高中数学圆锥曲线综合--求轨迹方程
- 格式:doc
- 大小:78.00 KB
- 文档页数:2
圆锥曲线题型训练轨迹方程的求法总论 (2)1 直接法 (3)练习1 (4)2 定义法 (5)练习2 (7)3 代入法 (9)练习3 (11)4、交轨法 (11)练习4 (13)5参数法 (14)练习5 (18)6、练习题答案 (20)练习1答案 (20)练习2答案 (23)练习3答案 (28)练习4答案 (29)练习5答案 (34)总论轨迹:是指一个动点按某种特点来运动,运动构成的曲线,可以是,直线,线段,圆,或椭圆,双曲线等等,我们这里把“曲线”也叫做“轨迹”;求动点轨迹方程:即已知动点的运动规律,我们来求满足此条件的动点的坐标),(y x 满足的方程(即等式)0),( y x f ;这个过程要求我们善于将几何图形中点、线之间的关系转化为代数形式,比如,长度,距离,向量的关系式等等,将条件坐标化,注意分析运动过程中不变的等量关系,将“不变的关系”化为“等式”,即达到了求轨迹方程的目的。
可能用到的公式: 两点间距离: 点到直线的距离: 两条平行新间的距离: 平面向量的数量积的坐标形式: 平面向量数乘的坐标形式:1 直接法本着“求谁设谁”的原则,将所求轨迹的动点的坐标设为),(y x ,根据其运动特点列等式,利用解析几何有关公式(两点距离公式、点到直线距离公式等)进行整理、化简,把运动特点“翻译”成含,x y 的等式就得到曲线的轨迹方程0),(=y x f 。
例 一条线段AB 的长等于2a ,两个端点,A B 分别在x 轴和y 轴上滑动,求AB 中点M 的轨迹方程?解:设),(y x M ,则)0,2(),2,0(x B y A ,由a AB 2||=得a y x 24422=+,化简得222a y x =+变式:若21=MABM,则点M 的轨迹方程是什么? 例 已知点(3,0),(3,0)A B -,动点P 满足||2||PA PB =,求动点P 的轨迹方程 解:因为2222||(3),||(3)PA x y PB x y =++=-+代入||2||PA PB =,得222222224)3(4)3(2)3()3(y x y x y x y x +-=++⇒=+-++化简得22(5)16x y -+=,说明轨迹是以(5,0)为圆心,4为半径的圆. 说明:由此题可以得到一个推论:已知平面上两点A 、B ,则所有满足(1)PAk k PB=≠的点P 的轨迹是一个圆(阿氏圆) 例2 (2009海南20)已知椭圆C 的中心为直角坐标系xOy 的原点,焦点在x 轴上,它的一个顶点到两个焦点的距离分别是7和1. (Ⅰ)求椭圆C 的方程;(Ⅱ)若P 为椭圆C 上的动点,M 为过P 且垂直于x 轴的直线上的点,OPOM=λ,求点M 的轨迹方程,并说明轨迹是什么曲线。
知识导航有关圆锥曲线的题型较多,有求圆锥曲线的离心率、轨迹方程、判定两图形的位置关系、求弦长等,其中,求动点的轨迹方程比较常见.本文总结了求圆锥曲线中动点的轨迹方程的三种方法,供大家参考.一、直接法直接法主要应用于解答题目中所给的有关动点的几何条件较为明显的问题.运用直接法求动点的轨迹方程的主要步骤是:(1)建立合适的直角坐标系,设出所求动点的坐标;(2)根据题意,列出相关关系式;(3)将相关的点代入,化简并整理关系式即可得到动点的轨迹方程.例1.已知点Q (2,0)在圆C :x 2+y 2=1,动点M 到圆C 的切线长与|MQ |的比等于常数λ(λ>0),求动点M 的轨迹方程并说明它是什么曲线.分析:通过分析可知,动点M 到圆C 的切线长与|MQ |的比等于常数λ,所以可以考虑运用直接法求解.设出动点M 的坐标,根据题设建立关系式,化简便可得到动点的轨迹方程.解:设M (x ,y ),由直线MN 切圆于N ,MN|MQ |=λ,可得22=λ,整理得则(λ1)x 2+(λ2-1)y 2-4λ2x +(1+4λ2)=0,若λ=1,方程可化为x =54,它代表过点(54,0),与x 轴垂直的一条直线;若λ≠1,方程可化为æèçöø÷x -2λ2λ2-12+y 2=1+3λ2(λ2-1)2,它代表以æèçöø÷2λ2λ2-1,0为半径的圆.二、代入法若动点M 依赖已知曲线上的另一动点N 而运动,就可以运用代入法来求动点的轨迹方程.