比较法;(2)3,a >b 、a =b 、a <b【分析】(1)比较两条线段长短的方法有两种:度量比较法、叠合比较法.依此即可求解; (2)两条线段a 和b 的大小有三种情况.【详解】(1)比较两条线段的大小通常有两种方法,分别是度量比较法、重合比较法.(2)比较两条线段a 和b 的大小,结果可能有3种情况,它们是a >b 、a =b 、a <b . 故答案为度量比较法,重合比较法;3,a >b 、a =b 、a <b .【点睛】本题考查了比较线段的长短,是基础题型,是需要识记的知识.19.37【分析】根据角的概念和角的表示方法依题意求得答案【详解】能用一个字母表示的角有2个:∠B ∠C ;以A 为顶点的角有3个:∠BAD ∠BAC ∠DAC ;大于0°小于180°的角有7个:∠BAD ∠BAC ∠D解析:3 7【分析】根据角的概念和角的表示方法,依题意求得答案.【详解】能用一个字母表示的角有2个:∠B ,∠C ;以A 为顶点的角有3个:∠BAD ,∠BAC ,∠DAC ;大于0°小于180°的角有7个:∠BAD ,∠BAC ,∠DAC ,∠B ,∠C ,∠ADB ,∠ADC . 故答案为2,3,7.【点睛】利用了角的概念求解.从一点引出两条射线组成的图形就叫做角.角的表示方法一般有以下几种:1.角+3个大写英文字母;2.角+1个大写英文字母;3.角+小写希腊字母;4.角+阿拉伯数字.20.【分析】先求出∠CAB 及∠ABC 的度数再根据三角形内角和是180°即可进行解答【详解】∵C 岛在A 岛的北偏东60°方向在B 岛的北偏西45°方向∴∠CAB+∠ABC=180°﹣(60°+45°)=75°解析:【分析】先求出∠CAB 及∠ABC 的度数,再根据三角形内角和是180°即可进行解答.【详解】∵C 岛在A 岛的北偏东60°方向,在B 岛的北偏西45°方向,∴∠CAB+∠ABC=180°﹣(60°+45°)=75°,∵三角形内角和是180°,∴∠ACB=180°﹣∠CAB ﹣∠ABC=180°﹣30°﹣45°=105°.故答案为105.【点睛】此题主要考查了方向角的概念和三角形的内角和定理,根据题意得到∠CAB 和∠ABC 的度数是解题关键.三、解答题21.见解析.【分析】根据正方体展开图直接画图即可.【详解】解:【点睛】正方体的平面展开图共有11种,应灵活掌握,不能死记硬背.22.(1)15DOE ∠=︒;(2)12DOE a ∠=;(3)2AOC DOE ∠∠=,理由见解析. 【分析】(1)先根据补角的定义求出∠BOC 的度数,再由角平分线的性质得出∠COE 的度数,根据∠DOE =∠COD -∠COE 即可得出结论;(2)同(1)可得出结论;(3)先根据角平分线的定义得出∠COE =∠BOE =12∠BOC ,再由∠DOE =∠COD -∠COE 即可得出结论.【详解】(1)∵COD ∠是直角,30AOC ∠=︒,180903060BOD ∴∠=︒-︒-︒=︒,9060150COB ∴∠=︒+︒=︒,∵OE 平分BOC ∠,1752BOE BOC ∴∠=∠=︒, 756015DOE BOE BOD ∴∠=∠-∠=︒-︒=︒.(2)COD ∠是直角,AOC a ∠=,1809090BOD a a ∴∠=︒-︒-=︒-,9090180COB a a ∴∠=︒+︒-=︒-,∵OE 平分BOC ∠,119022BOE BOC a ∴∠=∠=︒-, ()11909022DOE BOE BOD a a a ∴∠=∠-∠=︒--︒-=. (3)2AOC DOE ∠=∠,理由是:180BOC AOC ∠=︒-∠,OE 平分BOC ∠,119022BOE BOC AOC ∴∠=∠=︒-∠, 90COD ∠=︒,()909018090BOD BOC AOC AOC ∴∠=︒-∠=︒-︒-∠=∠-︒,()11909022DOE BOD BOE AOC AOC AOC ⎛⎫∴∠=∠+∠=∠-︒+︒-∠=∠ ⎪⎝⎭, 即2AOC DOE ∠=∠.【点睛】本题考查的是角的计算,熟知角平分线的定义、补角的定义是解答此题的关键. 23.(1)射线OC 的方向是北偏东70°;(2)∠COE =70°;(3)∠AOD =90°.【分析】(1)先求出∠AOC=55°,再求得∠NOC 的度数,即可确定OC 的方向;(2)根据∠AOC=55°,∠AOC=∠AOB ,得出∠BOC=110°,进而求出∠COE 的度数; (3)根据射线OD 平分∠COE ,即可求出∠COD=35°再利用∠AOC=55°求出答案即可.【详解】(1)∵射线OA 的方向是北偏东15°,射线OB 的方向是北偏西40°即∠NOA =15°,∠NOB =40°,∴∠AOB =∠NOA +∠NOB =55°,又∵∠AOB =∠AOC ,∴∠AOC=55°,°,∴∠NOC=∠NOA+∠AOC=15°+ 55°70∴射线OC的方向是北偏东70°.(2)∵∠AOB=55°,∠AOB=∠AOC,∴∠BOC=∠AOB+∠AOC=55°+55°=110°,又∵射线OD是OB的反向延长线,∴∠BOE=180°,∴∠COE=180°-110°=70°,(3)∵∠COE=70°,OD平分∠COE,∴∠COD=35°,∴∠AOD=∠AOC+∠COD=55°+35°=90°.【点睛】此题主要考查了方向角的表达即方向角一般是指以观测者的位置为中心,将正北或正南方向作为起始方向旋转到目标的方向线所成的角(一般指锐角),通常表达成北(南)偏东(西)多少度.24.(1)∠CAE=18°;(2)∠ACD=120°.【分析】(1)由题意根据∠BAC=90°列出关于∠1、∠2的方程求解即可得到∠2的度数,再根据同角的余角相等求出∠CAE=∠2,从而得解;(2)根据∠ACB和∠DCE的度数列出等式求出∠ACE﹣∠BCD=30°,再结合已知条件求出∠BCD,然后由∠ACD=∠ACB+∠BCD并代入数据计算即可得解.【详解】解:(1)∵∠BAC=90°,∴∠1+∠2=90°,∵∠1=4∠2,∴4∠2+∠2=90°,∴∠2=18°,又∵∠DAE=90°,∴∠1+∠CAE=∠2+∠1=90°,∴∠CAE=∠2=18°;(2)∵∠ACE+∠BCE=90°,∠BCD+∠BCE=60°,∴∠ACE﹣∠BCD=30°,又∠ACE=2∠BCD,∴2∠BCD﹣∠BCD=30°,∠BCD=30°,∴∠ACD=∠ACB+∠BCD=90°+30°=120°.【点睛】本题考查三角形的外角性质,三角形的内角和定理,准确识图理清图中各角度之间的关系是解题的关键.25.34个【分析】在最后一次送了一半加三个,篮子的李子没有剩余,可以知道最后一次的一半就是三个,所以上一次剩余6个,6个加上送的2个合计8个,为第二次的一半,可以知道第一次送出后还有16个,16在加上第一次送的1个为17个,所以最初一共有34个.【详解】用逆推法:解: ()32221234⎡⎤⨯+⨯+⨯=⎣⎦(个)【点睛】送出一半又3个的时候,剩余为0,直接可以知道一半就是3个.26.AD=36.【分析】根据点B 、C 将AD 分成2︰3︰4三部分可得出CD 与AD 的关系,根据中点的定义可得MD=12AD ,利用MC=MD-CD 即可求出AD 的长度. 【详解】∵点B 、C 将AD 分成2︰3︰4三部分,∴CD=49AD , ∵M 是AD 的中点, ∴MD=12AD , ∵MC=MD-CD=2, ∴12AD-49AD=2, ∴AD=36.【点睛】 本题主要考查中点的定义及线段之间的和差关系,灵活运用线段的和、差、倍、分转化线段之间的数量关系是解题关键.。
上海市北初级中学数学几何模型压轴题单元测试卷附答案一、初三数学旋转易错题压轴题(难)1.在Rt△ACB和Rt△AEF中,∠ACB=∠AEF=90°,若点P是BF的中点,连接PC,PE.(1) 如图1,若点E,F分别落在边AB,AC上,求证:PC=PE;(2) 如图2,把图1中的△AEF绕着点A顺时针旋转,当点E落在边CA的延长线上时,探索PC与PE的数量关系,并说明理由.(3) 如图3,把图2中的△AEF绕着点A顺时针旋转,点F落在边AB上.其他条件不变,问题(2)中的结论是否发生变化?如果不变,请加以证明;如果变化,请说明理由.【答案】(1)见解析;(2)PC=PE,理由见解析;(3)成立,理由见解析【解析】【分析】(1)利用直角三角形斜边的中线等于斜边的一半,即可;(2)先判断△CBP≌△HPF,再利用直角三角形斜边的中线等于斜边的一半;(3)先判断△DAF≌△EAF,再判断△DAP≌△EAP,然后用比例式即可;【详解】解:(1)证明:如图:∵∠ACB=∠AEF=90°,∴△FCB和△BEF都为直角三角形.∵点P是BF的中点,∴CP=12BF,EP=12BF,∴PC=PE.(2)PC=PE理由如下:如图2,延长CP,EF交于点H,∵∠ACB=∠AEF=90°,∴EH//CB,∴∠CBP=∠PFH,∠H=∠BCP,∵点P是BF的中点,∴PF=PB,∴△CBP≌△HFP(AAS),∴PC=PH,∵∠AEF=90°,∴在Rt△CEH中,EP=12CH,∴PC=PE.(3)(2)中的结论,仍然成立,即PC=PE,理由如下:如图3,过点F作FD⊥AC于点D,过点P作PM⊥AC于点M,连接PD,∵∠DAF=∠EAF,∠FDA=∠FEA=90°,在△DAF和△EAF中,DAF,,,EAFFDA FEAAF AF∠=∠⎧⎪∠=∠⎨⎪=⎩∴△DAF≌△EAF(AAS),∴AD=AE,在△DAP≌△EAP中,,,,AD AEDAP EAPAP AP=⎧⎪∠=∠⎨⎪=⎩∴△DAP≌△EAP (SAS),∴PD=PF,∵FD⊥AC,BC⊥AC,PM⊥AC,∴FD//BC//PM,∴DM FPMC PB=,∵点P是BF的中点,∴DM=MC,又∵PM⊥AC,∴PC=PD,又∵PD=PE,∴PC=PE.【点睛】此题是几何变换综合题,主要考查了直角三角形斜边的中线等于斜边一半,全等三角形的性质和判定,相似三角形的性质和判定,作出辅助线是解本题的关键也是难点.2.在△ABC中,∠C=90°,AC=BC=6.(1)如图1,若将线段AB绕点B逆时针旋转90°得到线段BD,连接AD,则△ABD的面积为.(2)如图2,点P为CA延长线上一个动点,连接BP,以P为直角顶点,BP为直角边作等腰直角△BPQ,连接AQ,求证:AB⊥AQ;(3)如图3,点E,F为线段BC上两点,且∠CAF=∠EAF=∠BAE,点M是线段AF上一个动点,点N是线段AC上一个动点,是否存在点M,N,使CM+NM的值最小,若存在,求出最小值:若不存在,说明理由.【答案】(1)36;(2)详见解析;(3)存在,最小值为3.【解析】【分析】(1)根据旋转的性质得到△ABD是等腰直角三角形,求得AD=2BC=12,根据三角形的面积公式即可得到结论;(2)如图2,过Q作QH⊥CA交CA的延长线于H,根据等腰直角三角形的性质,得到PQ =PB,∠BPQ=90°,根据全等三角形的性质得到PH=BC,QH=CP,求得CP=AH,得到∠HAQ=45°,于是得到∠BAQ=180°﹣45°﹣45°=90°,即可得到结论;(3)根据已知条件得到∠CAF=∠EAF=∠BAE=15°,求得∠EAC=30°,如图3,作点C关于AF的对称点D,过D作DN⊥AC于N交AF于M,则此时,CM+NM的值最小,且最小值=DN,求得AD=AC=6,根据直角三角形的性质即可得到结论.【详解】解:(1)∵将线段AB绕点B逆时针旋转90°得到线段BD,∴△ABD是等腰直角三角形,∵∠ACB=90°,∴BC⊥AD,∴AD=2BC=12,∴△ABD的面积=12AD•BC=1212×6=36,故答案为:36;(2)如图,过Q作QH⊥CA交CA的延长线于H,∴∠H=∠C=90°,∵△BPQ是等腰直角三角形,∴PQ=PB,∠BPQ=90°,∴∠HPQ+∠BPC=∠QPH+∠PQH=90°,∴∠PQH=∠BPC,∴△PQH≌△BPC(AAS),∴PH=BC,QH=CP,∵AC=BC,∴PH=AC,∴CP=AH,∴QH=AH,∴∠HAQ=45°,∵∠BAC=45°,∴∠BAQ=180°﹣45°﹣45°=90°,∴AB⊥AQ;(3)如图,作点C关于AF的对称点D,过D作DN⊥AC于N交AF于M,∵∠CAF=∠EAF=∠BAE,∠BAC=45°,∴∠CAF=∠EAF=∠BAE=15°,∴∠EAC=30°,则此时,CM+NM的值最小,且最小值=DN,∵点C 和点D 关于AF 对称,∴AD =AC =6,∵∠AND =90°,∴DN =12AD =12⨯6=3, ∴CM +NM 最小值为3.【点睛】本题是几何变换综合题,考查了全等三角形的判定与性质,旋转的性质,等腰直角三角形的性质,含30°角的直角三角形的性质,正确的作出作辅助线构造全等三角形是解题的关键.3.如图,在边长为2的正方形ABCD 中,点P 、Q 分别是边AB 、BC 上的两个动点(与点A 、B 、C 不重合),且始终保持BP BQ =,AQ QE ⊥,QE 交正方形外角平分线CE 于点E ,AE 交CD 于点F ,连结PQ .(1)求证:APQ QCE ∆∆≌;(2)证明:DF BQ QF +=;(3)设BQ x =,当x 为何值时,//QF CE ,并求出此时AQF ∆的面积.【答案】(1)证明见解析;(2)证明见解析;(3)当222x =-+//QF CE ;AQF S ∆442=-+.【解析】【分析】(1)判断出△PBQ 是等腰直角三角形,然后求出∠APQ=∠QCE=135°,再根据同角的余角相等求出∠PAQ=∠CQE ,再求出AP=CQ ,然后利用“角边角”证明即可;(2)根据全等三角形对应边相等可得AQ=EQ ,判断出△AQE 是等腰直角三角形,将ADF ∆绕点A 顺时针旋转90︒得F AB '∆,再证明()F AQ FAQ SAS '∆∆≌;(3)连结AC ,设QF CE ,推出QCF ∆是等腰直角三角形°,再证明()ABQ ADF SAS ∆∆≌,根据全等三角形对应边相等可得QF=GF ,AQ AF =,22.5QAB DAF ∠=∠=︒,分别用x 表示出DF 、CF 、QF ,然后列出方程求出x ,再求出△AQF 的面积.【详解】(1)∵四边形ABCD 是正方形,∴AB BC =,90B BCD DCM ∠=∠=∠=︒,∵BP BQ =,∴PBQ ∆是等腰直角三角形,AP QC =,∴45BPQ ∠=︒,∴135APQ ∠=︒∵CE 平分DCM ∠,∴45DCE ECM ∠=∠=︒,∴135QCE ∠=︒,∴135APQ QCE ∠=∠=︒,∵AQ QE ⊥,∴90AQB CQE ∠+∠=︒.∵90AQB BAQ ∠+∠=︒.∴BAQ CQE ∠=∠.∴()APQ QCE ASA ∆≌.(2)由(1)知APQ QCE ∆∆≌.∴QA QE =.∵90AQE ∠=︒,∴AQE ∆是等腰直角三角形,∴45QAE ∠=︒.∴45DAF QAB ∠+∠=︒,如图4,将ADF ∆绕点A 顺时针旋转90︒得F AB '∆,其中点D 与点B 重合,且点F '在直线BQ 上,则45F AQ '∠=︒,F A FA '=,AQ AQ =,∴()F AQ FAQ SAS '∆∆≌.∴QF QF BQ DF '==+.(3)连结AC ,若QF CE ,则45FQC ECM ∠=∠=︒.∴QCF ∆是等腰直角三角形,∴2CF CQ x ==-,∴DF BQ x ==.∵AB AD =,90B D ∠=∠=︒,∴()ABQ ADF SAS ∆∆≌.∴AQ AF =,22.5QAB DAF ∠=∠=︒,∴AC 垂直平分QF ,∴22.5QAC FAC QAB FAD ∠=∠=∠=∠=︒,2FQ QN =,∴22FQ BQ x ==.在Rt QCF ∆中,根据勾股定理,得222(2)(2)(2)x x x -+-=.解这个方程,得12x =-+ 22x =--(舍去).当2x =-+QF CE .此时,QCF QEF S S ∆∆=,∴212QCF AQF QEF AQF AQE S S S S S AQ ∆∆∆∆∆+=+==, ∴()2222111222AQF AQE QCF S S S AQ CQ AQ CQ ∆∆∆=-=-=- ()222112(2)42422x x x x ⎡⎤=+--=⋅==-+⎣⎦【点睛】本题考查了正方形的性质,全等三角形的判定与性质,旋转的性质,等腰直角三角形的判定与性质,勾股定理的应用,难点在于(3)作辅助线构造成全等三角形并利用勾股定理列出方程.4.在平面直角坐标系中,四边形AOBC 是矩形,点O (0,0),点A (5,0),点B (0,3).以点A 为中心,顺时针旋转矩形AOBC ,得到矩形ADEF ,点O ,B ,C 的对应点分别为D ,E ,F .(1)如图①,当点D 落在BC 边上时,求点D 的坐标;(2)如图②,当点D 落在线段BE 上时,AD 与BC 交于点H .①求证△ADB ≌△AOB ;②求点H 的坐标.(3)记K 为矩形AOBC 对角线的交点,S 为△KDE 的面积,求S 的取值范围(直接写出结果即可).【答案】(1)D(1,3);(2)①详见解析;②H(175,3);(3)30334-≤S≤30334+.【解析】【分析】(1)如图①,在Rt△ACD中求出CD即可解决问题;(2)①根据HL证明即可;②,设AH=BH=m,则HC=BC-BH=5-m,在Rt△AHC中,根据AH2=HC2+AC2,构建方程求出m即可解决问题;(3)如图③中,当点D在线段BK上时,△DEK的面积最小,当点D在BA的延长线上时,△D′E′K的面积最大,求出面积的最小值以及最大值即可解决问题;【详解】(1)如图①中,∵A(5,0),B(0,3),∴OA=5,OB=3,∵四边形AOBC是矩形,∴AC=OB=3,OA=BC=5,∠OBC=∠C=90°,∵矩形ADEF是由矩形AOBC旋转得到,∴AD=AO=5,在Rt△ADC中,CD22AD AC-,∴BD=BC-CD=1,∴D(1,3).(2)①如图②中,由四边形ADEF是矩形,得到∠ADE=90°,∵点D在线段BE上,∴∠ADB=90°,由(1)可知,AD=AO,又AB=AB,∠AOB=90°,∴Rt△ADB≌Rt△AOB(HL).②如图②中,由△ADB≌△AOB,得到∠BAD=∠BAO,又在矩形AOBC中,OA∥BC,∴∠CBA=∠OAB,∴∠BAD=∠CBA,∴BH=AH,设AH=BH=m,则HC=BC-BH=5-m,在Rt△AHC中,∵AH2=HC2+AC2,∴m2=32+(5-m)2,∴m=175,∴BH=175,∴H(175,3).(3)如图③中,当点D在线段BK上时,△DEK的面积最小,最小值=12•DE•DK=12×3×(5-34)=30334-,当点D在BA的延长线上时,△D′E′K的面积最大,最大面积=12×D′E′×KD′=12×3×(3430334+综上所述,303344-≤S≤303344+.【点睛】本题考查四边形综合题、矩形的性质、勾股定理、全等三角形的判定和性质、旋转变换等知识,解题的关键是理解题意,灵活运用所学知识解决问题,学会利用参数构建方程解决问题.5.(1)问题发现如图1,△ACB和△DCE均为等腰直角三角形,∠ACB=90°,B,C,D在一条直线上.填空:线段AD,BE之间的关系为 .(2)拓展探究如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,请判断AD,BE的关系,并说明理由.(3)解决问题如图3,线段PA=3,点B是线段PA外一点,PB=5,连接AB,将AB绕点A逆时针旋转90°得到线段AC,随着点B的位置的变化,直接写出PC的范围.【答案】(1) AD=BE,AD⊥BE.(2) AD=BE,AD⊥BE.(3) 5-32≤PC≤5+32.【解析】【分析】(1)根据等腰三角形性质证△ACD≌△BCE(SAS),得AD=BE,∠EBC=∠CAD,延长BE交AD于点F,由垂直定义得AD⊥BE.(2)根据等腰三角形性质证△ACD≌△BCE(SAS),AD=BE,∠CAD=∠CBE,由垂直定义得∠OHB=90°,AD⊥BE;(3)作AE⊥AP,使得AE=PA,则易证△APE≌△ACP,PC=BE,当P、E、B共线时,BE最小,最小值=PB-PE;当P、E、B共线时,BE最大,最大值=PB+PE,故5-32≤BE≤5+32.【详解】(1)结论:AD=BE,AD⊥BE.理由:如图1中,∵△ACB与△DCE均为等腰直角三角形,∴AC=BC,CE=CD,∠ACB=∠ACD=90°,在Rt△ACD和Rt△BCE中AC BCACD BCECD CE⎧⎪∠∠⎨⎪⎩===∴△ACD≌△BCE(SAS),∴AD=BE,∠EBC=∠CAD延长BE交AD于点F,∵BC⊥AD,∴∠EBC+∠CEB=90°,∵∠CEB=AEF,∴∠EAD+∠AEF=90°,∴∠AFE=90°,即AD⊥BE.∴AD=BE,AD⊥BE.故答案为AD=BE,AD⊥BE.(2)结论:AD=BE,AD⊥BE.理由:如图2中,设AD交BE于H,AD交BC于O.∵△ACB与△DCE均为等腰直角三角形,∴AC=BC,CE=CD,∠ACB=∠ECD=90°,∴ACD=∠BCE,在Rt△ACD和Rt△BCE中AC BCACD BCECD CE⎧⎪∠∠⎨⎪⎩===,∴△ACD≌△BCE(SAS),∴AD=BE,∠CAD=∠CBE,∵∠CAO+∠AOC=90°,∠AOC=∠BOH,∴∠BOH+∠OBH=90°,∴∠OHB=90°,∴AD⊥BE,∴AD=BE,AD⊥BE.(3)如图3中,作AE⊥AP,使得AE=PA,则易证△APE≌△ACP,∴PC=BE,图3-1中,当P、E、B共线时,BE最小,最小值=PB-PE=5-32,图3-2中,当P、E、B共线时,BE最大,最大值=PB+PE=5+32,∴5-32≤BE≤5+32,即5-32≤PC≤5+32.【点睛】本题是几何变换综合题,考查了旋转的性质、等腰直角三角形的性质、全等三角形的判定和性质等知识,解题的关键是正确寻找三角形全等的条件,学会添加辅助线,构造全等三角形解决问题,学会用转化的思想思考问题,属于中考压轴题.6.如图1,在平面直角坐标系xOy中,抛物线C:y=ax2+bx+c与x轴相交于A,B两点,顶点为D(0,4),AB2F(m,0)是x轴的正半轴上一点,将抛物线C绕点F 旋转180°,得到新的抛物线C′.(1)求抛物线C的函数表达式;(2)若抛物线C′与抛物线C在y轴的右侧有两个不同的公共点,求m的取值范围.(3)如图2,P是第一象限内抛物线C上一点,它到两坐标轴的距离相等,点P在抛物线C′上的对应点P′,设M是C上的动点,N是C′上的动点,试探究四边形PMP′N能否成为正方形?若能,求出m的值;若不能,请说明理由.【答案】(1)2142y x =-+;(2)2<m <223)m =6或m 17﹣3. 【解析】【分析】(1)由题意抛物线的顶点C (0,4),A (20),设抛物线的解析式为24y ax =+,把A (220)代入可得a =12-,由此即可解决问题; (2)由题意抛物线C ′的顶点坐标为(2m ,﹣4),设抛物线C ′的解析式为()21242y x m =--,由()221421242y x y x m ⎧=-+⎪⎪⎨⎪=--⎪⎩,消去y 得到222280x mx m -+-=,由题意,抛物线C ′与抛物线C 在y 轴的右侧有两个不同的公共点,则有()222(2)428020280m m m m ⎧--->⎪⎪>⎨⎪->⎪⎩,解不等式组即可解决问题; (3)情形1,四边形PMP ′N 能成为正方形.作PE ⊥x 轴于E ,MH ⊥x 轴于H .由题意易知P (2,2),当△PFM 是等腰直角三角形时,四边形PMP ′N 是正方形,推出PF =FM ,∠PFM =90°,易证△PFE ≌△FMH ,可得PE =FH =2,EF =HM =2﹣m ,可得M (m +2,m ﹣2),理由待定系数法即可解决问题;情形2,如图,四边形PMP ′N 是正方形,同法可得M (m ﹣2,2﹣m ),利用待定系数法即可解决问题.【详解】(1)由题意抛物线的顶点C (0,4),A (20),设抛物线的解析式为24y ax =+,把A (220)代入可得a =12-, ∴抛物线C 的函数表达式为2142y x =-+. (2)由题意抛物线C ′的顶点坐标为(2m ,﹣4),设抛物线C ′的解析式为()21242y x m =--,由()221421242y x y x m ⎧=-+⎪⎪⎨⎪=--⎪⎩, 消去y 得到222280x mx m -+-= ,由题意,抛物线C ′与抛物线C 在y 轴的右侧有两个不同的公共点,则有()222(2)428020280m m m m ⎧--->⎪⎪>⎨⎪->⎪⎩, 解得2<m <22,∴满足条件的m 的取值范围为2<m <22.(3)结论:四边形PMP ′N 能成为正方形.理由:1情形1,如图,作PE ⊥x 轴于E ,MH ⊥x 轴于H .由题意易知P (2,2),当△PFM 是等腰直角三角形时,四边形PMP ′N 是正方形,∴PF =FM ,∠PFM =90°,易证△PFE ≌△FMH ,可得PE =FH =2,EF =HM =2﹣m ,∴M (m +2,m ﹣2),∵点M 在2142y x =-+上,∴()212242m m -=-++,解得m 17﹣3173(舍弃),∴m 17﹣3时,四边形PMP ′N 是正方形.情形2,如图,四边形PMP ′N 是正方形,同法可得M (m ﹣2,2﹣m ),把M (m ﹣2,2﹣m )代入2142y x =-+中,()212242m m -=--+,解得m =6或0(舍弃),∴m =6时,四边形PMP ′N 是正方形.综上所述:m=6或m=17﹣3时,四边形PMP′N是正方形.7.如图,矩形OABC的顶点A在x轴正半轴上,顶点C在y轴正半轴上,点B的坐标为(4,m)(5≤m≤7),反比例函数y=16x(x>0)的图象交边AB于点D.(1)用m的代数式表示BD的长;(2)设点P在该函数图象上,且它的横坐标为m,连结PB,PD①记矩形OABC面积与△PBD面积之差为S,求当m为何值时,S取到最大值;②将点D绕点P逆时针旋转90°得到点E,当点E恰好落在x轴上时,求m的值.【答案】(1)BD=m﹣4(2)①m=7时,S取到最大值②m=5【解析】【分析】(1)先确定出点D横坐标为4,代入反比例函数解析式中求出点D横坐标,即可得出结论;(2)①先求出矩形OABC的面积和三角形PBD的面积得出S=﹣12(m﹣8)2+24,即可得出结论;②利用一线三直角判断出DG=PF,进而求出点P的坐标,即可得出结论.【详解】解:(1)∵四边形OABC是矩形,∴AB⊥x轴上,∵点B(4,m),∴点D的横坐标为4,∵点D在反比例函数y=16x上,∴D(4,4),∴BD=m﹣4;(2)①如图1,∵矩形OABC的顶点B的坐标为(4,m),∴S矩形OABC=4m,由(1)知,D(4,4),∴S△PBD=12(m﹣4)(m﹣4)=12(m﹣4)2,∴S=S矩形OABC﹣S△PBD=4m﹣12(m﹣4)2=﹣12(m﹣8)2+24,∴抛物线的对称轴为m=8,∵a<0,5≤m≤7,∴m=7时,S取到最大值;②如图2,过点P作PF⊥x轴于F,过点D作DG⊥FP交FP的延长线于G,∴∠DGP=∠PFE=90°,∴∠DPG+∠PDG=90°,由旋转知,PD=PE,∠DPE=90°,∴∠DPG+∠EPF=90°,∴∠PDG=∠EPF,∴△PDG≌△EPF(AAS),∴DG=PF,∵DG=AF=m﹣4,∴P(m,m﹣4),∵点P在反比例函数y=16x,∴m(m﹣4)=16,∴m=2+25或m=2﹣25(舍).【点睛】此题是反比例函数综合题,主要考查了待定系数法,矩形的性质,三角形的面积公式,全等三角形的判定,构造出全等三角形是解本题的关键.8.已知ABC ∆是边长为4的等边三角形,点D 是射线BC 上的动点,将AD 绕点A 逆时针方向旋转60得到AE ,连接DE .(1).如图,猜想ADE ∆是_______三角形;(直接写出结果)(2).如图,猜想线段CA 、CE 、CD 之间的数量关系,并证明你的结论;(3).①当BD=___________时,30DEC ∠=;(直接写出结果)②点D 在运动过程中,DEC ∆的周长是否存在最小值?若存在.请直接写出DEC ∆周长的最小值;若不存在,请说明理由.【答案】(1)等边三角形;(2)AC CD CE +=,证明见解析;(3)①BD 为2或8时,30DEC ∠=;②最小值为423+【解析】【分析】(1)根据旋转的性质得到,60AD AE DAE =∠=,根据等边三角形的判定定理解答; (2)证明ABD ACE ∆≅∆,根据全等三角形的性质得到BD CE =,结合图形计算即可; (3)①分点D 在线段BC 上和点D 在线段BC 的延长线上两种情况,根据直角三角形的性质解答;②根据ABD ACE ∆≅∆得到CE BD =,根据垂线段最短解答.【详解】解:(1)由旋转变换的性质可知,,60AD AE DAE =∠=,ADE ∴∆是等边三角形,故答案为等边三角形;(2)AC CD CE +=,证明:由旋转的性质可知,60,DAE AD AE ∠==,ABC ∆是等边三角形60AB AC BC BAC ∴∠︒==,=,60BAC DAE ∴∠∠︒==,BAC DAC DAE DAC ∴∠+∠∠+∠=,即BAD CAE ∠∠=,在ABD ∆和ACE ∆中,AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩, ABD ACE SAS ∴∆∆≌()BD CE ∴=,CE BD CB CD CA CD ∴++===;(3)①BD 为2或8时,30DEC ∠=,当点D 在线段BC 上时,3060DEC AED ∠︒∠︒=,=,90AEC ∴∠︒=,ABD ACE ∆∆≌,9060ADB AEC B ∴∠∠︒∠︒==,又=,30BAD ∴∠︒=,122BD AB ∴==, 当点D 在线段BC 的延长线上时,3060DEC AED ∠︒∠︒=,=,30AEC ∴∠︒=,ABD ACE ∆∆≌,3060ADB AEC B ∴∠∠︒∠︒==,又=,90BAD ∴∠︒=,28BD AB ∴==,BD ∴为2或8时,30DEC ∠︒=;②点D 在运动过程中,DEC ∆的周长存在最小值,最小值为4+理由如下:ABD ACE ∆∆≌,CE BD ∴=,则DEC ∆的周长DE CE DC BD CD DE BC DE +++++===,当CE 最小时,DEC ∆的周长最小,ADE ∆为等边三角形,DE AD ∴=, AD的最小值为DEC ∴∆的周长的最小值为4+【点睛】本题考查的是旋转变换的性质、全等三角形的判定和性质、直角三角形的性质,掌握全等三角形的判定定理和性质定理、灵活运用分情况讨论思想是解题的关键.二、初三数学 圆易错题压轴题(难)9.如图,在直角体系中,直线AB 交x 轴于点A(5,0),交y 轴于点B,AO 是⊙M 的直径,其半圆交AB 于点C,且AC=3.取BO 的中点D,连接CD 、MD 和OC .(1)求证:CD 是⊙M 的切线; (2)二次函数的图象经过点D 、M 、A,其对称轴上有一动点P,连接PD 、PM,求△PDM 的周长最小时点P 的坐标;(3)在(2)的条件下,当△PDM 的周长最小时,抛物线上是否存在点Q ,使S △PDM =6S △QAM ?若存在,求出点Q 的坐标;若不存在,请说明理由.【答案】解:(1)证明:连接CM ,∵OA 为⊙M 直径,∴∠OCA=90°.∴∠OCB=90°.∵D 为OB 中点,∴DC=DO .∴∠DCO=∠DOC .∵MO=MC ,∴∠MCO=∠MOC .∴. 又∵点C 在⊙M 上,∴DC 是⊙M 的切线.(2)∵A 点坐标(5,0),AC=3∴在Rt △ACO 中,. ∴545(x )x 5)12152-=--(,∴,解得10OD 3=. 又∵D 为OB 中点,∴1552+.∴D 点坐标为(0,154). 连接AD ,设直线AD 的解析式为y=kx+b ,则有解得.∴直线AD 为.∵二次函数的图象过M (56,0)、A(5,0), ∴抛物线对称轴x=154. ∵点M 、A 关于直线x=154对称,设直线AD 与直线x=154交于点P , ∴PD+PM 为最小.又∵DM 为定长,∴满足条件的点P 为直线AD 与直线x=154的交点. 当x=154时,45y (x )x 5)152=--(. ∴P 点的坐标为(154,56). (3)存在. ∵,5y a(x )x 5)2=--(又由(2)知D (0,154),P (154,56), ∴由,得,解得y Q =±103.∵二次函数的图像过M(0,56)、A(5,0), ∴设二次函数解析式为,又∵该图象过点D (0,154),∴,解得a=512. ∴二次函数解析式为.又∵Q 点在抛物线上,且y Q =±103. ∴当y Q =103时,,解得x=1552-或x=1552+;当y Q =512-时,,解得x=154. ∴点Q 的坐标为(15524-,103)1552+103),或(154,512-).【解析】试题分析:(1)连接CM ,可以得出CM=OM ,就有∠MOC=∠MCO ,由OA 为直径,就有∠ACO=90°,D 为OB 的中点,就有CD=OD ,∠DOC=∠DCO ,由∠DOC+∠MOC=90°就可以得出∠DCO+∠MCO=90°而得出结论.(2)根据条件可以得出2222OC OA AC 534=-=-=和OC OBtan OAC AC OA∠==,从而求出OB的值,根据D 是OB 的中点就可以求出D 的坐标,由待定系数法就可以求出抛物线的解析式,求出对称轴,根据轴对称的性质连接AD 交对称轴于P ,先求出AD 的解析式就可以求出P 的坐标. (3)根据PDM DAM PAM S S S ∆∆∆=-,求出Q 的纵坐标,求出二次函数解析式即可求得横坐标.10.在圆O 中,C 是弦AB 上的一点,联结OC 并延长,交劣弧AB 于点D ,联结AO 、BO 、 AD 、BD .已知圆O 的半径长为5,弦AB 的长为8.(1)如图1,当点D 是弧AB 的中点时,求CD 的长; (2)如图2,设AC=x ,ACO OBDS S=y ,求y 关于x 的函数解析式并写出定义域;(3)若四边形AOBD 是梯形,求AD 的长.【答案】(1)2;(2)2825x x x -+(0<x <8);(3)AD=145或6.【解析】 【分析】(1)根据垂径定理和勾股定理可求出OC 的长.(2)分别作OH ⊥AB ,DG ⊥AB ,用含x 的代数式表示△ACO 和△BOD 的面积,便可得出函数解析式.(3)分OB ∥AD 和OA ∥BD 两种情况讨论. 【详解】解:(1)∵OD 过圆心,点D 是弧AB 的中点,AB=8, ∴OD ⊥AB ,AC=12AB=4, 在Rt △AOC 中,∵∠ACO=90°,AO=5, ∴22AO AC -,∴OD=5, ∴CD=OD ﹣OC=2;(2)如图2,过点O 作OH ⊥AB ,垂足为点H ,则由(1)可得AH=4,OH=3, ∵AC=x , ∴CH=|x ﹣4|,在Rt △HOC 中,∵∠CHO=90°,AO=5,∴∴CD=OD ﹣OC=5过点DG ⊥AB 于G , ∵OH ⊥AB , ∴DG ∥OH , ∴△OCH ∽△DCG , ∴OH OCDG CD=, ∴DG=OH CD OC ⋅35, ∴S △ACO =12AC ×OH=12x ×3=32x , S △BOD =12BC (OH +DG )=12(8﹣x )×(335)=32(8﹣x )∴y=ACO OBDS S=()323582x x -(0<x <8)(3)①当OB ∥AD 时,如图3,过点A 作AE ⊥OB 交BO 延长线于点E ,过点O 作OF ⊥AD ,垂足为点F , 则OF=AE , ∴S=12AB•OH=12OB•AE , AE=AB OH OB ⋅=245=OF , 在Rt △AOF 中,∠AFO=90°,AO=5,∴75∵OF 过圆心,OF ⊥AD ,∴AD=2AF=145.②当OA ∥BD 时,如图4,过点B 作BM ⊥OA 交AO 延长线于点M ,过点D 作DG ⊥AO ,垂足为点G ,则由①的方法可得DG=BM=245, 在Rt △GOD 中,∠DGO=90°,DO=5,∴GO=22DO DG -=75,AG=AO ﹣GO=185, 在Rt △GAD 中,∠DGA=90°,∴AD=22AG DG +=6综上得AD=145或6.故答案为(1)2;(2)y=()2825x x x -+(0<x <8);(3)AD=145或6.【点睛】本题是考查圆、三角形、梯形相关知识,难度大,综合性很强.11.在△ABC 中,∠A=90°,AB=4,AC=3,M 是AB 上的动点(不与A ,B 重合),过M 点作MN∥BC 交AC 于点N .(1)如图1,把△AMN 沿直线MN 折叠得到△PMN,设AM=x . i .若点P 正好在边BC 上,求x 的值;ii .在M 的运动过程中,记△MNP 与梯形BCNM 重合的面积为y ,试求y 关于x 的函数关系式,并求y 的最大值.(2)如图2,以MN 为直径作⊙O,并在⊙O 内作内接矩形AMQN .试判断直线BC 与⊙O 的位置关系,并说明理由.【答案】(1)i .当x=2时,点P 恰好落在边BC 上;ii . y=,当x=时,重叠部分的面积最大,其值为2;(2)当x=时,⊙O与直线BC相切;当x<时,⊙O与直线BC相离;x>时,⊙O与直线BC相交.【解析】试题分析:(1)i.根据轴对称的性质,可求得相等的线段与角,可得点M是AB中点,即当x=AB=2时,点P恰好落在边BC上;ii.分两种情况讨论:①当0<x≤2时,△MNP与梯形BCNM重合的面积为△MNP的面积,根据轴对称的性质△MNP的面积等于△AMN的面积,易见y=x2②当2<x<4时,如图2,设PM,PN分别交BC于E,F,由i.知ME=MB=4-x∴PE=PM-ME=x-(4-x)=2x-4,由题意知△PEF∽△ABC,利用相似三角形的性质即可求得.(2)利用分类讨论的思想,先求的直线BC与⊙O相切时,x的值,然后得到相交,相离时x的取值范围.试题解析:(1)i.如图1,由轴对称性质知:AM=PM,∠AMN=∠PMN,又MN∥BC,∴∠PMN=∠BPM,∠AMN=∠B,∴∠B=∠BPM,∴AM=PM=BM,∴点M是AB中点,即当x=AB=2时,点P恰好落在边BC上.ii.以下分两种情况讨论:①当0<x≤2时,∵MN∥BC,∴△AMN∽△ABC,∴,∴,∴AN=,△MNP与梯形BCNM重合的面积为△MNP的面积,∴,②当2<x<4时,如图2,设PM,PN分别交BC于E,F,由(2)知ME=MB=4-x,∴PE=PM-ME=x-(4-x)=2x-4,由题意知△PEF∽△ABC,∴,∴S△PEF=(x-2)2,∴y=S△PMN-S△PEF=,∵当0<x≤2时,y=x2,∴易知y最大=,又∵当2<x<4时,y=,∴当x=时(符合2<x<4),y最大=2,综上所述,当x=时,重叠部分的面积最大,其值为2.(2))如图3,设直线BC与⊙O相切于点D,连接AO,OD,则AO=OD=MN.在Rt△ABC中,BC==5;由(1)知△AMN∽△ABC,∴,即,∴MN=x∴OD=x,过M点作MQ⊥BC于Q,则MQ=OD=x,在Rt△BMQ与Rt△BCA中,∠B是公共角,∴△BMQ∽△BCA,∴,∴BM=,AB=BM+MA=x+x=4∴x=,∴当x=时,⊙O与直线BC相切;当x<时,⊙O与直线BC相离;x>时,⊙O与直线BC相交.考点:圆的综合题.12.如图1,△ABC内接于⊙O,直径AD交BC于点E,延长AD至点F,使DF=2OD,连接FC并延长交过点A的切线于点G,且满足AG∥BC,连接OC,若cos∠BAC=13,BC=8.(1)求证:CF是⊙O的切线;(2)求⊙O的半径OC;(3)如图2,⊙O的弦AH经过半径OC的中点F,连结BH交弦CD于点M,连结FM,试求出FM的长和△AOF的面积.【答案】(1)见解析;(2)32332232【解析】【分析】(1)由DF=2OD,得到OF=3OD=3OC,求得13OE OCOC OF==,推出△COE∽△FOE,根据相似三角形的性质得到∠OCF=∠DEC=90°,于是得到CF是⊙O的切线;(2)利用三角函数值,设OE=x,OC=3x,得到CE=3,根据勾股定理即可得到答案;(3)连接BD,根据圆周角定理得到角相等,然后证明△AOF∽△BDM,由相似三角形的性质,得到FM 为中位线,即可求出FM 的长度,由相似三角形的性质,以及中线分三角形的面积为两半,即可求出面积. 【详解】解:(1) ∵DF =2OD , ∴OF =3OD =3OC ,∴13OE OC OC OF ==, ∵∠COE =∠FOC , ∴△COE ∽△FOE ,∴∠OCF =∠DEC =90°, ∴CF 是⊙O 的切线; (2)∵∠COD =∠BAC , ∴cos ∠BAC =cos ∠COE =13OE OC =, ∴设OE =x ,OC =3x , ∵BC =8, ∴CE =4, ∵CE ⊥AD , ∴OE 2+CE 2=OC 2, ∴x 2+42=9x 2,∴x =2(负值已舍去), ∴OC =3x =32, ∴⊙O 的半径OC 为32; (3)如图,连结BD ,由圆周角定理,则∠OAF=∠DBM ,2AOF ADC ∠=∠, ∵BC ⊥AD , ∴AC AB =, ∴∠ADC=∠ADB ,∴2AOF ADC BDM ∠=∠=∠, ∴△AOF ∽△BDM ; ∵点F 是OC 的中点,∴AO:OF=BD:DM=2,又∵BD=DC,∴DM=CM,∴FM为中位线,∴FM=32 2,∴S△AOF: S△BDM=(32:26)234 =;∵111118(322)42 22222BDM BCDS S BC DE∆∆==⨯•=⨯⨯⨯-=;∴S△AOF=3424⨯=32;【点睛】本题考查了圆的综合问题,圆周角定理,切线的判定和性质,相似三角形的判定和性质,利用勾股定理求边长,以及三角形中线的性质,解题的关键是熟练掌握所学的定理和性质,运用属性结合的思想进行解题.13.如图,∠ACL=90°,AC=4,动点B在射线CL,CH⊥AB于点H,以H为圆心,HB为半径作圆交射线BA于点D,交直线CD于点F,交直线BC于点E.设BC=m.(1)当∠A=30°时,求∠CDB的度数;(2)当m=2时,求BE的长度;(3)在点B的整个运动过程中,①当BC=3CE时,求出所有符合条件的m的值.②连接EH,FH,当tan∠FHE=512时,直接写出△FHD与△EFH面积比.【答案】(1)60°;(2)45;(3)①m=2或226【解析】【分析】(1)根据题意由HB=HD,CH⊥BD可知:CH是BD的中垂线,再由∠A=30°得:∠CDB=∠ABC=60°;(2)由题意可知当m=2时,由勾股定理可得:AB=25,cos∠ABC=5,过点H作HK⊥BC于点K,利用垂径定理可得结论;(3))①要分两种情况:I.当点E在C右侧时,II.当点E在C左侧时;根据相似三角形性质和勾股定理即可求得结论;②根据题意先证明EF∥BD,根据平行线间距离相等可得:△FHD与△EFH高相等,面积比等于底之比,再由tan∠FHE=512可求得DHEF的值即可.【详解】解:(1)∵∠A=30°,∠ACB=90°,∴∠ABC=60°,∵HB=HD,CH⊥BD,∴CH是BD的中垂线,∴CB=CD,∴∠CDB=∠ABC=60°;(2)如图1,过点H作HK⊥BC于点K,当m=2时,BC=2,∴AB22AC BC5,∴cos∠ABC=BCAB 5,∴BH=BC•cos∠ABC25,∴BK=BH•cos∠ABC=25,∴BE=2BK=45;(3)①分两种情况:I.当点E在C右侧时,如图2,连结DE,由BD是直径,得DE⊥BC,∵BC=3CE=m,∴CE=13m,BE=23m,∵DE∥AC,∴△DEB~△ACB,∴DEAC =BEBC=23,∴DE=23AC=83,∵CD=CB=m,∴Rt△CDE中,由勾股定理得:2281m33⎛⎫⎛⎫⎪⎭⎝+⎪⎝⎭=m2,∵m>0,∴m=22;II.当点E在C左侧时,如图3,连结DE,由BD是直径,得DE⊥BC,∵BC=3CE,∴CE=13m,BE=32m,∵DE∥AC,∴△DEB~△ACB,∴DEAC =BEBC=32,∴DE =32AC =6, ∵CD =CB =m , ∴Rt △CDE 中,由勾股定理得:62+21m 3⎛⎫ ⎪⎝⎭=m 2, ∵m >0,∴m =42;综上所述,①当BC =3CE 时,m =22或42.②如图4,过F 作FG ⊥HE 于点G ,∵CH ⊥AB ,HB =HD ,∴CB =CD ,∴∠CBD =∠CDB ,∴DFE BEF =,即DF EF BE EF +=+,∴DF BE =,∴EF ∥BD , ∴FHDEFH S S =DH EF, ∵在Rt △FHG 中,FG HG =tan ∠FHE =512, 设FG =5k ,HG =12k ,则FH 22FG HG +22(5)(12)k k +=13k ,∴DH =HE =FH =13k ,EG =HE ﹣HG =13k ﹣12k =k ,∴EF 22FG EG +22(5)k k +26k ,∴FHDEFH SS =26k 26. 【点睛】本题考查的是圆的几何综合题,主要考查圆的性质,垂径定理,勾股定理,相似三角形判定及性质,解直角三角形知识等;综合性较强,有一定难度,解题要求对所学知识点熟练掌握和运用数形结合思维分析.14.已知AB 是O 的一条弦,点C 在O 上,联结CO 并延长,交弦AB 于点D ,且CD CB =.(1)如图1,如果BO 平分ABC ∠,求证:AB BC =;(2)如图2,如果AO OB ⊥,求:AD DB 的值;(3)延长线段AO 交弦BC 于点E ,如果EOB ∆是等腰三角形,且O 的半径长等于2,求弦BC 的长.【答案】(1)证明见解析;(2)3(3)51+和22 【解析】【分析】(1)由题意利用弦心距即可求证结果,(2)此题关键先求出AO ,做辅助线构造特殊三角形,并求证出∠AOD ,再根据平行线分线段成比例求出比值即可,(3)分情况讨论两种情况:OE=BE 时或OB=BE 时两种情况,利用三角形相似即△COE ~△CBO 找到相似比,利用相似比求解即可.【详解】(1)过点O 作OP ⊥AB ,垂足为点P ;OQ ⊥BC ,垂足为点Q ,∵BO 平分∠ABC ,∴OP=OQ ,∵OP ,OQ 分别是弦AB 、BC 的弦心距,∴AB= BC ;(2)∵OA=OB ,∴∠A=∠OBD ,∵CD=CB ,∴∠CDB =∠CBD ,∴∠A+∠AOD =∠CBO +∠OBD ,∴∠AOD =∠CBO ,∵OC=OB ,∴∠C =∠CBO ,∴∠DOB =∠C +∠CBO = 2∠CBO = 2∠AOD ,∵AO ⊥OB ,∴∠ AOB =∠AOD +∠BOD =3∠AOD = 90°,∴∠AOD=30°,过点D 作DH ⊥AO ,垂足为点H ,∴∠AHD=∠DHO=90°,∴tan ∠AOD =HD OH ∵∠AHD=∠AOB=90°,∴HD ‖OB , ∴D AOB H AH O = , ∵OA=OB ,∴HD=AH ,∵HD ‖OB ,∴3AH HD OH O AH DB H ===; (3)∵∠C=∠CBO ,∴∠OEB =∠C+∠COE >∠CBO ,∴OE≠OB ;若OB = EB =2时,∵∠C=∠C ,∠COE =∠AOD =∠CBO ,∴△COE ~△CBO , ∴CO CE BC CO=, ∴222BC BC =-, ∴2BC -2BC -4=0,∴BC =舍去)或,∴BC =5+1;若OE = EB 时,∵∠EOB =∠CBO ,∵∠OEB =∠C+∠COE =2∠C =2∠CBO 且∠OEB +∠CBO +∠EOB = 180°,∴4∠CBO=180°,∠CBO=45°,∴∠OEB=90°,∴cos ∠CBO=22EB OB =, ∵OB=2,∴EB =2 ,∵OE 过圆心,OE ⊥BC ,∴BC =2EB =22.【点睛】此题考查圆的相关知识:圆心距及圆内三角形相似的相关知识,属于综合题型,难度较高.15.如图①②,在平面直角坐标系中,边长为2的等边CDE ∆恰好与坐标系中的OAB ∆重合,现将CDE ∆绕边AB 的中点(G G 点也是DE 的中点),按顺时针方向旋转180︒到△1C DE 的位置.(1)求1C 点的坐标;(2)求经过三点O 、A 、1C 的抛物线的解析式;(3)如图③,G 是以AB 为直径的圆,过B 点作G 的切线与x 轴相交于点F ,求切线BF 的解析式;(4)抛物线上是否存在一点M ,使得:16:3AMF OAB S S ∆∆=.若存在,请求出点M 的坐标;若不存在,请说明理由.【答案】(1)13)C ;(2)23333y x x =-;(3)32333y x =+;(4)1283834,,2,33M M ⎛⎫⎛- ⎪ ⎪ ⎝⎭⎝⎭.【解析】【分析】(1)利用中心对称图形的性质和等边三角形的性质,可以求出.(2)运用待定系数法,代入二次函数解析式,即可求出.(3)借助切线的性质定理,直角三角形的性质,求出F ,B 的坐标即可求出解析式. (4)当M 在x 轴上方或下方,分两种情况讨论.【详解】解:(1)将等边CDE ∆绕边AB 的中点G 按顺时针方向旋转180︒到△1C DE , 则有,四边形'OAC B 是菱形,所以1C 的横坐标为3,根据等边CDE ∆的边长是2,利用等边三角形的性质可得1C ;(2)抛物线过原点(0,0)O ,设抛物线解析式为2y ax bx =+,把(2,0)A,C '代入,得42093a b a b +=⎧⎪⎨+=⎪⎩解得3a =,3b =- ∴抛物线解析式为2y x x =-;(3)90ABF ∠=︒,60BAF ∠=︒,30AFB ∴∠=︒,又2AB =,4AF ∴=,2OF ∴=, (2,0)F ∴-,设直线BF 的解析式为y kx b =+,把B ,(2,0)F -代入,得20k b k b ⎧+=⎪⎨-+=⎪⎩,解得3k =3b =, ∴直线BF的解析式为y x =+; (4)①当M 在x轴上方时,存在2()M x ,211:[4)]:[216:322AMF OAB S S ∆∆=⨯⨯⨯=,得2280x x --=,解得14x =,22x =-,当14x =时,23238344y =⨯-⨯=, 当12x =-时,232383(2)(2)y =⨯--⨯-=, 183(4,)M ∴,283(2,)M -; ②当M 在x 轴下方时,不存在,设点2323(,)M x x x -, 213231:[4()]:[23]16:322AMF OAB S S x x ∆∆=-⨯⨯-⨯⨯=, 得2280x x -+=,240b ac -<无解,综上所述,存在点的坐标为183(4,)M ,283(2,)M -. 【点睛】此题主要考查了旋转,等边三角形的性质,菱形的判定和性质,以及待定系数法求解二次函数解析式和切线的性质定理等,能熟练应用相关性质,是解题的关键.16.在O 中,AB 为直径,CD 与AB 相较于点H ,弧AC=弧AD(1)如图1,求证:CD AB ⊥;(2)如图2,弧BC 上有一点E ,若弧CD=弧CE ,求证:3EBA ABD ∠=∠;(3)如图3,在(2)的条件下,点F 在上,连接,//FH FH DE ,延长FO 交DE 于点K ,若165,5FK DB BE ==,求AB .【答案】(1)证明见解析;(2)证明见解析;(3)1855AB =. 【解析】【分析】 (1)连接,OC OD ,根据AC AD = 得出COA DOA ∠=再根据OC OD =得出OCD ODC ∠=∠,从而得证;(2)连接,BC BD ,根据AC AD =得出,BC BD BA CD =⊥,CBA ABD ∠=∠,再根据CE CD =,得出CBE CBD ∠=∠,从而得出结论;(3)作,CM DB CN BE ⊥⊥,过点P 作,PT BE PS BD ⊥⊥,,5BE BP a DB a ===先证CDM CEN ∆≅∆,DM EN =,再证,CMB CNB BM BN ∆≅∆=,设DM b =,得出2b a =,再算出,CM CD 得出CPD ∆为等腰三角形,再根据BP是角平分线利用角平分线定理得出BCP EBP S DP BD S PE BE∆==,从而算出,PE DE ,再根据三角函数值算出BG ,,,,AB r OG OH ,再根据//FH DE 得出HO OF GO OK=,从而计算AB . 【详解】(1)连接OC ,CD因为AC AD =,所以COA DOA ∠=∠ OC OD =,,OA CD CD AB ∴⊥∴⊥;(2)连接BC ,,BC BD BA CD =⊥所以AB 平分CBD ∠,设ABD ABC α∠=∠=2CBD α∴∠=CD CE ∴=2CBE CBD α∴∠=∠=,3EBA α∴∠=3EBA ABD ∴∠=∠.(3) 2,90EBC BPE PEB αα︒∠=∠=∠=-设,5BE BP a DB a ===作,CM DB CN BE ⊥⊥,可证:CDM CEN ∆≅∆,DM EN =,再证:,CMB CNB BM BN ∆≅∆=。
初中旋转试题及答案在初中数学的学习中,旋转是一个重要的几何概念。
它涉及到图形的平移、旋转和缩放等变换。
以下是一份初中旋转试题及答案,旨在帮助学生掌握旋转的基本概念和计算方法。
试题一:一个点A(3,4)绕原点O(0,0)顺时针旋转90度后,点A的新坐标是什么?答案:当一个点绕原点顺时针旋转90度时,它的坐标会互换并改变符号。
因此,点A(3,4)旋转后的新坐标为(4,-3)。
试题二:一个矩形ABCD,其中A(1,2),B(5,2),C(5,6),D(1,6),绕点A顺时针旋转90度后,矩形的新位置是什么?答案:矩形ABCD绕点A顺时针旋转90度后,点B(5,2)变为(2,5),点C(5,6)变为(6,5),点D(1,6)变为(6,1)。
因此,旋转后的矩形顶点坐标为A(1,2),B(2,5),C(6,5),D(6,1)。
试题三:一个等边三角形,顶点分别为E(0,0),F(3,0),G(1.5,3),绕点E逆时针旋转120度后,三角形的新位置是什么?答案:等边三角形EFG绕点E逆时针旋转120度后,点F(3,0)变为(0,3),点G(1.5,3)变为(-1.5,1.5)。
因此,旋转后的等边三角形顶点坐标为E(0,0),F(0,3),G(-1.5,1.5)。
试题四:一个圆心在H(4,4)的圆,半径为5,绕点H逆时针旋转45度后,圆的位置会如何变化?答案:圆心H(4,4)的圆绕圆心逆时针旋转45度后,圆的位置不会改变,因为旋转是围绕圆心进行的。
圆心坐标仍然是H(4,4),半径仍然是5。
试题五:一个正方形IJKL,其中I(2,1),J(3,1),K(3,2),L(2,2),绕点I逆时针旋转45度后,正方形的新位置是什么?答案:正方形IJKL绕点I逆时针旋转45度后,点J(3,1)变为(2.707,0.707),点K(3,2)变为(2,2.414),点L(2,2)变为(1.293,1.707)。
因此,旋转后的正方形顶点坐标为I(2,1),J(2.707,0.707),K(2,2.414),L(1.293,1.707)。
市北初级中学2024学年第一学期八年级数学期中练习卷(完卷时间:90分钟,满分:120分)一、单项选择题(本大题共6题,每题3分,满分18分)1x的取值范围是( )A.x≥43B.x>43C.x≥34D.x>342.下列二次根式中,属于同类二次根式的是()A.B C D 3.方程2x(x﹣3)=5(x﹣3)的根是( )A.x=52B.x=3C.x1=52,x2=3D.x1=﹣52,x2=34.方程组18ax yx by-=ìí+=î的解是23xy=ìí=î,那么方程x2+ax+b=0()A.有两个不相等实数根B.有两个相等实数根C.没有实数根D.有两个根为2和35.某厂家2020年1~5月份的口罩产量统计如图所示.设2月份到4月份,该厂家口罩产量的平均月增长率为x,根据题意可得方程( )A.368(1﹣x)2=180B.180(1+x)2=461C.461(1﹣x)2=180D.368(1+x)2=4426.均匀地向一个如图所示的容器中注水,最后把容器注满,在注水过程中水面高度h随时间t变化的函数图象大致是()A .B .C .D .二、填空题(本大题共12题,每题3分,满分36分)7= .8.已知0ab >可化简为 .92的一个有理化因式是.10.已知()21f x x =+,则12f æö-=ç÷èø.11.把一元二次方程:()()22132x x x +-=-化成一般形式是 .12.在实数范围内因式分解:2322x x +-= .13.反比例函数图像经过点(2,-3),则它的函数表达式是.14.函数()1y k x =-是y 关于x 的正比例函数,且y 随x 的增大而减小,则k 满足的条件为.15.若直线1y k x =与双曲线2k y x=相交于点P 、Q ,若点P 的坐标为()5,3-,则点Q 的坐标为 .16.已知)310+-==.17.某风景区集体门票的收费标准是25人以内(含25人),每人10元,超过25人的,超过的部分每人5元.当人数超过25人时,请写出此时应收门票费用y (元)与人数x (人)之间的函数关系式.18.如图,已知两个反比例函数C 1:y =1x和C 2:y =13x 在第一象限内的图象,设点P 在C 1上,PC ⊥x 轴于点C ,交C 2于点A ,PD ⊥y 轴于点D ,交C 2于点B ,则四边形PAOB 的面积为 .三、简答题(本题共6题,每题4分,满分24分)19.计算-20)0x >2122.解方程:22470x x +-=.23.解方程:()()22102210x x +-++=24.解不等式:1(3)12<四、解答题(本大题共6题,25~28题每题6分,29题8分,30题10分,满分42分)25.已知:12x =,12y =求代数式22x xy y -+值26.已知关于x 的方程()222360x k x k +-+-=.(1)若1x =是此方程的一根,求k 的值及方程的另一根;(2)试说明无论k 取什么实数值,此方程总有实数根.27.已知()232ky k x -=-,且y 是关于x 的正比例函数.(1)求y 与x 的函数关系式;(2)若2x £,求函数y 的最小值.28.现有一块长80cm 、宽60cm 的矩形钢片,将它的四个角各剪去一个边长为cm x 的小正方形,做成一个底面积为21500cm 的无盖的长方体盒子,求小正方形的边长.29.已知等腰三角形的两条边a ,b 是方程x 2-kx +12=0的两根,另一边c 是方程x 2-16=0的一个根, 求k 的值.30.如图,正比例函数y kx =的图像与反比例函数()80y x x=>的图像交于点(),4A a .点B 为x 轴正半轴上一点,过B 作x 轴的垂线交反比例函数的图像于点C ,交正比例函数的图像于点D .(1)求a 的值及正比例函数y kx =的表达式;(2)若10BD =,求ACD V 的面积.1.A【分析】二次根式有意义的条件:二次根号下的数为非负数,二次根式才有意义.【详解】解:由题意得340x -³,解得:43x ³,故选A .【点睛】本题考查二次根式有意义的条件,本题属于基础应用题,只需学生熟练掌握二次根式有意义的条件,即可完成.2.C【详解】解:选项A . ,显然不是,选项B ,不是,选项C ==,C 正确,选项D ==,不是,故选:C .3.C【分析】通过因式分解法求解方程即可;【详解】()()2353x x x -=-,()()23530x x x ---=,()()3250x x --=,30x -=或250x -=,152x =,23x =.故选:C .【点睛】本题主要考查了利用因式分解法解一元二次方程,准确计算是解题的关键.4.C【分析】先求得a ,b 的值,然后再根据一元二次方程的根的判别式的符号判断根的情况.【详解】把23x y =ìí=î代入方程组18ax y x by -=ìí+=î得a=2,b=2,所以方程x 2+ax+b=0变为x 2+2x+2=0,其中a=1,b=2,c=2,∴△=b 2−4ac=22−4×1×2=−4<0,∴方程没有实数根故选C.【点睛】本题考查了根的判别式,二元一次方程组的解,解题的关键是根据一元二次方程的根的判别式的符号判断根的情况.5.B【分析】本题为增长率问题,一般用增长后的量=增长前的量×(1+增长率)2,如果设这个增长率为x ,根据“2月份的180万只,4月份的产量将达到461万只”,即可得出方程.【详解】解:从2月份到4月份,该厂家口罩产量的平均月增长率为x ,根据题意可得方程:180(1+x )2=461,故选:B .【点睛】本题考查了由实际问题抽象出一元二次方程,本题为增长率问题,一般形式为a (1+x )2=b ,a 为起始时间的有关数量,b 为终止时间的有关数量.6.A【分析】由于三个容器的高度相同,粗细不同,那么水面高度h 随时间t 变化而分三个阶段.【详解】解:最下面的容器较粗,第二个容器最粗,那么第二个阶段的函数图象水面高度h 随时间t 的增大而增长缓慢,用时较长,最上面容器最小,那么用时最短.故选:A .【点睛】此题主要考查了函数图象,解决本题的关键是根据容器的高度相同,每部分的粗细不同得到用时的不同.7.4p -##4p -+【分析】直接利用二次根式的性质化简得出答案.44p p =-=-.故答案为:4p -.【点睛】本题主要考查了二次根式的性质与化简,二次根式的性质是解题关键.8.5##5有意义,可知0b ³,再由0ab >,可得00a b >>,,据此根据化简二次根式即可得到答案.【详解】解:∵0ab >,5=,故答案为:59.【分析】一般二次根式的有理化因式是符合平方差公式的特点的式子.据此即可求解.【详解】解:∵2))=5-4=1,2-,.【点睛】本题考查二次根式的有理化.根据二次根式的乘除法法则进行二次根式有理化.二次根式有理化主要利用了平方差公式,所以一般二次根式的有理化因式是符合平方差公式的特点的式子.10.54【分析】本题主要考查了求函数值,直接把12x =-代入到21x +中,计算求出结果即可得到答案.【详解】解:∵()21f x x =+,∴21115112244f æöæö-=-+=+=ç÷ç÷èøèø,故答案为:54.11.2270x x -=-【分析】先利用完全平方公式展开,再把所的项移到等式的左边,合并同类项即可.【详解】解:()()22132x x x +-=-去括号,得:222136x x x x ++-=-移项,得:2221360x x x x ++--+=合并同类项,得:2270x x -++=两边同时乘以-1得:2270x x -=-故答案为2270x x -=-【点睛】本题考查了一元二次方程的一般式,掌握相关知识是解题的关键.12.x xæ+ççè【分析】本题考查了因式分解,解一元二次方程;2322x x+-=0,公式法解一元二次方程,进而求得12x x==,即可将代数式写成因式分解的形式,即可求解.【详解】解:设2322x x+-=0∵3,2,2a b c===-,()2Δ4443228b ac=-=-´´-=∴x==x∴实数范围内因式分解:2322x x x xæ+-=ççè故答案为:x xæççè.13.6yx-=【详解】设反比例函数的解析式是kyx=.则32k-=,得6k=-,则这个函数的表达式是6yx-=.故答案为6yx-=.14.1k<##1k>【分析】本题主要考查了正比例函数的增减性问题,对于正比例函数()0y kx k=¹,若0k<,则y随x的增大而减小,若0k>,则y随x的增大而增大,据此根据题意可得10k-<,即1k<.【详解】解:∵函数()1y k x=-是y关于x的正比例函数,且y随x的增大而减小,∴10k-<,∴1k<,故答案为:1k<.15.(5,3)-【分析】先根据P 的坐标求出12k k 、的值,再联立直线和双曲线的方程即可求得Q 点坐标.【详解】由题意得,123535k k=-ìïí=ï-î解得,123515k k ì=-ïíï=-î则直线为35y x =-,双曲线为15y x=-联立3515y x y x ì=-ïïíï=-ïî解得53x y =-ìí=î或53x y =ìí=-î则点Q 坐标为(5,3)-.【点睛】本题考查了利用代入法求函数解析式,以及函数图象相交时联立函数解析式,建立方程组求解交点坐标.另外,根据本题两函数图象的特征,也可利用对称性求得点Q 的坐标.16.1【分析】本题主要考查了解一元二次方程,算术平方根的非负性,看做一个整体,30=10+-=3+=-或1=00³³1=.【详解】解:∵)310+-=,30=10+-=,3=-1+=,00³³,0,1=,故答案为:1.17.()512525y x x =+>【分析】本题考查了列函数关系,根据25人以内(含25人),每人10元,超过25人的,超过的部分每人5元,列出函数关系,即可求解.【详解】解:依题意,()25105255125y x x =´+-=+故答案为:()512525y x x =+>.18.23【分析】根据反比函数比例系数k 的几何意义得到S △AOC =S △BOD =111236´=,S 矩形PCOD =1,然后利用矩形面积分别减去两个三角形的面积即可得到四边形PAOB 的面积.【详解】∵PC ⊥x 轴,PD ⊥y 轴,∴S △AOC =S △BOD =11||23×=111236´=,S 矩形PCOD =1,∴四边形PAOB 的面积=1﹣2×16=23.故答案为23.【点睛】本题考查了反比函数比例系数k 的几何意义.掌握反比函数比例系数k 的几何意义是解答本题的关键.反比函数比例系数k 的几何意义:在反比例函数ky x=图象中任取一点,过这一个点向x 轴和y 轴分别作垂线,与坐标轴围成的矩形的面积是定值|k |.19【分析】本题主要考查了二次根式的加减计算,先化简二次根式,再根据二次根式的加减计算法则求解即可.【详解】解:-2+【分析】本题主要考查了二次根式的乘法计算,二次根式有意义的条件,二次根式有意义的条件是被开方数大于等于0,据此可求出0y >,再根据二次根式乘法计算法则求解即可.【详解】解:有意义,∴0xy ³,∵0x >,∴0y >,)0x >===12-【分析】本题主要考查了分母有理化,二次根式的减法计算,先分别把减号前后两个式子分母有理化,再根据二次根式的减法计算法则求解即可.===-=-22.1x ,2x =【分析】用公式法求解即可.【详解】解:∵2a =,4b =,7c =-,∴2D∴x ==2x .【点睛】本题考查了一元二次方程的解法---公式法,先求出∆的值,然后根据x =解即可.23.1215x x ==,【分析】本题主要考查了解一元二次方程,把2x +看做一个整体,把原方程左边利用十字相乘法分解因式,进而解方程即可.【详解】解:∵()()22102210x x +-++=,∴()()23270x x +-+-=éùéùëûëû,∴230x +-=或270x +-=,解得1215x x ==,.24.【分析】先化简,再利用解不等式的方法与步骤解出答案即可.【详解】1(3)12<32 x3212【点睛】此题考查二次根式的应用,解题关键在于掌握运算法则.25.152【分析】观察,显然,要求的代数式可以变成x ,y 的差与积的形式,从而简便计算.【详解】解:∵x =12 ),y =12 ),∴xy =14×2=12,x -y ,∴原式=(x -y )2+xy =5+12=512.【点睛】此类题注意变成字母的和、差或积的形式,然后整体代值计算.26.(1)1k =,方程的另一根为3-;(2)见解析.【分析】(1)把已知的根代入方程中,得关于k 的方程,解方程即可求得k 的值,再由根与系数的关系即可求得另一个根;(2)求出关于x 的方程的判别式,根据判别式的符号即可判断.【详解】(1)把1x =代入方程有:()122360k k +-+-=,解得1k =.故方程为2230x x +-=,设方程的另一个根是2x ,则:213x ×=-,解得23x =-.故1k =,方程的另一根为3-;(2)Q 关于x 的方程()222360x k x k +-+-=中,a =1,b =2(2-k ),c =3-6k ,()()()222442436410b ac k k k D =-=---=+³,\无论k 取什么实数值,此方程总有实数根.【点睛】本题考查了一元二次方程的解,根与系数的关系,一元二次方程根的判别式等知识,掌握这些知识是解答本题的前提.27.(1)4y x=-(2)8-【分析】本题主要考查了正比例函数的定义,求正比例函数值,正比例函数的增减性:(1)一般地,形如y kx =(k 是常数,且0k ¹)的函数叫做正比例函数,据此可得23120k k ì-=í-¹î,解之即可得到答案;(2)根据(1)所求,先求出当2x =时,428y =-´=-,再根据解析式可得y 随x 增大而减小,则当2x £,函数y 的最小值为8-.【详解】(1)解:∵()232k y k x -=-,且y 是关于x 的正比例函数,∴23120k k ì-=í-¹î,∴2k =-,∴()()223224y x x --=--=-;(2)解:在4y x =-中,当2x =时,428y =-´=-,∵在4y x =-中,40-<,∴y 随x 增大而减小,∴当2x £,函数y 的最小值为8-.28.小正方形的边长为15cm【分析】设小正方形的边长为cm x ,则长方体盒子底面的长、宽均可用含x 的代数式表示,再根据面积,即可建立等量关系,列出方程.【详解】解:设小正方形的边长为cm x ,则可得这个长方体盒子的底面的长是()802cm x -,宽是()602cm x -,∴()()8026021500x x --=,整理得2708250x x -+=,解得155x =,215x =又6020x ->,∴15x =.∴小正方形的边长为15cm .【点睛】本题考查一元二次方程的实际应用,要从已知条件中找出关键的与所求问题有关的信息,通过图形求出面积,解题的关键是熟记各种图形的面积公式,列出符合题意的方程,整理即可.29.7k =或k =【详解】试题分析:先解方程x 2-16=0,得到c=4,再分两种情况进行讨论:①c =4是底边,那么a =b ,由方程x 2-kx +12=0的判别式△=0列出方程;②c =4是腰,那么将x =4代入x 2-kx +12=0求出k 的值.解:∵c 是方程x 2−16=0的一个根,∴c =4.分两种情况:①c =4是底边,方程x 2−kx +12=0的判别式△=k 2−4×12=0,解得k 1=k 2=-(舍去),4满足三角形三边关系定理,符合题意;②c =4是腰,将x =4代入x 2−kx +12=0,得42−4k +12=0,解得k =7,∴x 2−7x +12=0,∴x 1=3,x 2=4,4,4,3满足三角形三边关系定理,符合题意.故k 的值为7.30.(1)a=2;y=2x ;(2)635【分析】(1)已知反比例函数解析式,点A 在反比例函数图象上,故a 可求;求出点A 的坐标后,点A 同时在正比例函数图象上,将点A 坐标代入正比例函数解析式中,故正比例函数的解析式可求.(2)根据题意以及第一问的求解结果,我们可设B 点坐标为(b ,0),则D 点坐标为(b ,2b),根据BD=10,可求b 值,然后确认三角形的底和高,最后根据三角形面积公式即可求解.【详解】(1)已知反比例函数解析式为y=8x,点A(a ,4)在反比例函数图象上,将点A 坐标代入,解得a=2,故A 点坐标为(2,4),又∵A 点也在正比例函数图象上,设正比例函数解析为y=kx ,将点A(2,4)代入正比例函数解析式中,解得k=2,则正比例函数解析式为y=2x .故a=2;y=2x .(2)根据第一问的求解结果,以及BD 垂直x 轴,我们可以设B 点坐标为(b ,0),则C 点坐标为(b ,8b)、D 点坐标为(b ,2b),根据BD=10,则2b=10,解得b=5,故点B 的坐标为(5,0),D 点坐标为(5,10),C 点坐标为(5,85),则在△ACD 中,()18105225S æö=´-´-ç÷èø△A C D =635.故△ACD 的面积为635.【点睛】(1)本题主要考查求解正比例函数及反比例函数解析式,掌握求解正比例函数和反比例函数解析式的方法是解答本题的关键.(2)本题根据第一问求解的结果以及BD垂直x轴,利用待定系数法,设B、C、D三点坐标,求出B、C、D三点坐标,是解答本题的关键,同时掌握三角形面积公式,即可求解.。
初三旋转单元测试题及答案一、选择题(每题2分,共10分)1. 若点A(1,2)绕原点顺时针旋转90°后,其坐标变为:A. (2,1)B. (-2,1)C. (1,-2)D. (-2,-1)2. 一个正方形绕中心点旋转90°后,其形状:A. 变成圆形B. 变成长方形C. 保持不变D. 变成椭圆形3. 若一个图形绕某点旋转180°后,其形状和位置:A. 发生变化B. 形状不变,位置改变C. 形状和位置都不变D. 形状改变,位置不变4. 一个正六边形绕其中心点旋转多少度后,能与自身完全重合?A. 30°B. 45°C. 60°D. 90°5. 一个图形绕某点旋转后,其面积:A. 变大B. 变小C. 不变D. 无法确定二、填空题(每题2分,共10分)6. 若点P(-3,4)绕原点逆时针旋转180°后,其坐标变为______。
7. 一个等腰直角三角形绕其直角顶点旋转90°后,其形状变为______。
8. 一个圆绕圆心旋转任意角度,其______不变。
9. 若一个图形绕某点旋转后,其对应点的连线都经过该点,并且对应点到旋转中心的距离相等,则该图形绕该点旋转的角度为______。
10. 一个图形绕某点旋转后,其对应线段的夹角等于旋转角,该性质称为______。
三、解答题(每题5分,共20分)11. 已知点A(2,3),点B(-1,-2),求点A绕点B顺时针旋转45°后的坐标。
12. 一个边长为4的正方形,绕其中心点顺时针旋转45°后,求正方形的一个顶点的新坐标。
13. 已知一个等边三角形ABC,其中A(0,0),B(1,√3),C(-1,√3),求三角形绕点A逆时针旋转60°后的顶点坐标。
14. 解释什么是旋转对称图形,并给出一个例子。
四、综合题(每题10分,共20分)15. 若一个图形绕某点旋转θ度后,其面积和周长都不变,试证明该图形为圆。
上海真北中学数学旋转几何综合专题练习(解析版)一、初三数学 旋转易错题压轴题(难)1.已知如图1,在ABC 中,90ABC ∠=︒,BC AB =,点D 在AC 上,DF AC⊥交BC 于F ,点E 是AF 的中点.(1)写出线段ED 与线段EB 的关系并证明;(2)如图2,将CDF 绕点C 逆时针旋转()090a α︒<<︒,其它条件不变,线段ED 与线段EB 的关系是否变化,写出你的结论并证明;(3)将CDF 绕点C 逆时针旋转一周,如果6BC =,32CF =,直接写出线段CE 的范围.【答案】(1)ED EB =,DE BE ⊥,证明见解析;(2)结论不变,理由见解析;(3)最大值22= 最小值322=. 【解析】 【分析】(1)在Rt △ADF 中,可得DE=AE=EF ,在Rt △ABF 中,可得BE=EF=EA ,得证ED=EB ;然后利用等腰三角形的性质以及四边形ADFB 的内角和为180°,可推导得出∠DEB=90°; (2)如下图,先证四边形MFBA 是平行四边形,再证△DCB ≌△DFM ,从而推导出△DMB 是等腰直角三角形,最后得出结论;(3)如下图,当点F 在AC 上时,CE 有最大值;当点F 在AC 延长线上时,CE 有最小值. 【详解】(1)∵DF ⊥AC ,点E 是AF 的中点 ∴DE=AE=EF ,∠EDF=∠DFE ∵∠ABC=90°,点E 是AF 的中点 ∴BE=AE=EF ,∠EFB=∠EBF ∴DE=EB ∵AB=BC ,∴∠DAB=45°∴在四边形ABFD中,∠DFB=360°-90°-45°-90°=135°∠DEB=∠DEF+∠FEB=180°-2∠EFD+180°-2∠EFB=360°-2(∠EFD+∠EFB)=360°-2×135°=90°∴DE⊥EB(2)如下图,延长BE至点M处,使得ME=EB,连接MA、ME、MF、MD、FB、DB,延长MF交CB于点H∵ME=EB,点E是AF的中点∴四边形MFBA是平行四边形∴MF∥AB,MF=AB∴∠MHB=180°-∠ABC=90°∵∠DCA=∠FCB=a∴∠DCB=45°+a,∠CFH=90°-a∵∠DCF=45°,∠CDF=90°∴∠DFC=45°,△DCF是等腰直角三角形∴∠DFM=180°-∠DFC-∠CFH=45°+a∴∠DCB=∠DFM∵△ABC和△CDF都是等腰直角三角形∴DC=DF,BC=AB=MF∴△DCB≌△DFM(SAS)∴∠MDF=∠BDC,DB=DM∴∠MDF+∠FDB=∠BDC+∠FDB=90°∴△DMB是等腰直角三角形∵点E是MB的中点∴DE=EB,DE⊥EB(3)当点F在AC上时,CF有最大值,图形如下:∵BC=6,∴在等腰直角△ABC 中,AC=62 ∵CF=32,∴AF=32 ∴CE=CF+FE=CF+12AF 922= 当点F 在AC 延长线上时,CE 有最小值,图形如下:同理,CE=EF -CF 322= 【点睛】本题考查三角形的旋转变换,用到了等腰直角三角形的性质和平行四边形的性质,解题关键是构造并证明△BDM 是等腰直角三角形.2.两块等腰直角三角形纸片AOB 和COD 按图1所示放置,直角顶点重合在点O 处,25AB =,17CD =.保持纸片AOB 不动,将纸片COD 绕点O 逆时针旋转(090)αα<<角度,如图2所示.()1利用图2证明AC BD=且AC BD⊥;()2当BD与CD在同一直线上(如图3)时,求AC 的长和α的正弦值.【答案】(1)详见解析;(2)7,725.【解析】【分析】(1)图形经过旋转以后明确没有变化的边长,证明AOC BOD≅,得出AC=BD,延长BD交AC于E,证明∠AEB=90︒,从而得到BD AC⊥.(2) 如图3中,设AC=x,在Rt△ABC中,利用勾股定理求出x,再根据sinα=sin∠ABC=ACAB 即可解决问题【详解】()1证明:如图2中,延长BD交OA于G,交AC于E.∵90AOB COD∠=∠=,∴AOC DOB∠=∠,在AOC和BOD中,OA OBAOC BODOC OD=⎧⎪∠=∠⎨⎪=⎩,∴AOC BOD≅,∴AC BD=,CAO DBO∠=∠,∵90DBO GOB∠+∠=,∵OGB AGE∠=∠,∴90CAO AGE∠+∠=,∴90AEG∠=,∴BD AC⊥.()2解:如图3中,设AC x=,∵BD 、CD 在同一直线上,BD AC ⊥, ∴ABC 是直角三角形, ∴222AC BC AB +=, ∴222(17)25x x ++=, 解得7x =,∵45ODC DBO α∠=∠+∠=,45ABC DBO ∠+∠=, ∴ABC α∠=∠, ∴7sin sin 25AC ABC AB α=∠==. 【点睛】本题考查旋转的性质、全等三角形的判定和性质、勾股定理、等腰直角三角形的性质等知识,解题的关键是正确寻找全等三角形,利用全等三角形的性质解决问题,第二个问题的关键是利用(1)的结论解决问题,属于中考常考题型.3.(特例发现)如图1,在△ABC 中,AG ⊥BC 于点G ,以A 为直角顶点,分别以AB ,AC 为直角边,向△ABC 外作等腰Rt △ABE 和等腰Rt △ACF ,过点E 、F 作射线GA 的垂线,垂足分别为P 、Q .求证:EP=FQ .(延伸拓展)如图2,在△ABC 中,AG ⊥BC 于点G ,以A 为直角顶点,分别以AB ,AC 为直角边,向△ABC 外作Rt △ABE 和Rt △ACF ,射线GA 交EF 于点H .若AB=kAE ,AC=kAF ,请思考HE 与HF 之间的数量关系,并直接写出你的结论.(深入探究)如图3,在△ABC 中,G 是BC 边上任意一点,以A 为顶点,向△ABC 外作任意△ABE 和△ACF ,射线GA 交EF 于点H .若∠EAB=∠AGB ,∠FAC=∠AGC ,AB=kAE ,AC=kAF ,上一问的结论还成立吗?并证明你的结论.(应用推广)在上一问的条件下,设大小恒定的角∠IHJ 分别与△AEF 的两边AE 、AF 分别交于点M 、N ,若△ABC 为腰长等于4的等腰三角形,其中∠BAC=120°,且∠IHJ=∠AGB=θ=60°,k=2;求证:当∠IHJ 在旋转过程中,△EMH 、△HMN 和△FNH 均相似,并直接写出线段MN 的最小值(请在答题卡的备用图中补全作图).【答案】(1)证明参见解析;(2)HE=HF;(3)成立,证明参见解析;(4)证明参见解析,MN最小值为1.【解析】试题分析:(1)特例发现:易证△AEP≌△BAG,△AFQ≌△CAG,即可求得EP=AG,FQ=AG,即可解题;(2)延伸拓展:过点E、F作射线GA的垂线,垂足分别为P、Q.易证△ABG∽△EAP,△ACG∽△FAQ,得到PE=AG,FQ=AG,∴PE=FQ,然后证明△EPH≌△FQH,即可得出HE=HF;(3)深入探究:判断△PEA∽△GAB,得到PE=AG,△AQF∽△CGA,FQ=,得到FQ=AG,再判断△EPH≌△FQH,即可得出HE=HF;(4)应用推广:由前一个结论得到△AEF为正三角形,再依次判断△MHN∽△HFN∽△MEH,即可得出结论.试题解析:(1)特例发现,如图:∵∠PEA+∠PAE=90°,∠GAB+∠PAE=90°,∴∠PEA=∠GAB,∵∠EPA=∠AGB,AE=AB,∴△PEA≌△GAB,∴PE=AG,同理,△QFA≌△GAC,∴FQ=AG,∴PE=FQ;(2)延伸拓展,如图:∵∠PEA+∠PAE=90°,∠GAB+∠PAE=90°,∴∠PEA=∠GAB,∴∠EPA=∠AGB,∴△PEA∽△GAB,∴,∵AB=kAE,∴,∴PE=AG,同理,△QFA∽△GAC,∴,∵AC=kAF,∴FQ=AG,∴PE=FQ,∵EP∥FQ,∴∠EPH=∠FQH,∵∠PHE=∠QHF,∴△EPH≌△FQH,∴HE=HF;(3)深入探究,如图2,在直线AG上取一点P,使得∠EPA═∠AGB,作FQ∥PE,∵∠EAP+∠BAG=180°﹣∠AGB,∠ABG+∠BAG=180°﹣∠AGB,∴∠EAP=∠ABG,∵∠EPA=∠AGB,∴△APE∽△BGA,∴,∵AB=kAE,∴PE=AG,由于∠FQA=∠FAC=∠AGC=180°﹣∠AGB,同理可得,△AQF∽△CGA,∴,∵AC=kAF,∴FQ=AG,∴EP=FQ,∵EP∥FQ,∴∠EPH=∠FQH,∵∠PHE=∠QHF,∴△EPH≌△FQH,∴HE=HF;(4)应用推广,如图3,在前面条件及结论,得到,点H是EF中点,∴AE=AF,∵∠EAB=∠AGB,∠FAC=∠AGC∴∠EAB+∠FAC=180°∴∠EAF=360°﹣(∠EAB+∠FAC)﹣∠BAC=60°,∴△AEF 为正三角形.又H为EF中点,∴∠EHM+∠IHJ=120°,∠IHJ+∠FHN=120°,∴∠EHM=∠FHN.∵∠AEF=∠AFE,∴△HEM∽△HFN,∴,∵EH=FH,∴,且∠MHN=∠HFN=60°,∴△MHN∽△HFN,∴△MHN∽△HFN∽△MEH,在△HMN中,∠MHN=60°,根据三角形中大边对大角,∴要MN最小,只有△HMN是等边三角形,∴∠AMN=60°,∵∠AEF=60°,MN∴MN∥EF,∵△AEF为等边三角形,∴MN为△AEF的中位线,∴MN min=EF=×2=1.