首先设出两动点的坐标,建立两动点的关系式,然后将转化后的动点N 的坐标代入已知曲线的方程或条件中,从而得到动点M 的轨迹方程.例2.已知点B 是椭圆x 2a 2+y 2b2=1上的动点,A (2a ,Q )为定点,求线段AB 的中点M 的轨迹方程.分析:动点M 是线段AB 的中点,M 随着动点B 而运动,本题需采用代入法来求解.解:设动点M 的坐标为(x ,y ),B 点坐标为(x 0,y 0),由M 为线段AB 的中点,可得ìíîïïïïx 0+2a2=x ,y 0+02=y ,则点B 的坐标为(2x -2a ,2y ),则(2x -2a )2a 2+(2y )2b2=1,故动点M 的轨迹方程为4(x -a )2a 2+4y 2b2=1.三、参数法参数法是指通过引入一些新变量(参数)为媒介来解答问题的方法.运用参数法求圆锥曲线中动点的轨迹方程的基本思路是,设出合适的参数,根据题意列出参数方程,通过消参将方程化为普通方程即可解题.但在解题的过程中需注意参数的取值范围.例3.如图,过点P (2,4)作两条互相垂直的直线l 1,l 2,若l 1交x 轴于A 点,l 2交y 轴于B 点,求线段AB的中点M 的轨迹方程.解:设M (x ,y ),直线l 1的方程为y -4=k (x -2),(k ≠0),由l 1⊥l 2,得直线l 2的方程为y -4=-1k(x -2),∴l 1与x 轴焦点A 的坐标为(2-4k,0),l 2与y 轴焦点B 的坐标为(0,4+2k),∵M 为AB 的中点,∴ìíîïïïïx =2-4k 2=1-2k ,y =4+2k 2=2+1k ,消去k ,得到x +2y -5=0,当k =0时,AB 的中点为M (1,2),满足上述方程,当k 不存在时,AB 的中点为M (1,2),也满足上述方程,综上所述,M 的轨迹方程为x +2y -5=0.这里通过引入参数k ,得到两条直线的方程,然后结合题意建立关于k 的关系式,通过消参得到动点的轨迹方程.相比较而言,直接法较为简单,是最常用也是适用范围最广的方法;代入法的适用范围较窄,只适用于两个动点相关的题型;运用参数法解题的运算量较大.无论采用什么方法求动点的轨迹方程,都要关注轨迹方程中变量的取值范围.(作者单位:江苏省南通市海门四甲中学)蒋秋霞39Copyright©博看网 . All Rights Reserved.。
求轨迹方程曲线与方程一般地,在平面直角坐标系中,如果某曲线C 上的点与一个二元方程(x,y)0f =的实数解建立了如下关系:(1)曲线上点的坐标都是这个方程的解(2)以这个方程的解为坐标的点都是曲线上的点,那么这个方程叫做曲线的方程,这条曲线叫做方程的曲线。
一、 直接法求动点的轨迹方程的一般步骤(1)建立适当的坐标系,用有序实数对(x,y)表示曲线上任意一点的M 的坐标(2)写出适合条件P 的点M 的集合{M (M)}P P =(3)用坐标表示条件P(M),列出方程(x,y)0f =(4)化简该方程到最简(5)说明以化简后的方程的解为坐标的点都在曲线上(扣点,看看是否所有解都取)例:已知点(2,0),B(3,0)A --,动点(x,y)P 满足21PA PB x •=+,则点P 的轨迹方程是 。
练习:在平面直角坐标系中,点B与点(1,1)A-关于原点O对称,P是动点,且直线AP与BP 的斜率之积等于1-。
3(1)求动点P的轨迹方程;(2)设直线AP和BP分别与直线3x=交于点M,N。
问:是否存在点P使得PAB与PMN的面积相等?若存在,求出点P的坐标;若不存在,说明理由。
二、定义法求轨迹方程定义法:运用解析几何中一些常用定义(例如圆锥曲线的定义),可从曲线定义出发直接写出轨迹方程,或从曲线定义出发建立关系式,从而求出轨迹方程。
这种求曲线方程的方法是定义法。
例:与圆2240+-=外切,且与y轴相切的动圆圆心的轨迹方程x y x是。
练习1:已知圆的圆心为22(x 4)25y ++=的圆心为1M ,圆22(x 4)1y -+=的圆心为2M ,一动圆与这两个圆外切,求动圆圆心P 的轨迹方程。
练习2:已知两个定圆1O 和2O ,它们的半径分别是1和2,且124OO =。
动圆M 与圆1O 内切,又与圆2O 外切,建立适当的坐标系,求动圆圆心M 的轨迹方程,并说明轨迹是何种曲线。
练习3:已知ABC 的顶点A ,B 的坐标分别为(4,0),(4,0)-,C 为动点,且满足5sin sin sin 4B AC +=,求点C 的轨迹。
第3讲 圆锥曲线中轨迹方程问题的求法一、考情分析 求曲线的轨迹方程是解析几何的两个基本问题之一。
求符合某种条件的动点的轨迹方程,其实质就是利用题设中的几何条件,用“坐标化”将其转化为寻求变量间的关系 这类问题除了考查学生对圆锥曲线的定义,性质等基础知识的掌握,还充分考查了各种数学思想方法及一定的推理能力和运算能力,因此这类问题成为高考命题的热点,也是同学们的一大难点 。
二、经验分享求曲线的轨迹方程常采用的方法有直接法、定义法、代入法、参数法(1)直接法 直接法是将圆锥曲线中动点满足的几何关系或者等量关系,直接坐标化,列出等式化简即得动点轨迹方程,当所求动点的要满足的条件简单明确时,直接按“建系设点、列出条件、代入坐标、整理化简、限制说明”五个基本步骤求轨迹方程, 称之直接法.(2)定义法 若动点轨迹的条件符合某一基本轨迹的定义(如椭圆、双曲线、抛物线、圆等),可用定义直接探求;(3)相关点法 根据相关点所满足的方程,通过转换而求动点的轨迹方程;(4)参数法 若动点的坐标(x ,y )中的x ,y 分别随另一变量的变化而变化,我们可以以这个变量为参数,建立轨迹的参数方程;求轨迹方程,一定要注意轨迹的纯粹性和完备性 要注意区别“轨迹”与“轨迹方程”是两个不同的概念三、题型分析(一) 直接法 直接法是将动点满足的几何条件或者等量关系,直接坐标化,列出等式化简即得动点轨迹方程 当所求动点的要满足的条件简单明确时,直接按“建系设点、列出条件、代入坐标、整理化简、限制说明”五个基本步骤求轨迹方程, 称之直接法.例1 已知直角坐标平面上点Q (2,0)和圆C :122=+y x ,动点M 到圆C 的切线长与MQ 的比等于常 数()0>λλ(如图),求动点M 的轨迹方程,说明它表示什么曲线. 【变式训练】设O 为坐标原点,动点M 在椭圆C :2212x y +=上,过M 作x 轴的垂线,垂足为N ,点P 满足2NP NM =。
圆锥曲线之动点轨迹方程:(1)求轨迹方程的步骤:建系、设点、列式、化简、确定点的范围;(2)求轨迹方程的常用方法:①直接法:直接利用条件建立,x y 之间的关系(,)0F x y =;已知动点P 到定点F(1,0)和直线3=x 的距离之和等于4,求P 的轨迹方程。
②待定系数法:已知所求曲线的类型,求曲线方程――先根据条件设出所求曲线的方程,再由条件确定其待定系数。
线段AB 过x 轴正半轴上一点M (m ,0))0(>m ,端点A 、B 到x 轴距离之积为2m ,以x 轴为对称轴,过A 、O 、B 三点作抛物线,则此抛物线方程为 。
③定义法:先根据条件得出动点的轨迹是某种已知曲线,再由曲线的定义直接写出动点的轨迹方程;(1) 由动点P 向圆221x y +=作两条切线PA 、PB ,切点分别为A 、B ,∠APB=600,则动点P 的轨迹方程为 。
(2)点M 与点F(4,0)的距离比它到直线05=+x l :的距离小于1,则点M 的轨迹方程是 。
(3) 一动圆与两圆⊙M :122=+y x 和⊙N :012822=+-+x y x 都外切,则动圆圆心的轨迹为 。
④代入转移法:动点(,)P x y 依赖于另一动点00(,)Q x y 的变化而变化,并且00(,)Q x y 又在某已知曲线上,则可先用,x y 的代数式表示00,x y ,再将00,x y 代入已知曲线得要求的轨迹方程;动点P 是抛物线122+=x y 上任一点,定点为)1,0(-A ,点M 分−→−PA 所成的比为2,则M 的轨迹方程为 。
⑤参数法:当动点(,)P x y 坐标之间的关系不易直接找到,也没有相关动点可用时,可考虑将,x y 均用一中间变量(参数)表示,得参数方程,再消去参数得普通方程)。
(1)AB 是圆O 的直径,且|AB|=2a ,M 为圆上一动点,作MN ⊥AB ,垂足为N ,在OM 上取点P ,使||||OP MN =,求点P 的轨迹。
圆锥曲线轨迹方程的解法目录一题多解 (2)一.直接法 (4)二. 相关点法 (7)三. 几何法 (11)四. 参数法 (13)五. 交轨法 (15)六. 定义法 (17)一题多解设圆C :(x -1)2+y 2=1,过原点O 作圆的任意弦OQ ,求所对弦的中点P 的轨迹方程。