考点:1.几何变换综合题;2.三角形全等及相似的判定性质.4.阅读材料:小胖同学发现这样一个规律:两个顶角相等的等腰三角形,如果具有公共的顶角的顶点,并把它们的底角顶点连接起来则形成一组旋转全等的三角形.小胖把具有这个规律的图形称为“手拉手”图形.如图1,在“手拉手”图形中,小胖发现若∠BAC=∠DAE,AB=AC,AD=AE,则BD=CE,(1)在图1中证明小胖的发现;借助小胖同学总结规律,构造“手拉手”图形来解答下面的问题:(2)如图2,AB=BC,∠ABC=∠BDC=60°,求证:AD+CD=BD;(3)如图3,在△ABC中,AB=AC,∠BAC=m°,点E为△ABC外一点,点D为BC中点,∠EBC=∠ACF,ED⊥FD,求∠EAF的度数(用含有m的式子表示).【答案】(1)证明见解析;(2)证明见解析;(3)∠EAF =12 m°.【解析】分析:(1)如图1中,欲证明BD=EC,只要证明△DAB≌△EAC即可;(2)如图2中,延长DC到E,使得DB=DE.首先证明△BDE是等边三角形,再证明△ABD≌△CBE即可解决问题;(3)如图3中,将AE绕点E逆时针旋转m°得到AG,连接CG、EG、EF、FG,延长ED到M,使得DM=DE,连接FM、CM.想办法证明△AFE≌△AFG,可得∠EAF=∠FAG=12 m°.详(1)证明:如图1中,∵∠BAC=∠DAE,∴∠DAB=∠EAC,在△DAB和△EAC中,AD AEDAB EACAB AC⎧⎪∠∠⎨⎪⎩===,∴△DAB≌△EAC,∴BD=EC.(2)证明:如图2中,延长DC到E,使得DB=DE.∵DB=DE,∠BDC=60°,∴△BDE是等边三角形,∴∠BD=BE,∠DBE=∠ABC=60°,∴∠ABD=∠CBE,∵AB=BC,∴△ABD≌△CBE,∴AD=EC,∴BD=DE=DC+CE=DC+AD.∴AD+CD=BD.(3)如图3中,将AE绕点E逆时针旋转m°得到AG,连接CG、EG、EF、FG,延长ED到M,使得DM=DE,连接FM、CM.由(1)可知△EAB≌△GAC,∴∠1=∠2,BE=CG,∵BD=DC,∠BDE=∠CDM,DE=DM,∴△EDB≌△MDC,∴EM=CM=CG,∠EBC=∠MCD,∵∠EBC=∠ACF,∴∠MCD=∠ACF,∴∠FCM=∠ACB=∠ABC,∴∠1=3=∠2,∴∠FCG=∠ACB=∠MCF,∵CF=CF,CG=CM,∴△CFG≌△CFM,∴FG=FM,∵ED=DM,DF⊥EM,∴FE=FM=FG,∵AE=AG,AF=AF,∴△AFE≌△AFG,∴∠EAF=∠FAG=12 m°.点睛:本题考查几何变换综合题、旋转变换、等腰三角形的性质、全等三角形的判定和性质等知识,解题的关键是学会利用“手拉手”图形中的全等三角形解决问题,学会构造“手拉手”模型,解决实际问题,属于中考压轴题.5.在平面直角坐标系中,O为原点,点A(8,0),点B(0,6),把△ABO绕点B逆时针旋转得△A′B′O′,点A、O旋转后的对应点为A′、O′,记旋转角为α.(1)如图1,若α=90°,则AB= ,并求AA′的长;(2)如图2,若α=120°,求点O′的坐标;(3)在(2)的条件下,边OA上的一点P旋转后的对应点为P′,当O′P+BP′取得最小值时,直接写出点P′的坐标.【答案】(1)10,2;(2)(339);(3)123545,)【解析】试题分析:(1)、如图①,先利用勾股定理计算出AB=5,再根据旋转的性质得BA=BA′,∠ABA′=90°,则可判定△ABA′为等腰直角三角形,然后根据等腰直角三角形的性质求AA′的长;(2)、作O′H⊥y轴于H,如图②,利用旋转的性质得BO=BO′=3,∠OBO′=120°,则∠HBO′=60°,再在Rt△BHO′中利用含30度的直角三角形三边的关系可计算出BH和O′H的长,然后利用坐标的表示方法写出O′点的坐标;(3)、由旋转的性质得BP=BP′,则O′P+BP′=O′P+BP,作B点关于x轴的对称点C,连结O′C交x轴于P点,如图②,易得O′P+BP=O′C,利用两点之间线段最短可判断此时O′P+BP的值最小,接着利用待定系数法求出直线O′C的解析式为y=x﹣3,从而得到P(,0),则O′P′=OP=,作P′D⊥O′H于D,然后确定∠DP′O′=30°后利用含30度的直角三角形三边的关系可计算出P′D 和DO′的长,从而可得到P′点的坐标.试题解析:(1)、如图①,∵点A(4,0),点B(0,3),∴OA=4,OB=3,∴AB==5,∵△ABO绕点B逆时针旋转90°,得△A′BO′,∴BA=BA′,∠ABA′=90°,∴△ABA′为等腰直角三角形,∴AA′=BA=5;(2)、作O′H⊥y轴于H,如图②,∵△ABO绕点B逆时针旋转120°,得△A′BO′,∴BO=BO′=3,∠O BO′=120°,∴∠HBO′=60°,在Rt△BHO′中,∵∠BO′H=90°﹣∠HBO′=30°,∴BH=BO′=,O′H=BH=,∴OH=OB+BH=3+,∴O′点的坐标为();(3)∵△ABO绕点B逆时针旋转120°,得△A′BO′,点P的对应点为P′,∴BP=BP′,∴O′P+BP′=O′P+BP,作B点关于x轴的对称点C,连结O′C交x轴于P点,如图②,则O′P+BP=O′P+PC=O′C,此时O′P+BP的值最小,∵点C与点B关于x轴对称,∴C(0,﹣3),设直线O′C的解析式为y=kx+b,把O′(),C(0,﹣3)代入得,解得,∴直线O′C的解析式为y=x﹣3,当y=0时,x﹣3=0,解得x=,则P(,0),∴OP=,∴O′P′=OP=,作P′D⊥O′H于D,∵∠BO′A=∠BOA=90°,∠BO′H=30°,∴∠DP′O′=30°,∴O′D=O′P′=,P′D=,∴DH=O′H﹣O′,∴P′点的坐标为(,).考点:几何变换综合题6.如图1,在平面直角坐标系xOy 中,抛物线C :y =ax 2+bx +c 与x 轴相交于A ,B 两点,顶点为D (0,4),AB =42,设点F (m ,0)是x 轴的正半轴上一点,将抛物线C 绕点F 旋转180°,得到新的抛物线C ′. (1)求抛物线C 的函数表达式;(2)若抛物线C ′与抛物线C 在y 轴的右侧有两个不同的公共点,求m 的取值范围. (3)如图2,P 是第一象限内抛物线C 上一点,它到两坐标轴的距离相等,点P 在抛物线C ′上的对应点P ′,设M 是C 上的动点,N 是C ′上的动点,试探究四边形PMP ′N 能否成为正方形?若能,求出m 的值;若不能,请说明理由.【答案】(1)2142y x =-+;(2)2<m <223)m =6或m 17﹣3.【解析】 【分析】(1)由题意抛物线的顶点C (0,4),A (20),设抛物线的解析式为24y ax =+,把A (220)代入可得a =12-,由此即可解决问题; (2)由题意抛物线C ′的顶点坐标为(2m ,﹣4),设抛物线C ′的解析式为()21242y x m =--,由()221421242y x y x m ⎧=-+⎪⎪⎨⎪=--⎪⎩,消去y 得到222280x mx m -+-=,由题意,抛物线C ′与抛物线C 在y 轴的右侧有两个不同的公共点,则有()222(2)428020280m m m m ⎧--->⎪⎪>⎨⎪->⎪⎩,解不等式组即可解决问题; (3)情形1,四边形PMP ′N 能成为正方形.作PE ⊥x 轴于E ,MH ⊥x 轴于H .由题意易知P (2,2),当△PFM 是等腰直角三角形时,四边形PMP ′N 是正方形,推出PF =FM ,∠PFM =90°,易证△PFE ≌△FMH ,可得PE =FH =2,EF =HM =2﹣m ,可得M (m +2,m ﹣2),理由待定系数法即可解决问题;情形2,如图,四边形PMP ′N 是正方形,同法可得M (m ﹣2,2﹣m ),利用待定系数法即可解决问题. 【详解】(1)由题意抛物线的顶点C (0,4),A(0),设抛物线的解析式为24y ax =+,把A(0)代入可得a =12-, ∴抛物线C 的函数表达式为2142y x =-+.(2)由题意抛物线C ′的顶点坐标为(2m ,﹣4),设抛物线C ′的解析式为()21242y x m =--, 由()221421242y x y x m ⎧=-+⎪⎪⎨⎪=--⎪⎩,消去y 得到222280x mx m -+-= ,由题意,抛物线C ′与抛物线C 在y 轴的右侧有两个不同的公共点,则有()222(2)428020280m m m m ⎧--->⎪⎪>⎨⎪->⎪⎩, 解得2<m<∴满足条件的m 的取值范围为2<m< (3)结论:四边形PMP ′N 能成为正方形.理由:1情形1,如图,作PE ⊥x 轴于E ,MH ⊥x 轴于H .由题意易知P (2,2),当△PFM 是等腰直角三角形时,四边形PMP ′N 是正方形,∴PF =FM ,∠PFM =90°,易证△PFE ≌△FMH ,可得PE =FH =2,EF =HM =2﹣m ,∴M (m +2,m ﹣2),∵点M 在2142y x =-+上,∴()212242m m -=-++,解得m =17﹣3或﹣17﹣3(舍弃),∴m =17﹣3时,四边形PMP ′N 是正方形.情形2,如图,四边形PMP ′N 是正方形,同法可得M (m ﹣2,2﹣m ),把M (m ﹣2,2﹣m )代入2142y x =-+中,()212242m m -=--+,解得m =6或0(舍弃),∴m =6时,四边形PMP ′N 是正方形.综上所述:m =6或m 17﹣3时,四边形PMP ′N 是正方形.7.两块等腰直角三角板△ABC 和△DEC 如图摆放,其中∠ACB=∠DCE=90°,F 是DE 的中点,H 是AE 的中点,G 是BD 的中点.(1)如图1,若点D 、E 分别在AC 、BC 的延长线上,通过观察和测量,猜想FH 和FG 的数量关系为______和位置关系为______;(2)如图2,若将三角板△DEC 绕着点C 顺时针旋转至ACE 在一条直线上时,其余条件均不变,则(1)中的猜想是否还成立,若成立,请证明,不成立请说明理由;(3)如图3,将图1中的△DEC绕点C顺时针旋转一个锐角,得到图3,(1)中的猜想还成立吗?直接写出结论,不用证明.【答案】(1)相等,垂直.(2)成立,证明见解析;(3)成立,结论是FH=FG,FH⊥FG.【解析】试题分析:(1)证AD=BE,根据三角形的中位线推出FH=12AD,FH∥AD,FG=12BE,FG∥BE,即可推出答案;(2)证△ACD≌△BCE,推出AD=BE,根据三角形的中位线定理即可推出答案;(3)连接BE、AD,根据全等推出AD=BE,根据三角形的中位线定理即可推出答案.试题解析:(1)解:∵CE=CD,AC=BC,∠ECA=∠DCB=90°,∴BE=AD,∵F是DE的中点,H是AE的中点,G是BD的中点,∴FH=12AD,FH∥AD,FG=12BE,FG∥BE,∴FH=FG,∵AD⊥BE,∴FH⊥FG,故答案为相等,垂直.(2)答:成立,证明:∵CE=CD,∠ECD=∠ACD=90°,AC=BC,∴△ACD≌△BCE∴AD=BE,由(1)知:FH=12AD,FH∥AD,FG=12BE,FG∥BE,∴FH=FG,FH⊥FG,∴(1)中的猜想还成立.(3)答:成立,结论是FH=FG ,FH ⊥FG . 连接AD ,BE ,两线交于Z ,AD 交BC 于X , 同(1)可证∴FH=12AD ,FH ∥AD ,FG=12BE ,FG ∥BE , ∵三角形ECD 、ACB 是等腰直角三角形, ∴CE=CD ,AC=BC ,∠ECD=∠ACB=90°, ∴∠ACD=∠BCE ,在△ACD 和△BCE 中AC BC ACD BCE CE CD ⎧⎪∠∠⎨⎪⎩=== , ∴△ACD ≌△BCE , ∴AD=BE ,∠EBC=∠DAC ,∵∠DAC+∠CXA=90°,∠CXA=∠DXB , ∴∠DXB+∠EBC=90°, ∴∠EZA=180°﹣90°=90°, 即AD ⊥BE , ∵FH ∥AD ,FG ∥BE , ∴FH ⊥FG , 即FH=FG ,FH ⊥FG , 结论是FH=FG ,FH ⊥FG.【点睛】运用了等腰直角三角形的性质、全等三角形的性质和判定、三角形的中位线定理,旋转的性质等知识点的理解和掌握,能熟练地运用这些性质进行推理是解此题的关键.8.如图1,点O 是正方形ABCD 两对角线的交点. 分别延长OD 到点G ,OC 到点E ,使OG =2OD ,OE =2OC ,然后以OG 、OE 为邻边作正方形OEFG ,连接AG ,DE . (1)求证:DE ⊥AG ;(2)正方形ABCD 固定,将正方形OEFG 绕点O 逆时针旋转角(0°< <360°)得到正方形,如图2.①在旋转过程中,当∠是直角时,求的度数;(注明:当直角边为斜边一半时,这条直角边所对的锐角为30度)②若正方形ABCD的边长为1,在旋转过程中,求长的最大值和此时的度数,直接写出结果不必说明理由.【答案】(1)DE⊥AG (2)①当∠为直角时,α=30°或150°.②315°【解析】分析:(1)延长ED交AG于点H,证明≌,根据等量代换证明结论;(2)根据题意和锐角正弦的概念以及特殊角的三角函数值得到,分两种情况求出的度数;(3)根据正方形的性质分别求出OA和OF的长,根据旋转变换的性质求出AF′长的最大值和此时的度数.详解:如图1,延长ED交AG于点H,点O是正方形ABCD两对角线的交点,,,在和中,,≌,,,,,即;在旋转过程中,成为直角有两种情况:Ⅰ由增大到过程中,当时,,在中,sin∠AGO=,,,,,即;Ⅱ由增大到过程中,当时,同理可求,.综上所述,当时,或.如图3,当旋转到A、O、在一条直线上时,的长最大,正方形ABCD的边长为1,,,,,,,此时.点睛:考查了正方形的性质,全等三角形的判定与性质,锐角三角形函数,旋转变换的性质的综合应用,有一定的综合性,注意分类讨论的思想.9.(问题提出)如图①,已知△ABC是等边三角形,点E在线段AB上,点D在直线BC上,且ED=EC,将△BCE绕点C顺时针旋转60°至△ACF连接EF试证明:AB=DB+AF(类比探究)(1)如图②,如果点E在线段AB的延长线上,其他条件不变,线段AB,DB,AF之间又有怎样的数量关系?请说明理由(2)如果点E在线段BA的延长线上,其他条件不变,请在图③的基础上将图形补充完整,并写出AB,DB,AF之间的数量关系,不必说明理由.【答案】证明见解析;(1)AB=BD﹣AF;(2)AF=AB+BD.【解析】【分析】(1)根据旋转的性质得出△EDB与FEA全等的条件BE=AF,再结合已知条件和旋转的性质推出∠D=∠AEF,∠EBD=∠EAF=120°,得出△EDB≌FEA,所以BD=AF,等量代换即可得出结论.(2)先画出图形证明∴△DEB≌△EFA,方法类似于(1);(3)画出图形根据图形直接写出结论即可.【详解】(1)证明:DE=CE=CF,△BCE由旋转60°得△ACF,∴∠ECF=60°,BE=AF,CE=CF,∴△CEF是等边三角形,∴EF=CE,∴DE=EF,∠CAF=∠BAC=60°,∴∠EAF=∠BAC+∠CAF=120°,∵∠DBE=120°,∴∠EAF=∠DBE,又∵A,E,C,F四点共圆,∴∠AEF=∠ACF,又∵ED=DC,∴∠D=∠BCE,∠BCE=∠ACF,∴∠D=∠AEF,∴△EDB≌FEA,∴BD=AF,AB=AE+BF,∴AB=BD+AF.类比探究(1)DE=CE=CF,△BCE由旋转60°得△ACF,∴∠ECF=60°,BE=AF,CE=CF,∴△CEF是等边三角形,∴EF=CE,∴DE=EF,∠EFC=∠BAC=60°,∠EFC=∠FGC+∠FCG,∠BAC=∠FGC+∠FEA,∴∠FCG=∠FEA,又∠FCG=∠EAD∠D=∠EAD,∴∠D=∠FEA,由旋转知∠CBE=∠CAF=120°,∴∠DBE=∠FAE=60°∴△DEB≌△EFA,∴BD=AE, EB=AF,∴BD=FA+AB.即AB=BD-AF.(2)AF=BD+AB(或AB=AF-BD)如图③,,ED=EC=CF,∵△BCE绕点C顺时针旋转60°至△ACF,∴∠ECF=60°,BE=AF,EC=CF,BC=AC,∴△CEF是等边三角形,∴EF=EC ,又∵ED=EC ,∴ED=EF ,∵AB=AC ,BC=AC ,∴△ABC 是等边三角形,∴∠ABC=60°,又∵∠CBE=∠CAF ,∴∠CAF=60°,∴∠EAF=180°-∠CAF-∠BAC=180°-60°-60°=60°∴∠DBE=∠EAF ;∵ED=EC ,∴∠ECD=∠EDC ,∴∠BDE=∠ECD+∠DEC=∠EDC+∠DEC ,又∵∠EDC=∠EBC+∠BED ,∴∠BDE=∠EBC+∠BED+∠DEC=60°+∠BEC ,∵∠AEF=∠CEF+∠BEC=60°+∠BEC ,∴∠BDE=∠AEF ,在△EDB 和△FEA 中,DBE EAF BDE AEF ED EF ∠∠⎧⎪∠∠⎨⎪⎩=== ∴△EDB ≌△FEA (AAS ),∴BD=AE ,EB=AF ,∵BE=AB+AE ,∴AF=AB+BD ,即AB ,DB ,AF 之间的数量关系是:AF=AB+BD .考点:旋转变化,等边三角形,三角形全等,10.已知,正方形ABCD 的边长为4,点E 是对角线BD 延长线上一点,AE=BD .将△ABE 绕点A 顺时针旋转α度(0°<α<360°)得到△AB ′E ′,点B 、E 的对应点分别为B ′、E ′.(1)如图1,当α=30°时,求证:B ′C=DE ;(2)连接B ′E 、DE ′,当B ′E=DE ′时,请用图2求α的值;(3)如图3,点P 为AB 的中点,点Q 为线段B ′E ′上任意一点,试探究,在此旋转过程中,线段PQ 长度的取值范围为 .【答案】(1)证明见解析(2)45°或22.5°(3)22-2≤PQ≤42+2【解析】【分析】(1)先由正方形的性质得到直角三角形AOE,再经过简单计算求出角,判断出△ADE≌△AB′C即可;(2)先判断出△AEB′≌△AE′D,再根据旋转角和图形,判断出∠BAB′=∠DAB′即可;(3)先判断出点Q的位置,PQ最小时和最大时的位置,进行计算即可.【详解】解:(1)如图1,连接AC,B′C,∵四边形ABCD是正方形,∴AB=AD,AC⊥BD,AC=BD=2OA,∠CAB=ADB=45°,∵AE=BD,∴AC=AE=2OA,在Rt△AOE中,∠AOE=90°,AE=2OA,∴∠E=30°,∴∠DAE=∠ADB-∠E=45°-30°=15°,由旋转有,AD=AB=AB′∠BAB′=30°,∴∠DAE=15°,在△ADE和△AB′C中,''AD ABDAE CABAE AC=⎧⎪∠=∠⎨⎪=⎩,∴△ADE≌△AB′C,∴DE=B′C,(2)如图2,由旋转得,AB′=AB=AD,AE′=AE,在△AEB′和△AE′D中,'''' AE AE AD AB DB DE=⎧⎪=⎨⎪=⎩,∴△AEB′≌△AE′D,∴∠DAE′=∠EAB′,∴∠EAE′=∠DAB′,由旋转得,∠EAE′=∠BAB′,∴∠BAB′=∠DAB′,∵∠BAB′+∠DAB′=90°,∴α=∠BAB′=45°,或α=360°-90°-45°=225°;(3)如图3,∵正方形ABCD的边长为4,∴122,连接AC交BD于O,∴OA⊥BD,OA=12AC=122在旋转过程中,△ABE在旋转到边B'E'⊥AB于Q,此时PQ最小,由旋转知,△ABE≌△AB'E',∴AQ=OA=12BD(全等三角形对应边上的高相等),∴PQ=AQ-AP=12-2在旋转过程中,△ABE在旋转到点E在BA的延长线时,点Q和点E'重合,∴,∴+2,故答案为-+2..。
一、选择题1.如图,在ABC 中,75CAB ∠=︒,在同一平面内,将ABC 绕点A 旋转到AB C ''△的位置,使得CC //AB ',则BAB '∠=( )A .30B .35︒C .40︒D .50︒2.下列图形中,不是中心对称图形的是( )A .B .C .D . 3.如图,已知在正方形ABCD 中,AD =4,E ,F 分别是CD ,BC 上的一点,且∠EAF =45°,EC =1,将△ADE 绕点A 沿顺时针方向旋转90°后与△ABG 重合,连接EF ,则以下结论:①DE +BF =EF ,②BF =47,③AF =307,④S △AEF =507中正确的是( )A .①②③B .②③④C .①③④D .①②④ 4.以下四幅图案,其中图案是中心对称图形的是( )A .B .C .D .5.“保护生态,人人有责”.下列生态环保标志中,是中心对称图形的是( ) A . B .C .D .6.如图,在ABC ∆中,30,8,5BAC AB AC ∠===,将ABC ∆绕点A 顺时针旋转30得到ADE ∆连接CD ,则CD 的长是( )A .7B .8C .12D .137.如图,将一个含30角的直角三角尺AOB 放在平面直角坐标系中,两条直角边分别与坐标轴重叠.已知30OAB ∠=︒,12AB =,点D 为斜边AB 的中点,现将三角尺AOB 绕点O 顺时针旋转90︒,则点D 的对应点D 的坐标为( )A .(33,3)B .(63,6)-C .(3,33)-D .(33,3)- 8.如图,O 是正ABC 内一点,3OA =,4OB =,5OC =,将线段BO 以点B 为旋转中心逆时针旋转60︒得到线段BO ',下列结论:①BO A '△可以由BOC 绕点B 逆时针旋转60︒得到;②点O 与O '的距离为4;③150AOB ︒∠=;④633AOBO S '=+四边形.其中正确的结论有( ).A .1个B .2个C .3个D .4个9.如图,在平面直角坐标系中,点A 、B 、C 的坐标分别为(1,0),(0,1),()1,0-.一个电动玩具从坐标原点O 出发,第一次跳跃到点1P ,使得点1P 与点O 关于点A 成中心对称;第二次跳跃到点2P ,使得点2P 与点1P 关于点B 成中心对称;第三次跳跃到点3P ,使得点3P 与点2P 关于点C 成中心对称:第四次跳跃到点4P ,使得点4P 与点3P 关于点A 成中心对称;第五次跳跃到点5P ,使得点6P 与点4P 关于点B 成中心对称;…,照此规律重复下去,则点2013P 的坐标为( )A .(2,2)B .()2,2-C .()0,2-D .()2,0- 10.如图,在平面直角坐标系中Rt △ABC 的斜边BC 在x 轴上,点B 坐标为(1,0),AC=2,∠ABC=30°,把Rt △ABC 先绕B 点顺时针旋转180°,然后再向下平移2个单位,则A 点的对应点A′的坐标为( )A .(﹣4,﹣2﹣3)B .(﹣4,﹣2+3)C .(﹣2,﹣2+3)D .(﹣2,﹣2﹣3)11.如图①是3×3正方形方格,将其中两个方格涂黑,并且使得涂黑后的整个图案是轴对称图形,约定绕正方形ABCD 的中心旋转能重合的图案都视为同一种,例②中四幅图就视为同一种,则得到不同共有( )A .4种B .5种C .6种D .7种12.如图,在等边△ABC 中,AC =9,点O 在AC 上,且AO =3,P 是AB 上一动点,连接OP ,将线段OP 绕点O 逆时针旋转60°得到线段OD ,若使点D 恰好落在BC 上,则线段AP的长是()A.4 B.5 C.6 D.8第II卷(非选择题)请点击修改第II卷的文字说明参考答案二、填空题13.如图,将边长为6的正方形ABCD绕点A逆时针方向旋转30︒后得到正方形'''',则图中阴影部分面积为____________.A B C DDE=,把ADE绕点A 14.如图,在正方形ABCD中,3AB=,点E在CD边上,1△,连接EE',则线段EE'的长为______.顺时针旋转90°,得到ABE'15.如图,如果正方形ABCD绕点C按顺时针方向旋转30°后得到正方形EFCG,连接DG,那么∠DGE=________.16.在直角坐标系中,点(﹣1,2)关于原点对称点的坐标是_____.17.如图,在平面直角坐标系中,点P (1,1),N (2,0),△MNP 和△M 1N 1P 1的顶点都在格点上,△MNP 与△M 1N 1P 1是关于某一点中心对称,则对称中心的坐标为_____.18.如图,BD 为正方形ABCD 的对角线,BE 平分∠DBC ,交DC 与点E ,将△BCE 绕点C 顺时针旋转90°得到△DCF ,若CE =1 cm ,则BF =__________cm .19.如图,在平面直角坐标系中,四边形OBCD 是菱形,OB =OD =2,∠BOD =60°,将菱形OBCD 绕点O 旋转任意角度,得到菱形OB 1C 1D 1,则点C 1的纵坐标的最小值为_____.20.如图,在正方形ABCD 内部有一点P ,PB =1,PC =2,135BPC ∠=︒,则PA = ____.三、解答题21.如图,已知△ABC 的顶点均在格点上,A (1,-4),B (5,-4),C (4,-1) 以原点O 为对称中心,画出△ABC 关于原点O 对称的△111A B C ,并写出点1A ,1B ,1C 的坐标.22.如图,在平面直角坐标系中有一个直角AOB ,已知90OAC ∠=︒,且点B 的坐为()3,2(1)画出OAB 绕原点O 逆时针旋转90︒后的11OA B ;(2)点1B 关于原点O 对称的点2B 的坐标为________.23.(1)如图,点E 、F 分别在正方形ABCD 的边BC 、CD 上,45EAF ∠=︒,求证:EF BE FD =+;(2)如图,四边形ABCD 中,90≠︒∠BAD ,AB AD =,180B D ∠+∠=︒,点E 、F 分别在边BC 、CD 上,则当EAF ∠与BAD ∠满足什么关系时,仍有EF BE FD =+,说明理由.24.如图,已知ABC 和A B C ''''''△及点O .(1)画出ABC 关于点O 对称的A B C ''';(2)若A B C ''''''△与A B C '''关于点O '对称,请确定点O '的位置.25.在ABC ∆中,AB AC =,BAC α∠=.(1)直接写出ABC ∠的大小为______.(用含α的式子表示)(2)当060α︒<<︒时,将线段BC 绕点B 逆时针旋转60︒得到线段BD ,连接AD 、CD .①求证:ABD ACD ∆≅∆;②当40α=︒,求ACD ∠的度数.26.如图,△ABC 为等边三角形,点P 是线段AC 上一动点(点P 不与A ,C 重合),连接BP ,过点A 作直线BP 的垂线段,垂足为点D ,将线段AD 绕点A 逆时针旋转60︒得到线段AE ,连接DE ,CE .(1)求证:BD=CE;(2)延长ED交BC于点F,求证:F为BC的中点.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】旋转中心为点A,B与B′,C与C′分别是对应点,根据旋转的性质可知,旋转角∠BAB′=∠CAC′,AC=AC′,再利用平行线的性质得∠C′CA=∠CAB,把问题转化到等腰△ACC′中,根据内角和定理求∠CAC′,即可求出∠BAB′的度数.【详解】解:∵CC′∥AB,∠CAB=75°,∴∠C′CA=∠CAB=75°,又∵C、C′为对应点,点A为旋转中心,∴AC=AC′,即△ACC′为等腰三角形,∴∠BAB′=∠CAC′=180°-2∠C′CA=30°.故选:A.【点睛】本题考查了旋转的基本性质,对应点到旋转中心的距离相等,对应点与旋转中心的连线的夹角为旋转角.同时考查了平行线的性质.2.A解析:A【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A、是轴对称图形,不是中心对称图形,故本选项符合题意;B、是中心对称图形,故本选项不符合题意;C、是中心对称图形,故本选项不符合题意;D、是中心对称图形,故本选项不符合题意;故选:A.【点睛】本题考查了中心对称图形的概念.中心对称是要寻找对称中心,旋转180°后与原图重合.3.D解析:D【分析】利用全等三角形的性质及勾股定理求出BF的长,再利用勾股定理求出AF的长,从而求得GF,即可求解出△AEF的面积,最终即可判断出所有选项.【详解】∵将△ADE绕点A沿顺时针方向旋转90°后与△ABG重合,∴AG=AE,∠DAE=∠BAG,DE=BG,∵∠EAF=45°,∴∠DAE+∠BAF=45°=∠GAB+∠BAF=∠GAF=45°,∵AG=AE,∠FAE=∠FAG=45°,AF=AF,∴△AFE≌△AFG(SAS),∴EF=FG,∵DE=BG,∴EF=FG=BG+FB=DE+BF,故①正确,∵BC=CD=AD=4,EC=1,∴DE=3,设BF=x,则EF=x+3,CF=4﹣x,在Rt△ECF中,(x+3)2=(4﹣x)2+12,解得x=47,∴BF=47,AF②正确,③错误,∴GF=3+47=257,∴S△AEF=S△AGF=12AB×GF=507,故④正确,故选:D.【点睛】本题考查旋转变换、正方形的性质、全等三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,构造全等三角形解决问题.4.A解析:A【分析】根据中心对称图形的定义逐一分析即可.【详解】解:A、是中心对称图形,故此选项符合题意;B、不是中心对称图形,故此选项不合题意;C、不是中心对称图形,故此选项不合题意;D、不是中心对称图形,故此选项不合题意.故选:A.【点睛】本题考查中心对称图形的识别,掌握中心对称图形的定义是解题的关键.5.D解析:D【分析】根据中心对称图形的定义对各选项分析判断即可得解.【详解】A 、不是中心对称图形,故本选项错误;B 、不是中心对称图形,故本选项错误;C 、不是中心对称图形,故本选项错误;D 、是中心对称图形,故本选项正确.故选:D .【点睛】本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.6.A解析:A【分析】过点D 作DF AC ⊥与F ,由旋转的性质可得AD=AB=8,30BAC DAB ∠=∠=︒,由直角三角形的性质可得AF=4,DF=3AF=43,由勾股定理可求解.【详解】解:过点D 作DF AC ⊥与F ,将ABC ∆绕点A 顺时针旋转30得到ADE ∆,830AD AB BAC DAB ∴==∠=∠=︒,,60CAD ∴∠=︒,且DF AC ⊥,AD=84343AF DF AF ∴===,,1CF ∴=,224817CD DF CF ∴=+=+=故选A ..【点睛】本题考查了旋转的性质、勾股定理,添加合适的辅助线构造直角三角形是解题的关键. 7.D解析:D【分析】先利用直角三角形的性质、勾股定理分别求出OB 、OA 的长,再根据旋转的性质可得,OA OB ''的长,从而可得点,A B ''的坐标,然后根据中点坐标公式即可得.【详解】在Rt AOB 中,30OAB ∠=︒,12AB =,16,2OB AB OA ∴====,由旋转的性质得:6OA OA OB OB ''====,点D 为斜边A B ''的中点, 将三角尺AOB 绕点O 顺时针旋转90︒,∴点A 的对应点A '落在x 轴正半轴上,点B 的对应点B '落在y 轴负半轴上,(0,6)A B ''∴-, 又点D 为斜边A B ''的中点,006(,)22D -'∴,即3)D '-, 故选:D .【点睛】本题考查了直角三角形的性质、勾股定理、旋转的性质、中点坐标公式,熟练掌握旋转的性质是解题关键.8.C解析:C【分析】证明△BO′A ≌△BOC ,又∠OBO′=60°,所以△BO′A 可以由△BOC 绕点B 逆时针旋转60°得到,故结论①正确;由△OBO′是等边三角形,可知结论②正确;在△AOO′中,三边长为3,4,5,这是一组勾股数,故△AOO′是直角三角形;进而求得∠AOB=150°,故结论③正确;S 四边形AOBO′=S △AOO′+S △OBO′=12×3×4+4×42,故结论④错误. 【详解】解:如图,由题意可知,∠1+∠2=∠3+∠2=60°,∴∠1=∠3,又∵OB=O′B,AB=BC,∴△BO′A≌△BOC,又∵∠OBO′=60°,∴△BO′A可以由△BOC绕点B逆时针旋转60°得到,故结论①正确;如图,连接OO′,∵OB=O′B,且∠OBO′=60°,∴△OBO′是等边三角形,∴OO′=OB=4.故结论②正确;∵△BO′A≌△BOC,∴O′A=OC=5.在△AOO′中,三边长为3,4,5,这是一组勾股数,∴△AOO′是直角三角形,∠AOO′=90°,∴∠AOB=∠AOO′+∠BOO′=90°+60°=150°,故结论③正确;S四边形AOBO′=S△AOO′+S△OBO′=12323④错误;故选:C.【点睛】本题考查了旋转变换、等边三角形,直角三角形的性质.利用勾股定理的逆定理,判定勾股数3、4、5所构成的三角形是直角三角形,这是本题的要点.9.C解析:C【分析】计算出前几次跳跃后,点P1,P2,P3,P4,P5,P6,P7的坐标,可得出规律,继而可求出点P2013的坐标.【详解】解:∵点1P与点O关于点A成中心对称,∴P1(2,0),过P 2作P 2D ⊥OB 于点D ,∵2P 与点1P 关于点B 成中心对称,∴P 1B=P 2B ,在△P 1BO 和△P 2BD 中121212PBO P BD POB P DB PB P B ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△P 1BO ≌△P 2BD ,∴P 2D=P 1O=2,BD=BO=1,∴OD=2,∴P 2(-2,2),同理可求:P 3(0,-2),P 4(2,2),P 5(-2,0),P 6(0,0),P 7(2,0),从而可得出6次一个循环,∵20136=335…3, ∴点P 2013的坐标为(0,-2).故选C .【点睛】本题考查了中心对称,全等三角形的判定与性质,以及点的坐标的规律变换,解答本题的关键是求出前几次跳跃后点的坐标,总结出一般规律.10.D解析:D【解析】解:作AD ⊥BC ,并作出把Rt △ABC 先绕B 点顺时针旋转180°后所得△A 1BC 1,如图所示.∵AC =2,∠ABC =30°,∴BC =4,∴AB 3∴AD =AB AC BC ⋅=3243∴BD =2AB BC 223().∵点B 坐标为(1,0),∴A 点的坐标为(4,3).∵BD =3,∴BD 1=3,∴D 1坐标为(﹣2,0),∴A 1坐标为(﹣23∵再向下平移2个单位,∴A ′的坐标为(﹣232).故选D .点睛:本题主要考查了直角三角形的性质,勾股定理,旋转的性质和平移的性质,作出图形利用旋转的性质和平移的性质是解答此题的关键.11.B解析:B【解析】分析:根据轴对称的定义及题意要求画出所有图案后即可得出答案:得到的不同图案有:共5个.故选B .12.C解析:C【分析】根据题意通过“角角边”证明△AOP ≌△CDO ,进而得到AP=OC=AC ﹣AO=6.【详解】解:根据题意可知:∠A=∠C=60°,∵线段OP 绕点O 逆时针旋转得到线段OD ,∴OP=DO ,∵∠DOP=60°,∴∠AOP+∠COD=∠CDO+∠COD=120°,∴∠AOP=∠CDO ,在△AOP 与△CDO 中,A C AOP CDO OP DO ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△AOP ≌△CDO (AAS ),∴AP=OC=AC ﹣AO=6.故选C.【点睛】本题主要考查旋转的性质,全等三角形的判定与性质,等边三角形的性质,熟练掌握其知识点是解此题的关键.二、填空题13.【分析】由旋转角∠BAB′=30°可知∠DAB′=90°﹣30°=60°;构造全等三角形用S 阴影部分=S 正方形﹣S 四边形AB′ED 计算面积即可【详解】如图连接根据旋转角为可知在与中在中故答案为:【点 解析:36123- 【分析】 由旋转角∠BAB′=30°,可知∠DAB′=90°﹣30°=60°;构造全等三角形,用S 阴影部分=S 正方形﹣S 四边形AB′ED ,计算面积即可.【详解】如图,连接AE ,根据旋转角为30,可知,30BAB '∠=︒,9060DAB ∴∠=︒-30︒='︒,在Rt ADE △与Rt AB E '中,AD AB AE AE '=⎧⎨=⎩()Rt ADE Rt AB E HL '∴△△≌,1302EAD B AD DAB '∴∠=∠=∠='︒, ∴在Rt ADE △中,6AD =,23ED =,112623632ADE AD E S D ⋅∴=⨯=⨯=△, 1223ADEB ADE S S '=∴=△,2636ABCD S ==正方形,36123ADEB ABCD S S S '∴-==阴影正方形-,故答案为:36123-.【点睛】本题考查了正方形的性质及旋转的性质,熟练添加辅助线,证明全等,灵活计算阴影面积是解题关键.14.【分析】先根据正方形的性质可得再根据旋转的性质可得从而可得点在同一条直线上然后根据线段的和差可得最后在中利用勾股定理即可得【详解】四边形ABCD 是正方形由旋转的性质得:点在同一条直线上则在中故答案为解析:【分析】先根据正方形的性质可得90,3ABC D C CD BC AB ∠=∠=∠=︒===,再根据旋转的性质可得1,90BE DE ABE D ''==∠=∠=︒,从而可得点,,E B C '在同一条直线上,然后根据线段的和差可得4E C '=,最后在Rt ECE '中,利用勾股定理即可得.【详解】四边形ABCD 是正方形,90,3ABC D C CD BC AB ∴∠=∠=∠=︒===,1DE =,312CE CD DE ∴=-=-=,由旋转的性质得:1,90BE DE ABE D ''==∠=∠=︒,180ABC ABE '∴∠+∠=︒,∴点,,E B C '在同一条直线上,134E C BE BC ''∴=+=+=,则在Rt ECE '中,EE '==,故答案为:【点睛】本题考查了正方形的性质、旋转的性质、勾股定理等知识点,熟练掌握正方形与旋转的性质是解题关键.15.15°【分析】如图根据旋转的性质得∠DCG=30°∠CGE=∠CDA=90°CG=CD 可得△CDG 是等腰三角形再根据顶角度数求出底角∠CGD 的度数它的余角即为所求【详解】解:∵正方形ABCD 绕点C 按解析:15°【分析】如图,根据旋转的性质得∠DCG=30°,∠CGE=∠CDA=90°,CG=CD ,可得△CDG 是等腰三角形,再根据顶角度数求出底角∠CGD 的度数,它的余角即为所求.【详解】解:∵正方形ABCD 绕点C 按顺时针方向旋转30°后得到正方形EFCG ,∴∠DCG=30°,CG=CD ,∠CGE=∠CDA=90°,∴∠CDG=∠CGD=(180°-30°)÷2=75°,∴∠DGE =∠CGE-∠CGD=90°-75°=15°.故答案为:15°.【点睛】本题考查旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查正方形的性质,解题关键是由旋转前、后的图形全等得等腰三角形.16.(1﹣2)【分析】根据平面直角坐标系中任意一点P(xy)关于原点的对称点是(﹣x﹣y)可得答案【详解】解:在直角坐标系中点(﹣12)关于原点对称点的坐标是(1﹣2)故答案为(1﹣2)【点睛】本题考查解析:(1,﹣2)【分析】根据平面直角坐标系中任意一点P(x,y),关于原点的对称点是(﹣x,﹣y),可得答案.【详解】解:在直角坐标系中,点(﹣1,2)关于原点对称点的坐标是(1,﹣2),故答案为(1,﹣2).【点睛】本题考查了关于原点对称的点的坐标,关于原点的对称点,横纵坐标都变成相反数.17.(21)【分析】观察图形根据中心对称的性质即可解答【详解】∵点P (11)N(20)∴由图形可知M(30)M1(12)N1(22)P1(31)∵关于中心对称的两个图形对应点的连线都经过对称中心并且被对解析:(2,1)【分析】观察图形,根据中心对称的性质即可解答.【详解】∵点P(1,1),N(2,0),∴由图形可知M(3,0),M1(1,2),N1(2,2),P1(3,1),∵关于中心对称的两个图形,对应点的连线都经过对称中心,并且被对称中心平分,∴对称中心的坐标为(2,1),故答案为(2,1).【点睛】本题考查了中心对称的性质:①关于中心对称的两个图形能够完全重合;②关于中心对称的两个图形,对应点的连线都经过对称中心,并且被对称中心平分.18.2+【详解】过点E作EM⊥BD于点M如图所示:∵四边形ABCD为正方形∴∠BAC=45°∠BCD=90°∴△DEM为等腰直角三角形∵BE平分∠DBCEM⊥BD∴EM=EC=1cm∴DE=EM=cm由解析:【详解】过点E作EM⊥BD于点M,如图所示:∵四边形ABCD为正方形,∴∠BAC=45°,∠BCD=90°,∴△DEM为等腰直角三角形.∵BE平分∠DBC,EM⊥BD,∴EM=EC=1cm,∴DE=2EM=2cm.由旋转的性质可知:CF=CE=1cm,∴BF=BC+CF=CE+DE+CF=1+2+1=2+2cm.故答案为2+2.19.【分析】连接OC过点C作CE⊥x轴于E由直角三角形的性质可求BE=BC =1CE=由勾股定理可求OC的长据此进一步分析即可求解【详解】如图连接OC过点C作CE⊥x轴于点E∵四边形OBCD是菱形∴OD∥解析:23【分析】连接OC,过点C作CE⊥x轴于E,由直角三角形的性质可求BE=12BC=1,CE=3,由勾股定理可求OC的长,据此进一步分析即可求解.【详解】如图,连接OC,过点C作CE⊥x轴于点E,∵四边形OBCD是菱形,∴OD∥BC,∴∠BOD=∠CBE=60°,∵CE⊥OE,∴BE=12BC=1,CE3∴2223=+=,OC OE CE∴当点C1在y轴上时,点C1的纵坐标有最小值为23-,-.故答案为:23【点睛】本题主要考查了菱形的性质与勾股定理的综合运用,熟练掌握相关概念是解题关键. 20.【分析】将△PBA沿B点顺时针旋转90°此时A与C点重合P点旋转到E 点连接PE易证△BPE是等腰直角三角形利用勾股定理可求出PE的长再证明△PCE是直角三角形利用勾股定理求出CE的长即可得到PA的长解析:6【分析】将△PBA沿B点顺时针旋转90°,此时A与C点重合,P点旋转到E点,连接PE,易证△BPE是等腰直角三角形,利用勾股定理可求出PE的长,再证明△PCE是直角三角形.利用勾股定理求出CE的长,即可得到PA的长.【详解】将△PBA沿B点顺时针旋转90°,此时A与C点重合,P点旋转到E点,连接PE,∴PB=BE=1,PA=EC,∠BPE=90°∴△PEB是等腰直角三角形,∴∠PEB=∠EPB =45°,∴22,又∵∠BPC=135°,∴∠EPC=135°-45°=90°,∴在直角△PEC中,()2222+=+=226PC PE=∴PA=EC66.【点睛】本题考查了正方形的性质、旋转的性质、等腰直角三角形的判断和性质以及勾股定理的运用,解答此题的关键是利用旋转构建直角三角形,由勾股定理求解.三、解答题21.画图见详解;A 1(-1,4),B 1(-5,4),C 1(-4,1).【分析】根据网格结构找出点A 、B 、C 关于坐标原点O 的对称点A 1、B 1、C 1的位置,然后顺次连接即可,再根据平面直角坐标系写出各点的坐标即可.【详解】解:△A 1B 1C 1如图所示;A 1(-1,4),B 1(-5,4),C 1(-4,1).【点睛】本题考查了利用旋转变换作图,熟练掌握网格结构准确找出对应点的位置是解题的关键. 22.(1)作图见解析;(2)()22,3.B -【分析】(1)利用网格特点和旋转的性质,画出点A 、B 的对称点11,A B ,即可得到11OA B ; (2)先写出1B 点的坐标,然后根据关于原点对称的点的坐标特征写出点2B 的坐标.【详解】解:(1)如图,11OA B 为所作;(2)1B 点的坐标为(-2,3),所以点1B 关于原点O 对称的点2B 的坐标为(2,-3).【点睛】本题考查了作图旋转变换,根据旋转的性质,可以作相等的角,在角的边上截取相等的线段,找到对应点,顺次连接得出旋转后的图形.23.(1)见解析;(2)2BAD EAF ∠∠=,见解析【分析】(1)根据旋转的性质可以得到△ADG ≌△ABE ,则GF=BE+DF ,只要再证明△AFG ≌△AFE 即可.(2)延长CB 至M ,使BM=DF ,连接AM ,证△ADF ≌△ABM ,再证△FAE ≌△MAE ,即可得出答案;【详解】(1)证明:把ABE △绕点A 逆时针旋转90°至ADG ,连结EF ,如图所示:则ADG ABE △△≌.∴AG AE =,DAG BAE ∠∠=,DG BE =,又∵45EAF ∠=︒,∴45DAF BAE EAF ∠+∠=∠=︒,∴GAF FAE ∠=∠,在GAF 和FAE 中,AG AE GAF FAE AF AF =⎧⎪∠=∠⎨⎪=⎩,∴)(AFG AFE SAS ≌,∴GF EF =,又∵DG BE =,∴GF BE DF =+,∴BE DF EF +=;(2)2BAD EAF ∠∠=.理由如下:如图所示,延长CB 至M ,使BM DF =,连接AM .∵180ABC D ∠+∠=︒,180ABC ABM ∠+∠=︒,∴D ABM ∠=∠,在ABM 和ADF 中,AB AD ABM D BM DF =⎧⎪∠=∠⎨⎪=⎩,∴)(ABM ADF SAS ≌, ∴AF AM =,DAF BAM ∠∠=,∵2BAD EAF ∠∠=,∴DAF BAE EAF ∠+∠=∠,∴EAB BAM EAM EAF ∠+∠=∠=∠,在FAE 和MAE 中,AE AE FAE MAE AF AM =⎧⎪∠=∠⎨⎪=⎩,∴)(FAE MAE SAS ≌,∴EF EM BE BM BE DF ==+=+,即EF BE DF =+.【点睛】本题考查了正方形的性质、旋转的性质、全等三角形的判定与性质等知识;作出合适的辅助线构建全等三角形是解决问题的关键.24.(1)详见解析(2)详见解析【分析】(1)分别作A 、B 、C 三点关于点O 对称点A B C '''、、,再顺次连接即可;(2)若A B C ''''''△与A B C '''关于点O '对称,连接两组对应点的连线的交点即为所求点.【详解】(1)如图,分别作A 、B 、C 三点关于点O 对称点A B C '''、、,连接A B B C A C ''''''、、,则所得A B C '''为所求三角形;(2)如图,连接C C '''、A A '''相交于点O '、则点O '即为所求点.【点睛】本题考查旋转变换作图,在找旋转中心时,要抓住“动”与“不动”,解题的关键是看图. 25.(1)90°-12α;(2)①见解析;②∠ACD=10°.【分析】(1)由等腰三角形的性质与三角形内角和定理可得∠ABC的大小;(2)①由旋转的性质可得BC=BD,∠DBC=60°,所以△BCD为等边三角形,于是BD=CD,再根据SSS可得△ABD≌△ACD;②先由(1)求得∠ABC=70°,再由△BCD为等边三角形可得∠BDC=60°,于是可得∠ABD 的度数.【详解】解:(1)90°-1 2α∵ AB=AC,∴∠ABC=12(180°-∠BAC)=12(180°-α)=90°-1 2α(2)①线段BC绕点B逆时针旋转60°得到线段BD则BC=BD,∠DBC =60°∴△BCD为等边三角形∴ BD=CD在△ABD和△ACD中,∵AB =ACBD= CD,AD=AD∴△ABD≌△ ACD(SSS)②当α=40°时,∵ AB=AC,∠ACB =∠ABC =90°-12α=70°∵△BCD为等边三角形∴∠BCD =60°∴∠ACD = ∠ACB-∠BCD = 10°【点睛】本题考查了全等三角形的判定与性质、等腰三角形的性质以及旋转的性质,综合性较强,熟练掌握定理及性质是解题的关键.26.(1)见解析;(2)见解析.【分析】(1)由等边三角形的性质和旋转的性质可得∠BAD=∠CAE,AB=AC,AD=AE,即可证△BAD≌△CAE,可得BD=CE;(2)过点C作CG∥BP,交EF的延长线于点G,由等边三角形的性质和全等三角形的性质可得CG=BD,∠BDG=∠G,∠BFD=∠GFC,可证△BFD≌△CFG,可得结论;【详解】(1)∵线段AD 绕点A 逆时针旋转60°得到线段AE ,∴△ADE 是等边三角形,在等边△ABC 和等边△ADE 中,∵ AB=AC ,AD=AE ,∠BAC=∠DAE=60°,∴∠BAD=∠CAE ,在△BAD 和△CAE 中,AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩, ∴△BAD ≌△CAE (SAS ),∴BD=CE ;(2)如图,过点C 作CG ∥BP 交DF 的延长线于点G ,∴∠G=∠BDF ,∵∠ADE=60°,∠ADB=90°,∴∠BDF=30°,∴∠G=30°,由(1)可知,BD=CE ,∠CEA=∠BDA ,∵AD ⊥BP ,∴∠BDA=90°,∴∠CEA=90°,∵∠AED=60°,∴∠CED=30°=∠G ,∴CE=CG ,∴BD=CG ,在△BDF 和△CGF 中,BDF G BFD CFG BD CG ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△BDF ≌△CGF (AAS ),∴BF=FC ,即F 为BC 的中点.【点睛】本题考查了等边三角形的性质,全等三角形的判定和性质,旋转的性质,添加恰当辅助线构造全等三角形是本题的关键.。
2022-2023学年上海市静安区市北初级中学八年级(下)期中数学试卷一、选择题(本大题共6小题,共18.0分。
在每小题列出的选项中,选出符合题目的一项)1. 在同一直角坐标系中,函数y =kx +1和函数y =k x (k 是常数且k ≠0)的图象只可能是( )A. B. C. D.2. 若一次函数y =kx +b 的函数值y 随x 的增大而减小,且图象与y 轴的负半轴相交,那么对k 和b 的符号判断正确的是( )A. k >0,b >0B. k >0,b <0C. k <0,b >0D. k <0,b <03. 如图,直线y =k x +b 交坐标轴于A (−3,0)、B (0,5)两点,则不等式−k x−b <0的解集为( )A. x >−3B. x <−3C. x >3D. x <34. 下列方程中,有实数解的是( )A.B.C. D.5. 在一个凸多n 边形中,它的内角和是540°,则n 为( )A. 2B. 3C. 4D. 56. 某铁路隧道严重破坏.为抢修其中一段120米的铁路,施工队每天比原计划多修5米,结果提前4天开通列车.原计划每天修多少米?设原计划每天修x 米,所列方程正确的是( )A. 120x +5−120x =4B. 120x −120x +5=4C. 120x−5−120x =4D. 120x −120x−5=4二、填空题(本大题共10小题,共30.0分)7. 一次函数y =2x−3的图象不经过第______象限.8. 方程的解是______ .9. 如果分式2x−1与3x +3的值相等,则x =______.10. 将直线y=2x−4向上平移5个单位后,所得直线的表达式是______.11. 已知一次函数y=x−b与反比例函数y=2的图象,有一个交点的纵坐标是2,则b的值为x______.12. 已知点P(−1,y1)、点Q(3,y2)是直线y=−4x+2上的两点,则y1和y2的大小关系为______ .13.直线l1:y=x+1与直线l2:y=mx+n相交于点P(a,2),则关于x的不等式x+1≥mx+n的解集为______.14. 在方程x2+1=3x−4中,如果设y=x2−3x,那么原方程可化为关于y的整式方程x2−3x是______.15.一辆汽车在行驶过程中,路程y(千米)与时间x(小时)之间的函数关系如图所示.当0≤x≤1时,y关于x的函数解析式为y=60x,那么当1<x≤2时,y关于x的函数解析式为______.16. 已知关于x、y的一次函数y=(m+1)x−2m的图象不经过平面直角坐标系中的第二象限,那么m的取值范围是______ .三、解答题(本大题共9小题,共52.0分。
第23章旋转单元测试题一、用心填一填,你一定能填对!1.如图1,△ABC 是等腰直角三角形,D 是AB 上一点,△CBD 经旋转后到达△ACE 的位置,则旋转中心是________;旋转角度是______; 点B 的对应点是_______;点D 的对应点是_______;线段CB 的对应点 是_____;∠B 的对应角是___________;如果点M 是CB 的31, 那么经过上述旋转后,点M 移到了_________.2. 3点12分和3点40分时,时针与分针构成的角各是_______度和_______度.3.请你写出5个成中心对称的汉字,填在下面的横线上__________________________.4.如图2所示的四个图形中,图形(1)与图形________成轴对称;图形(1)与图形______成中心对称.(填写符合要求的图形所对应的符号)5.如图3所示,△ABC 绕点A 逆时针旋转某一角度得到△ADE,若∠1=∠2=∠3=20°,则旋转角为________度.6.如图4所示,线段AB=4cm,且CD ⊥AB 于O,则阴影部分的面积是________.7.如图5①,将字母“V ”沿_______平移________格会得到字母“W ”。
如图5②,将字母“V ”绕点_______旋转_______度后得到字母N,绕点_______旋转_______度后会得到字母X.(图中E 、F 分别是其所在线段的中点)EA BCDEN M 图1 ABCED1 2 3图3A (1)(2)(3)(4)图2AOCBD 图4.. EF A ①②图5图68.如图6是由面积为1的单位正三角形经过平移旋转,拼成由24个相同的三角形组成的正六边形,我们把面积为4的正三角形称为“希望杯”,则图中可数出________个不同的“希望杯”.9.在直角坐标系中,点A(2,-3)关于原点对称的坐标是_______________.10. 在下列图7的四个图案中,既是轴对称图形,又是中心对称图形的有_________个.图7二、精心选一选,你一定能选准!11.观察下列图形,其中是旋转对称图形的有( )A.1个B.2个C.3个D.4个(1) (2) (3) (4)12.你玩过扑克牌吗?你仔细观察过每张扑克牌中的图案吗?请你指出图案是中心对称图形的一组为( )A.黑桃6与黑桃9B.红桃6与红桃9C.梅花6与梅花9D.方块6与方块913.在平面直角坐标系中,点P(2,1)关于原点对称的点在( )A.第一象限B.第二象限C.第三象限D.第四象限14.下列图形中,是.中心对称图形的为()ABC D15.下列图形中是中心对称图形的是A B C D16.在下列四个图案中,既是轴对称图形,又是中心对称图形的是( )A B C D17.下列图案都是由宁母“m”经过变形、组合而成的.其中不是中心对称图形的是( )18.将下面的直角梯形绕直线l旋转一周,可以得到右边立体图形的.B19.数学课上,老师让同学们观察如图8所示的图形,问:它绕着圆心O旋转多少度后和它自身重合?甲同学说:45°;乙同学说:60°;丙同学说:90°;丁同学说:135°。
上海闸北第八中学数学旋转几何综合同步单元检测(Word 版 含答案)一、初三数学 旋转易错题压轴题(难)1.如图,在平面直角坐标系中,点O 为坐标原点,抛物线2y ax bx c =++的顶点是A(1,3),将OA 绕点O 顺时针旋转90︒后得到OB ,点B 恰好在抛物线上,OB 与抛物线的对称轴交于点C .(1)求抛物线的解析式;(2)P 是线段AC 上一动点,且不与点A ,C 重合,过点P 作平行于x 轴的直线,与OAB ∆的边分别交于M ,N 两点,将AMN ∆以直线MN 为对称轴翻折,得到A MN '∆. 设点P 的纵坐标为m .①当A MN '∆在OAB ∆内部时,求m 的取值范围;②是否存在点P ,使'56A MN OAB S S ∆'∆=,若存在,求出满足m 的值;若不存在,请说明理由.【答案】()21y x 22x =-++;(2)①433m <<;②存在,满足m 的值为619-或639-. 【解析】【分析】(1)作AD ⊥y 轴于点D ,作BE ⊥x 轴于点E ,然后证明△AOD ≌△BOE ,则AD=BE ,OD=OE ,即可得到点B 的坐标,然后利用待定系数法,即可求出解析式;(2)①由点P 为线段AC 上的动点,则讨论动点的位置是解题的突破口,有点P 与点A 重合时;点P 与点C 重合时,两种情况进行分析计算,即可得到答案;②根据题意,可分为两种情况进行分析:当点M 在线段OA 上,点N 在AB 上时;当点M 在线段OB 上,点N 在AB 上时;先求出直线OA 和直线AB 的解析式,然后利用m 的式子表示出两个三角形的面积,根据等量关系列出方程,解方程即可求出m 的值.【详解】解:(1)如图:作AD ⊥y 轴于点D ,作BE ⊥x 轴于点E ,∴∠ADO=∠BEO=90°,∵将OA 绕点O 逆时针旋转90︒后得到OB ,∴OA=OB ,∠AOB=90°,∴∠AOD+∠AOE=∠BOE+∠AOE=90°,∴∠AOD=∠BOE ,∴△AOD ≌△BOE ,∴AD=BE ,OD=OE ,∵顶点A 为(1,3),∴AD=BE=1,OD=OE=3,∴点B 的坐标为(3,1-),设抛物线的解析式为2(1)3=-+y a x ,把点B 代入,得 2(31)31a -+=-,∴1a =-,∴抛物线的解析式为2(1)3y x =--+,即222y x x =-++;(2)①∵P 是线段AC 上一动点,∴3m <,∵当A MN '∆在OAB ∆内部时,当点'A 恰好与点C 重合时,如图:∵点B 为(3,1-),∴直线OB 的解析式为13y x =-, 令1x =,则13y =-, ∴点C 的坐标为(1,13-),∴AC=1103()33--=, ∵P 为AC 的中点,∴AP=1105233⨯=, ∴54333m =-=, ∴m 的取值范围是433m <<; ②当点M 在线段OA 上,点N 在AB 上时,如图:∵点P 在线段AC 上,则点P 为(1,m ),∵点'A 与点A 关于MN 对称,则点'A 的坐标为(1,2m -3),∴'3A P m =-,18'(23)233A C m m =-+=-, 设直接OA 为y ax =,直线AB 为y kx b =+,分别把点A ,点B 代入计算,得直接OA 为3y x =;直线AB 为25y x =-+, 令y m =,则点M 的横坐标为3m ,点N 的横坐标为52m --, ∴5552326m m MN m -=-=--; ∵2'11555515'()(3)22261224A MN S MN A P m m m m ∆=•=•-•-=-+; '138'3(2)34223OA B S A C m m ∆=••=•-=-; 又∵'56A MN OA B S S ∆'∆=, ∴255155(34)12246m m m -+=⨯-, 解得:619m =-或619m =+(舍去);当点M 在边OB 上,点N 在边AB 上时,如图:把y m =代入13y x =-,则3x m , ∴5553222m MN m m -=+=+-,18'(23)233A C m m =---=-, ∴2'11555515'()(3)2222424A MN S MN A P m m m m ∆=•=•+•-=-++, '138'3(2)43223OA B S A C m m ∆=••=•-=-, ∵'56A MN OA B S S ∆'∆=,∴255155(43)4246m m m -++=⨯-, 解得:6393m -=或6393m +=(舍去); 综合上述,m 的值为:619m =-或6393m -=. 【点睛】本题考查的是二次函数综合运用,涉及到一次函数、图形的旋转、解一元二次方程、全等三角形的判定和性质、三角形的面积公式等,解题的关键是熟练掌握所学的性质,正确得到点P 的位置.注意运用数形结合的思想和分类讨论的思想进行解题.2.在△ABC 中,∠C =90°,AC =BC =6.(1)如图1,若将线段AB 绕点B 逆时针旋转90°得到线段BD ,连接AD ,则△ABD 的面积为 .(2)如图2,点P 为CA 延长线上一个动点,连接BP ,以P 为直角顶点,BP 为直角边作等腰直角△BPQ ,连接AQ ,求证:AB ⊥AQ ;(3)如图3,点E ,F 为线段BC 上两点,且∠CAF =∠EAF =∠BAE ,点M 是线段AF 上一个动点,点N 是线段AC 上一个动点,是否存在点M ,N ,使CM +NM 的值最小,若存在,求出最小值:若不存在,说明理由.【答案】(1)36;(2)详见解析;(3)存在,最小值为3.【解析】【分析】(1)根据旋转的性质得到△ABD 是等腰直角三角形,求得AD =2BC =12,根据三角形的面积公式即可得到结论;(2)如图2,过Q 作QH ⊥CA 交CA 的延长线于H ,根据等腰直角三角形的性质,得到PQ =PB ,∠BPQ =90°,根据全等三角形的性质得到PH =BC ,QH =CP ,求得CP =AH ,得到∠HAQ =45°,于是得到∠BAQ =180°﹣45°﹣45°=90°,即可得到结论;(3)根据已知条件得到∠CAF =∠EAF =∠BAE =15°,求得∠EAC =30°,如图3,作点C 关于AF 的对称点D ,过D 作DN ⊥AC 于N 交AF 于M ,则此时,CM +NM 的值最小,且最小值=DN ,求得AD =AC =6,根据直角三角形的性质即可得到结论.【详解】解:(1)∵将线段AB绕点B逆时针旋转90°得到线段BD,∴△ABD是等腰直角三角形,∵∠ACB=90°,∴BC⊥AD,∴AD=2BC=12,∴△ABD的面积=12AD•BC=1212×6=36,故答案为:36;(2)如图,过Q作QH⊥CA交CA的延长线于H,∴∠H=∠C=90°,∵△BPQ是等腰直角三角形,∴PQ=PB,∠BPQ=90°,∴∠HPQ+∠BPC=∠QPH+∠PQH=90°,∴∠PQH=∠BPC,∴△PQH≌△BPC(AAS),∴PH=BC,QH=CP,∵AC=BC,∴PH=AC,∴CP=AH,∴QH=AH,∴∠HAQ=45°,∵∠BAC=45°,∴∠BAQ=180°﹣45°﹣45°=90°,∴AB⊥AQ;(3)如图,作点C关于AF的对称点D,过D作DN⊥AC于N交AF于M,∵∠CAF=∠EAF=∠BAE,∠BAC=45°,∴∠CAF=∠EAF=∠BAE=15°,∴∠EAC =30°,则此时,CM +NM 的值最小,且最小值=DN ,∵点C 和点D 关于AF 对称,∴AD =AC =6,∵∠AND =90°,∴DN =12AD =12⨯6=3, ∴CM +NM 最小值为3.【点睛】本题是几何变换综合题,考查了全等三角形的判定与性质,旋转的性质,等腰直角三角形的性质,含30°角的直角三角形的性质,正确的作出作辅助线构造全等三角形是解题的关键.3.已知如图1,在ABC 中,90ABC ∠=︒,BC AB =,点D 在AC 上,DF AC ⊥交BC 于F ,点E 是AF 的中点.(1)写出线段ED 与线段EB 的关系并证明;(2)如图2,将CDF 绕点C 逆时针旋转()090a α︒<<︒,其它条件不变,线段ED 与线段EB 的关系是否变化,写出你的结论并证明;(3)将CDF 绕点C 逆时针旋转一周,如果6BC =,32CF =,直接写出线段CE 的范围.【答案】(1)ED EB =,DE BE ⊥,证明见解析;(2)结论不变,理由见解析;(3)最大值92=最小值32= 【解析】【分析】(1)在Rt △ADF 中,可得DE=AE=EF ,在Rt △ABF 中,可得BE=EF=EA ,得证ED=EB ;然后利用等腰三角形的性质以及四边形ADFB 的内角和为180°,可推导得出∠DEB=90°;(2)如下图,先证四边形MFBA是平行四边形,再证△DCB≌△DFM,从而推导出△DMB 是等腰直角三角形,最后得出结论;(3)如下图,当点F在AC上时,CE有最大值;当点F在AC延长线上时,CE有最小值.【详解】(1)∵DF⊥AC,点E是AF的中点∴DE=AE=EF,∠EDF=∠DFE∵∠ABC=90°,点E是AF的中点∴BE=AE=EF,∠EFB=∠EBF∴DE=EB∵AB=BC,∴∠DAB=45°∴在四边形ABFD中,∠DFB=360°-90°-45°-90°=135°∠DEB=∠DEF+∠FEB=180°-2∠EFD+180°-2∠EFB=360°-2(∠EFD+∠EFB)=360°-2×135°=90°∴DE⊥EB(2)如下图,延长BE至点M处,使得ME=EB,连接MA、ME、MF、MD、FB、DB,延长MF交CB于点H∵ME=EB,点E是AF的中点∴四边形MFBA是平行四边形∴MF∥AB,MF=AB∴∠MHB=180°-∠ABC=90°∵∠DCA=∠FCB=a∴∠DCB=45°+a,∠CFH=90°-a∵∠DCF=45°,∠CDF=90°∴∠DFC=45°,△DCF是等腰直角三角形∴∠DFM=180°-∠DFC-∠CFH=45°+a∴∠DCB=∠DFM∵△ABC和△CDF都是等腰直角三角形∴DC=DF,BC=AB=MF∴△DCB≌△DFM(SAS)∴∠MDF=∠BDC,DB=DM∴∠MDF+∠FDB=∠BDC+∠FDB=90°∴△DMB是等腰直角三角形∵点E是MB的中点∴DE=EB,DE⊥EB(3)当点F在AC上时,CF有最大值,图形如下:∵BC=6,∴在等腰直角△ABC中,AC=62∵CF=32,∴AF=32∴CE=CF+FE=CF+12AF922当点F在AC延长线上时,CE有最小值,图形如下:同理,CE=EF-CF322【点睛】本题考查三角形的旋转变换,用到了等腰直角三角形的性质和平行四边形的性质,解题关键是构造并证明△BDM是等腰直角三角形.4.如图1,在正方形ABCD中,点E、F分别在边BC,CD上,且BE=DF,点P是AF的中点,点Q是直线AC与EF的交点,连接PQ,PD.(1)求证:AC垂直平分EF;(2)试判断△PDQ的形状,并加以证明;(3)如图2,若将△CEF绕着点C旋转180°,其余条件不变,则(2)中的结论还成立吗?若成立,请加以证明;若不成立,请说明理由.【答案】(1)证明见解析;(2)△PDQ是等腰直角三角形;理由见解析(3)成立;理由见解析.【解析】试题分析:(1)由正方形的性质得出AB=BC=CD=AD,∠B=∠ADF=90°,∠BCA=∠DCA=45°,由BE=DF,得出CE=CF,△CEF是等腰直角三角形,即可得出结论;(2)由直角三角形斜边上的中线的性质得出PD=AF,PQ=AF,得出PD=PQ,再证明∠DPQ=90°,即可得出结论;(3)由直角三角形斜边上的中线的性质得出PD=AF,PQ=AF,得出PD=PQ,再证明点A、F、Q、P四点共圆,由圆周角定理得出∠DPQ=2∠DAQ=90°,即可得出结论.试题解析:(1)证明:∵四边形ABCD是正方形,∴AB=BC=CD=AD,∠B=∠ADF=90°,∠BCA=∠DCA=45°,∵BE=DF,∴CE=CF,∴AC垂直平分EF;(2)解:△PDQ是等腰直角三角形;理由如下:∵点P是AF的中点,∠ADF=90°,∴PD=AF=PA,∴∠DAP=∠ADP,∵AC垂直平分EF,∴∠AQF=90°,∴PQ=AF=PA,∴∠PAQ=∠AQP,PD=PQ,∵∠DPF=∠PAD+∠ADP,∠QPF=∠PAQ+∠AQP,∴∠DPQ=2∠PAD+2∠PAQ=2(∠PAD+∠PAQ)=2×45°=90°,∴△PDQ是等腰直角三角形;(3)成立;理由如下:∵点P是AF的中点,∠ADF=90°,∴PD=AF=PA,∵BE=DF,BC=CD,∠FCQ=∠ACD=45°,∠ECQ=∠ACB=45°,∴CE=CF,∠FCQ=∠ECQ,∴CQ⊥EF,∠AQF=90°,∴PQ=AF=AP=PF,∴PD=PQ=AP=PF,∴点A、F、Q、P四点共圆,∴∠DPQ=2∠DAQ=90°,∴△PDQ是等腰直角三角形.考点:四边形综合题.5.在△AOB中,C,D分别是OA,OB边上的点,将△OCD绕点O顺时针旋转到△OC′D′.(1)如图1,若∠AOB=90°,OA=OB,C,D分别为OA,OB的中点,证明:①AC′=BD′;②AC′⊥BD′;(2)如图2,若△AOB为任意三角形且∠AOB=θ,CD∥AB,AC′与BD′交于点E,猜想∠AEB=θ是否成立?请说明理由.【答案】(1)证明见解析;(2)成立,理由见解析【解析】试题分析:(1)①由旋转的性质得出OC=OC′,OD=OD′,∠AOC′=∠BOD′,证出OC′=OD′,由SAS证明△AOC′≌△BOD′,得出对应边相等即可;②由全等三角形的性质得出∠OAC′=∠OBD′,又由对顶角相等和三角形内角和定理得出∠BEA=90°,即可得出结论;(2)由旋转的性质得出OC=OC′,OD=OD′,∠AOC′=∠BOD′,由平行线得出比例式,得出,证明△AOC′∽△BOD′,得出∠OAC′=∠OBD′再由对顶角相等和三角形内角和定理即可得出∠AEB=θ.试题解析:(1)证明:①∵△OCD旋转到△OC′D′,∴OC=OC′,OD=OD′,∠AOC′=∠BOD′,∵OA=OB,C、D为OA、OB的中点,∴OC=OD,∴OC′=OD′,在△AOC′和△BOD′中,,∴△AOC′≌△BOD′(SAS),∴AC′=BD′;②延长AC′交BD′于E,交BO于F,如图1所示:∵△AOC′≌△BOD′,∴∠OAC′=∠OBD′,又∠AFO=∠BFE,∠OAC′+∠AFO=90°,∴∠OBD′+∠BFE=90°,∴∠BEA=90°,∴AC′⊥BD′;(2)解:∠AEB=θ成立,理由如下:如图2所示:∵△OCD旋转到△OC′D′,∴OC=OC′,OD=OD′,∠AOC′=∠BOD′,∵CD∥AB,∴,∴,∴,又∠AOC′=∠BOD′,∴△AOC′∽△BOD′,∴∠OAC′=∠OBD′,又∠AFO=∠BFE,∴∠AEB=∠AOB=θ.考点:相似三角形的判定与性质;全等三角形的判定与性质;旋转的性质.6.某数学活动小组在作三角形的拓展图形,研究其性质时,经历了如下过程:操作发现(1)某小组做了有一个角是120︒的等腰三角形DAC 和等边三角形GEB 纸片,DA DC =,让两个三角形如图①放置,点C 和点G 重合,点D ,点E 在AB 的同侧,AC 和GB 在同一条直线上,点F 为AB 的中点,连接DF ,EF ,则DF 和EF 的数量关系与位置关系为:________;数学思考(2)在图①的基础上,将GEB 绕着C 点按顺时针方向旋转90︒,如图②,试判断DF 和EF 的数量关系和位置关系,并说明理由;类比探索(3)①将GEB 绕着点C 任意方向旋转,如图③或图④,请问DF 和EF 的数量关系和位置关系改变了吗?无论改变与否,选择图③或图④进行证明; ②GEB 绕着点C 旋转的过程中,猜想DF 与EF 的数量关系和位置关系,用一句话表述:________.【答案】(1)3EF DF =,DFEF ; (2)3EF DF =,DFEF ,理由见解析; (3)①3EF DF =,DFEF ;②旋转过程中3EF DF =,DF EF 始终成立.【解析】【分析】(1)由题意过点D 作DM AB ⊥于点M ,过点E 作EN AB ⊥于点N ,利用等边三角形和中点性质设DM a =,2GB b =,结合相似三角形判定和性质进行综合分析求解; (2)根据题意要求判断DF 和EF 的数量关系和位置关系,连接CF ,OB 与AE 交于点M ,并综合利用垂直平分线定理以及矩形和等边三角形性质与三角函数进行综合分析;(3)①根据题意延长DF 并截取FN DF =,连接NE ,连接NB 并延长交CE 于点P ,交DC 的延长线于点O ,连接DE ,并利用全等三角形判定和性质以及三角函数进行分析证明;②由题意可知结合①猜想可知旋转过程中3EF DF =,DFEF 始终成立. 【详解】解:(1)3EF DF =,DF EF ;如解图,过点D 作DM AB ⊥于点M ,过点E 作EN AB ⊥于点N ,AD CD =,EGB 为等边三角形.AM MC ∴=,GN BN =. 又点F 为AB 的中点,AF BF ∴=.()12MF CF NC NB AC AM CB MC NC +=++=+=+∴. MF NC NB ∴==,CF CN FN AM +==.设DM a =,2GB b =,120ADC ∠=︒,DA DC =,3AM a ∴=,3FN a =,MF NC NB b ===.tan 33EGB NE GN GN b =⋅==∠.在DMF 和FNE 中,33DM FN a==, 33MF NE b ==, 又90DMF FNE ∠=∠=︒,DMF FNE ∴∽. MDF NFE ∴∠=∠,3DF DM FE FN ==3EF DF =. 90MDF DFM ∠+∠=︒,90DFM NFE ∴∠+∠=︒.90DFE ∴∠=︒. 3EF DF ∴=且DFEF . (2)3EF DF =,DF EF .理由如下: 如解图,连接CF ,OB 与AE 交于点M ,当旋转角是90︒时,则90ACB ∠=︒,在Rt ACB △中,点F 是AB 的中点,CF BF ∴=.又CE EB =,EF ∴垂直平分BC.同理,DF 垂直平分AC ,∴四边形LCMF 为矩形,90DFE ∴∠=︒.DF EF ∴⊥,//AC EF .DA DC =,120ADC =∠︒,30DCA ∴∠=︒.GEB 为等边三角形,60ECB ∴∠=︒.∴∠DCA+∠ACB+∠ECB=180^∘∴D ,C ,E 三点共线.30DCA DEF ∴∠=∠=︒.∴在Rt DEF △中,3tan 3DE DF F F E DF ===∠; (3)①3EF DF =,DFEF .选择题图进行证明:如解图,延长DF 并截取FN DF =,连接NE ,连接NB 并延长交CE 于点P ,交DC 的延长线于点O ,连接DE ,在ADF 和BNF 中,AF BFAFD BFNDF NF=⎧⎪∠=∠⎨⎪=⎩,()SASADF BNF∴≅.AD NB∴=,ADF BNF∠=∠.//AD NB∴.18060O ADC∴∠=︒-∠=︒.又CPO BPE∠=∠,60O CEB∠=∠=︒,OCP OBE∴∠=∠.DCE NBE∴∠=∠.又GEB是等边三角形,GE BE∴=,又AD BN CD==,()SASDCE NBE∴≅.DE NE∴=,BEN CED∠=∠.BEN BED CED BED∴∠+∠=∠+∠,即60NED BEC∠=∠=︒.DEN∴是等边三角形.又DF FN=,DF EF∴⊥,60FDE∠=︒.tan3E EF DF DFFD∴∠=⋅=.或选择图进行证明,证明如下:如解图,延长DF并延长到点N,使得FN DF=,连接NB,DE,NE,NB与CD交于点O,EB与CD相交于点J,在ADF和BNF中,AF BFAFD BFNDF NF=⎧⎪∠=∠⎨⎪=⎩,()SASADF BNF∴≅.AD NB∴=,ADF BNF∠=∠.//AD NB∴.120NOC ADC ∴∠=∠=︒.60BOJ ∴∠=︒,60JEC ∠=︒.又OJB EJC ∠=∠,OBE ECJ ∴∠=∠.AD CD =,AD NB =,CD NB ∴=.又GEB 是等边三角形,CE BE ∴=.()SAS DCE NBE ∴≅.DE NE ∴=,BEN CED ∠=∠.BEN BED CED BED ∴∠-∠=∠-∠,即60NED BEC ∠=∠=︒.DEN ∴是等边三角形.又DF FN =,DF EF ∴⊥,60FDE ∠=︒.tan 3E E F DF DF FD ∴∠=⋅=.②旋转过程中3EF DF =,DFEF 始终成立.【点睛】本题考查几何图形的综合探究题,难度大,运用数形结合思维分析以及掌握并灵活利用全等三角形判定和性质以及三角函数、相似三角形判定和性质等是解题关键.错因分析:①未掌握旋转的性质,即旋转前后线段、角度均不变;②不能合理利用类比关系,由浅到深解决问题.7.在平面直角坐标系中,四边形AOBC 是矩形,点O (0,0),点A (5,0),点B (0,3).以点A 为中心,顺时针旋转矩形AOBC ,得到矩形ADEF ,点O ,B ,C 的对应点分别为D ,E ,F .(1)如图①,当点D 落在BC 边上时,求点D 的坐标;(2)如图②,当点D 落在线段BE 上时,AD 与BC 交于点H .①求证△ADB ≌△AOB ;②求点H 的坐标.(3)记K 为矩形AOBC 对角线的交点,S 为△KDE 的面积,求S 的取值范围(直接写出结果即可).【答案】(1)D (1,3);(2)①详见解析;②H (175,3);(3)303344-≤S ≤303344+. 【解析】【分析】(1)如图①,在Rt △ACD 中求出CD 即可解决问题;(2)①根据HL 证明即可;②,设AH=BH=m ,则HC=BC-BH=5-m ,在Rt △AHC 中,根据AH 2=HC 2+AC 2,构建方程求出m 即可解决问题;(3)如图③中,当点D 在线段BK 上时,△DEK 的面积最小,当点D 在BA 的延长线上时,△D′E′K 的面积最大,求出面积的最小值以及最大值即可解决问题;【详解】(1)如图①中,∵A (5,0),B (0,3),∴OA =5,OB =3,∵四边形AOBC 是矩形,∴AC =OB =3,OA =BC =5,∠OBC =∠C =90°,∵矩形ADEF 是由矩形AOBC 旋转得到,∴AD =AO =5,在Rt △ADC 中,CD =22AD AC -=4,∴BD =BC -CD =1,∴D (1,3).(2)①如图②中,由四边形ADEF 是矩形,得到∠ADE =90°,∵点D 在线段BE 上,∴∠ADB=90°,由(1)可知,AD=AO,又AB=AB,∠AOB=90°,∴Rt△ADB≌Rt△AOB(HL).②如图②中,由△ADB≌△AOB,得到∠BAD=∠BAO,又在矩形AOBC中,OA∥BC,∴∠CBA=∠OAB,∴∠BAD=∠CBA,∴BH=AH,设AH=BH=m,则HC=BC-BH=5-m,在Rt△AHC中,∵AH2=HC2+AC2,∴m2=32+(5-m)2,∴m=175,∴BH=175,∴H(175,3).(3)如图③中,当点D在线段BK上时,△DEK的面积最小,最小值=12•DE•DK=12×3×(5-342)=303344-,当点D在BA的延长线上时,△D′E′K的面积最大,最大面积=12×D′E′×KD′=12×3×(3430334+综上所述,303344-≤S≤303344+.【点睛】本题考查四边形综合题、矩形的性质、勾股定理、全等三角形的判定和性质、旋转变换等知识,解题的关键是理解题意,灵活运用所学知识解决问题,学会利用参数构建方程解决问题.8.(1)发现如图,点A 为线段BC 外一动点,且BC a =,AB b =.填空:当点A 位于____________时,线段AC 的长取得最大值,且最大值为_________.(用含a ,b 的式子表示)(2)应用点A 为线段BC 外一动点,且3BC =,1AB =.如图所示,分别以AB ,AC 为边,作等边三角形ABD 和等边三角形ACE ,连接CD ,BE .①找出图中与BE 相等的线段,并说明理由;②直接写出线段BE 长的最大值.(3)拓展如图,在平面直角坐标系中,点A 的坐标为()2,0,点B 的坐标为()5,0,点P 为线段AB 外一动点,且2PA =,PM PB =,90BPM ∠=︒,求线段AM 长的最大值及此时点P 的坐标.【答案】(1)CB 的延长线上,a+b ;(2)①DC=BE,理由见解析;②BE 的最大值是4;(3)AM 的最大值是2,点P 的坐标为(22)【解析】【分析】(1)根据点A 位于CB 的延长线上时,线段AC 的长取得最大值,即可得到结论; (2)①根据等边三角形的性质得到AD=AB ,AC=AE ,∠BAD=∠CAE=60°,推出△CAD ≌△EAB ,根据全等三角形的性质得到CD=BE ;②由于线段BE 长的最大值=线段CD 的最大值,根据(1)中的结论即可得到结果;(3)连接BM ,将△APM 绕着点P 顺时针旋转90°得到△PBN ,连接AN ,得到△APN 是等腰直角三角形,根据全等三角形的性质得到PN=PA=2,BN=AM ,根据当N 在线段BA 的延长线时,线段BN 取得最大值,即可得到最大值为2+3;如图2,过P 作PE ⊥x 轴于E ,根据等腰直角三角形的性质即可得到结论.【详解】解:(1)∵点A为线段BC外一动点,且BC=a,AB=b,∴当点A位于CB的延长线上时,线段AC的长取得最大值,且最大值为BC+AB=a+b,故答案为CB的延长线上,a+b;(2)①CD=BE,理由:∵△ABD与△ACE是等边三角形,∴AD=AB,AC=AE,∠BAD=∠CAE=60°,∴∠BAD+∠BAC=∠CAE+∠BAC,即∠CAD=∠EAB,在△CAD与△EAB中,AD ABCAD EABAC AE⎧⎪∠∠⎨⎪⎩===,∴△CAD≌△EAB,∴CD=BE;②∵线段BE长的最大值=线段CD的最大值,由(1)知,当线段CD的长取得最大值时,点D在CB的延长线上,∴最大值为BD+BC=AB+BC=4;(3)∵将△APM绕着点P顺时针旋转90°得到△PBN,连接AN,则△APN是等腰直角三角形,∴PN=PA=2,BN=AM,∵A的坐标为(2,0),点B的坐标为(5,0),∴OA=2,OB=5,∴AB=3,∴线段AM长的最大值=线段BN长的最大值,∴当N在线段BA的延长线时,线段BN取得最大值,最大值=AB+AN,∵22,∴最大值为2+3;如图2,过P作PE⊥x轴于E,∵△APN是等腰直角三角形,∴PE=AE=2,∴OE=BO-AB-AE=5-3-2=2-2,∴P(2-2,2).【点睛】考查了全等三角形的判定和性质,等腰直角三角形的性质,最大值问题,旋转的性质.正确的作出辅助线构造全等三角形是解题的关键.9.如图,已知△ABC和△ADE都是等腰直角三角形,∠ACB=∠ADE=90°,点F为BE的中点,连接CF,DF.(1)如图1,当点D在AB上,点E在AC上时①证明:△BFC是等腰三角形;②请判断线段CF,DF的关系?并说明理由;(2)如图2,将图1中的△ADE绕点A旋转到图2位置时,请判断(1)中②的结论是否仍然成立?并证明你的判断.【答案】(1)①证明见解析;②结论:CF=DF且CF⊥DF.理由见解析;(2)(1)中的结论仍然成立.理由见解析.【解析】【详解】分析:(1)、根据“直角三角形斜边上的中线等于斜边的一半”可知CF=BF=EF,根据∠CFD=2∠ABC,∠ACB=90°,∠ABC=45°得出∠CFD=90°,从而得出答案;(2)、延长DF至G使FG=DF,连接BG,CG,DC,首先证明△BFG和△EFD全等,然后再证明△BCG和△ACD全等,从而得出GC=DC,∠BCG=∠ACD,∠DCG=∠ACB=90°,最后根据直角三角形斜中线的性质得出答案.详解:(1)①证明:∵∠BCE=90°.EF=FB,∴CF=BF=EF,∴△BFC是等腰三角形.②解:结论:CF=DF且CF⊥DF.理由如下:∵∠ADE=90°,∴∠BDE=90°,又∵∠BCE=90°,点F是BE的中点,∴CF=DF=12BE=BF,∴∠1=∠3,∠2=∠4,∴∠5=∠1+∠3=2∠1,∠6=∠2+∠4=2∠2,∴∠CFD=∠5+∠6=2(∠1+∠2)=2∠ABC,又∵△ABC是等腰直角三角形,且∠ACB=90°,∴∠ABC=45°,∴∠CFD=90°,∴CF=DF且CF⊥DF.(2)(1)中的结论仍然成立.理由如下:如图,延长DF至G使FG=DF,连接BG,CG,DC,∵F是BE的中点,∴BF=EF,又∵∠BFG=∠EFD,GF=DF,∴△BFG≌△EFD(SAS),∴∠FBG=∠FED,BG=ED,∴BG∥DE,∵△ADE和△ACB都是等腰直角三角形,∴DE=DA,∠DAE=∠DEA=45°,AC=BC,∠CAB=∠CBA=45°,又∵∠CBG=∠EBG﹣∠EBA﹣∠ABC=∠DEF﹣(180°﹣∠AEB﹣∠EAB)﹣45°=∠DEF﹣180°+∠AEB+∠EAB﹣45°=(∠DEF+∠AEB)+∠EAB﹣225°=360°﹣∠DEA+∠EAB﹣225°=360°﹣45°+∠EAB﹣225°=90°+∠EAB,而∠DAC=∠DAE+∠EAB+∠CAB=45°+∠EAB+45°=90°+∠EAB,∴∠CBG=∠DAC,又∵BG=ED,DE=DA,∴BG=AD,又∵BC=AC,∴△BCG≌△ACD(SAS),∴GC=DC,∠BCG=∠ACD,∴∠DCG=∠DCB+∠BCG=∠DCB+∠ACD=∠ACB=90°,∴△DCG是等腰直角三角形,又∵F是DG的中点,∴CF⊥DF且CF=DF.点睛:主要考查了旋转的性质,等腰三角形和全等三角形的判定,及勾股定理的运用.要掌握等腰三角形和全等三角形的性质及其判定定理并会灵活应用是解题的关键.10.如图1,在平面直角坐标系xOy中,抛物线C:y=ax2+bx+c与x轴相交于A,B两点,顶点为D(0,4),AB2,设点F(m,0)是x轴的正半轴上一点,将抛物线C绕点F 旋转180°,得到新的抛物线C′.(1)求抛物线C的函数表达式;(2)若抛物线C′与抛物线C在y轴的右侧有两个不同的公共点,求m的取值范围.(3)如图2,P是第一象限内抛物线C上一点,它到两坐标轴的距离相等,点P在抛物线C′上的对应点P′,设M是C上的动点,N是C′上的动点,试探究四边形PMP′N能否成为正方形?若能,求出m的值;若不能,请说明理由.【答案】(1)2142y x =-+;(2)2<m <223)m =6或m 17﹣3. 【解析】【分析】(1)由题意抛物线的顶点C (0,4),A (20),设抛物线的解析式为24y ax =+,把A (220)代入可得a =12-,由此即可解决问题; (2)由题意抛物线C ′的顶点坐标为(2m ,﹣4),设抛物线C ′的解析式为()21242y x m =--,由()221421242y x y x m ⎧=-+⎪⎪⎨⎪=--⎪⎩,消去y 得到222280x mx m -+-=,由题意,抛物线C ′与抛物线C 在y 轴的右侧有两个不同的公共点,则有()222(2)428020280m m m m ⎧--->⎪⎪>⎨⎪->⎪⎩,解不等式组即可解决问题; (3)情形1,四边形PMP ′N 能成为正方形.作PE ⊥x 轴于E ,MH ⊥x 轴于H .由题意易知P (2,2),当△PFM 是等腰直角三角形时,四边形PMP ′N 是正方形,推出PF =FM ,∠PFM =90°,易证△PFE ≌△FMH ,可得PE =FH =2,EF =HM =2﹣m ,可得M (m +2,m ﹣2),理由待定系数法即可解决问题;情形2,如图,四边形PMP ′N 是正方形,同法可得M (m ﹣2,2﹣m ),利用待定系数法即可解决问题.【详解】(1)由题意抛物线的顶点C (0,4),A (20),设抛物线的解析式为24y ax =+,把A (220)代入可得a =12-, ∴抛物线C 的函数表达式为2142y x =-+. (2)由题意抛物线C ′的顶点坐标为(2m ,﹣4),设抛物线C ′的解析式为()21242y x m =--,由()221421242y x y x m ⎧=-+⎪⎪⎨⎪=--⎪⎩, 消去y 得到222280x mx m -+-= ,由题意,抛物线C ′与抛物线C 在y 轴的右侧有两个不同的公共点,则有()222(2)428020280m m m m ⎧--->⎪⎪>⎨⎪->⎪⎩, 解得2<m <22,∴满足条件的m 的取值范围为2<m <22.(3)结论:四边形PMP ′N 能成为正方形.理由:1情形1,如图,作PE ⊥x 轴于E ,MH ⊥x 轴于H .由题意易知P (2,2),当△PFM 是等腰直角三角形时,四边形PMP ′N 是正方形,∴PF =FM ,∠PFM =90°,易证△PFE ≌△FMH ,可得PE =FH =2,EF =HM =2﹣m ,∴M (m +2,m ﹣2),∵点M 在2142y x =-+上,∴()212242m m -=-++,解得m 17﹣3173(舍弃),∴m 17﹣3时,四边形PMP ′N 是正方形.情形2,如图,四边形PMP ′N 是正方形,同法可得M (m ﹣2,2﹣m ),把M (m ﹣2,2﹣m )代入2142y x =-+中,()212242m m -=--+,解得m =6或0(舍弃),∴m =6时,四边形PMP ′N 是正方形.综上所述:m=6或m17﹣3时,四边形PMP′N是正方形.。
上海陆行中学北校数学旋转几何综合单元综合测试(Word 版 含答案)一、初三数学 旋转易错题压轴题(难)1.如图1,在Rt △ABC 中,∠A =90°,AB =AC ,点D ,E 分别在边AB ,AC 上,AD =AE ,连接DC ,点M ,P ,N 分别为DE ,DC ,BC 的中点.(1)观察猜想:图1中,线段PM 与PN 的数量关系是 ,位置关系是 ; (2)探究证明:把△ADE 绕点A 逆时针方向旋转到图2的位置,连接MN ,BD ,CE ,判断△PMN 的形状,并说明理由;(3)拓展延伸:把△ADE 绕点A 在平面内自由旋转,若AD =4,AB =10,请直接写出△PMN 面积的最大值.【答案】(1)PM =PN ,PM ⊥PN ;(2)△PMN 是等腰直角三角形.理由见解析;(3)S △PMN 最大=492. 【解析】 【分析】(1)由已知易得BD CE =,利用三角形的中位线得出12PM CE =,12PN BD =,即可得出数量关系,再利用三角形的中位线得出//PM CE 得出DPM DCA ∠=∠,最后用互余即可得出位置关系;(2)先判断出ABD ACE ∆≅∆,得出BD CE =,同(1)的方法得出12PM BD =,12PN BD =,即可得出PM PN =,同(1)的方法由MPN DCE DCB DBC ACB ABC ∠=∠+∠+∠=∠+∠,即可得出结论;(3)方法1:先判断出MN 最大时,PMN ∆的面积最大,进而求出AN ,AM ,即可得出MN 最大AM AN =+,最后用面积公式即可得出结论.方法2:先判断出BD 最大时,PMN ∆的面积最大,而BD 最大是14AB AD +=,即可得出结论. 【详解】 解:(1)点P ,N 是BC ,CD 的中点,//PN BD ∴,12PN BD =, 点P ,M 是CD ,DE 的中点,//PM CE ∴,12PM CE =, AB AC =,AD AE =, BD CE ∴=, PM PN ∴=, //PN BD ,DPN ADC ∴∠=∠, //PM CE ,DPM DCA ∴∠=∠, 90BAC ∠=︒,90ADC ACD ∴∠+∠=︒,90MPN DPM DPN DCA ADC ∴∠=∠+∠=∠+∠=︒, PM PN ∴⊥,故答案为:PM PN =,PM PN ⊥;(2)PMN ∆是等腰直角三角形. 由旋转知,BAD CAE ∠=∠,AB AC =,AD AE =,()ABD ACE SAS ∴∆≅∆,ABD ACE ∴∠=∠,BD CE =,利用三角形的中位线得,12PN BD =,12PM CE =,PM PN ∴=,PMN ∴∆是等腰三角形,同(1)的方法得,//PM CE , DPM DCE ∴∠=∠,同(1)的方法得,//PN BD , PNC DBC ∴∠=∠,DPN DCB PNC DCB DBC ∠=∠+∠=∠+∠,MPN DPM DPN DCE DCB DBC ∴∠=∠+∠=∠+∠+∠BCE DBC ACB ACE DBC =∠+∠=∠+∠+∠ ACB ABD DBC ACB ABC =∠+∠+∠=∠+∠, 90BAC ∠=︒,90ACB ABC ∴∠+∠=︒, 90MPN ∴∠=︒,PMN ∴∆是等腰直角三角形;(3)方法1:如图2,同(2)的方法得,PMN ∆是等腰直角三角形,MN ∴最大时,PMN ∆的面积最大, //DE BC ∴且DE 在顶点A 上面, MN ∴最大AM AN =+,连接AM ,AN ,在ADE ∆中,4AD AE ==,90DAE ∠=︒,22AM ∴=在Rt ABC ∆中,10AB AC ==,52AN = 22522MN ∴=最大,222111149(72)22242PMN S PM MN ∆∴==⨯=⨯=最大. 方法2:由(2)知,PMN ∆是等腰直角三角形,12PM PN BD ==, PM ∴最大时,PMN ∆面积最大, ∴点D 在BA 的延长线上,14BD AB AD ∴=+=,7PM ∴=,2211497222PMN S PM ∆∴==⨯=最大. 【点睛】此题属于几何变换综合题,主要考查了三角形的中位线定理,等腰直角三角形的判定和性质,全等三角形的判断和性质,直角三角形的性质的综合运用;解(1)的关键是判断出12PM CE =,12PN BD =,解(2)的关键是判断出ABD ACE ∆≅∆,解(3)的关键是判断出MN 最大时,PMN ∆的面积最大.2.如图,在矩形ABCD 中,6AB cm =,8AD cm =,连接BD ,将ABD △绕B 点作顺时针方向旋转得到A B D '''△(B ′与B 重合),且点D '刚好落在BC 的延长上,A D ''与CD 相交于点E .(1)求矩形ABCD 与A B D '''△重叠部分(如图1中阴影部分A B CE '')的面积; (2)将A B D '''△以每秒2cm 的速度沿直线BC 向右平移,如图2,当B ′移动到C 点时停止移动.设矩形ABCD 与A B D '''△重叠部分的面积为y ,移动的时间为x ,请你直接写出y 关于x 的函数关系式,并指出自变量x 的取值范围;(3)在(2)的平移过程中,是否存在这样的时间x,使得AA B''△成为等腰三角形?若存在,请你直接写出对应的x的值,若不存在,请你说明理由.【答案】(1)2452cm;(2)22331624(0)22588020016(4)3335x x xyx x x⎧--+≤<⎪⎪=⎨⎪-+≤≤⎪⎩;(3)存在,使得AA B''△成为等腰三角形的x的值有:0秒、32669-.【解析】【分析】(1)先用勾股定理求出BD的长,再根据旋转的性质得出10B D BD cm''==,2CD B D BC cm'=''-=,利用B D A∠'''的正切值求出CE的值,利用三角形的面积差即可求阴影部分的面积;(2)分类讨论,当165x≤<时和当1645x≤≤时,分别列出函数表达式;(3)分类讨论,当AB A B'=''时;当AA A B'=''时;当AB AA'='时,根据勾股定理列方程即可.【详解】解:(1)6AB cm=,8AD cm=,10BD cm∴=,根据旋转的性质可知10B D BD cm''==,2CD B D BC cm'=''-=,tanA B CEB D AA D CD'''''∠==''',682CE∴=,32CE cm∴=,()28634522222A B CE A B D CEDS S S cm''''''⨯∴==-⨯÷=-;(2)①当165x≤<时,22CD x'=+,32CE x=,233+22CD ES x x'∴=△,22133368242222y x x x ∴=⨯⨯-=--+;②当1645x ≤≤时,102BC x =-,()41023CE x =- ()221488020010223333y x x x ∴=⨯-=-+.(3)①如图1,当AB A B '=''时,0x =秒;②如图2,当AA A B '=''时,1825A N BM BB B M x '=='+'=+,245A M NB '==, 2236AN A N +'=,222418623655x ⎛⎫⎛⎫∴-++= ⎪ ⎪⎝⎭⎝⎭,解得:669x -=秒,(669x --=舍去); ③如图2,当AB AA '='时,1825A N BM BB B M x '=='+'=+,245A M NB '==, 2222AB BB AN A N +'=+'22224183646255x x ⎛⎫⎛⎫∴+=-++ ⎪ ⎪⎝⎭⎝⎭解得:32x =秒. 综上所述:使得AA B ''△成为等腰三角形的x 的值有:0秒、32秒、669-.【点睛】本题主要考查了图形的平移变换和旋转变换,能够数形结合,运用分类讨论的思想方法全面的分析问题,思考问题是解决问题的关键.3.阅读下面材料:小炎遇到这样一个问题:如图1,点E 、F 分别在正方形ABCD 的边BC ,CD 上,∠EAF=45°,连结EF ,则EF=BE+DF ,试说明理由.小炎是这样思考的:要想解决这个问题,首先应想办法将这些分散的线段相对集中.她先后尝试了翻折、旋转、平移的方法,最后发现线段AB,AD是共点并且相等的,于是找到解决问题的方法.她的方法是将△ABE绕着点A逆时针旋转90°得到△ADG,再利用全等的知识解决了这个问题(如图2).参考小炎同学思考问题的方法,解决下列问题:(1)如图3,四边形ABCD中,AB=AD,∠BAD=90°点E,F分别在边BC,CD上,∠EAF=45°.若∠B,∠D都不是直角,则当∠B与∠D满足_ 关系时,仍有EF=BE+DF;(2)如图4,在△ABC中,∠BAC=90°,AB=AC,点D、E均在边BC上,且∠DAE=45°,若BD=1, EC=2,求DE的长.【答案】(1)∠B+∠D=180°(或互补);(2)∴【解析】试题分析:(1)如图,△ABE绕着点A逆时针旋转90°得到△ADG,利用全等的知识可知,要使EF=BE+DF,即EF=DG+DF,即要F、D、G三点共线,即∠ADG+∠ADF=180°,即∠B+∠D=180°.(2) 把△ABD绕A点逆时针旋转90°至△ACG,可使AB与AC重合,通过证明△AEG≌△AED得到DE=EG ,由勾股定理即可求得DE 的长. (1)∠B+∠D=180°(或互补). (2)∵ AB=AC ,∴ 把△ABD 绕A 点逆时针旋转90°至△ACG ,可使AB 与AC 重合. 则∠B=∠ACG ,BD=CG ,AD=AG . ∵在△ABC 中,∠BAC=90°,∴∠ACB+∠ACG=∠ACB+∠B=90°于,即∠ECG=90°. ∴ EC 2+CG 2=EG 2. 在△AEG 与△AED 中,∠EAG=∠EAC+∠CAG=∠EAC+∠BAD=90°-∠EAD=45°=∠EAD . 又∵AD=AG ,AE=AE , ∴△AEG ≌△AED . ∴DE=EG . 又∵CG=BD, ∴ BD 2+EC 2=DE 2. ∴.考点:1.面动旋转问题;2.全等三角形的判定和性质;3.勾股定理.4.两块等腰直角三角形纸片AOB 和COD 按图1所示放置,直角顶点重合在点O 处,25AB =,17CD =.保持纸片AOB 不动,将纸片COD 绕点O 逆时针旋转(090)αα<<角度,如图2所示.()1利用图2证明AC BD =且AC BD ⊥;()2当BD 与CD 在同一直线上(如图3)时,求AC 的长和α的正弦值.【答案】(1)详见解析;(2)7,725. 【解析】 【分析】(1)图形经过旋转以后明确没有变化的边长,证明AOC BOD ≅,得出AC=BD ,延长BD交AC于E,证明∠AEB=90︒,从而得到BD AC⊥.(2) 如图3中,设AC=x,在Rt △ABC中,利用勾股定理求出x,再根据sinα=sin∠ABC=ACAB 即可解决问题【详解】()1证明:如图2中,延长BD交OA于G,交AC于E.∵90AOB COD∠=∠=,∴AOC DOB∠=∠,在AOC和BOD中,OA OBAOC BODOC OD=⎧⎪∠=∠⎨⎪=⎩,∴AOC BOD≅,∴AC BD=,CAO DBO∠=∠,∵90DBO GOB∠+∠=,∵OGB AGE∠=∠,∴90CAO AGE∠+∠=,∴90AEG∠=,∴BD AC⊥.()2解:如图3中,设AC x=,∵BD、CD在同一直线上,BD AC⊥,∴ABC是直角三角形,∴222AC BC AB+=,∴222(17)25x x++=,解得7x=,∵45ODC DBOα∠=∠+∠=,45ABC DBO∠+∠=,∴ABCα∠=∠,∴7 sin sin25ACABCABα=∠==.【点睛】本题考查旋转的性质、全等三角形的判定和性质、勾股定理、等腰直角三角形的性质等知识,解题的关键是正确寻找全等三角形,利用全等三角形的性质解决问题,第二个问题的关键是利用(1)的结论解决问题,属于中考常考题型.5.(1)如图①,在矩形ABCD中,对角线AC与BD相交于点O,过点O作直线EF⊥BD,交AD于点E,交BC于点F,连接BE、DF,且BE平分∠ABD.①求证:四边形BFDE是菱形;②直接写出∠EBF的度数;(2)把(1)中菱形BFDE进行分离研究,如图②,点G、I分别在BF、BE边上,且BG=BI,连接GD,H为GD的中点,连接FH并延长,交ED于点J,连接IJ、IH、IF、IG.试探究线段IH与FH之间满足的关系,并说明理由;(3)把(1)中矩形ABCD进行特殊化探究,如图③,当矩形ABCD满足AB=AD时,点E是对角线AC上一点,连接DE、EF、DF,使△DEF是等腰直角三角形,DF交AC于点G.请直接写出线段AG、GE、EC三者之间满足的数量关系.【答案】(1)①详见解析;②60°.(2)IH=3FH;(3)EG2=AG2+CE2.【解析】【分析】(1)①由△DOE≌△BOF,推出EO=OF,∵OB=OD,推出四边形EBFD是平行四边形,再证明EB=ED即可.②先证明∠ABD=2∠ADB,推出∠ADB=30°,延长即可解决问题.(2)IH=3FH.只要证明△IJF是等边三角形即可.(3)结论:EG2=AG2+CE2.如图3中,将△ADG绕点D逆时针旋转90°得到△DCM,先证明△DEG≌△DEM,再证明△ECM是直角三角形即可解决问题.【详解】(1)①证明:如图1中,∵四边形ABCD是矩形,∴AD∥BC,OB=OD,∴∠EDO=∠FBO,在△DOE和△BOF中,EDO FBOOD OBEOD BOF∠∠⎧⎪⎨⎪∠∠⎩===,∴△DOE≌△BOF,∴EO=OF,∵OB=OD,∴四边形EBFD是平行四边形,∵EF⊥BD,OB=OD,∴EB=ED,∴四边形EBFD是菱形.②∵BE平分∠ABD,∴∠ABE=∠EBD,∵EB=ED,∴∠EBD=∠EDB,∴∠ABD=2∠ADB,∵∠ABD+∠ADB=90°,∴∠ADB=30°,∠ABD=60°,∴∠ABE=∠EBO=∠OBF=30°,∴∠EBF=60°.(2)结论:IH=3FH.理由:如图2中,延长BE到M,使得EM=EJ,连接MJ.∵四边形EBFD是菱形,∠B=60°,∴EB=BF=ED,DE∥BF,∴∠JDH=∠FGH,在△DHJ和△GHF中,DHG GHFDH GHJDH FGH∠∠⎧⎪⎨⎪∠∠⎩===,∴△DHJ≌△GHF,∴DJ=FG,JH=HF,∴EJ=BG=EM=BI,∵∠MEJ=∠B=60°,∴△MEJ是等边三角形,∴MJ=EM=NI,∠M=∠B=60°在△BIF和△MJI中,BI MJB MBF IM⎧⎪∠∠⎨⎪⎩===,∴△BIF≌△MJI,∴IJ=IF,∠BFI=∠MIJ,∵HJ=HF,∴IH⊥JF,∵∠BFI+∠BIF=120°,∴∠MIJ+∠BIF=120°,∴∠JIF=60°,∴△JIF是等边三角形,在Rt△IHF中,∵∠IHF=90°,∠IFH=60°,∴∠FIH=30°,∴IH=3FH.(3)结论:EG2=AG2+CE2.理由:如图3中,将△ADG绕点D逆时针旋转90°得到△DCM,∵∠FAD+∠DEF=90°,∴AFED四点共圆,∴∠EDF=∠DAE=45°,∠ADC=90°,∴∠ADF+∠EDC=45°,∵∠ADF=∠CDM,∴∠CDM+∠CDE=45°=∠EDG,在△DEM和△DEG中,DE DEEDG EDMDG DM⎧⎪∠∠⎨⎪⎩===,∴△DEG≌△DEM,∴GE=EM,∵∠DCM=∠DAG=∠ACD=45°,AG=CM,∴∠ECM=90°∵EG=EM,AG=CM,∴GE2=AG2+CE2.【点睛】考查四边形综合题、矩形的性质、正方形的性质、菱形的判定和性质,等边三角形的判定和性质,勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形,学会转化的思想思考问题.6.阅读材料:小胖同学发现这样一个规律:两个顶角相等的等腰三角形,如果具有公共的顶角的顶点,并把它们的底角顶点连接起来则形成一组旋转全等的三角形.小胖把具有这个规律的图形称为“手拉手”图形.如图1,在“手拉手”图形中,小胖发现若∠BAC=∠DAE,AB=AC,AD=AE,则BD=CE,(1)在图1中证明小胖的发现;借助小胖同学总结规律,构造“手拉手”图形来解答下面的问题:(2)如图2,AB=BC,∠ABC=∠BDC=60°,求证:AD+CD=BD;(3)如图3,在△ABC中,AB=AC,∠BAC=m°,点E为△ABC外一点,点D为BC中点,∠EBC=∠ACF,ED⊥FD,求∠EAF的度数(用含有m的式子表示).【答案】(1)证明见解析;(2)证明见解析;(3)∠EAF =12 m°.【解析】分析:(1)如图1中,欲证明BD=EC,只要证明△DAB≌△EAC即可;(2)如图2中,延长DC到E,使得DB=DE.首先证明△BDE是等边三角形,再证明△ABD≌△CBE即可解决问题;(3)如图3中,将AE绕点E逆时针旋转m°得到AG,连接CG、EG、EF、FG,延长ED到M,使得DM=DE,连接FM、CM.想办法证明△AFE≌△AFG,可得∠EAF=∠FAG=12 m°.详(1)证明:如图1中,∵∠BAC=∠DAE ,∴∠DAB=∠EAC ,在△DAB 和△EAC 中,AD AE DAB EAC AB AC ⎧⎪∠∠⎨⎪⎩===, ∴△DAB ≌△EAC ,∴BD=EC .(2)证明:如图2中,延长DC 到E ,使得DB=DE.∵DB=DE ,∠BDC=60°,∴△BDE 是等边三角形,∴∠BD=BE ,∠DBE=∠ABC=60°,∴∠ABD=∠CBE ,∵AB=BC ,∴△ABD ≌△CBE ,∴AD=EC ,∴BD=DE=DC+CE=DC+AD .∴AD+CD=BD .(3)如图3中,将AE 绕点E 逆时针旋转m°得到AG ,连接CG 、EG 、EF 、FG ,延长ED 到M ,使得DM=DE ,连接FM 、CM .由(1)可知△EAB≌△GAC,∴∠1=∠2,BE=CG,∵BD=DC,∠BDE=∠CDM,DE=DM,∴△EDB≌△MDC,∴EM=CM=CG,∠EBC=∠MCD,∵∠EBC=∠ACF,∴∠MCD=∠ACF,∴∠FCM=∠ACB=∠ABC,∴∠1=3=∠2,∴∠FCG=∠ACB=∠MCF,∵CF=CF,CG=CM,∴△CFG≌△CFM,∴FG=FM,∵ED=DM,DF⊥EM,∴FE=FM=FG,∵AE=AG,AF=AF,∴△AFE≌△AFG,∴∠EAF=∠FAG=12 m°.点睛:本题考查几何变换综合题、旋转变换、等腰三角形的性质、全等三角形的判定和性质等知识,解题的关键是学会利用“手拉手”图形中的全等三角形解决问题,学会构造“手拉手”模型,解决实际问题,属于中考压轴题.7.(1)发现如图,点A为线段BC外一动点,且BC a=,AB b=.填空:当点A位于____________时,线段AC的长取得最大值,且最大值为_________.(用含a,b的式子表示)(2)应用点A 为线段BC 外一动点,且3BC =,1AB =.如图所示,分别以AB ,AC 为边,作等边三角形ABD 和等边三角形ACE ,连接CD ,BE .①找出图中与BE 相等的线段,并说明理由;②直接写出线段BE 长的最大值.(3)拓展如图,在平面直角坐标系中,点A 的坐标为()2,0,点B 的坐标为()5,0,点P 为线段AB 外一动点,且2PA =,PM PB =,90BPM ∠=︒,求线段AM 长的最大值及此时点P 的坐标.【答案】(1)CB 的延长线上,a+b ;(2)①DC=BE,理由见解析;②BE 的最大值是4;(3)AM 的最大值是2,点P 的坐标为(22)【解析】【分析】(1)根据点A 位于CB 的延长线上时,线段AC 的长取得最大值,即可得到结论; (2)①根据等边三角形的性质得到AD=AB ,AC=AE ,∠BAD=∠CAE=60°,推出△CAD ≌△EAB ,根据全等三角形的性质得到CD=BE ;②由于线段BE 长的最大值=线段CD 的最大值,根据(1)中的结论即可得到结果;(3)连接BM ,将△APM 绕着点P 顺时针旋转90°得到△PBN ,连接AN ,得到△APN 是等腰直角三角形,根据全等三角形的性质得到PN=PA=2,BN=AM ,根据当N 在线段BA 的延长线时,线段BN 取得最大值,即可得到最大值为2+3;如图2,过P 作PE ⊥x 轴于E ,根据等腰直角三角形的性质即可得到结论.【详解】解:(1)∵点A 为线段BC 外一动点,且BC=a ,AB=b ,∴当点A 位于CB 的延长线上时,线段AC 的长取得最大值,且最大值为BC+AB=a+b ,故答案为CB的延长线上,a+b;(2)①CD=BE,理由:∵△ABD与△ACE是等边三角形,∴AD=AB,AC=AE,∠BAD=∠CAE=60°,∴∠BAD+∠BAC=∠CAE+∠BAC,即∠CAD=∠EAB,在△CAD与△EAB中,AD ABCAD EABAC AE⎧⎪∠∠⎨⎪⎩===,∴△CAD≌△EAB,∴CD=BE;②∵线段BE长的最大值=线段CD的最大值,由(1)知,当线段CD的长取得最大值时,点D在CB的延长线上,∴最大值为BD+BC=AB+BC=4;(3)∵将△APM绕着点P顺时针旋转90°得到△PBN,连接AN,则△APN是等腰直角三角形,∴PN=PA=2,BN=AM,∵A的坐标为(2,0),点B的坐标为(5,0),∴OA=2,OB=5,∴AB=3,∴线段AM长的最大值=线段BN长的最大值,∴当N在线段BA的延长线时,线段BN取得最大值,最大值=AB+AN,∵22,∴最大值为2+3;如图2,过P作PE⊥x轴于E,∵△APN是等腰直角三角形,∴PE=AE=2,∴OE=BO-AB-AE=5-3-2=2-2,∴P(2-2,2).【点睛】考查了全等三角形的判定和性质,等腰直角三角形的性质,最大值问题,旋转的性质.正确的作出辅助线构造全等三角形是解题的关键.8.如图,已知△ABC和△ADE都是等腰直角三角形,∠ACB=∠ADE=90°,点F为BE的中点,连接CF,DF.(1)如图1,当点D在AB上,点E在AC上时①证明:△BFC是等腰三角形;②请判断线段CF,DF的关系?并说明理由;(2)如图2,将图1中的△ADE绕点A旋转到图2位置时,请判断(1)中②的结论是否仍然成立?并证明你的判断.【答案】(1)①证明见解析;②结论:CF=DF且CF⊥DF.理由见解析;(2)(1)中的结论仍然成立.理由见解析.【解析】【详解】分析:(1)、根据“直角三角形斜边上的中线等于斜边的一半”可知CF=BF=EF,根据∠CFD=2∠ABC,∠ACB=90°,∠ABC=45°得出∠CFD=90°,从而得出答案;(2)、延长DF至G使FG=DF,连接BG,CG,DC,首先证明△BFG和△EFD全等,然后再证明△BCG和△ACD全等,从而得出GC=DC,∠BCG=∠ACD,∠DCG=∠ACB=90°,最后根据直角三角形斜中线的性质得出答案.详解:(1)①证明:∵∠BCE=90°.EF=FB,∴CF=BF=EF,∴△BFC是等腰三角形.②解:结论:CF=DF且CF⊥DF.理由如下:∵∠ADE=90°,∴∠BDE=90°,又∵∠BCE=90°,点F是BE的中点,∴CF=DF=12BE=BF,∴∠1=∠3,∠2=∠4,∴∠5=∠1+∠3=2∠1,∠6=∠2+∠4=2∠2,∴∠CFD=∠5+∠6=2(∠1+∠2)=2∠ABC,又∵△ABC是等腰直角三角形,且∠ACB=90°,∴∠ABC=45°,∴∠CFD=90°,∴CF=DF且CF⊥DF.(2)(1)中的结论仍然成立.理由如下:如图,延长DF至G使FG=DF,连接BG,CG,DC,∵F是BE的中点,∴BF=EF,又∵∠BFG=∠EFD,GF=DF,∴△BFG≌△EFD(SAS),∴∠FBG=∠FED,BG=ED,∴BG∥DE,∵△ADE和△ACB都是等腰直角三角形,∴DE=DA,∠DAE=∠DEA=45°,AC=BC,∠CAB=∠CBA=45°,又∵∠CBG=∠EBG﹣∠EBA﹣∠ABC=∠DEF﹣(180°﹣∠AEB﹣∠EAB)﹣45°=∠DEF﹣180°+∠AEB+∠EAB﹣45°=(∠DEF+∠AEB)+∠EAB﹣225°=360°﹣∠DEA+∠EAB﹣225°=360°﹣45°+∠EAB﹣225°=90°+∠EAB,而∠DAC=∠DAE+∠EAB+∠CAB=45°+∠EAB+45°=90°+∠EAB,∴∠CBG=∠DAC,又∵BG=ED,DE=DA,∴BG=AD,又∵BC=AC,∴△BCG≌△ACD(SAS),∴GC=DC,∠BCG=∠ACD,∴∠DCG=∠DCB+∠BCG=∠DCB+∠ACD=∠ACB=90°,∴△DCG是等腰直角三角形,又∵F是DG的中点,∴CF⊥DF且CF=DF.点睛:主要考查了旋转的性质,等腰三角形和全等三角形的判定,及勾股定理的运用.要掌握等腰三角形和全等三角形的性质及其判定定理并会灵活应用是解题的关键.9.两块等腰直角三角板△ABC和△DEC如图摆放,其中∠ACB=∠DCE=90°,F是DE的中点,H是AE的中点,G是BD的中点.(1)如图1,若点D、E分别在AC、BC的延长线上,通过观察和测量,猜想FH和FG的数量关系为______和位置关系为______;(2)如图2,若将三角板△DEC绕着点C顺时针旋转至ACE在一条直线上时,其余条件均不变,则(1)中的猜想是否还成立,若成立,请证明,不成立请说明理由;(3)如图3,将图1中的△DEC绕点C顺时针旋转一个锐角,得到图3,(1)中的猜想还成立吗?直接写出结论,不用证明.【答案】(1)相等,垂直.(2)成立,证明见解析;(3)成立,结论是FH=FG,FH⊥FG.【解析】试题分析:(1)证AD=BE,根据三角形的中位线推出FH=12AD,FH∥AD,FG=12BE,FG∥BE,即可推出答案;(2)证△ACD≌△BCE,推出AD=BE,根据三角形的中位线定理即可推出答案;(3)连接BE、AD,根据全等推出AD=BE,根据三角形的中位线定理即可推出答案.试题解析:(1)解:∵CE=CD,AC=BC,∠ECA=∠DCB=90°,∴BE=AD,∵F是DE的中点,H是AE的中点,G是BD的中点,∴FH=12AD,FH∥AD,FG=12BE,FG∥BE,∴FH=FG,∵AD⊥BE,∴FH⊥FG,故答案为相等,垂直.(2)答:成立,证明:∵CE=CD,∠ECD=∠ACD=90°,AC=BC,∴△ACD≌△BCE∴AD=BE,由(1)知:FH=12AD,FH∥AD,FG=12BE,FG∥BE,∴FH=FG,FH⊥FG,∴(1)中的猜想还成立.(3)答:成立,结论是FH=FG ,FH ⊥FG .连接AD ,BE ,两线交于Z ,AD 交BC 于X ,同(1)可证 ∴FH=12AD ,FH ∥AD ,FG=12BE ,FG ∥BE , ∵三角形ECD 、ACB 是等腰直角三角形,∴CE=CD ,AC=BC ,∠ECD=∠ACB=90°,∴∠ACD=∠BCE , 在△ACD 和△BCE 中AC BC ACD BCE CE CD ⎧⎪∠∠⎨⎪⎩=== , ∴△ACD ≌△BCE ,∴AD=BE ,∠EBC=∠DAC ,∵∠DAC+∠CXA=90°,∠CXA=∠DXB ,∴∠DXB+∠EBC=90°,∴∠EZA=180°﹣90°=90°,即AD ⊥BE ,∵FH ∥AD ,FG ∥BE ,∴FH ⊥FG ,即FH=FG ,FH ⊥FG ,结论是FH=FG ,FH ⊥FG.【点睛】运用了等腰直角三角形的性质、全等三角形的性质和判定、三角形的中位线定理,旋转的性质等知识点的理解和掌握,能熟练地运用这些性质进行推理是解此题的关键.10.在矩形ABCD 中,2AB =,1BC =,以点A 为旋转中心,逆时针旋转矩形ABCD ,旋转角为(0180)αα<<,得到矩形AEFG ,点B 、点C 、点D 的对应点分别为点E 、点F 、点G .()1如图①,当点E 落在DC 边上时,直写出线段EC 的长度为______;()2如图②,当点E 落在线段CF 上时,AE 与DC 相交于点H ,连接AC ,①求证:ACD ≌CAE ;②直接写出线段DH 的长度为______.()3如图③设点P 为边FG 的中点,连接PB ,PE ,在矩形ABCD 旋转过程中,BEP 的面积是否存在最大值?若存在请直接写出这个最大值;若不存在请说明理由.【答案】(1)23;(2)①见解析;34②;(3)存在,PBE 的面积的最大值为21,理由见解析 【解析】【分析】 ()1如图①中,在Rt ADE 中,利用勾股定理即可解决问题;()2①证明:如图②中,根据HL 即可证明ACD ≌CAE ;②如图②中,由ACD ≌CAE ,推出ACD CAE ∠∠=,推出AH HC =,设AH HC m ==,在Rt ADH 中,根据222AD DH AH +=,构建方程即可解决问题; ()3存在.如图③中,连接PA ,作BM PE ⊥交PE 的延长线于M.由题意:PF PC 1==,由AG EF 1==,G F 90∠∠==,推出PA PE 2==PBE 12S PE BM 2=⋅⋅=,推出当BM 的值最大时,PBE 的面积最大,求出BM 的最大值即可解决问题;【详解】()1四边形ABCD 是矩形,AB CD 2∴==,BC AD 1==,D 90∠=,矩形AEFG 是由矩形ABCD 旋转得到,AE AB 2∴==,在Rt ADE 中,22DE 213=-=CE 23∴=,故答案为23.()2①当点E 落在线段CF 上,AEC ADC 90∠∠∴==,在Rt ADC 和Rt AEC 中,{AC CACD AE ==, Rt ACD ∴≌()Rt CAE HL ; ACD ②≌CAE ,ACD CAE ∠∠∴=,AH HC ∴=,设AH HC m ==,在Rt ADH 中,222AD DH AH +=,2221(2m)m ∴+-=,5m 4∴=, 53DH 244∴=-=, 故答案为34; ()3存在.理由如下:如图③中,连接PA ,作BM PE ⊥交PE 的延长线于M ,由题意:PF PC 1==,AG EF 1==,G F 90∠∠==,PA PE 2∴==PBE 12S PE BM BM 22∴=⋅⋅=, ∴当BM 的值最大时,PBE 的面积最大,BM PB ≤,PB AB PA ≤+,PB 22∴≤,BM 22∴≤BM ∴的最大值为22+∴1.PBE【点睛】本题是四边形综合题,考查了矩形的性质,旋转变换,全等三角形的判定和性质,勾股定理,三角形的面积,三角形的三边关系等知识,解题的关键是正确寻找全等三角形解决问题,学会利用参数构建方程解决问题,属于中考压轴题.。
人教版九年级上册第二十三章旋转单元测试(含答案)(1)一、选择题(本大题10小题,每题 3 分,共 30 分)1. 以下图形,既是中心对称图形又是轴对称图形的是()A B C D2. 以下旋转中,旋转中心为点 A 的是()A B C D3.已知将数字“ 6”旋转 180 °,获得数字“9”;将数字“ 9”旋转 180 °,获得数字“ 6”.若将数字“ 69”旋转 180°,获得的数字是()A.96B. 69C. 66D. 994. 已知△ ABO 与△ A1B1O 在平面直角坐标系中的地点如下图,它们对于点 O 成中心对称,此中点 A( 2, 1),则点 A1的坐标是()A .( 2, -1)B.( -2, -1)C.( -1, -2) D .(1, -2)第4题图5. 如图,在4 4 的正方形网格中,△第5题图PMN 绕某点旋转必定的角度,获得△第6题图P1M1N1,其旋转中心是()A.点A B.点B C.点 C D.点 D6.如图,以点 A 为中心,将△ABC逆时针旋转120获得△AB′C′(点B,C的对应点分别为点 B ′, C′),连结BB ′.若 AC ′∥BB ′,则∠ CAB ′的度数为()A . 45°B. 60°C. 70°D. 90°7.如图,若将△ ABC 绕点 O 逆时针旋转 90°获得△ A1B1C1,则极点 B 的对应点 B1的坐标为()A. (-4, 2)B.( -2, 4)C. (4, -2)D.( 2, -4)y54A 32 C B1-5 -4 -3 -2 -1O 1 2 3 4 5 x-1-2-3-4第7题图第8题图第9题图8.如图,正方形 ABCD 的对角线订交于点 O,正方形 EFGO 绕点 O 旋转,若两个正方形的边长相等,则两个正方形重合部分的面积()A .由小变大B.由大变小C.一直不变D.先由大变小,再由小变大9.如图,将 Rt△ABC 绕其直角极点 C 顺时针旋转至△ A ′B′C,已知 AC=8 , BC=6 ,点M ,M ′分别是AB , A ′B′的中点,则 MM ′的长是()A.5 2 B. 4 C. 3D. 510.如图,已知△ ABC 与△ CDA 对于点 O 对称,过点 O 任作直线 EF 分别交 AD ,BC 于点 E,F,下边的结论:①点 E 与点 F,点 B 与点 D 是对于点O 的对称点;②直线BD 必经过点 O;③四边形 ABCD 是中心对称图形;④四边形DEOC 与四边形 BFOA 的面积相等;⑤△ AOE 与△ COF 成中心对称 .此中正确的个数为()A . 2B . 3C. 4D. 5二、填空题(本大题 6 小题,每题 4 分,共 24 分)11.时钟上的分针匀速旋转一周需要60 分钟,则经过10 分钟,分针旋转了度.12.已知点 A( x-2 ,3)与点 B( x+4 ,y-5)对于原点对称,则y x的值是.13.如图,△ ODC 是由△ OAB 绕点 O 顺时针旋转 40°后获得的图形,若点 D 恰巧落在AB 上,且∠ AOC=105°,则∠ C 的度数是.甲乙第13题图第14 题图第 15题图第16 题图14. 图甲和图乙中全部的小正方形都全等,将图甲的正方形放在图乙中①②③④的某一地点,使它与本来7 个小正方形构成的图形是中心对称图形,这个地点是(.填序号)415.如图,直线 y=- x+ 4 与 x 轴, y 轴分别交于点 A ,B ,把△AOB 绕点 A 顺时针3旋转 90°获得△AO′B′,则点 B′的坐标是 ______________.16.如图,将矩形 ABCD 绕点 A 旋转至矩形 AB ′C′D′的地点,此时 AC ′的中点恰巧与 D 点重合,AB ′交 CD 于点 E.若 DE=1 ,则 AC 的长为.三、解答题(本大题7 小题,共66 分)17.( 6 分)如图,网格中有一个四边形和两个三角形,请你分别画出三个图形对于点O 的中心对称图形.CDEA B第 17题图第18题图第19题图第20题图第21题图18.( 8 分)如图,在平面直角坐标系中,△ABC 的三个极点分别是A( 3, 4), B( 1,2), C(5, 3) .( 1)将△ ABC 平移,使得点 A 的对应点 A 1的坐标为( -2, 4),在所给图的坐标系中画出平移后的△ A 1B1C1;( 2)将△ A 1B1C1绕点 C1逆时针旋转 90°,画出旋转后的△ A 2B 2C1,并直接写出 A 2,B2的坐标 .19.(8 分)如图,矩形ABCD 绕极点 A 旋转后获得矩形AEFG ,点 B ,A ,G 在同一条直线上,试回答以下问题:(1)旋转角度是多少?(2)判断△ ACF 的形状,并说明原因 .20.( 10 分)如图,在Rt△ABC 中,∠ C=90°,把 Rt△ABC 绕着 B 点逆时针旋转,得到 Rt△ DBE ,点 E 在 AB 上,连结 AD .(1)若 BC=8 , AC=6 ,求△ ABD 的面积;(2)设∠ BDA=x°,求∠ BAC 的度数(用含 x 的式子表示).21.( 10 分)在四边形ABCD 中,∠ DAB=60°, AB=AD ,线段 BC 绕点 B 顺时针旋转60°获得线段BE,连结 AC , ED.(1)求证: AC=DE ;(2)若 DC=4 , BC=6 ,∠ DCB=30°,求 AC 的长.22.( 12 分)在正方形 ABCD 中,∠ MAN=45°,∠ MAN 绕点 A 顺时针旋转,它的两边分别交 CB , DC(或它们的延伸线)于点 M ,N , AH ⊥ MN 于点 H.( 1)如图①,当∠MAN 绕点 A 旋转到 BM=DN 时,请你直接写出线段AH 与 AB 的数量关系.(不需证明)(2)如图②,当∠ MAN 绕点A旋转到 BM≠DN 时,问( 1)中线段 AH 与 AB 的数目关系还成立吗?若成立,给出证明,若不行立,说明原因.第22题图第23题图23.( 12 分)在△ ABC 中, AB=BC=2 ,∠ ABC=120°,将△ ABC 绕着点 B 顺时针旋转角 a( 0°<a<90°)获得△ A 1BC1, A 1B 交 AC 于点 E, A 1C1分别交 AC , BC 于点 D , F.( 1)如图①,察看并猜想,在旋转过程中,线段BE 与 BF 有如何的数目关系?并证明你的结论;(2)如图②,当 a=30°时,试判断四边形 BC1DA 的形状,并写出证明过程.附带题( 20 分,不计入总分)24. 图①是边长分别为 a 和 b( a>b)的两个等边三角形纸片 ABC 和 C′DE 叠放在一同(点C 与 C′重合)的图形.操作与证明:( 1)操作:固定△ABC ,将△ C′DE 绕点 C 按顺时针方向旋转30°,连结 AD ,BE,如图②所示,线段BE 与 AD 有如何的数目关系?证明你的结论;( 2)操作:若将图①中的△C′DE,绕点 C 按顺时针方向随意旋转一个角度α(0o≤ α≤180o),连结 AD ,BE ,如图③所示,线段 BE 与 AD 有如何的数目关系?证明你的结论;猜想与发现:依据上边的操作过程,试猜想当α为多少度时,线段AD 的长度最大,是多少?当α为多少度时,线段AD 的长度最小,是多少?第24题图第二十三章旋转章末检测题一、1.B 2. A 3. B 4. B 5. B 6. D 7.B 8.C 9. A 10. D二、 11. 6012. 113. 45 °14. ③15. ( 7,3)16. 2 32三、 17. 解: 所绘图形如下图:18. 解:( 1)如下图,△ A 1B 1C 1 即为所求.( 2)如下图, △ A 2B 2C 1 即为所求, 点 A 2 的坐标为 ( -1,1),点 B 2 的坐标为 ( 1,-1).19. 解:( 1)由题意,知∠ BAD 是旋转角,且旋转角度为 90°.( 2)△ ACF 是等腰直角三角形 .原因:由于点 C 绕点 A 旋转 90°到点 F ,因此 AC=AF ,∠ CAF=90° .因此△ ACF 是等腰直角三角形 .20. 解:( 1)由于∠ C=90°, BC=8 , AC=6 ,因此 ABAC 2 BC 210 .由于把 Rt △ ABC 绕着 B 点逆时针旋转,获得 Rt △DBE ,因此 DE=AC=6.因此 S △ ABD = 1 AB ·DE=1× 6× 10=30.22( 2)由于把 Rt △ABC 绕着 B 点逆时针旋转,获得 Rt △ DBE ,因此∠ DBA= ∠ABC ,DB=AB.因此∠ BDA= ∠ BAD=x ° .由于∠ ABD+ ∠ BDA+ ∠ BAD=180° ,因此∠ ABD=180° -2x °=∠ ABC.由于∠ BAC=90° -∠ABC ,因此∠ BAC=90° -( 180°-2x °) =( 2x-90 ) °.21. 解:(1)连结 BD. 由于∠ DAB=60°,AB=AD ,因此△ ABD 是等边三角形 .因此 AB=DB ,∠ A BD=60° .由于线段 BC 绕点 B 顺时针旋转60°获得线段 BE ,因此 EB=CB ,∠ CBE=60° .因此∠ A BC= ∠ DBE.AB DB ,在△ ABC 和△ DBE 中,ABCDBE ,因此△ ABC ≌△ DBE ( SAS ) .因此 AC=DE.CB EB ,( 2)连结 CE.由于 CB=EB ,∠ CBE=60° ,因此△ BCE 是等边三角形 .因此∠ BCE=60° ,CE=BC=6.又∠ DCB=30° ,因此∠ DCE=90° .在 Rt △ DCE 中,DC=4 ,CE=6,由勾股定理,得 DE= 42 62 2 13 .因此 AC=DE= 2 13 .22. 解:(1) AH=AB (或相等)原因:由于 AB=AD ,∠ B=∠ D , BM=DN ,因此△ ABM ≌△ ADN ( SAS ).因此∠ BAM= ∠ DAN , AM=AN.由于 AH ⊥ MN ,∠ MAN=45° ,因此∠ BAM= ∠ MAH=22.5° .由于 AM=AM ,∠ B=∠ AHM=90° ,因此△ ABM ≌△ AHM ( AAS ) .因此 AB=AH . ( 2)成立.证明:延伸 CB 至点 E ,使 BE=DN ,连结 AE .由于 AB=AD ,BE=DN ,∠ABE= ∠ D=90°,因此△ ABE ≌△ ADN (SAS )(或将△ ADN绕点 A 顺时针旋转90°获得△ ABE ) .因此 AN=AE ,∠ BAE= ∠ DAN.由于∠ MAN=45° ,因此∠ BAM+ ∠ DAN=45° ,即∠ BAM+ ∠ BAE=45° .因此∠EAM= ∠ MAN=45° 且 AM=AM , AE=AN. 因此△ AEM ≌△ ANM ( SAS ).因此 EM=MN , S △AEM = S△ANM .因此1EM · AB=1 MN · AH. 因此 AB=AH . 2223. 证明:( 1) BE=BF.原因:由于 AB=BC ,∠ ABC=120° ,因此∠ A= ∠C=30°.由旋转的性质,知∠ C 1=∠C=∠A , BC 1=BC=AB ,∠ A 1BC 1=∠ABC. 因此∠ A BE+ ∠ EBF=∠ EBF+ ∠C 1BF.因此∠ C 1BF= ∠ ABE.A C 1,在△ ABE 和△ C 1BABC ,因此△ ABE ≌△ C 1BF 中,1BF (ASA ) .因此 BE=BF.ABEC 1 BF ,( 2)四边形 BC 1DA人教版九年级上册第二十三章旋转单元测试(含答案)(2)一、选择题:(每题3 分共30 分)1.如图,在等腰直角 △ ABC中,∠ C = 90°,将 △ ABC绕极点A 逆时针旋转80°后得 △ AB ′ C ,′则∠ CAB ′的度数为()A .45°B . 80°C . 125 °D . 130 °2.如图,把ABC 绕着点 A 逆时针旋转 20 获得 ADE , BAC 30 ,则BAE 的度数为()A . 10B . 20C . 30°D . 503.图中,不可以由一个基本图形经过旋转而获得的是()A.B.C.D.4.在以下几种生活现象中,不属于旋转的是()A.下雪时,雪花在天空中自由飘落B.钟摆左右不断地摇动C.时钟上秒针的转动D.电电扇转动的扇叶5.以下图形中,既是中心对称图形又是轴对称图形的是()A. B. C. D.6.以下图形中,既是轴对称图形,又是中心对称图形的是()A.等边三角形B.等腰直角三角形C.平行四边形D.菱形7.如图,将绕点逆时针旋转必定的角度,获得,且.若,,则的大小为()A. B. C. D.8.如图①,在△AOB 中,∠ AOB=90°,OA=3,OB=4,AB=5.将△ AOB 沿 x 轴挨次绕点A、B、O 顺时针旋转,分别获得图②、图③、,则旋转获得的图⑩的直角极点的坐标为(A.( 30,0) B.( 32, 0) C.( 34,0) D.( 36, 0))9.如图,将△ABC绕点B顺时针旋转60 获得DBE ,点C的对应点 E 落在 AB 的延伸线上,连结 AD , AC 与DE 订交于点.)F 则以下结论不必定正确的选项是(. ABDCBE60.△ ADB 是等边三角形A BC.BC DE D. EFC 6010.在等边△ABC中, D 是边 AC 上一点,连结BD,将△BCD绕点 B 逆时针旋转 60°,获得△BAE,连结 ED,若 BC=5,BD=4,则以下四个结论中:① △ BDE是等边三角形;② AE ∥ BC;③ △ADE 的周长是 9;④ ∠ ADE=∠ BDC.此中正确的序号是()A.②③④B.①②④C.①②③D.①③④二、填空题:(每题 3 分共18 分)11.在平面直角坐标系中,点P(4,5) 与点Q(4, m1)对于原点对称,那么m_____;12.如图,等腰△ ABC中,∠ BAC=120 °,点 D 在边 BC 上,等腰△ ADE 绕点 A 顺时针旋转 30°后,点 D 落在边 AB 上,点 E 落在边 AC上,若 AE=2cm,则四边形 ABDE的面积是 __________ .13.如图,在ABC中,AB=8,AC=6,∠ BAC=30°,将ABC绕点 A 逆时针旋转60°获得△ AB1C1,连结 BC1,则 BC1的长为 ________.14.如图,两块相同的三角板完整重合在一同, A 30 , AC10 ,把上边一块绕直角顶点 B逆时针旋转到 A ' BC '的地点,点 C ' 在AC上,A 'C '与AB订交于点D,则 BC '______.15.如图,在矩形ABCD中,AD3,将矩形 ABCD 绕点A逆时针旋转,获得矩形AEFG,点 B 的对应点E落在CD上,且DAG 60 ,若EC 6 ,则AB__.16.如图,点 D 是等边△ABC内部一点,BD1,DC2,AD 3 .则 ADB 的度数为 =________°.三、解答题:(共 72 分)17.如图,已知△ ABC 的极点 A,B,C 的坐标分别是A( -1,-1),B( -4,-3),C( -4,-1).’’ ’(1)作出△ ABC对于原点O 中心对称的图形△ A B C;(2)将△ ABC 绕原点 O 按顺时针方向旋转90°后获得△ A1B1C1,画出△ A1 B1C1,并写出点A1的坐标.18.已知, P 为等边三角形内一点,且BP=3,PC=4,将 BP绕点 B 顺时针旋转60°至 BP′的位置.(1)试判断△ BPP′的形状,并说明原因;(2)若∠ BPC=150°,求 PA的长度.3 x 2 3 与x轴、y轴分别交于点A,B,19.如图,在平面直角坐标系中,直线l : y3将点 B 绕坐标原点O顺时针旋转60得点C,解答以下问题:(1)求出点C的坐标,并判断点 C 能否在直线l 上;(2)若点P在 x 轴上,坐标平面内能否存在点Q ,使得以P、 C 、 Q 、A为极点的四边形是菱形?若存在,请直接写出Q 点坐标;若不存在,请说明原因.20.在 Rt△ ABC中,∠ ACB=90°,2,点 D 是斜边 AB 上一动点(点D与点 A、B AC=BC=3不重合),连结 CD,将 CD绕点 C 顺时针旋转90°获得 CE,连结 AE, DE.(1)求△ ADE 的周长的最小值;(2)若 CD=4,求 AE 的长度.21.四边形 ABCD是正方形,△ ADF 旋转必定角度后获得△ ABE,如下图,假如AF=3,AB=7,求(1) 指出旋转中心和旋转角度;(2)求 DE 的长度;(3)BE 与 DF 的地点关系如何?请说明原因.22.如下图:已知∠ABC= 120 °,作等边△ ACD,将△ ACD旋转 60°,获得△ CDE, AB=3 ,BC= 2,求 BD 和∠ ABD.23.如图,把一副三角板如图① 搁置,此中,∠ACB=∠ DEC=90°,∠ A=45°,∠ D=30°,斜边AB=6cm, DC=7cm.把三角板DCE绕点 C 顺时针旋转15°获得△ D1CE1(如图②).(1)求∠ OFE1的度数;(2)求线段 AD1的长.24.如图,在正方形ABCD中,点 M、 N 是 BC、CD 边上的点,连结AM、 BN,若 BM=CN(1)求证: AM⊥ BN(2)将线段 AM 绕 M 顺时针旋转90°获得线段 ME,连结 NE,试说明:四边形BMEN 是平行四边形;(3)将△ ABM 绕 A 逆时针旋转90°获得△ ADF,连结 EF,当BM1时,恳求出S四边形ABCDS四边形AMEF BC n的值。
一、选择题1.观察下列“风车”的平面图案,其中既是轴对称又是中心对称图形的有( ) A . B . C . D . 2.下列图形既是轴对称图形又是中心对称图形的是( )A .B .C .D . 3.下列图形中,既是轴对称图形,又是中心对称图形的是( )A .等边三角形B .平行四边形C .圆D .五角星4.如图,在Rt ABC 中,90ACB ∠=︒,60B ∠=︒,1BC =,A B C ''由ABC 绕点C 顺时针旋转得到,其中点A '与点A 、点B '与点B 是对应点,连接AB ',且点A 、B '、A '在同一条直线上,则AA '的长为( )A .3B .23C .4D .45 5.若点P(-m ,m -3)关于原点对称的点是第二象限内的点,则m 满足( ) A .m >3 B .0<m≤3 C .m <0 D .m <0或m >3 6.下列关于防范“新冠肺炎”的标志中既是轴对称图形,又是中心对称图形的是( ) A .戴口罩讲卫生 B .勤洗手勤通风C .有症状早就医D .少出门少聚集7.下列图形中,既是轴对称图形,又是中心对称图形的是( )A .B .C .D . 8.如图,正方形网格中,已有两个小正方形被涂黑,再将图中其余小正方形涂黑一个,使整个图案构成一个轴对称图形,那么涂法共有( )A .3种B .4种C .5种D .6种9.下列图标中,既是轴对称图形,又是中心对称图形的是( )A .B .C .D . 10.如果齿轮A 以逆时针方向旋转,齿轮E 旋转的方向( )A .顺时针B .逆时针C .顺时针或逆时针D .不能确定11.如图,△ABC 的顶点在网格中,现将△ABC 绕格点O 顺时针旋转α角(0°<α<360°),使旋转后所得三角形的顶点也在格点上,则当旋转前后的图形形成轴对称图形时,符合条件的α角的度有( )A .1个B .3个C .6个D .8个 12.若点A (3-m ,n+2)关于原点的对称点B 的坐标是(-3,2),则m ,n 的值为( )A .m=-6,n=-4B .m=O ,n=-4C .m=6,n=4D .m=6,n=-4二、填空题13.如图所示,在直角坐标系中,点()0,6A ,点()3,4P 将AOP 绕点O 顺时针方向旋转,使OA 边落在x 轴上,则PP '=_______________.14.如图,直角ABC 中,60ACB ∠=︒,在水平桌面上ABC 绕C 点按顺时针方向旋转到ECD 位置,且点B 、C 、E 在一条直线上,那么旋转角是______度.15.如图,在ABC 中,4AB =, 5.8BC =,60B ∠=︒,将ABC 绕点A 顺时针旋转得到ADE ,当点B 的对应点D 恰好落在BC 边上时,则CD 的长为________.16.如图所示的美丽图案,可以看作是由一个三角形绕旋转中心旋转_____次,每次旋转_____度形成的.17.如图,小正方形方格的边长都是1,点A 、B 、C 、D 、O 都是小正方形的顶点.若COD 是由AOB 绕点O 按顺时针方向旋转一次得到的,则至少需要旋转______°.18.在平面直角坐标系中,将点P (﹣3,2)绕点Q (﹣1,0)顺时针旋转90°,所得到的对应点P '的坐标为____.19.如图,在△ABC 中,∠C =90°,BC =3,AC =5,点D 为线段AC 上一动点,将线段BD 绕点D 逆时针旋转90°,点B 的对应点为E ,连接AE ,则AE 长的最小值为_____.20.一副直角三角尺叠放,如图①所示,现将含45°角的三角尺ADE 固定不动,将含30°角的三角尺ABC 绕顶点A 顺时针转动(旋转角不超过180度),使两个三角尺有一组边互相平行.例如图②,当∠BAD =15°时,BC ∥DE ,当90°<∠BAD <180°时,∠BAD 的度数为___.三、解答题21.在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC 的顶点A ,C 的坐标分别为()4,5-,()1,3-.(1)请在如图所示的网格平面内作出平面直角坐标系.(2)请作出ABC 向下平移的3个单位,再向右平移3个单位后的的A B C '''. (3)点A 关于x 轴的对称点坐标是______;点C 关于y 轴的对称点坐标是______;点B 关于原点的对称点坐标是______.22.如图,将矩形ABCD 绕点C 旋转得到矩形EFGC ,点E 在AD 上.延长AD 交FG 于点H .求证:EDC HFE ≅.23.在平面直角坐标系中,△ABC 的位置如图所示(每个小方格都是边长为1个单位长度的正方形).(1)将△ABC 绕着点A 顺时针旋转90︒,画出旋转后得到的△AB 1C 1;直接写出点B 1的坐标;(2)作出△ABC 关于原点O 成中心对称的△A 2B 2C 2,并直接写出点B 2的坐标. 24.在Rt ABC ∆中,,90,,AC BC ACB M N ︒=∠=在直线AB 上,且222MN AM BN =+.(1)如图1,当点,M N 在线段AB 上时,求证:45MCN ︒∠=.(2)如图2,当点M 在BA 的延长线上且点N 在线段AB 上时,上述结论是否成立?若成立,请证明,若不成立,请说明理由.25.己知,如图,点P 是等边△ABC 内一点,∠APB=112°,如果把△APB 绕点A 旋转,使点 B 与点C 重合,此时点P 落在点P '处,求PP C '∠的度数.26.江都大润发超市销售一种利润为每千克10元的水产品,一个月能销售出500千克.经市场分析,销售单价每涨价1元,月销售量就减少10千克.针对这种水产品的销售情况,若设单价每千克涨价x元,请解答以下问题:(1)填空:每千克水产品获利元,月销售量减少千克;(2)要使得月销售利润达到8000元,又要“薄利多销”,销售单价应涨价为多少元?【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】根据轴对称图形和中心对称图形的两个概念对各选项分析判断即可得解.【详解】解:A、既是轴对称又是中心对称图形,故此项正确;B、是轴对称,不是中心对称图形,故此项错误;C、不是轴对称,是中心对称图形,故此项错误;D、是轴对称,不是中心对称图形,故此项错误.故选:A.【点睛】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2.C解析:C【分析】根据轴对称图形与中心对称图形的概念求解.【详解】A、是轴对称图形,不是中心对称图形,故此选项不符合题意;B、是轴对称图形,不是中心对称图形,故此选项不符合题意;C、是轴对称图形,是中心对称图形,故此选项符合题意;D、是轴对称图形,不是中心对称图形,故此选项不符合题意;故选:C.【点睛】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.C解析:C【分析】根据轴对称图形与中心对称图形的概念求解.【详解】A、等边三角形是轴对称图形,不是中心对称图形,故本选项不合题意;B、平行四边形不是轴对称图形,是中心对称图形,故本选项不合题意;C、圆既是轴对称图形,又是中心对称图形,故本选项符合题意;D、五角星是轴对称图形,不是中心对称图形,故本选项不合题意;故选:C.【点睛】本题主要考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.4.A解析:A【分析】先利用互余计算出∠BAC=30°,再根据含30度的直角三角形三边的关系得到AB=2BC=2,接着根据旋转的性质得A'B'=AB=2,B'C=BC=1,A'C=AC,∠A'=∠BAC=30°,∠A'B' C=∠B=60°,于是可判断CA A'为等腰三角形,所以∠CA A'=∠A'=30°,再利用三角形外角性质计算出∠B'CA=30°,可得B'A=B'C=1,然后利用A A'=A B'+A'B'进行计算.【详解】解:∵∠ACB=90°,∠B=60°,∴∠BAC=30°,∴AB=2BC=2×1=2,∵ABC绕点C顺时针旋转得到A'B'C,∴A'B'=AB=2,B'C=BC=1,A'C=AC,∠A'=∠BAC=30°,∠A'B'C=∠B=60°,∴CA A'为等腰三角形,∴∠CA A'=∠A'=30°,∵A、B'、A'在同一条直线上,∴∠A'B'C=∠B'AC+∠B'CA,∴∠B'CA=60°﹣30°=30°,∴B'A=B'C=1,∴A A'=A B'+A'B'=2+1=3.故选:A.【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了含30度的直角三角形三边的关系.5.C解析:C【分析】两个点关于原点对称时,它们的坐标符号相反,即点P(-m,m-3)关于原点O的对称点是P′(m,3-m),再由第二象限内的点横坐标为负数,纵坐标为正数,可得m的取值范围.【详解】解:点P(-m,m-3)关于原点O的对称点是P′(m,3-m),∵P′(m,3-m),在第二象限,∴30 mm<⎧⎨->⎩,∴m<0.故选:C.【点睛】本题考查了关于原点对称的点的坐标,注意掌握:两个点关于原点对称时,它们的坐标符号相反.6.C解析:C【分析】直接利用轴对称图形和中心对称图形的概念求解.【详解】解:A、是轴对称图形,不是中心对称图形,故此选项不合题意;B、不是轴对称图形,也不是中心对称图形,故此选项不合题意;C、既是中心对称图形也是轴对称图形,故此选项符合题意;D、不是轴对称图形,也不是中心对称图形,故此选项不合题意;故选:C.【点睛】本题考查中心对称图形和轴对称图形的知识,关键是掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180°后与原图重合.7.D解析:D【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A、是轴对称图形,不是中心对称图形,故此选项错误;B、不是轴对称图形,是中心对称图形,故此选项错误;C、是轴对称图形,不是中心对称图形,故此选项错误;D、是轴对称图形,也是中心对称图形,故此选项正确.故选:D.【点睛】本题考查了轴对称与中心对称图形,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.8.C解析:C【分析】根据轴对称图形的定义:沿某条直线折叠,直线两旁的部分能完全重合的图形是轴对称图形进行解答.【详解】如图所示:,共5种,故选C.【点睛】此题主要考查了利用轴对称设计图案,关键是掌握轴对称图形的定义.9.D解析:D【解析】试题分析:根据轴对称图形和中心对称图形的概念,可知:A既不是轴对称图形,也不是中心对称图形,故不正确;B不是轴对称图形,但是中心对称图形,故不正确;C是轴对称图形,但不是中心对称图形,故不正确;D即是轴对称图形,也是中心对称图形,故正确.故选D.考点:轴对称图形和中心对称图形识别10.B解析:B【分析】根据图示进行分析解答即可.【详解】齿轮A以逆时针方向旋转,齿轮B以顺时针方向旋转,齿轮C以逆时针方向旋转,齿轮D 以顺时针方向旋转,齿轮E以逆时针方向旋转,故选B.【点睛】此题考查旋转问题,关键是根据图示进行解答.11.B解析:B【分析】画出图形,利用图象法解决问题即可.【详解】观察图象可知,满足条件的α的值为90°或180°或270°,故选B.【点睛】本题考查了旋转变换,轴对称的定义等知识,解题的关键是理解题意,灵活运用所学知识解决问题.12.B解析:B【解析】试题分析:关于原点对称的两点的横纵坐标分别互为相反数,则3-m=3,n+2=-2,解得:m=0,n=-4.考点:原点对称二、填空题13.【分析】根据旋转的性质绕点顺时针方向旋转了90°则△POP´为等腰直角三角形且OP=OP´利用勾股定理求出OP的长进而可求得PP´的长【详解】解:∵绕点顺时针方向旋转使边落在x轴上∴∠POP´=∠A解析:52【分析】根据旋转的性质,AOP绕点O顺时针方向旋转了90°,则△POP´为等腰直角三角形,且OP=OP´,利用勾股定理求出OP的长,进而可求得PP´的长.【详解】解:∵AOP绕点O顺时针方向旋转,使OA边落在x轴上,∴∠POP´=∠AOA´=90°,OP=OP´,∴△POP´为等腰直角三角形,∵点P坐标为(3,4),∴22+=,345∴PP´2252+=OP OP'故答案为:52【点睛】本题考查了坐标与图形变换-旋转变换、勾股定理、等腰三角形的判定与性质,掌握旋转的性质,结合旋转的角度得到△POP´为等腰直角三角形是解答的关键.14.120【分析】首先要确定旋转中心再找到一对对应点对应点与旋转中心连线的夹角就是旋转角求出这个角即可【详解】∵直角△ABC 在水平桌面上绕点C 按顺时针方向旋转到△EDC 的位置∴点B 的对应点就是D 点则旋转解析:120【分析】首先要确定旋转中心,再找到一对对应点,对应点与旋转中心连线的夹角就是旋转角,求出这个角即可.【详解】∵直角△ABC 在水平桌面上绕点C 按顺时针方向旋转到△EDC 的位置,∴点B 的对应点就是D 点,则旋转角等于∠BCD ,又∵在直角△ABC 中,∠ACB=60°,∴∠ACB=∠ECD=60°,所以∠BCD=180°-60°=120°.故答案为:120.【点睛】本题考查了旋转的性质,要注意旋转的三要素:①定点-旋转中心;②旋转方向;③旋转角度.解答此题要熟悉旋转的定义并熟练掌握旋转的性质.15.【分析】先根据旋转的性质可得再根据等边三角形的判定与性质可得然后根据线段的和差即可得【详解】由旋转的性质得:是等边三角形故答案为:【点睛】本题考查了旋转的性质等边三角形的判定与性质等知识点熟练掌握旋 解析:1.8【分析】先根据旋转的性质可得AB AD =,再根据等边三角形的判定与性质可得4BD AB ==,然后根据线段的和差即可得.【详解】由旋转的性质得:4AB AD ==,60B ∠=︒,ABD ∴是等边三角形,4BD AB ∴==,5.8BC =,5.84 1.8CD BC BD ∴=-=-=,故答案为:1.8.【点睛】本题考查了旋转的性质、等边三角形的判定与性质等知识点,熟练掌握旋转的性质是解题关键.16.745【详解】解:利用旋转中的三个要素(①旋转中心; ②旋转方向;③旋转角度)设计图案进而判断出基本图形和旋转次数与角度故如图所示的美丽图案可以看作是由一个三角形绕旋转中心旋转次每次旋转度形成的故解析:7 45【详解】解:利用旋转中的三个要素(①旋转中心;②旋转方向;③旋转角度)设计图案,进而判断出基本图形和旋转次数与角度.故如图所示的美丽图案,可以看作是由一个三角形绕旋转中心旋转7次,每次旋转45度形成的,故答案为:7;45.17.90【分析】由△COD是由△AOB绕点O按顺时针方向旋转而得到再结合已知图形可知旋转的角度是∠BOD的大小然后由图形即可求得答案【详解】解:∵△COD是由△AOB绕点O按顺时针方向旋转而得∴OB=O解析:90【分析】由△COD是由△AOB绕点O按顺时针方向旋转而得到,再结合已知图形可知旋转的角度是∠BOD的大小,然后由图形即可求得答案【详解】解:∵△COD是由△AOB绕点O按顺时针方向旋转而得,∴OB=OD,∴旋转的角度是∠BOD的大小,∵∠BOD=90°,∴旋转的角度为90°,故答案为: 90.【点睛】本题考查了旋转的性质.解题的关键是理解△COD是由△AOB绕点O按顺时针方向旋转而得的含义,找到旋转角.18.(12)【分析】根据题意画出图形即可解决问题【详解】如图观察图象可知P(12)故答案为:(12)【点睛】本题考查坐标与图形变化-旋转解题的关键是理解题意学会利用图象法解决问题属于中考常考题型解析:(1,2).【分析】根据题意,画出图形即可解决问题.【详解】如图,观察图象可知,P'(1,2).故答案为:(1,2).【点睛】本题考查坐标与图形变化-旋转,解题的关键是理解题意,学会利用图象法解决问题,属于中考常考题型.19.【分析】由旋转的性质可知BD=DE∠C=90°则容易想到构造一个直角三角形与Rt△BCD全等即过E点作EH⊥AD于点H设CD=x则可用x表示AE的长从而判断什么时候AE取得最小值【详解】设CD=x则解析:2【分析】由旋转的性质可知BD=DE,∠C=90°,则容易想到构造一个直角三角形与Rt△BCD全等,即过E点作EH⊥AD于点H,设CD=x,则可用x表示AE的长,从而判断什么时候AE取得最小值.【详解】设CD=x,则AD=5﹣x,过点E作EH⊥AD于点H,如图:由旋转的性质可知BD=DE,∵∠ADE+∠BDC=90°,∠BDC+∠CBD=90°,∴∠ADE=∠CBD,又∵∠EHD=∠C,∴△BCD≌△DHE,∴EH=CD=x,DH=BC=3.∵AD=5﹣x,∴AH=AD﹣DH=5﹣x﹣3=2﹣x,∵在Rt△AEH中,AE2=AH2+EH2=(2﹣x)2+x2=2x2+4x+4=2(x﹣1)2+2,所以当x =1时,AE 2取得最小值2,即AE 取得最小值2.故答案是:2.【点睛】考查了全等三角形的性质和判定,解此题的关键灵活其相关的知识点进行推理证明. 20.105°或135°【分析】根据题意画出图形再由平行线的判定定理即可得出结论【详解】解:如图(1)当AC ∥DE 时∠BAD=∠DAE=45°;如图(2)当BC ∥AD 时∠DAB=∠B=60°;如图(3)当解析:105°或135°【分析】根据题意画出图形,再由平行线的判定定理即可得出结论.【详解】解:如图(1),当AC ∥DE 时,∠BAD =∠DAE =45°;如图(2),当BC ∥AD 时,∠DAB =∠B =60°;如图(3),当BC ∥AE 时,∵∠EAB =∠B =60°,∴∠BAD =∠DAE +∠EAB =45°+60°=105°;如图(4),当AB ∥DE 时,∵∠E =∠EAB =90°,∴∠BAD =∠DAE +∠EAB =45°+90°=135°.∴当90°<∠BAD <180°时,∠BAD =105°或135°.故答案为:105°或135°.【点睛】本题考查的是旋转的性质,平行线的判定与性质,根据题意画出图形,利用平行线的性质及直角三角板的性质求解是解答此题的关键.三、解答题21.(1)画图见解析;(2)画图见解析;(3)()4,5--;()1,3;()2,1-.【分析】(1)直接利用A ,C 点坐标建立平面直角坐标系即可;(2)直接利用平移的性质得出对应点位置进而得出答案;(3)分别根据轴对称和中心对称点的求法作出对称点即可.【详解】(1)如图所示:(2)如图所示:(3)()4,5A -关于x 轴的对称点坐标是()4,5--;()1,3C -关于y 轴的对称点坐标是()1,3;()2,1B -关于原点的对称点坐标是()2,1-.【点睛】此题主要考查了平移变换以及轴对称和中心对称变换,正确得出对应点位置是解题关键. 22.证明见解析.【分析】先根据矩形的性质可得,90AB CD A B ADC =∠=∠=∠=︒,再根据旋转的性质可得,90,90EF AB F A CEF B =∠=∠=︒∠=∠=︒,从而可得,90CD EF EDC F =∠=∠=︒,然后根据直角三角形的性质、角的和差可得DCE FEH ∠=∠,最后根据三角形全等的判定定理即可得证.【详解】四边形ABCD 是矩形,,90AB CD A B ADC ∴=∠=∠=∠=︒,由旋转的性质得:,90,90EF AB F A CEF B =∠=∠=︒∠=∠=︒,,90CD EF EDC F ∴=∠=∠=︒,又90,90EDC CEF ∠=︒∠=︒,90CED DCE CED FEH ∴∠+∠=∠+∠=︒,DCE FEH ∴∠=∠,在EDC △和HFE 中,EDC F CD EF DCE FEH ∠=∠⎧⎪=⎨⎪∠=∠⎩,()HFE E AS DC A ∴≅.【点睛】本题考查了矩形的性质、旋转的性质、三角形全等的判定定理等知识点,熟练掌握矩形和旋转的性质是解题关键.23.(1)作图见解析; B 1(4,-2);(2)作图见解析;B 2(-4,-4)【分析】(1)利用网格特点和旋转的性质画出点B 、C 的对应点B 1、C 1,从而得到△AB 1C 1,再写出点B 1的坐标;(2)分别作出A ,B ,C 的对应点A 2,B 2,C 2即可.【详解】(1)如图,B 1(4,-2);(2)如图,B 2(-4,-4).【点睛】本题考查了作图-旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.24.(1)证明见解析;(2)成立,证明见解析.【分析】(1)将ACM ∆绕点C 逆时针旋转90︒,得到'BCM ∆,利用旋转的性质和等腰三角形的性质证明'NBM ∆为直角三角形,可证明'MN M N =,利用全等三角形的判定(SSS )可证明()'CMN CM N SSS ∆≅∆,即可证得1'452MCN MCM ︒∠=∠=; (1)仿照(1)中方法将CMA ∆绕点C 逆时针旋转90︒得到CDB ∆,证明DBN ∆为直角三角形,再证DN=MN ,进而证明()CMN CDN SSS ∆≅∆即可得出结论.【详解】()1如图1,,90AC BC ACB ︒=∠=,将ACM ∆绕点C 逆时针旋转90︒,得到'BCM ∆,则'ACM NCM ∆≅∆,',','ACM BCM CM CM AM BM ∴∠=∠==,连接'M N ,'CAM CNM ∠=∠=45°,''90M BN CBM CBA ︒∴∠=∠+∠=,'NBM ∴∆为直角三角形,22222''NM BN BM BN AM ∴=+=+,又222MN AM BN =+,'MN M N ∴=, 在CMN ∆和'CM N ∆中''CM CM MC M N CN CN =⎧⎪=⎨⎪=⎩,()'CMN CM N SSS ∴∆≅∆,'MCN M CN ∴∠=∠,1'452MCN MCM ︒∴∠=∠=, 即45MCN ︒∠=;()2如图2,,90AC BC ACB ︒=∠=,将CMA ∆绕点C 逆时针旋转90︒得到CDB ∆,CMA CDB ∴∆≅∆,,,135CM CD AM BD CAM CBD ︒∴==∠=∠=,90DBN CBD CBA ︒∴∠=∠-∠=,DBN ∴∆为直角三角形,22222DN BD BN AM BN ∴=+=+,又222MN AM BN =+,DN MN ∴=, 在CMN ∆和CDN ∆中CM CD CN CN MN DN =⎧⎪=⎨⎪=⎩,()CMN CDN SSS ∴∆≅∆,1452MCN DCN MCD ︒∴∠=∠=∠=, 45MCN ︒∴∠=.【点睛】本题考查了等腰三角形的性质、旋转的性质、全等三角形的判定与性质、勾股定理,熟练掌握全等三角形的判定与性质,利用旋转性质旋转△ACM 构造直角三角形是解答的关键. 25.52°【分析】根据旋转的性质得到AP'=AP ,∠BAP=∠CAP',利用等边三角形的性质及角的和差得到△PAP'是等边三角形,即可求解.【详解】解∶∵△APB ≌AP'C ,∴∠AP'C=∠APB=112°,且AP'=AP ,∠BAP=∠CAP',又∵∠BAP+∠PAC=60°,∴∠CAP'+∠PAC=60°,即∠PAP'=60°,∴△PAP'是等边三角形,∴∠PP'C=∠AP'C-∠AP'P=112°-60°=52°.【点睛】本题考查旋转的性质、等边三角形的判定与性质,掌握旋转的性质是解题的关键.26.(1)(10+x);10x;(2)10【分析】(1)根据获利=原利润+涨价即可得出答案;根据销售单价每涨价1元,月销售量就减少10千克即可得出月销售量减少的数量;(2)利用“每千克水产品获利×月销售量=总利润”列出方程,解方程即可求出结果.【详解】解:(1)(10+x),10x;(2)由题意,得:(10+x)(500﹣10x)=8000;化简为:x2﹣40x+300=0;解得:x1=10,x2=30.∵“薄利多销”,∴x=30不符合题意,舍去.答:销售单价应涨价10元.【点睛】本题考查了一元二次方程的应用,正确表示出月销售量是解题的关键.。
一、选择题1.观察下列“风车”的平面图案,其中既是轴对称又是中心对称图形的有( ) A . B . C . D . 2.以下四幅图案,其中图案是中心对称图形的是( )A .B .C .D .3.“保护生态,人人有责”.下列生态环保标志中,是中心对称图形的是( ) A . B .C .D .4.如图,在等边ABC 中,点О在AC 上,且3,6AO CO ==,点P 是AB 上一动点,连接,OP 将线段OP 绕点О逆时针旋转60︒得到线段OD ,要使点D 恰好落在BC 上,则AP 的长是( )A .4B .5C .6D .85.如图,在平面直角坐标系中,将正方形OABC 绕点O 逆时针旋转45°后得到正方形111OA B C ,依此方式,绕点O 连续旋转2020次得到正方形202020202020OA B C ,如果点A 的坐标为(1,0),那么点2020B 的坐标为( )A .(﹣1,1)B .(20)-,C .(﹣1,﹣1)D .(02)-, 6.下列图形中,是轴对称图形,但不是中心对称图形的是( )A .B .C .D . 7.如图:在△ABC 中,∠ACB=90°,∠ABC=30°,AC=1,现将△ABC 绕点C 逆时针旋转至△EFC ,使点E 恰巧落在AB 上,连接BF ,则BF 的长度为( )A .3B .2C .1D .28.如图,△ABC 的顶点坐标分别为A (4,6)、B (5,2)、C (2,1),如果将△ABC 绕点C 按逆时针方向旋转90°,得到△''A B C ,那么点A 的对应点'A 的坐标是( ).A .(-3,3)B .(3,-3)C .(-2,4)D .(1,4) 9.如图,Rt OCB ∆的斜边在y 轴上,3OC =30︒角的顶点与原点重合,直角顶点C 在第二象限,将Rt OCB ∆绕原点顺时针旋转120︒后得到'OC B ∆',则B 点的对应点B ′的坐标是( )A .(3,1)-B .(1,3)-C .(2,0)D .(3,0) 10.下列图形中,既是轴对称图形又是中心对称图形的是( )A .等边三角形B .平行四边形C .正五边形D .菱形 11.下列图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D . 12.如图,在△ABC 中,AB =2.2,BC =3.6,∠B =60°,将△ABC 绕点A 按逆时针方向旋转得到△ADE ,若点B 的对应点D 恰好落在BC 边上时,则CD 的长为( )A .1.5B .1.4C .1.3D .1.2二、填空题13.如图,在等边△ABC 中,AC=10,点O 在AC 上,且AO=4,点P 是AB 上一动点,连结OP ,将线段OP 绕点O 逆时针旋 转60º得到线段OD .要使点D 恰好落在BC 上,则AP 的长是________.14.如图,在平面直角坐标系中,若△ABC ≌△DEF 关于点H 成中心对称,则对称中心H 点的坐标是_________.15.如图所示,把一个直角三角尺ACB 绕30角的顶点B 顺时计旋转,使得点A 落在CB 的延长线上的点E 处,则BCD ∠的度数为______.16.如图,在Rt ABC 中,90CAB ∠=︒,点P 是ABC 内一点,将ABP △绕点A 逆时针旋转后能与ACP '△重合,如果5AP =,则PP '的长为______.17.如图,将一个含30°角的直角三角板ABC 绕点A 顺时针旋转α(0°<α<360°),使得点B 、A 、C ′在同一直线上,则α=______.18.直角坐标系中,已知A (3,2),作点A 关于y 轴对称点A 1,点A 1关于原点对称点A 2,点A 2关于x 轴对称点A 3,A 3关于y 轴对称点A 4,……,按此规律,则点A 2019的坐标为_____.19.在平面直角坐标系中,将点P (﹣3,2)绕点Q (﹣1,0)顺时针旋转90°,所得到的对应点P '的坐标为____.20.如图,在△ABC 中,∠C =90°,BC =3,AC =5,点D 为线段AC 上一动点,将线段BD 绕点D 逆时针旋转90°,点B 的对应点为E ,连接AE ,则AE 长的最小值为_____.三、解答题21.如图,在平面直角坐标系中,每个小正方形的边长为1,△ABC 各顶点都在格点上,点A ,C 的坐标分别为(-1,2)、(0,-1),结合所给的平面直角坐标系解答下列问题: (1)求AC 的长;(2)将△ABC 绕点C 按逆时针方向旋转90°,画出旋转后的△A 1B 1C ,直接写出A 点对应点A 1的坐标.22.(问题背景)(1)如图1,Р是正三角形ABC 外一点,30APB ∠=,则222PA PB PC +=?小明为了证明这个结论,将PAB ∆绕点A 逆时针旋转60,请帮助小明完成他的作图;(迁移应用)(2)如图2,在等腰Rt ABC ∆中,,90BA BC ABC =∠=,点P 在ABC ∆外部,使得45BPC ∠=,若 4.5PAC S =,求PC ;(拓展创新)(3)如图3,在四边形ABCD 中,//,AD BC 点E 在四边形ABCD 内部.且,DE EC =90,DEC ∠=135AEB ∠=︒,3,4,AD BC ==直接写出AB 的长. 23.如图,已知,点E 在正方形ABCD 的BC 边上(不与点B ,C 重合),AC 是对角线,过点E 作AC 的垂线,垂足为G ,连接BG ,DG .把线段DG 绕着G 点顺时针旋转,使D 点的对应点F 点刚好落在BC 延长线上,根据题意补全图形.(1)证明:GC GE =;(2)连接DF ,用等式表示线段BG 与DF 的数量关系,并证明.24.如图,己知点()2,4A ,()1,1B ,()3,2C .(1)将MBC 绕点O 逆时针旋转90°得111A B C △,画出111A B C △,并写出点C 的对应点1C 的坐标为_____;(2)画出ABC 关于原点成中心对称的图形222A B C △,并写出点A 的对称点2A 的坐标为______.25.如图1,AC ⊥CH 于点C ,点B 是射线CH 上一动点,将△ABC 绕点A 逆时针旋转60°得到△ADE (点D 对应点C ).(1)延长ED 交CH 于点F ,求证:FA 平分∠CFE ;(2)如图2,当∠CAB >60°时,点M 为AB 的中点,连接DM ,请判断DM 与DA 、DE 的数量关系,并证明.26.在6×6方格中,每个小正方形的边长为1,点A ,B 在小正方形的格点上,请按下列要求画一个以AB 为一边的四边形,且四边形的四个顶点都在格点上.(1)在图甲中画一个是中心对称图形但不是轴对称图形;(2)在图乙中画一个既是中心对称图形又是轴对称图形.参考答案【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】根据轴对称图形和中心对称图形的两个概念对各选项分析判断即可得解.【详解】解:A、既是轴对称又是中心对称图形,故此项正确;B、是轴对称,不是中心对称图形,故此项错误;C、不是轴对称,是中心对称图形,故此项错误;D、是轴对称,不是中心对称图形,故此项错误.故选:A.【点睛】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2.A解析:A【分析】根据中心对称图形的定义逐一分析即可.【详解】解:A、是中心对称图形,故此选项符合题意;B、不是中心对称图形,故此选项不合题意;C、不是中心对称图形,故此选项不合题意;D、不是中心对称图形,故此选项不合题意.故选:A.【点睛】本题考查中心对称图形的识别,掌握中心对称图形的定义是解题的关键.3.D解析:D【分析】根据中心对称图形的定义对各选项分析判断即可得解.【详解】A、不是中心对称图形,故本选项错误;B、不是中心对称图形,故本选项错误;C、不是中心对称图形,故本选项错误;D、是中心对称图形,故本选项正确.故选:D.【点睛】本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.4.C解析:C【分析】由于将线段OP绕点O逆时针旋转60°得到线段OD,当点D恰好落在BC上时,易得:△ODP是等边三角形,根据旋转的性质可以得到△AOP≌△CDO,由此可以求出AP的长.【详解】解:当点D恰好落在BC上时,OP=OD,∠A=∠C=60°,如图.∵∠POD=60°∴∠AOP+∠COD=∠COD+∠CDO=120°,∴∠AOP=∠CDO,∴△AOP≌△CDO,∴AP=CO=6.故选:C.【点睛】此题要把旋转的性质和等边三角形的性质结合求解.属探索性问题,难度较大,近年来,探索性问题倍受中考命题者青睐,因为它所强化的数学素养,对学生的后续学习意义深远.5.C解析:C【分析】根据图形可知:点B在以O为圆心,以OB为半径的圆上运动,由旋转可知:将正方形OABC绕点O逆时针旋转45°后得到正方形OA1B1C1,相当于将线段OB绕点O逆时针旋转45°,可得对应点B的坐标,根据规律发现是8次一循环,可得结论.【详解】解:如图,∵四边形OABC是正方形,且OA=1,∴B(1,1),连接OB,由勾股定理得:2,由旋转得:OB=OB1=OB2=OB32,∵将正方形OABC绕点O逆时针旋转45°后得到正方形OA1B1C1,相当于将线段OB绕点O逆时针旋转45°,依次得到∠AOB=∠BOB1=∠B1OB2=…=45°,∴B1(02),B2(-1,1),B3(20),B4(-1,-1),…,发现是8次一循环,所以2020÷8=252…4,∴点B2020的坐标为(-1,-1)故选:C.【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角.也考查了坐标与图形的变化、规律型:点的坐标等知识,解题的关键是学会从特殊到一般的探究规律的方法,属于中考常考题型.6.A解析:A【分析】根据轴对称图形与中心对称图形的概念求解.【详解】A、是轴对称图形,但不是中心对称图形,故此选项正确;B、是轴对称图形,是中心对称图形,故此选项错误;C、是轴对称图形,是中心对称图形,故此选项错误;D、不是轴对称图形,是中心对称图形,故此选项错误;故选A.【点睛】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.7.A解析:A【解析】试题分析:由题意可知:∠A=60°,AC=EC ,所以△ACE 是等边三角形,所以∠CEA=∠ECA=60°,由旋转可知,∠CEF=∠A=60°,所以∠FEB=60°,因为∠ECF=∠ACB=90°,所以∠BCF=∠ACE=60°,因为CB=CF ,所以△CBF 是等边三角形,所以∠CBF=60°, ∠FBE=60°+30°=90°, △BEF 是30度角直角三角形,因为AE=AC=1,AB=2AC=2,所以BE=1,EF=2,BF=21213-=,故选A .考点:1.旋转性质;2.直角三角形性质.8.A解析:A【解析】解:△A′B′C 的位置如图.A′(-3,3).故选A .9.A解析:A【分析】如图,利用含30度的直角三角形三边的关系得到1BC =,再利用旋转的性质得到3,1,90OC OC B C BC B C O BCO ====∠''''=='∠︒,然后利用第四象限点的坐标特征写出点B ′的坐标.【详解】如图,在Rt OCB ∆中,30BOC ∠=︒,333133BC OC ∴===, Rt OCB ∆绕原点顺时针旋转120︒后得到'OC B ∆',3,1,90OC OC B C BC B C O BCO ∴====''''∠'=∠=︒,∴点B ′的坐标为1)-.故选A .本题考查了坐标与图形变化﹣旋转:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30456090180︒︒︒︒︒,,,,. 10.D解析:D【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A 、是轴对称图形,不是中心对称图形.故不符合题意;B 、不是轴对称图形,是中心对称图形.故不符合题意;C 、是轴对称图形,不是中心对称图形.故不符合题意;D 、是轴对称图形,也是中心对称图形.故符合题意.故选:D .【点睛】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.11.C解析:C【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【详解】A 、不是轴对称图形,是中心对称图形,故本选项不符合题意;B 、不是轴对称图形,是中心对称图形,故本选项不符合题意;C 、既是轴对称图形,也是中心对称图形,故本选项符合题意;D 、是轴对称图形,不是中心对称图形,故本选项不符合题意.故选:C .【点睛】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合. 12.B解析:B【分析】运用旋转变换的性质得到AD =AB ,进而得到△ABD 为等边三角形,求出BD 即可解决问题.【详解】解:如图,由题意得:AD =AB ,且∠B =60°,∴△ABD 为等边三角形,∴BD =AB =2,∴CD =3.6﹣2.2=1.4.故选:B .【点睛】该题主要考查了旋转变换的性质、等边三角形的判定等几何知识点及其应用问题;牢固掌握旋转变换的性质是解题的关键.二、填空题13.6【分析】根据三角形的外角性质可得∠APO=∠COD 进而可以证明△APO ≌△COD 进而可以证明AP=CO 即可解题【详解】∵∠A+∠APO=∠POD+∠COD ∠A=∠POD=60°∴∠APO=∠COD解析:6【分析】根据三角形的外角性质可得∠APO=∠COD ,进而可以证明△APO ≌△COD ,进而可以证明AP=CO ,即可解题.【详解】∵∠A+∠APO=∠POD+∠COD ,∠A=∠POD=60°,∴∠APO=∠COD ,在△APO 和△COD 中,A C APO COD OD OP ∠∠⎧⎪∠∠⎨⎪⎩===,∴△APO ≌△COD (AAS ),即AP=CO ,∵CO=AC-AO=6,∴AP=6.故答案为:6.【点睛】本题考查了等边三角形的性质,旋转的性质,三角形的外角性质,全等三角形的判定和性质,本题中求证△APO ≌△COD 是解题的关键.14.(2-1)【分析】连接对应点ADCF 根据对应点的连线经过对称中心则交点就是对称中心H 点在坐标系内确定出其坐标【详解】解:如图连接ADCF 则交点就是对称中心H点观察图形可知H(2-1)故答案为:(2-解析:(2,-1)【分析】连接对应点AD、CF,根据对应点的连线经过对称中心,则交点就是对称中心H点,在坐标系内确定出其坐标.【详解】解:如图,连接AD、CF,则交点就是对称中心H点.观察图形可知,H(2,-1).故答案为:(2,-1).【点睛】本题考查了中心对称的性质:对应点的连线经过对称中心,且被对称中心平分.确定H点位置是解决问题的关键.15.【分析】根据旋转的性质△ABC≌△EDBBC=BD求出∠CBD的度数再求∠BCD的度数【详解】解:根据旋转的性质△ABC≌△EDBBC=BD则△CBD是等腰三角形∠BDC=∠BCD∠CBD=180°解析:15【分析】根据旋转的性质△ABC≌△EDB,BC=BD,求出∠CBD的度数,再求∠BCD的度数.【详解】解:根据旋转的性质△ABC≌△EDB,BC=BD,则△CBD是等腰三角形,∠BDC=∠BCD,∠CBD=180°-∠DBE=180°-30°=150°,∠BCD=1(180°-∠CBD)=15°.2故答案为15°.【点睛】本题考查了旋转的性质,解题时根据旋转的性质,确定各角之间的关系,利用已知条件把一个直角三角尺ACB绕着30°角的顶点B顺时针旋转求出即可.16.【分析】根据旋转的性质得出△ABP≌△ACP′推出AP=AP′=5∠BAP=∠CAP′求出∠PAP′=90°得出△PAP′是等腰直角三角形根据勾股定理求出PP′即可【详解】∵将△ABP绕点A逆时针旋解析:【分析】根据旋转的性质得出△ABP≌△ACP′,推出AP=AP′=5,∠BAP=∠CAP′,求出∠PAP′=90°,得出△PAP′是等腰直角三角形,根据勾股定理求出PP′即可.【详解】∵将△ABP绕点A逆时针旋转后能与△ACP′重合,∴△ABP≌△ACP′,∴AP=AP′=5,∠BAP=∠CAP′,∵∠BAC=90°,∴∠BAP+∠CAP=90°,∴∠CAP′+∠CAP=90°,即∠PAP′=90°,∴△PAP′是等腰直角三角形,由勾股定理得:=即PP′的长是:故答案为:【点睛】本题考查了旋转的性质,全等三角形的性质,勾股定理,等腰直角三角形等知识点,关键是证明△APP′是等腰直角三角形.17.150°【分析】根据旋转的性质得出∠BAC=∠B′AC′=30°求出∠BAB′即可【详解】解:∵将一个含30°角的直角三角板ABC绕点A顺时针旋转α(0°<α<360°)使得点BAC′在同一直线上∴解析:150°【分析】根据旋转的性质得出∠BAC=∠B′AC′=30°,求出∠BAB′即可.【详解】解:∵将一个含30°角的直角三角板ABC绕点A顺时针旋转α(0°<α<360°),使得点B、A、C′在同一直线上,∴∠BAC=∠B′AC′=30°,∴∠BAB′=180°-∠B′AC′=180°-30°=150°,即α=150°,故答案为150°.【点睛】本题考查了旋转的性质和邻补角的定义,能根据旋转的性质求出∠B′AC′的度数是解此题的关键.18.(32)【分析】根据题目已知条件写出A1A2A3的坐标找出规律即可解决问题【详解】解:作点A关于y轴的对称点为A1是(﹣32);作点A1关于原点的对称点为A2是(3﹣2);作点A2关于x轴的对称点为解析:(3,2).【分析】根据题目已知条件,写出A1、A2、A3的坐标,找出规律,即可解决问题.【详解】解:作点A关于y轴的对称点为A1,是(﹣3,2);作点A1关于原点的对称点为A2,是(3,﹣2);作点A2关于x轴的对称点为A3,是(3,2).显然此为一循环,按此规律,2019÷3=673,则点A2019的坐标是(3,2),故答案为:(3,2).【点睛】本题考查了关于原点对称的点的坐标,关于坐标轴对称点的坐标,解答此题需熟悉:两个点关于x轴对称,则横坐标不变,纵坐标互为相反数;两个点关于y轴对称,则横坐标互为相反数,纵坐标不变;两个点关于原点对称,则横坐标、纵坐标都是互为相反数.19.(12)【分析】根据题意画出图形即可解决问题【详解】如图观察图象可知P(12)故答案为:(12)【点睛】本题考查坐标与图形变化-旋转解题的关键是理解题意学会利用图象法解决问题属于中考常考题型解析:(1,2).【分析】根据题意,画出图形即可解决问题.【详解】如图,观察图象可知,P'(1,2).故答案为:(1,2).【点睛】本题考查坐标与图形变化-旋转,解题的关键是理解题意,学会利用图象法解决问题,属于中考常考题型.20.【分析】由旋转的性质可知BD =DE ∠C =90°则容易想到构造一个直角三角形与Rt △BCD 全等即过E 点作EH ⊥AD 于点H 设CD =x 则可用x 表示AE 的长从而判断什么时候AE 取得最小值【详解】设CD =x 则 解析:2【分析】由旋转的性质可知BD =DE ,∠C =90°,则容易想到构造一个直角三角形与Rt △BCD 全等,即过E 点作EH ⊥AD 于点H ,设CD =x ,则可用x 表示AE 的长,从而判断什么时候AE 取得最小值.【详解】设CD =x ,则AD =5﹣x ,过点E 作EH ⊥AD 于点H ,如图:由旋转的性质可知BD =DE ,∵∠ADE +∠BDC =90°,∠BDC +∠CBD =90°,∴∠ADE =∠CBD ,又∵∠EHD =∠C ,∴△BCD ≌△DHE ,∴EH =CD =x ,DH =BC =3.∵AD =5﹣x ,∴AH =AD ﹣DH =5﹣x ﹣3=2﹣x ,∵在Rt △AEH 中,AE 2=AH 2+EH 2=(2﹣x )2+x 2=2x 2+4x +4=2(x ﹣1)2+2,所以当x =1时,AE 2取得最小值2,即AE 2.2 【点睛】考查了全等三角形的性质和判定,解此题的关键灵活其相关的知识点进行推理证明.三、解答题21.(110;(2)作图见解析,A 1(-3,-2)【分析】(1)结合题意,根据勾股定理的性质计算,即可得到答案;(2)根据旋转的性质,结合题意,分别作出A ,B 的对应点A 1,B 1,即可解决问题.【详解】(1)结合题意得:AC ()()2201121910⎡⎤⎡⎤----=+⎣⎦+=⎣⎦10.(2)结合题意,得1A C AC =,1B C BC =∴()103,11A ---,即()13,2A --△A 1B 1C 作图如下:.【点睛】本题考查了勾股定理、直角坐标系、旋转的知识;解题的关键是熟练掌握勾股定理、直角坐标系、旋转的性质,从而完成求解.22.(1)见解析;(2)3;(3)5【分析】(1)根据旋转的定义和性质解答;(2)由题意可以得到PBC MBA ∆≅∆,由此可得 90AMP ∠=和PC=AM ,最后由△PAC 的面积等于4.5可以求得PC 的值;(3)根据三角形的性质解答.【详解】(1)如图,作60PAP AP AP ∠=︒'=',,连结P C ',则P AC '△即为所求作的图形:(2)作线段BM 垂直于BP 交PC 延长线于点.M连接,AM45,90BPM PBM ∠=︒∠=BPM △为等腰直角三角形,,BP BM ∴=90ABM MBC ABC PBM PBC MBC ∠+∠=∠==∠=∠+∠,PBC ABM ∴∠=∠在PBC ∆与MBA ∆中:PB BM PBC ABM BC BA =⎧⎪∠=∠⎨⎪=⎩()PBC MBA SAS ∴∆≅∆90AMP =∴∠21122PAC S PC AM PC ∆∴=⋅= 3PC ∴=(3)5.证明如下:如图,将AED 顺时针旋转90︒至FEC ,则ADE FCE ∠=∠,AD FC =, //,90AD BC DEC ∠=︒,90ADE BCE ∴∠+∠=︒,即90FCE BCE FCB ∠+∠=∠=︒FCB ∴△为直角三角形,其中3FC AD ==,4BC =,由勾股定理得5BF =, 又旋转角为90︒,即90AEF ∠=︒,则360135BEF AEB AEF ∠=︒-∠-∠=︒,即AEB FEB ∠=∠,在AEB △与FEB 中,AE AF AEB FEB BE BE =⎧⎪∠=∠⎨⎪=⎩∴()AEB FEB SAS △△≌5AB BF ∴==【点睛】本题考查三角形的应用,熟练掌握三角形全等的判定和性质、旋转的意义和性质、等腰三角形和直角三角形的性质是解题关键.23.补图见解析;(1)见解析;(2)2=,理由见解析DF BG【分析】(1)证明△EGC是等腰直角三角形即可得出结论;(2)连接DG、FG,由“SAS”可证△BEG≌△FCG,得出BG=GF,得出EF=BC=DC,由“SAS”可证△GEF≌△GCD,得出∠EGC=∠DGF=90°,FG=GD,则△DGF是等腰直角三角形,从而得出DF=2BG.【详解】解:补全图形如图所示,(1)∵四边形 ABCD 是正方形,AC 是对角线,∴∠ACB=45°,∵EG⊥AC,∴∠EGC=90 °∴∠ GEC= ∠ ACB=45 °∴GC=GE;(2)2=.理由如下:DF BG证明:∵△EGC 是等腰直角三角形,∴EG=GC,∠GEC=∠ACB=45°,∴∠BEG=∠GCF=135°,由旋转得:DG=GF,正方形 ABCD 中,AB=AD,∠BCA=∠DCA=45°,CG=CG∴△CBG≌△CDG(SAS),∴∠CGB=∠CGD, BG=DG,∴BG=GF ∴∠GBC=∠GFB又∠BEG=∠GCF∴△BEG≌△FCG(AAS),∴∠BGE=∠CGF,∴∠CGB﹣∠BGE=∠CGD﹣∠CGF,即∠EGC=∠DGF=90°,∴△DGF 是等腰直角三角形,2222222DF DG GFBG BGBGBG∴=+=+==即2DF BG=.【点睛】本题考查了旋转的性质,正方形的性质,全等三角形的判定与性质,等腰直角三角形的判定与性质,灵活运用这些性质解决问题是本题的关键.24.(1)如图见解析,1C(-2,3);(2)如图见解析,2A(-2,-4).【分析】(1)依据△ABC绕点O按逆时针方向旋转90°,即可得到111A B C△;(2)依据中心对称的性质,即可画出△ABC关于原点成中心对称的图形222A B C△.【详解】(1)如图,111A B C△即为所求,点1C的坐标为(-2,3);(2)如图,222A B C△即为所求,点2A的坐标为(-2,-4).【点睛】本题主要考查了利用旋转变换作图,解决本题的关键是掌握旋转的性质.旋转作图有自己独特的特点,旋转角度、旋转方向、旋转中心不同,位置就不同,但得到的图形全等.25.(1)见解析;(2)2DM3=DE,证明见解析.【分析】(1)根据直角三角形全等判定,得到对应角相等,根据角分线定义证明.(2)延长AD 交BC 于F ,连接CD ;利用旋转的到特殊值三角形,运用三角形的中位线定理,将DE 解转化到CB 决问题即可.【详解】(1)如图1中,∵△ADE 由△ABC 旋转得到,∴AC =AD ,∠ACF =∠ADE =∠ADF =90°,AF=AF∴ACF ADF ≌(HL),AFC AFD ∴∠=∠, FA 平分∠CFE ; (2)结论:23DM AD DE +=,理由如下:如图2中,延长AD 交BC 于F ,连接CD ,∵AC =AD ,∠CAD =60°,∴△ACD 为等边三角形,∴AD =CD =AC ,∵∠ACF =90°,∠CAF =60°,∴∠AFC =30°,∴AD =AC =12AF , ∴AD =DF ,∴D 为AF 的中点,又∵M 为AB 的中点,∴DM =12FB ,即FB=2DM 在Rt △AFC 中,FC 33AD ,DE CB FB FC ==+,23FB FC DM ∴+=∴23DM DE =.【点睛】本题考查图形旋转、30°直角三角形性质及三角形中位线定理,综合运用所学知识,将DE 解转化为CB是解题关键.26.(1) (2)【分析】(1)根据是中心对称图形但不是轴对称图形可以确定是平行四边形;(2)根据是中心对称图形又是轴对称图形可以确定是菱形或者正方形;【详解】(1)根据是中心对称图形但不是轴对称图形可以确定是平行四边形画图如下:(2)根据是中心对称图形又是轴对称图形可以确定是正方形画图如下:【点睛】本题考查了作图应用设计,熟练掌握轴对称图形和中心对称图形是解题关键.。
一、选择题1.下列图形一定不是中心对称图形的是( ) A .正六边形 B .线段()213y x x =-+≤≤ C .圆D .抛物线2y x x =+2.如图,在等边△ABC 中,AC=8,点O 在AC 上,且AO=3,点P 是边AB 上一动点,连接OP ,将线段OP 绕点O 逆时针旋转60°得到线段OD ,要使点D 恰好落在BC 上,则AP 的长是( ).A .4B .5C .6D .83.以原点为中心,将点P (3,4)旋转90°,得到的点Q 所在的象限为( ) A .第二象限 B .第三象限 C .第四象限 D .第二或第四象限 4.下列图形中,是中心对称但不是轴对称的图形是( )A .平行四边形B .矩形C .菱形D .等边三角形5.如图所示,ABC 中,65C =︒∠,将ABC ∆绕点A 顺时针旋转后,得到AB C ''∆,且C '在边BC 上,则B C B ''∠的度数是( )A .46°B .48°C .50°D .52°6.如图,△ABC 是等腰直角三角形,BC 是斜边,将△ABP 绕点A 逆时针旋转后得到ACP '△,如果AP =2,那么PP '的长等于( )A .32B .23C .2D .47.已知等边△ABC 的边长为8,点P 是边BC 上的动点,将△ABP 绕A 逆时针转60°得到△ACQ,点D是AC边的中点,连接DQ,则DQ的最小值是 ( )A.2 B.23C.4 D.不能确定8.如图,将△ABC绕点A逆时针旋转一定角度,得到△ADE,若∠CAE=65°,∠E=70°,且AD⊥BC,∠BAC的度数为().A.60 °B.75°C.85°D.90°9.如图,在Rt△ABC中,AB=AC,D,E是斜边BC上两点,且∠DAE=45°,将△ABE绕点A 顺时针旋转90°后,得到△ACF,连接DF,则下列结论中有( )个是正确的.①∠DAF=45° ②△ABE≌△ACD ③AD平分∠EDF ④222BE DC DE+=A.4 B.3 C.2 D.110.如图所示的图形中,是中心对称图形的是( )A.B.C.D.11.如图,在△ABC中,AB=2.2,BC=3.6,∠B=60°,将△ABC绕点A按逆时针方向旋转得到△ADE,若点B的对应点D恰好落在BC边上时,则CD的长为()A .1.5B .1.4C .1.3D .1.212.如图,在等边△ABC 中,AC =9,点O 在AC 上,且AO =3,P 是AB 上一动点,连接OP ,将线段OP 绕点O 逆时针旋转60°得到线段OD ,若使点D 恰好落在BC 上,则线段AP 的长是( )A .4B .5C .6D .8第II 卷(非选择题)请点击修改第II 卷的文字说明参考答案二、填空题13.在直角坐标系中,已知()2,3A -,()10B ,,则点A 关于点B 的对称点A '的坐标为______.14.如图,将OAB 绕点O 逆时针旋转70°到OCD 的位置,若40AOB ︒∠=,则AOD ∠=_______________.15.如图,在边长为1的正方形ABCD 中,将射线AC 绕点A 按顺时针方向旋转α度(0<α≤360°),得到射线AE ,点M 是点D 关于射线AE 的对称点,则线段CM 长度的最小值和最大值的和为_____.16.如图,在△ABC 中,∠C =90°,AC =2cm ,AB =3cm ,将△ABC 绕点B 顺时针旋转60°得到△FBE ,则点E 与点C 之间的距离是_________cm .17.一副直角三角板如图放置,其中90ACB PRQ ∠=∠=,45A ∠=,60Q ∠=,点P 在斜边AB 上,现将三角板PRQ 绕着点P 顺时针旋转,当QR 第一次与AC 平行时,APR ∠的度数是__________.18.如图,在平面直角坐标系中,将ABC 绕点A 顺时针旋转到111A B C △的位置,点,B O 分别落在点11,B C 处,点1B 在x 轴上,再将111A B C △绕点1B 顺时针旋转到112A B C 的位置,点2C 在x 轴上,再将112A B C 绕点2C 顺时针旋转到222A B C △的位置,点2A 在x轴上,依次进行下去,······,若点()3,0,0,2,2A B ⎛⎫ ⎪⎝⎭则点2020B 的坐标为__________________.19.如图,正方形ABCD的边长为a,对角线AC和BD相交于点O,正方形A1B1C1O的边OA1交AB于点E,OC1交BC于点F,正方形A1B1C1O绕O点转动的过程中,与正方形ABCD重叠部分的面积为_____(用含a的代数式表示)20.一副直角三角尺叠放,如图①所示,现将含45°角的三角尺ADE固定不动,将含30°角的三角尺ABC绕顶点A顺时针转动(旋转角不超过180度),使两个三角尺有一组边互相平行.例如图②,当∠BAD=15°时,BC∥DE,当90°<∠BAD<180°时,∠BAD的度数为___.三、解答题21.如图,△ABC三个顶点的坐标分别是A(1,1),B(4,2),C(3,4).(1)请画出△ABC关于原点对称的△A1B1C1;通过作图,你发现了△ABC中任意一点(x,y)关于原点中心对称后的点坐标为.(2)已知点M坐标为(m,n),点P的坐标为(2,-3),则点M关于点P中心对称的点N的坐标为.22.如图,在平面直角坐标系xOy 中,已知Rt DOE ,=90DOE ∠︒,3OD =,点D 在y 轴上,点E 在x 轴上,在ABC 中,点A ,C 在x 轴上,5AC =,180ACB ODE ∠+∠=︒,B OED ∠=∠,BC DE =.按下列要求画图(保留作图痕迹):(1)将ODE 绕O 点按逆时针方向旋转90°得到OMN (其中点D 的对应点为点M ,点E 的对应点为点N ),在图(1)画出OMN ;(2)将ABC 沿x 轴向右平移得到A B C '''(其中A ,B ,C 的对应点分别为点A ',B ',C '),使得B C ''与(1)中OMN 的边NM 重合,画出平移后的三角形A B C ''';(3)求OE 的长.23.如图,等腰Rt △ABC 中,∠A =45°,∠ABC =90°,点D 在AC 上,将△ABD 绕点B 沿顺时针方向旋转90°后,得到△CBE . (1)求∠DCE 的度数;(2)若AB =4,CD =3AD ,求DE 的长.24.如图,在等腰直角三角形MNC 中,90CNM ∠=︒且CN MN =,将MNC 绕点C 顺时针旋转60︒,得到ABC ,连接AM .(1)判断CAM 的形状并证明; (2)若32AB =,求AM 的长.25.如图,在边长为1的正方形组成的网格中,每个正方形的顶点称为格点.已知△ABC 的顶点均在格点上,建立如图所示的平面直角坐标系,△ABC 三个顶点的坐标分别为A (1,1),B (4,2),C (3,4).(1)画出△ABC 关于原点对称的△A 1B 1C 1,并直接写出△A 1B 1C 1各顶点的坐标; (2)将线段AB 绕点A 顺时针旋转90 °后得到AB 2,画出旋转后的图形,并直接写出点B 2的坐标;(3)△A 1B 1C 1的面积为 .26.如图,己知点()2,4A ,()1,1B ,()3,2C .(1)将MBC 绕点O 逆时针旋转90°得111A B C △,画出111A B C △,并写出点C 的对应点1C 的坐标为_____;(2)画出ABC 关于原点成中心对称的图形222A B C △,并写出点A 的对称点2A 的坐标为______.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】根据中心对称图形的定义即可得. 【详解】A 、正六边形是中心对称图形,此项不符题意;B 、线段()213y x x =-+≤≤是中心对称图形,对称中心是点(2,0),此项不符题意;C 、圆是中心对称图形,此项不符题意;D 、抛物线2y x x =+是关于直线12x =-轴对称的,不是中心对称图形,此项符合题意;故选:D . 【点睛】本题考查了中心对称图形、抛物线的图象等知识点,熟练掌握概念是解题关键.2.B解析:B 【分析】连接DP ,根据题意,得OP OD =,=60DOP ∠,从而得到120AOP COD ∠+∠=;再根据等边三角形和三角形内角和性质,得120AOP OPA ∠+∠=,从而得COD OPA ∠=∠,通过全等三角形判定,即可得到答案. 【详解】如图,点D 落在BC 上,连接DP∵线段OP 绕点O 逆时针旋转60°得到线段OD∴OP OD =,=60DOP ∠∴180120AOP COD DOP ∠+∠=-∠= ∵等边△ABC∴180120AOP OPA A ∠+∠=-∠= ∴COD OPA ∠=∠即:OP OD COD OPA A C =⎧⎪∠=∠⎨⎪∠=∠⎩∴AOP CDO △≌△ ∴AP OC = ∵AC=8,AO=3 ∴5OC AC AO =-= ∴5AP OC == 故选:B . 【点睛】本题考查了等边三角形、全等三角形、旋转、三角形内角和的知识;解题的关键是熟练掌握等边三角形、全等三角形、旋转、三角形内角和的性质,从而完成求解.3.D解析:D 【分析】根据旋转的性质,以原点为中心,将点P (3,4)旋转90°,分两种情况讨论即可得到点Q 所在的象限. 【详解】如图,点P (3,4)按逆时针方向旋转90°,得到点1Q , 按顺时针方向旋转90°,得到点2Q ,得点Q 所在的象限为第二、四象限. 故选:D .【点睛】本题考查了坐标与图形变化-旋转,解决本题的关键是掌握旋转的性质.注意分类讨论.4.A解析:A 【分析】根据轴对称及中心对称的概念,结合选项进行判断. 【详解】A 、平行四边形是中心对称图形,不是轴对称图形,故本选项正确;B 、矩形是中心对称图形,也是轴对称图形,故本选项错误;C 、菱形是中心对称图形,也是轴对称图形,故本选项错误;D 、等边三角形不是中心对称图形,但是轴对称图形,故本选项错误; 故选:A . 【点睛】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.5.C解析:C 【分析】根据旋转的性质和∠C =65°,从而可以求得∠AC′B′和∠AC′C 的度数,从而可以求得∠B′C′B 的度数. 【详解】∵将△ABC 绕点A 顺时针旋转后,可以得到△AB′C′,且C′在边BC 上, ∴AC =AC′,∠C =∠AC′B′, ∴∠C =∠AC′C , ∵∠C =65°,∴∠AC′B′=65°,∠AC′C =65°, ∴∠B′C′B =180°−∠AC′B′−∠AC′C =50°, 故选:C . 【点睛】本题考查旋转的性质,解题的关键是明确题意,找出所求问题需要的条件.6.C解析:C 【分析】由旋转的性质可得出AP AP '=,B C AP AP '∠∠=,由90BAC ∠=︒可得90PAP '∠=︒,所以APP '是等腰直角三角形,由AP 的长度结合勾股定理计算出'AP 的长度即可. 【详解】由旋转的性质可得:AP AP '==2,B C AP AP '∠∠=,∴BAP APC CAP APC '∠+∠=∠+,∴=90BAC PAP '∠=∠︒, ∴2222=2222PP AP AP ''+=+=.故选:C .【点睛】本题主要考查旋转的性质以及勾股定理,根据旋转的性质得出对应角的度数是解题关键. 7.B解析:B【分析】根据旋转的性质,即可得到∠ACQ =∠60B =°,当DQ ⊥CQ 时,DQ 的长最小,再根据勾股定理,即可得到DQ 的最小值.【详解】解:由旋转可得∠ACQ =∠60B =°.因为点D 是AC 的中点,所以CD =4.当DQ ⊥CQ 时,DQ 的长最小,此时∠CDQ =30︒.所以122CQ CD ==, 223422DQ =-=,所以DQ 的最小值是23,故选B .【点睛】本题主要考查了旋转的性质,旋转前后的图形全等,对应点到旋转中心的距离相等,对应点与旋转中心所连线段的夹角等于旋转角.8.C解析:C【解析】试题分析:根据旋转的性质知,∠EAC=∠BAD=65°,∠C=∠E=70°.如图,设AD ⊥BC 于点F .则∠AFB=90°,∴在Rt △ABF 中,∠B=90°-∠BAD=25°,∴在△ABC 中,∠BAC=180°-∠B-∠C=180°-25°-70°=85°,即∠BAC 的度数为85°.故选C .考点: 旋转的性质.9.B解析:B【分析】①根据旋转的性质可得出∠BAE=∠CAF ,由∠BAC=90°、∠DAE=45°可得出∠CAD+∠CAF=45°,即可判断①;②根据旋转的性质可得出△BAE ≌△CAF ,不能推出△BAE ≌△CAD ,即可判断②;③根据∠DAE=∠DAF=45°,根据角平分线定义即可判断③;④根据全等三角形的判定求出△AED ≌△AFD ,推出DE=DF ,求出∠DCF=90°,根据勾股定理推出即可.【详解】∵在Rt △ABC 中,AB=AC ,∴∠B=∠ACB=45°,①由旋转,可知:∠CAF=∠BAE ,∵∠BAD=90°,∠DAE=45°,∴∠CAD+∠BAE=45°,∴∠CAF+∠BAE=∠DAF=45°,故①正确;②由旋转,可知:△ABE ≌△ACF ,不能推出△ABE ≌△ACD ,故②错误;③∵∠EAD=∠DAF=45°,∴AD 平分∠EAF ,故③正确;④由旋转可知:AE=AF ,∠ACF=∠B=45°,∵∠ACB=45°,∴∠DCF=90°,由勾股定理得:CF 2+CD 2=DF 2,即BE 2+DC 2=DF 2,在△AED 和△AFD 中,AD AD EAD DAF AE AF =⎧⎪∠=∠⎨⎪=⎩,∴△AED ≌△AFD (SAS ),∴DE=DF ,∴BE 2+DC 2=DE 2,故④正确.故选B.【点睛】本题考查了全等三角形的判定与性质、勾股定理、等腰直角三角形以及旋转的性质,逐一分析四条结论的正误是解题的关键.10.D解析:D【分析】根据中心对称图形的概念求解.【详解】解:A 、不是中心对称图形,不符合题意;B 、不是中心对称图形,不符合题意;C 、不是中心对称图形,不符合题意;D 、是中心对称图形,符合题意.故选D .【点睛】本题考查中心对称图形的概念.中心对称图形是要寻找对称中心,旋转180度后两部分重合.11.B解析:B【分析】运用旋转变换的性质得到AD =AB ,进而得到△ABD 为等边三角形,求出BD 即可解决问题.【详解】解:如图,由题意得:AD =AB ,且∠B =60°,∴△ABD 为等边三角形,∴BD =AB =2,∴CD =3.6﹣2.2=1.4.故选:B .【点睛】该题主要考查了旋转变换的性质、等边三角形的判定等几何知识点及其应用问题;牢固掌握旋转变换的性质是解题的关键.12.C解析:C【分析】根据题意通过“角角边”证明△AOP ≌△CDO ,进而得到AP=OC=AC ﹣AO=6.【详解】解:根据题意可知:∠A=∠C=60°,∵线段OP 绕点O 逆时针旋转得到线段OD ,∴OP=DO ,∵∠DOP=60°,∴∠AOP+∠COD=∠CDO+∠COD=120°,∴∠AOP=∠CDO ,在△AOP 与△CDO 中,A C AOP CDO OP DO ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△AOP ≌△CDO (AAS ),∴AP=OC=AC ﹣AO=6.故选C.【点睛】本题主要考查旋转的性质,全等三角形的判定与性质,等边三角形的性质,熟练掌握其知识点是解此题的关键.二、填空题13.【分析】设点的坐标为(xy )然后根据中心对称的点的坐标特点解答即可【详解】解:设点的坐标为(xy )∵点是点关于点的对称点∴解得:x=4y=﹣3∴点的坐标为故答案为:【点睛】本题考查了坐标与图形变化—解析:()4,3-【分析】设点A '的坐标为(x ,y ),然后根据中心对称的点的坐标特点解答即可.【详解】解:设点A '的坐标为(x ,y ),∵点A '是点A 关于点B 的对称点, ∴231,022x y -++==,解得:x =4,y =﹣3, ∴点A '的坐标为()4,3-.故答案为:()4,3-.【点睛】本题考查了坐标与图形变化—对称,熟记对称点公式是解题的关键.14.30°【分析】根据旋转的性质得到利用角的和差即可求解【详解】解:∵将绕点逆时针旋转70°到的位置∴∴故答案为:30°【点睛】本题考查旋转的性质明确旋转的性质是解题的关键解析:30°【分析】根据旋转的性质得到40COD AOB ∠=∠=︒,70AOC ∠=︒,利用角的和差即可求解.【详解】解:∵将OAB 绕点O 逆时针旋转70°到OCD 的位置,∴40COD AOB ∠=∠=︒,70AOC ∠=︒,∴30AOD AOC COD ∠=∠-∠=︒,故答案为:30°.【点睛】本题考查旋转的性质,明确旋转的性质是解题的关键.15.﹣1【分析】由轴对称的性质可知AM =AD 故此点M 在以A 圆心以AD 为半径的圆上故此当点AMC 在一条直线上时CM 有最小值【详解】解:如图所示:连接AM ∵四边形ABCD 为正方形∴AC ==∵点D 与点M 关于A 解析:2﹣1 【分析】 由轴对称的性质可知AM =AD ,故此点M 在以A 圆心,以AD 为半径的圆上,故此当点A 、M 、C 在一条直线上时,CM 有最小值.【详解】解:如图所示:连接AM .∵四边形ABCD 为正方形,∴AC =222211AD CD +=+=2.∵点D 与点M 关于AE 对称,∴AM =AD =1.∴点M 在以A 为圆心,以AD 长为半径的圆上.如图所示,当点A 、M 、C 在一条直线上时,CM 有最小值.∴CM 的最小值=AC ﹣AM ′=2﹣1,故答案为:2﹣1.【点睛】本题主要考查的是旋转的性质,正方形的性质,依据旋转的性质确定出点M 运动的轨迹是解题的关键.16.【解析】试题解析:5【解析】试题连接EC ,即线段EC 的长是点E 与点C 之间的距离,在Rt △ACB 中,由勾股定理得:BC=2222325AB AC -=-=(cm ), ∵将△ABC 绕点B 顺时针旋转60°得到△FBE ,∴BC=BE ,∠CBE=60°,∴△BEC 是等边三角形,∴EC=BE=BC=5cm. 17.135°【分析】利用平行线的性质即可解决问题【详解】解:根据题意如图:∵QR ∥AC ∴DF ∥BC ∴∠FDB=∠ABC=45°∴故答案为:135°【点睛】本题考查平行线的判定和性质解题的关键是灵活运用所解析:135°【分析】利用平行线的性质即可解决问题.【详解】解:根据题意,如图:∵QR ∥AC ,90ACB PRQ ∠=∠=,∴DF ∥BC ,∴∠FDB=∠ABC=45°,∴18045135APR ∠=︒-︒=︒,故答案为:135°.【点睛】本题考查平行线的判定和性质,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.18.(60602)【分析】首先根据已知求出三角形三边长度然后通过旋转发现BB2B4…每偶数之间的B 相差6个单位长度根据这个规律可以求得B2020的坐标【详解】∵A(0)B(02)则OA=OB=2∴Rt △解析:(6060,2)【分析】首先根据已知求出三角形三边长度,然后通过旋转发现,B 、B 2、B 4…每偶数之间的B 相差6个单位长度,根据这个规律可以求得B 2020的坐标.【详解】∵A(32,0),B(0,2),则OA=32,OB=2, ∴Rt △AOB 中,52==, ∴OA+AB 1+B 1C 2=352622++=, ∴B 2的横坐标为:6,且B 2C 2=2,即B 2(6,2),∴B 4的横坐标为:2×6=12,∴点B 2020的横坐标为:2020÷2×6=6060,点B 2020的纵坐标为:2,即B 2020的坐标是(6060,2),故答案为:(6060,2) .【点睛】本题考查了坐标与旋转规律问题以及勾股定理的运用,通过图形旋转,找到所有B 点之间的关系是解决本题的关键.19.a2【分析】由题意得OA =OB ∠OAB =∠OBC =45°又因为∠AOE+∠EOB =90°∠BOF+∠EOB =90°可得∠AOE =∠BOF 根据ASA 可证△AOE ≌△BOF 由全等三角形的性质可得S △AO 解析:14a 2. 【分析】 由题意得OA =OB ,∠OAB =∠OBC =45°又因为∠AOE +∠EOB =90°,∠BOF +∠EOB =90°可得∠AOE =∠BOF ,根据ASA 可证△AOE ≌△BOF ,由全等三角形的性质可得S △AOE =S △BOF ,可得重叠部分的面积为正方形面积的14,即可求解. 【详解】解:在正方形ABCD 中,AO =BO ,∠AOB =90°,∠OAB =∠OBC =45°,∵∠AOE +∠EOB =90°,∠BOF +∠EOB =90°,∴∠AOE =∠BOF . 在△AOE 和△BOF 中OAE OBF OA OBAOE BOF ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△AOE ≌△BOF (ASA ),∴S △AOE =S △BOF ,∴重叠部分的面积21144AOB ABCD SS a ===正方形, 故答案为:14a 2. 【点睛】本题考查了旋转的性质,正方形的性质,全等三角形的判定和性质,证明△AOE≌△BOF 是本题的关键.20.105°或135°【分析】根据题意画出图形再由平行线的判定定理即可得出结论【详解】解:如图(1)当AC∥DE时∠BAD=∠DAE=45°;如图(2)当BC∥AD时∠DAB=∠B=60°;如图(3)当解析:105°或135°【分析】根据题意画出图形,再由平行线的判定定理即可得出结论.【详解】解:如图(1),当AC∥DE时,∠BAD=∠DAE=45°;如图(2),当BC∥AD时,∠DAB=∠B=60°;如图(3),当BC∥AE时,∵∠EAB=∠B=60°,∴∠BAD=∠DAE+∠EAB=45°+60°=105°;如图(4),当AB∥DE时,∵∠E=∠EAB=90°,∴∠BAD=∠DAE+∠EAB=45°+90°=135°.∴当90°<∠BAD<180°时,∠BAD=105°或135°.故答案为:105°或135°.【点睛】本题考查的是旋转的性质,平行线的判定与性质,根据题意画出图形,利用平行线的性质及直角三角板的性质求解是解答此题的关键.三、解答题21.(1)画图见解析,(-x,-y),(2)(-m +4,-n -6)【分析】(1)依据中心对称画图,即可得到△A1B1C1;根据关于原点对称的坐标变化规律,可得坐标;(2)将P 点平移到原点,利用(1)的结论,求出N 点坐标.【详解】解:(1)△ABC 关于原点对称的△A 1B 1C 1如图所示,(x ,y )关于原点中心对称后的点坐标为(-x ,-y )(2)将点P (2,-3)平移到原点,对应的点M 坐标变为M 1(m-2,n+3),M 1(m-2,n+3)关于原点(即现在的点P )对称点M 2的坐标为(-m+2,-n-3),再将点P 平移回原来的位置,点M 2的坐标变为(-m+4,-n-6),即点N 的坐标为(-m+4,-n-6)【点睛】本题考查了中心对称的画法以及关于原点对称点的坐标变化规律,通过平移点P ,把关于任意一点成中心对称的问题转化为关于原点对称的问题是解决问题的关键,体现了数学的转化思想.22.(1)见解析;(2)见解析;(3)6.【分析】(1)以点O 为圆心,以OE 为半径画弧,与y 轴正半轴相交于点N ,以OD 为半径画弧,与x 轴负半轴相交于点M ,连接MN 即可;(2)以M 为圆心,以AC 长为半径画弧与x 轴负半轴相交于点A ',B '与N 重合,C '与M 重合,然后顺次连接即可;(3)设OE =x ,则ON =x ,作MF ⊥A 'B '于点F ,判断出B 'C '平分∠A 'B 'O ,再根据全等三角形的性质可得B 'F =B 'O =OE =x ,FC '=OC '=OD =3,利用勾股定理列式求出A 'F ,然后表示出A 'B '、A 'O .在Rt △A 'B 'O 中,利用勾股定理列出方程求解即可.【详解】(1)以点O 为圆心,以OE 为半径画弧,与y 轴正半轴相交于点N ,以OD 为半径画弧,与x 轴负半轴相交于点M ,连接MN ;则△OMN 为所求,如图所示;(2)以M 为圆心,以AC 长为半径画弧与x 轴负半轴相交于点A ',B '与N 重合,C '与M 重合,然后顺次连接B′A′,A′C′,则△A 'B 'C '为所求如图所示;(3)设OE =x ,则ON =x ,作MF ⊥A 'B '于点F ,由旋转知∠OED=∠MNO ,由平移知A'B'C'B ∠=∠,由已知B OED ∠=∠∴∠MNO='''A B C ∠∴B 'C '平分∠A 'B 'O ,且C 'O ⊥OB ',∴∠B 'FM =∠MON =90°,∠FB 'M =∠OB 'M .∵B 'M =B 'M ,∴△FB 'M ≌△OB 'M ,∴B 'F =B 'O =OE =x ,FC '=OC '=OD =3.∵A 'C '=AC =5,∴A 'F 2253=-=4,∴A 'B '=x +4,A 'O =5+3=8,在Rt △A 'B 'O 中,x 2+82=(4+x )2,解得:x =6,即OE =6.【点睛】本题考查了利用旋转变换作图,平移变换作图,勾股定理,熟练掌握旋转变换与平移变换的性质是解答本题的关键.23.(1)90°;(2)5【分析】(1)根据旋转的性质和等腰直角三角形的性质即可得∠DCE 的度数;(2)根据勾股定理求出AC 的长,根据CD =3AD ,可得CD 和AD 的长,根据旋转的性质可得AD =EC ,再根据勾股定理即可得DE 的长.【详解】解:(1)∵△ABC 为等腰直角三角形,∴∠BAD =∠BCD =45°,由旋转的性质可知∠BAD =∠BCE =45°,∴∠DCE =∠BCE +∠BCA =45°+45°=90°;(2)∵BA =BC ,∠ABC =90°,∴2242AC AB BC =+= ∵CD =3AD ,∴2AD =32DC = 由旋转的性质可知:AD =EC ,∴DE ==【点睛】本题考查了旋转的性质、等腰直角三角形,解决本题的关键是掌握旋转的性质. 24.(1)CAM 为等边三角形;见解析;(2)AM 6=.【分析】(1)根据有一个角为60︒的等腰三角形为等边三角形进行证明即可;(2)根据勾股定理即可求解.【详解】(1)CAM 为等边三角形.证明:∵MNC 绕点C 顺时针旋转60︒,得到ABC ,∴CA CM =,ACM 60∠=︒∴CAM 为等边三角形;(2)∵NC M 是等腰直角三角形∴ABC 是等腰直角三角形 ∵B A =∴AC 6=== ∵CAM 为等边三角形∴AM 6=【点睛】此题主要考查等边三角形的判定、勾股定理,熟练掌握等边三角形的判定定理是解题关键.25.(1)图见解析;A 1(-1,-1),B 1(-4,-2),C 1(-3,-4);(2)B 2(2,-2);(3)3.5【分析】(1)先找到A 、B 、C 关于原点对称的A 1、B 1、C 1,再连线即可;(2)根据网格结构点A 、B ,找出将线段AB 绕点A 顺时针旋转90°的对应点B 2,然后连接A B 2,写出坐标即可;(3)△A 1B 1C 1的面积即为三角形ABC 的面积,利用“割补法”即可求得.【详解】解:(1)如图所示,△A 1B 1C 1即为所求:A1(-1,-1),B1(-4,-2),C1(-3,-4);(2)如图所示,A1B2即为所求:B2(2,-2);(3)S△ABC=11133232113222⨯-⨯⨯-⨯⨯-⨯⨯=3.5,∴△A1B1C1的面积= S△ABC=3.5,故填:3.5.【点睛】本题考查了坐标与图形变化−旋转与对称,熟练掌握网格结构,准确找出对应点的位置是解题的关键.26.(1)如图见解析, 1C (-2,3);(2)如图见解析, 2A (-2,-4).【分析】(1)依据△ABC 绕点O 按逆时针方向旋转90°,即可得到111A B C △;(2)依据中心对称的性质,即可画出△ABC 关于原点成中心对称的图形222A B C △.【详解】(1)如图,111A B C △即为所求,点1C 的坐标为(-2,3);(2)如图,222A B C △即为所求,点2A 的坐标为(-2,-4).【点睛】本题主要考查了利用旋转变换作图,解决本题的关键是掌握旋转的性质.旋转作图有自己独特的特点,旋转角度、旋转方向、旋转中心不同,位置就不同,但得到的图形全等.。
上海市北初级中学数学旋转几何综合单元测试卷附答案一、初三数学 旋转易错题压轴题(难)1.已知:如图①,在矩形ABCD 中,3,4,AB AD AE BD ==⊥,垂足是E .点F 是点E 关于AB 的对称点,连接AF 、BF .(1)求AF 和BE 的长;(2)若将ABF 沿着射线BD 方向平移,设平移的距离为m (平移距离指点B 沿BD 方向所经过的线段长度).当点F 分别平移到线段AB AD 、上时,直接写出相应的m 的值. (3)如图②,将ABF 绕点B 顺时针旋转一个角1(080)a a ︒<<︒,记旋转中ABF 为''A BF ,在旋转过程中,设''A F 所在的直线与直线AD 交于点P ,与直线BD 交于点Q .是否存在这样的P Q 、两点,使DPQ 为等腰三角形?若存在,求出此时DQ 的长;若不存在,请说明理由. 【答案】(1)129,55AF BF ==;(2)95m =或165m =;(3)存在4组符合条件的点P 、点Q ,使DPQ 为等腰三角形; DQ 的长度分别为2或25891055或35105【解析】【分析】(1)利用矩形性质、勾股定理及三角形面积公式求解; (2)依题意画出图形,如图①-1所示.利用平移性质,确定图形中的等腰三角形,分别求出m 的值;(3)在旋转过程中,等腰△DPQ 有4种情形,分别画出图形,对于各种情形分别进行计算即可.【详解】(1)∵四边形ABCD 是矩形,∴∠BAD=90°,在Rt △ABD 中,AB=3,AD=4,由勾股定理得:2222345AB AD +=+=, ∵S △ABD 12=BD•AE=12AB•AD ,∴AE=AB AD3412 BD55⋅⨯==,∵点F是点E关于AB的对称点,∴AF=AE125=,BF=BE,∵AE⊥BD,∴∠AEB=90°,在Rt△ABE中,AB=3,AE125 =,由勾股定理得:BE2222129355 AB AE⎛⎫=-=-=⎪⎝⎭;(2)设平移中的三角形为△A′B′F′,如图①-1所示:由对称点性质可知,∠1=∠2.BF=BE95 =,由平移性质可知,AB∥A′B′,∠4=∠1,BF=B′F′95 =,①当点F′落在AB上时,∵AB∥A′B′,∴∠3=∠4,根据平移的性质知:∠1=∠4,∴∠3=∠2,∴BB′=B′F′95=,即95m=;②当点F′落在AD上时,∵AB∥A′B′,AB⊥AD,∴∠6=∠2,A′B′⊥AD,∵∠1=∠2,∠5=∠1,∴∠5=∠6,又知A′B′⊥AD,∴△B′F′D为等腰三角形,∴B′D=B′F′95 =,∴BB′=BD-B′D=5-91655=,即m165=;(3)存在.理由如下:∵四边形ABCD是矩形,∴∠BAD=90°,∵AE⊥BD,∴∠AEB=90°,∠2+∠ABD=90°,∠BAE+∠ABD=90°,∴∠2=∠BAE,∵点F是点E关于AB的对称点,∴∠1=∠BAE,∴∠1=∠2,在旋转过程中,等腰△DPQ依次有以下4种情形:①如图③-1所示,点Q落在BD延长线上,且PD=DQ,则∠Q=∠DPQ,∴∠2=∠Q+∠DPQ=2∠Q,∵∠1=∠3+∠Q,∠1=∠2,∴∠3=∠Q,∴A′Q=A′B=3,∴F′Q=F′A′+A′Q=1227355+=,在Rt△BF′Q中,由勾股定理得:2222927910 BF F Q555⎛⎫⎛⎫+=+=⎪ ⎪⎝⎭⎝⎭'',∴DQ=BQ-BD=9105 5-;②如图③-2所示,点Q落在BD上,且PQ=DQ,则∠2=∠P,∵∠1=∠2,∴∠1=∠P,∴BA′∥PD,则此时点A′落在BC边上.∵∠3=∠2,∴∠3=∠1,∴BQ=A′Q,∴F′Q=F′A′-A′Q=125-BQ,在Rt△BQF′中,由勾股定理得:BF′2+F′Q2=BQ2,即:222 91255BQ BQ⎛⎫⎛⎫+-=⎪ ⎪⎝⎭⎝⎭,解得:158 BQ=,∴DQ= BD-BQ=5-1525 88=;③如图③-3所示,点Q落在BD上,且PD=DQ,则∠3=∠4.∵∠2+∠3+∠4=180°,∠3=∠4,∴∠4=90°-12∠2.∵∠1=∠2,∴∠4=90°-12∠1,∴∠A′QB=∠4=90°-12∠1,∴∠A′QB=∠A′BQ,∴A′Q=A′B=3,∴F′Q=A′Q-A′F′=3-123 55=,在Rt△BF′Q中,由勾股定理得:BQ=222293310 BF F Q555⎛⎫⎛⎫+=+=⎪ ⎪⎝⎭⎝⎭'',∴DQ=BQ-BD=3105-;④如图④-4所示,点Q落在BD上,且PQ=PD,则∠2=∠3.∵∠1=∠2,∠3=∠4,∠2=∠3,∴∠1=∠4,∴BQ=BA′=3,∴DQ=BD-BQ=5-3=2.综上所述,存在4组符合条件的点P、点Q,使△DPQ为等腰三角形,DQ的长度分别为:2或25891055或35105【点睛】本题是四边形综合题目,主要考查了矩形的性质、轴对称的性质、平移的性质、旋转的性质、勾股定理、等腰三角形的性质等知识点;第(3)问难度很大,解题关键是画出各种旋转图形,依题意进行分类讨论.2.阅读材料并解答下列问题:如图1,把平面内一条数轴x绕原点O逆时针旋转角00)90(θ︒︒<<得到另一条数轴,y x 轴和y 轴构成一个平面斜坐标系.xOy规定:过点P 作y 轴的平行线,交x 轴于点A ,过点P 作x 轴的平行线,交y 轴于点B ,若点A 在x 轴对应的实数为a ,点B 在y 轴对应的实数为b ,则称有序实数对(),a b 为点P 在平面斜坐标系xOy 中的斜坐标.如图2,在平面斜坐标系xOy 中,已知60θ︒=,点P 的斜坐标是()3,6,点C 的斜坐标是()0,6.(1)连接OP ,求线段OP 的长;(2)将线段OP 绕点O 顺时针旋转60︒到OQ (点Q 与点P 对应),求点Q 的斜坐标; (3)若点D 是直线OP 上一动点,在斜坐标系xOy 确定的平面内以点D 为圆心,DC 长为半径作D ,当⊙D 与x 轴相切时,求点D 的斜坐标,【答案】(1)37OP =2)点Q 的斜坐标为(9,3-);(3)点D 的斜坐标为:(32,3)或(6,12). 【解析】【分析】 (1)过点P 作PC ⊥OA ,垂足为C ,由平行线的性质,得∠PAC=60θ=︒,由AP=6,则AC=3,33PC =OP 的长度;(2)根据题意,过点Q 作QE ∥OC ,QF ∥OB ,连接BQ ,由旋转的性质,得到OP=OQ ,∠COP=∠BOQ ,则△COP ≌△BOQ ,则BQ=CP=3,∠OCP=∠OBQ=120°,然后得到△BEQ 是等边三角形,则BE=EQ=BQ=3,则OE=9,OF=3,即可得到点Q 的斜坐标;(3)根据题意,可分为两种情况进行分析:①当OP 和CM 恰好是平行四边形OMPC 的对角线时,此时点D 是对角线的交点,求出点D 的坐标即可;②取OJ=JN=CJ ,构造直角三角形OCN ,作∠CJN 的角平分线,与直线OP 相交与点D ,然后由所学的性质,求出点D 的坐标即可.【详解】解:(1)如图,过点P作PC⊥OA,垂足为C,连接OP,∵AP∥OB,∴∠PAC=60θ=︒,∵PC⊥OA,∴∠PCA=90°,∵点P的斜坐标是()3,6,∴OA=3,AP=6,∴1 cos602ACAP︒==,∴3AC=,∴226333PC=-=,336OC=+=,在Rt△OCP中,由勾股定理,得226(33)37OP=+=;(2)根据题意,过点Q作QE∥OC,QF∥OB,连接BQ,如图:由旋转的性质,得OP=OQ,∠POQ=60°,∵∠COP+∠POA=∠POA+∠BOQ=60°,∴∠COP=∠BOQ,∵OB=OC=6,∴△COP≌△BOQ(SAS);∴CP=BQ=3,∠OCP=∠OBQ=120°,∴∠EBQ=60°,∵EQ∥OC,∴∠BEQ=60°,∴△BEQ是等边三角形,∴BE=EQ=BQ=3,∴OE=6+3=9,OF=EQ=3,∵点Q在第四象限,∴点Q的斜坐标为(9,3 );(3)①取OM=PC=3,则四边形OMPC是平行四边形,连接OP、CM,交点为D,如图:由平行四边形的性质,得CD=DM,OD=PD,∴点D为OP的中点,∵点P的坐标为(3,6),∴点D的坐标为(32,3);②取OJ=JN=CJ,则△OCN是直角三角形,∵∠COJ=60°,∴△OCJ是等边三角形,∴∠CJN=120°,作∠CJN的角平分线,与直线OP相交于点D,作DN⊥x轴,连接CD,如图:∵CJ=JN,∠CJD=∠NJD,JP=JP,∴△CJD ≌△NJD (SAS ),∴∠JCD=∠JND=90°,则由角平分线的性质定理,得CD=ND ;过点D 作DI ∥x 轴,连接DJ ,∵∠DJN=∠COJ=60°,∴OI ∥JD ,∴四边形OJDI 是平行四边形,∴ID=OJ=JN=OC=6,在Rt △JDN 中,∠JDN=30°,∴JD=2JN=12;∴点D 的斜坐标为(6,12);综合上述,点D 的斜坐标为:(32,3)或(6,12). 【点睛】本题考查了坐标与图形的性质,解直角三角形,旋转的性质,全等三角形的判定和性质,角平分线的性质等知识,解题的关键是理解题意,正确寻找圆心D 的位置来解决问题,属于中考创新题型.注意运用分类讨论的思想进行解题.3.如图一,矩形ABCD 中,AB=m ,BC=n ,将此矩形绕点B 顺时针方向旋转θ(0°<θ<90°)得到矩形A 1BC 1D 1,点A 1在边CD 上.(1)若m=2,n=1,求在旋转过程中,点D 到点D 1所经过路径的长度;(2)将矩形A 1BC 1D 1继续绕点B 顺时针方向旋转得到矩形A 2BC 2D 2,点D 2在BC 的延长线上,设边A 2B 与CD 交于点E ,若161A E EC=-,求n m 的值. (3)如图二,在(2)的条件下,直线AB 上有一点P ,BP=2,点E 是直线DC 上一动点,在BE 左侧作矩形BEFG 且始终保持BE n BG m =,设AB=33,试探究点E 移动过程中,PF 是否存在最小值,若存在,求出这个最小值;若不存在,请说明理由.【答案】(15;(23;(3)存在,63 【解析】【分析】(1)作A 1H ⊥AB 于H ,连接BD ,BD 1,则四边形ADA 1H 是矩形.解直角三角形,求出∠ABA 1,得到旋转角即可解决问题;(2)由△BCE ∽△BA 2D 2,推出222A D CE n CB A B m ==,可得CE=2n m ,由161A E EC =-推出16A C EC =,推出A 1C=26n m •,推出BH=A 1C=26n m •,然后由勾股定理建立方程,解方程即可解决问题;(3)当A 、P 、F ,D ,四点共圆,作PF ⊥DF ,PF 与CD 相交于点M ,作MN ⊥AB ,此时PF 的长度为最小值;先证明△FDG ∽△FME ,得到3FG F FM FE D ==,再结合已知条件和解直角三角形求出PM 和FM 的长度,即可得到PF 的最小值.【详解】解:(1)作A 1H ⊥AB 于H ,连接BD ,BD 1,则四边形ADA 1H 是矩形.∴AD=HA 1=n=1,在Rt △A 1HB 中,∵BA 1=BA=m=2,∴BA 1=2HA 1,∴∠ABA 1=30°,∴旋转角为30°,∵22125+=∴D 到点D 1所经过路径的长度=30551806π⋅=; (2)∵△BCE ∽△BA 2D 2,∴222A D CE n CB A B m==, ∴2n CE m=, ∵161EA EC =, ∴16A C EC=∴A1C=26nm ⋅,∴BH=A1C=2 226nm nm-=⋅,∴42226nm nm-=⋅,∴m4﹣m2n2=6n4,∴2424 16n nm m-=•,∴3nm=(负根已舍去).(3)当A、P、F,D,四点共圆,作PF⊥DF,PF与CD相交于点M,作MN⊥AB,此时PF 的长度为最小值;由(2)可知,3 BE nBG m==,∵四边形BEFG是矩形,∴3 FGFE=∵∠DFG+∠GFM=∠GFM+∠MFE=90°,∴∠DFG=∠MFE,∵DF⊥PF,即∠DFM=90°,∴∠FDM+∠GDM=∠FDM+∠DFM=∠FDM+90°,∴∠FDG=∠FME,∴△FDG∽△FME,∴3FGFFM FED==,∵∠DFM=90°,tan3FDFMDFM∠==,∴∠FDM=60°,∠FMD=30°,∴32FM DM =; 在矩形ABCD 中,有3AD AB =, 即3333=,则3AD =, ∵MN ⊥AB ,∴四边形ANMD 是矩形,∴MN=AD=3,∵∠NPM=∠DMF=30°,∴PM=2MN=6,∴NP=33AB =,∴DM=AN=BP=2,∴332322FM DM ==⨯=, ∴63PF PM MF =+=+;【点睛】本题考查点的运动轨迹,旋转变换、解直角三角形、弧长公式、矩形的性质、相似三角形的判定和性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于压轴题,中考常考题型.正确作出辅助线,正确确定动点的位置,注意利用数形结合的思想进行解题.4.阅读下面材料:小炎遇到这样一个问题:如图1,点E 、F 分别在正方形ABCD 的边BC ,CD 上,∠EAF=45°,连结EF ,则EF=BE+DF ,试说明理由.小炎是这样思考的:要想解决这个问题,首先应想办法将这些分散的线段相对集中.她先后尝试了翻折、旋转、平移的方法,最后发现线段AB ,AD 是共点并且相等的,于是找到解决问题的方法.她的方法是将△ABE 绕着点A 逆时针旋转90°得到△ADG ,再利用全等的知识解决了这个问题(如图2).参考小炎同学思考问题的方法,解决下列问题:(1)如图3,四边形ABCD中,AB=AD,∠BAD=90°点E,F分别在边BC,CD上,∠EAF=45°.若∠B,∠D都不是直角,则当∠B与∠D满足_ 关系时,仍有EF=BE+DF;(2)如图4,在△ABC中,∠BAC=90°,AB=AC,点D、E均在边BC上,且∠DAE=45°,若BD=1, EC=2,求DE的长.【答案】(1)∠B+∠D=180°(或互补);(2)∴【解析】试题分析:(1)如图,△ABE绕着点A逆时针旋转90°得到△ADG,利用全等的知识可知,要使EF=BE+DF,即EF=DG+DF,即要F、D、G三点共线,即∠ADG+∠ADF=180°,即∠B+∠D=180°.(2) 把△ABD绕A点逆时针旋转90°至△ACG,可使AB与AC重合,通过证明△AEG≌△AED 得到DE=EG,由勾股定理即可求得DE的长.(1)∠B+∠D=180°(或互补).(2)∵ AB=AC,∴把△ABD绕A点逆时针旋转90°至△ACG,可使AB与AC重合.则∠B=∠ACG,BD=CG,AD=AG.∵在△ABC中,∠BAC=90°,∴∠ACB+∠ACG=∠ACB+∠B=90°于,即∠ECG=90°.∴ EC2+CG2=EG2.在△AEG与△AED中,∠EAG=∠EAC+∠CAG=∠EAC+∠BAD=90°-∠EAD=45°=∠EAD.又∵AD=AG,AE=AE,∴△AEG≌△AED .∴DE=EG .又∵CG=BD,∴ BD 2+EC 2=DE 2.∴.考点:1.面动旋转问题;2.全等三角形的判定和性质;3.勾股定理.5.某数学活动小组在作三角形的拓展图形,研究其性质时,经历了如下过程:操作发现(1)某小组做了有一个角是120︒的等腰三角形DAC 和等边三角形GEB 纸片,DA DC =,让两个三角形如图①放置,点C 和点G 重合,点D ,点E 在AB 的同侧,AC 和GB 在同一条直线上,点F 为AB 的中点,连接DF ,EF ,则DF 和EF 的数量关系与位置关系为:________;数学思考(2)在图①的基础上,将GEB 绕着C 点按顺时针方向旋转90︒,如图②,试判断DF 和EF 的数量关系和位置关系,并说明理由;类比探索(3)①将GEB 绕着点C 任意方向旋转,如图③或图④,请问DF 和EF 的数量关系和位置关系改变了吗?无论改变与否,选择图③或图④进行证明;②GEB 绕着点C 旋转的过程中,猜想DF 与EF 的数量关系和位置关系,用一句话表述:________.【答案】(1)3EF DF =,DFEF ; (2)3EF DF =,DF EF ,理由见解析;(3)①3EF DF =,DFEF ;②旋转过程中3EF DF =,DF EF 始终成立.【解析】【分析】 (1)由题意过点D 作DM AB ⊥于点M ,过点E 作EN AB ⊥于点N ,利用等边三角形和中点性质设DM a =,2GB b =,结合相似三角形判定和性质进行综合分析求解; (2)根据题意要求判断DF 和EF 的数量关系和位置关系,连接CF ,OB 与AE 交于点M ,并综合利用垂直平分线定理以及矩形和等边三角形性质与三角函数进行综合分析;(3)①根据题意延长DF 并截取FN DF =,连接NE ,连接NB 并延长交CE 于点P ,交DC 的延长线于点O ,连接DE ,并利用全等三角形判定和性质以及三角函数进行分析证明;②由题意可知结合①猜想可知旋转过程中3EF DF =,DFEF 始终成立. 【详解】解:(1)3EF DF =,DF EF ;如解图,过点D 作DM AB ⊥于点M ,过点E 作EN AB ⊥于点N ,AD CD =,EGB 为等边三角形.AM MC ∴=,GN BN =.又点F 为AB 的中点,AF BF ∴=.()12MF CF NC NB AC AM CB MC NC +=++=+=+∴. MF NC NB ∴==,CF CN FN AM +==.设DM a =,2GB b =,120ADC ∠=︒,DA DC =,3AM a ∴=,3FN a =,MF NC NB b ===.tan 33EGB NE GN GN b =⋅==∠.在DMF 和FNE 中,33DM FN a==, 333MF NE b==, 又90DMF FNE ∠=∠=︒,DMF FNE ∴∽.MDF NFE ∴∠=∠,33DF DM FE FN ==,即3EF DF =. 90MDF DFM ∠+∠=︒,90DFM NFE ∴∠+∠=︒.90DFE ∴∠=︒.3EF DF ∴=且DF EF . (2)3EF DF =,DF EF . 理由如下:如解图,连接CF ,OB 与AE 交于点M ,当旋转角是90︒时,则90ACB ∠=︒,在Rt ACB △中,点F 是AB 的中点,CF BF ∴=.又CE EB =,EF ∴垂直平分BC.同理,DF 垂直平分AC ,∴四边形LCMF 为矩形,90DFE ∴∠=︒.DF EF ∴⊥,//AC EF .DA DC =,120ADC =∠︒,30DCA ∴∠=︒.GEB 为等边三角形,60ECB ∴∠=︒.∴∠DCA+∠ACB+∠ECB=180^∘∴D ,C ,E 三点共线.30DCA DEF ∴∠=∠=︒.∴在Rt DEF △中,3tan 33DE DF F F E DF ===∠; (3)①3EF DF =,DFEF .选择题图进行证明:如解图,延长DF 并截取FN DF =,连接NE ,连接NB 并延长交CE 于点P ,交DC 的延长线于点O ,连接DE ,在ADF和BNF中,AF BFAFD BFNDF NF=⎧⎪∠=∠⎨⎪=⎩,()SASADF BNF∴≅.AD NB∴=,ADF BNF∠=∠.//AD NB∴.18060O ADC∴∠=︒-∠=︒.又CPO BPE∠=∠,60O CEB∠=∠=︒,OCP OBE∴∠=∠.DCE NBE∴∠=∠.又GEB是等边三角形,GE BE∴=,又AD BN CD==,()SASDCE NBE∴≅.DE NE∴=,BEN CED∠=∠.BEN BED CED BED∴∠+∠=∠+∠,即60NED BEC∠=∠=︒.DEN∴是等边三角形.又DF FN=,DF EF∴⊥,60FDE∠=︒.tan3E EF DF DFFD∴∠=⋅=.或选择图进行证明,证明如下:如解图,延长DF并延长到点N,使得FN DF=,连接NB,DE,NE,NB与CD交于点O,EB与CD相交于点J,在ADF和BNF中,AF BF AFD BFN DF NF =⎧⎪∠=∠⎨⎪=⎩,()SAS ADF BNF ∴≅.AD NB ∴=,ADF BNF ∠=∠.//AD NB ∴.120NOC ADC ∴∠=∠=︒.60BOJ ∴∠=︒,60JEC ∠=︒.又OJB EJC ∠=∠,OBE ECJ ∴∠=∠.AD CD =,AD NB =,CD NB ∴=.又GEB 是等边三角形,CE BE ∴=.()SAS DCE NBE ∴≅.DE NE ∴=,BEN CED ∠=∠.BEN BED CED BED ∴∠-∠=∠-∠,即60NED BEC ∠=∠=︒.DEN ∴是等边三角形.又DF FN =,DF EF ∴⊥,60FDE ∠=︒.tan E E F DF FD ∴∠=⋅=.②旋转过程中EF =,DF EF 始终成立.【点睛】本题考查几何图形的综合探究题,难度大,运用数形结合思维分析以及掌握并灵活利用全等三角形判定和性质以及三角函数、相似三角形判定和性质等是解题关键.错因分析:①未掌握旋转的性质,即旋转前后线段、角度均不变;②不能合理利用类比关系,由浅到深解决问题.6.阅读材料:小胖同学发现这样一个规律:两个顶角相等的等腰三角形,如果具有公共的顶角的顶点,并把它们的底角顶点连接起来则形成一组旋转全等的三角形.小胖把具有这个规律的图形称为“手拉手”图形.如图1,在“手拉手”图形中,小胖发现若∠BAC =∠DAE ,AB =AC ,AD =AE ,则BD =CE ,(1)在图1中证明小胖的发现;借助小胖同学总结规律,构造“手拉手”图形来解答下面的问题:(2)如图2,AB =BC ,∠ABC =∠BDC =60°,求证:AD+CD =BD ;(3)如图3,在△ABC 中,AB =AC ,∠BAC =m°,点E 为△ABC 外一点,点D 为BC 中点,∠EBC=∠ACF,ED⊥FD,求∠EAF的度数(用含有m的式子表示).【答案】(1)证明见解析;(2)证明见解析;(3)∠EAF =12m°.【解析】分析:(1)如图1中,欲证明BD=EC,只要证明△DAB≌△EAC即可;(2)如图2中,延长DC到E,使得DB=DE.首先证明△BDE是等边三角形,再证明△ABD≌△CBE即可解决问题;(3)如图3中,将AE绕点E逆时针旋转m°得到AG,连接CG、EG、EF、FG,延长ED到M,使得DM=DE,连接FM、CM.想办法证明△AFE≌△AFG,可得∠EAF=∠FAG=12m°.详(1)证明:如图1中,∵∠BAC=∠DAE,∴∠DAB=∠EAC,在△DAB和△EAC中,AD AEDAB EACAB AC⎧⎪∠∠⎨⎪⎩===,∴△DAB≌△EAC,∴BD=EC.(2)证明:如图2中,延长DC到E,使得DB=DE.∵DB=DE,∠BDC=60°,∴△BDE是等边三角形,∴∠BD=BE,∠DBE=∠ABC=60°,∴∠ABD=∠CBE,∵AB=BC,∴△ABD≌△CBE,∴AD=EC,∴BD=DE=DC+CE=DC+AD.∴AD+CD=BD.(3)如图3中,将AE绕点E逆时针旋转m°得到AG,连接CG、EG、EF、FG,延长ED到M,使得DM=DE,连接FM、CM.由(1)可知△EAB≌△GAC,∴∠1=∠2,BE=CG,∵BD=DC,∠BDE=∠CDM,DE=DM,∴△EDB≌△MDC,∴EM=CM=CG,∠EBC=∠MCD,∵∠EBC=∠ACF,∴∠MCD=∠ACF,∴∠FCM=∠ACB=∠ABC,∴∠1=3=∠2,∴∠FCG=∠ACB=∠MCF,∵CF=CF,CG=CM,∴△CFG≌△CFM,∴FG=FM ,∵ED=DM ,DF ⊥EM , ∴FE=FM=FG , ∵AE=AG ,AF=AF , ∴△AFE ≌△AFG , ∴∠EAF=∠FAG=12m°. 点睛:本题考查几何变换综合题、旋转变换、等腰三角形的性质、全等三角形的判定和性质等知识,解题的关键是学会利用“手拉手”图形中的全等三角形解决问题,学会构造“手拉手”模型,解决实际问题,属于中考压轴题.7.在平面直角坐标系中,四边形AOBC 是矩形,点O (0,0),点A (5,0),点B (0,3).以点A 为中心,顺时针旋转矩形AOBC ,得到矩形ADEF ,点O ,B ,C 的对应点分别为D ,E ,F .(1)如图①,当点D 落在BC 边上时,求点D 的坐标; (2)如图②,当点D 落在线段BE 上时,AD 与BC 交于点H . ①求证△ADB ≌△AOB ; ②求点H 的坐标.(3)记K 为矩形AOBC 对角线的交点,S 为△KDE 的面积,求S 的取值范围(直接写出结果即可).【答案】(1)D (1,3);(2)①详见解析;②H (175,3);(3)303344-≤S ≤303344+. 【解析】 【分析】(1)如图①,在Rt △ACD 中求出CD 即可解决问题; (2)①根据HL 证明即可;②,设AH=BH=m ,则HC=BC-BH=5-m ,在Rt △AHC 中,根据AH 2=HC 2+AC 2,构建方程求出m 即可解决问题;(3)如图③中,当点D 在线段BK 上时,△DEK 的面积最小,当点D 在BA 的延长线上时,△D′E′K 的面积最大,求出面积的最小值以及最大值即可解决问题; 【详解】(1)如图①中,∵A(5,0),B(0,3),∴OA=5,OB=3,∵四边形AOBC是矩形,∴AC=OB=3,OA=BC=5,∠OBC=∠C=90°,∵矩形ADEF是由矩形AOBC旋转得到,∴AD=AO=5,在Rt△ADC中,CD=22AD AC=4,∴BD=BC-CD=1,∴D(1,3).(2)①如图②中,由四边形ADEF是矩形,得到∠ADE=90°,∵点D在线段BE上,∴∠ADB=90°,由(1)可知,AD=AO,又AB=AB,∠AOB=90°,∴Rt△ADB≌Rt△AOB(HL).②如图②中,由△ADB≌△AOB,得到∠BAD=∠BAO,又在矩形AOBC中,OA∥BC,∴∠CBA=∠OAB,∴∠BAD=∠CBA,∴BH=AH,设AH=BH=m,则HC=BC-BH=5-m,在Rt△AHC中,∵AH2=HC2+AC2,∴m2=32+(5-m)2,∴m=175,∴BH=175,∴H(175,3).(3)如图③中,当点D在线段BK上时,△DEK的面积最小,最小值=12•DE•DK=12×3×(5-342)=303344-,当点D在BA的延长线上时,△D′E′K的面积最大,最大面积=12×D′E′×KD′=12×3×(5+342)=303344+.综上所述,30334-≤S≤30334+.【点睛】本题考查四边形综合题、矩形的性质、勾股定理、全等三角形的判定和性质、旋转变换等知识,解题的关键是理解题意,灵活运用所学知识解决问题,学会利用参数构建方程解决问题.8.如图,已知△ABC和△ADE都是等腰直角三角形,∠ACB=∠ADE=90°,点F为BE的中点,连接CF,DF.(1)如图1,当点D在AB上,点E在AC上时①证明:△BFC是等腰三角形;②请判断线段CF,DF的关系?并说明理由;(2)如图2,将图1中的△ADE绕点A旋转到图2位置时,请判断(1)中②的结论是否仍然成立?并证明你的判断.【答案】(1)①证明见解析;②结论:CF=DF且CF⊥DF.理由见解析;(2)(1)中的结论仍然成立.理由见解析.【解析】【详解】分析:(1)、根据“直角三角形斜边上的中线等于斜边的一半”可知CF=BF=EF,根据∠CFD=2∠ABC,∠ACB=90°,∠ABC=45°得出∠CFD=90°,从而得出答案;(2)、延长DF至G使FG=DF,连接BG,CG,DC,首先证明△BFG和△EFD全等,然后再证明△BCG和△ACD全等,从而得出GC=DC,∠BCG=∠ACD,∠DCG=∠ACB=90°,最后根据直角三角形斜中线的性质得出答案.详解:(1)①证明:∵∠BCE=90°.EF=FB,∴CF=BF=EF,∴△BFC是等腰三角形.②解:结论:CF=DF且CF⊥DF.理由如下:∵∠ADE=90°,∴∠BDE=90°,又∵∠BCE=90°,点F是BE的中点,∴CF=DF=12BE=BF,∴∠1=∠3,∠2=∠4,∴∠5=∠1+∠3=2∠1,∠6=∠2+∠4=2∠2,∴∠CFD=∠5+∠6=2(∠1+∠2)=2∠ABC,又∵△ABC是等腰直角三角形,且∠ACB=90°,∴∠ABC=45°,∴∠CFD=90°,∴CF=DF且CF⊥DF.(2)(1)中的结论仍然成立.理由如下:如图,延长DF至G使FG=DF,连接BG,CG,DC,∵F是BE的中点,∴BF=EF,又∵∠BFG=∠EFD,GF=DF,∴△BFG≌△EFD(SAS),∴∠FBG=∠FED,BG=ED,∴BG∥DE,∵△ADE和△ACB都是等腰直角三角形,∴DE=DA,∠DAE=∠DEA=45°,AC=BC,∠CAB=∠CBA=45°,又∵∠CBG=∠EBG﹣∠EBA﹣∠ABC=∠DEF﹣(180°﹣∠AEB﹣∠EAB)﹣45°=∠DEF﹣180°+∠AEB+∠EAB﹣45°=(∠DEF+∠AEB)+∠EAB﹣225°=360°﹣∠DEA+∠EAB﹣225°=360°﹣45°+∠EAB﹣225°=90°+∠EAB,而∠DAC=∠DAE+∠EAB+∠CAB=45°+∠EAB+45°=90°+∠EAB,∴∠CBG=∠DAC,又∵BG=ED,DE=DA,∴BG=AD,又∵BC=AC,∴△BCG≌△ACD(SAS),∴GC=DC,∠BCG=∠ACD,∴∠DCG=∠DCB+∠BCG=∠DCB+∠ACD=∠ACB=90°,∴△DCG是等腰直角三角形,又∵F是DG的中点,∴CF⊥DF且CF=DF.点睛:主要考查了旋转的性质,等腰三角形和全等三角形的判定,及勾股定理的运用.要掌握等腰三角形和全等三角形的性质及其判定定理并会灵活应用是解题的关键.9.已知:△ABC和△ADE均为等边三角形,连接BE,CD,点F,G,H分别为DE,BE,CD 中点.(1)当△ADE绕点A旋转时,如图1,则△FGH的形状为,说明理由;(2)在△ADE旋转的过程中,当B,D,E三点共线时,如图2,若AB=3,AD=2,求线段FH的长;(3)在△ADE旋转的过程中,若AB=a,AD=b(a>b>0),则△FGH的周长是否存在最大值和最小值,若存在,直接写出最大值和最小值;若不存在,说明理由.【答案】(1)△FGH是等边三角形;(261;(3)△FGH的周长最大值为32(a+b),最小值为32(a﹣b).【解析】试题分析:(1)结论:△FGH是等边三角形.理由如下:根据三角形中位线定理证明FG=FH,再想办法证明∠GFH=60°即可解决问题;、(2)如图2中,连接AF、EC.在Rt△AFE和Rt△AFB中,解直角三角形即可;(3)首先证明△GFH的周长=3GF=32BD,求出BD的最大值和最小值即可解决问题;试题解析:解:(1)结论:△FGH是等边三角形.理由如下:如图1中,连接BD、CE,延长BD交CE于M,设BM交FH于点O.∵△ABC和△ADE均为等边三角形,∴AB=AC,AD=AE,∠BAC=∠DAE,∴∠BAD=∠CAE,∴△BAD≌△CAE,∴BD=CE,∠ADB=∠AEC,∵EG=GB,EF=FD,∴FG=12BD,GF∥BD,∵DF=EF,DH=HC,∴FH=12EC,FH∥EC,∴FG=FH,∵∠ADB+∠ADM=180°,∴∠AEC+∠ADM=180°,∴∠DMC+∠DAE=180°,∴∠DME=120°,∴∠BMC=60°∴∠GFH=∠BOH=∠BMC=60°,∴△GHF是等边三角形,故答案为:等边三角形.(2)如图2中,连接AF、EC.易知AF⊥DE,在Rt△AEF中,AE=2,EF=DF=1,∴AF2221-3,在Rt△ABF中,BF22AB AF-6,∴BD=CE=BF﹣DF61,∴FH=12EC=612.(3)存在.理由如下.由(1)可知,△GFH是等边三角形,GF=12BD,∴△GFH的周长=3GF=32BD,在△ABD中,AB=a,AD=b,∴BD的最小值为a﹣b,最大值为a+b,∴△FGH的周长最大值为3 2(a+b),最小值为32(a﹣b).点睛:本题考查等边三角形的性质.全等三角形的判定和性质、解直角三角形、三角形的三边关系、三角形的中位线的宽等知识,解题的关键是学会添加常用辅助线,正确寻找全等三角形解决问题,学会利用三角形的三边关系解决最值问题,属于中考压轴题.10.如图1,在平面直角坐标系xOy中,抛物线C:y=ax2+bx+c与x轴相交于A,B两点,顶点为D(0,4),AB2,设点F(m,0)是x轴的正半轴上一点,将抛物线C绕点F 旋转180°,得到新的抛物线C′.(1)求抛物线C的函数表达式;(2)若抛物线C′与抛物线C在y轴的右侧有两个不同的公共点,求m的取值范围.(3)如图2,P是第一象限内抛物线C上一点,它到两坐标轴的距离相等,点P在抛物线C′上的对应点P′,设M是C上的动点,N是C′上的动点,试探究四边形PMP′N能否成为正方形?若能,求出m的值;若不能,请说明理由.【答案】(1)2142y x=-+;(2)2<m<223)m=6或m17﹣3.【解析】【分析】(1)由题意抛物线的顶点C(0,4),A(20),设抛物线的解析式为24y ax=+,把A(220)代入可得a=12-,由此即可解决问题;(2)由题意抛物线C′的顶点坐标为(2m,﹣4),设抛物线C′的解析式为()21242y x m=--,由()221421242y xy x m⎧=-+⎪⎪⎨⎪=--⎪⎩,消去y得到222280x mx m-+-=,由题意,抛物线C′与抛物线C在y轴的右侧有两个不同的公共点,则有()222(2)428020280m mmm⎧--->⎪⎪>⎨⎪->⎪⎩,解不等式组即可解决问题;(3)情形1,四边形PMP′N能成为正方形.作PE⊥x轴于E,MH⊥x轴于H.由题意易知P(2,2),当△PFM是等腰直角三角形时,四边形PMP′N是正方形,推出PF=FM,∠PFM=90°,易证△PFE≌△FMH,可得PE=FH=2,EF=HM=2﹣m,可得M(m+2,m﹣2),理由待定系数法即可解决问题;情形2,如图,四边形PMP′N是正方形,同法可得M(m﹣2,2﹣m),利用待定系数法即可解决问题.【详解】(1)由题意抛物线的顶点C(0,4),A(20),设抛物线的解析式为24y ax =+,把A (22,0)代入可得a =12-, ∴抛物线C 的函数表达式为2142y x =-+.(2)由题意抛物线C ′的顶点坐标为(2m ,﹣4),设抛物线C ′的解析式为()21242y x m =--, 由()221421242y x y x m ⎧=-+⎪⎪⎨⎪=--⎪⎩,消去y 得到222280x mx m -+-= ,由题意,抛物线C ′与抛物线C 在y 轴的右侧有两个不同的公共点,则有()222(2)428020280m m m m ⎧--->⎪⎪>⎨⎪->⎪⎩, 解得2<m <22,∴满足条件的m 的取值范围为2<m <22. (3)结论:四边形PMP ′N 能成为正方形.理由:1情形1,如图,作PE ⊥x 轴于E ,MH ⊥x 轴于H .由题意易知P (2,2),当△PFM 是等腰直角三角形时,四边形PMP ′N 是正方形,∴PF =FM ,∠PFM =90°,易证△PFE ≌△FMH ,可得PE =FH =2,EF =HM =2﹣m ,∴M (m +2,m ﹣2),∵点M 在2142y x =-+上,∴()212242m m -=-++,解得m 17﹣3173(舍弃),∴m 17﹣3时,四边形PMP ′N 是正方形.情形2,如图,四边形PMP ′N 是正方形,同法可得M (m ﹣2,2﹣m ),把M (m ﹣2,2﹣m )代入2142y x =-+中,()212242m m -=--+,解得m =6或0(舍弃),∴m =6时,四边形PMP ′N 是正方形.综上所述:m =6或m 17﹣3时,四边形PMP ′N 是正方形.。