一.直接法设P (x,y ),OQ 是圆C 的一条弦,P 是OQ 的中点,则CP ⊥OQ ,x ≠0,设OC 中点为M (0,21),则|MP |=21|OC |=21,得(x -21)2+y 2=41(x ≠0),即点P 的轨迹方程是(x -21)2+y 2=41(0<x ≤1)。
二.定义法∵∠OPC =90°,∴动点P 在以M (0,21)为圆心,OC 为直径的圆(除去原点O )上,|OC |=1,故P 点的轨迹方程为(x -21)2+y 2=41(0<x ≤1)三.相关点法设P (x,y ),Q (x 1,y 1),其中x 1≠0,∴x 1=2x,y 1=2y ,而(x 1-1)2+y 2=1 ∴(2x -1)2+2y 2=1,又x 1≠0,∴x ≠0,即(x -21)2+y 2=41(0<x ≤1)四.参数法①设动弦PQ 的方程为y=kx ,代入圆的方程(x -1)2+kx 2=1,即(1+k 2)x 2-2x =0,∴.12221k x x +=+ 设点P (x,y ),则22211],1,0(112kkkx y k x x x +==∈+=+= 消去k 得(x -21)2+y 2=41(0<x ≤1)②另解 设Q 点(1+cos θ,sin θ),其中cos θ≠-1,P (x,y ),则,2sin ],1,0(2cos 1θθ=∈+=y x 消去θ得(x -21)2+y 2=41(0<x ≤1)一.直接法课本中主要介绍的方法。
若命题中所求曲线上的动点与已知条件能直接发生关系,这时,设曲线上动点坐标),(y x 后,就可根据命题中的已知条件研究动点形成的几何特征,在此基础上运用几何或代数的基本公式、定理等列出含有x 、y 的关系式。
专题圆锥曲线(求轨迹方程)求轨迹方程的常用方法(1) 直接法:直接利用条件建立x, y之间的关系或F(x, y) = 0;(2) 定义法:先根据条件得出动点的轨迹是某种已知曲线,再由曲线的定义直接写出动点的轨迹方程;(3) 代入转移法(相关点法):动点P(x,y)依赖于另一动点Q(x o, y o)的变化而变化,并且Q(x o,y o)又在某已知曲线上,贝U可先用x,y的代数式表示x o,y o,再将x o,y o代入已知曲线得要求的轨迹方程.1. 一个区别一一“轨迹方程”与“轨迹”“求动点的轨迹方程”和“求动点的轨迹”是不同的.前者只须求出轨迹的方程,标出变量x,y 的范围;后者除求出方程外,还应指出方程的曲线的图形,并说明图形的形状、位置、大小等有关的数据.2. 双向检验一一求轨迹方程的注意点求轨迹方程,要注意曲线上的点与方程的解是一一对应关系,检验应从两个方面进行:一是方程的化简是否是同解变形;二是是否符合实际意义,注意轨迹上特殊点对轨迹的“完备性与纯粹性”的影响.考向一直接法求轨迹方程【例1】已知动点P(x, y)与两定点M(—1,0), N(1,o)连线的斜率之积等于常数g0).(1) 求动点P的轨迹C的方程;(2) 试根据入的取值情况讨论轨迹C的形状.[解](1)由题意可知,直线PM与PN的斜率均存在且均不为零, 所以k PM k PNy . y x+1 x—1考向三 代入法(相关点法)求轨迹方程【例3】如图8-8-2所示,设P 是圆x 2 + y 2= 25上的动点,4点D 是P 在x 轴上的投影,M 为PD 上一点,且|MD|= 5(1)当P 在圆上运动时,求点M 的轨迹C 的方程;当 心0且 存1时,是椭圆的轨迹方程; 当 X 0时,是双曲线的轨迹方程; 当 A 0时,是直线的轨迹方程. 综上,方程不表示抛物线的方程. 【答案】 C 考向二定义法求轨迹方程 【例2】已知两个定圆01和02,它们的半径分别是1和2,且|0102匸4.动圆M 与圆01内切, 又与圆02外切,建立适当的坐标系,求动圆圆心 M 的轨迹方程,并说明轨迹是何种曲线. 【解】 如图所示,以0102的中点0为原点,0102所在直线为x 轴建立平面直角坐标系. 由 0102匸4,得 01( — 2,0), 02(2,0). 设动圆M 的半径为r ,则由动圆M 与圆01内切,有|M01|= r — 由动圆 M 与圆 02外切,有 |M02|= r + 2./.|M02—|M01|= 3. •••点M 的轨迹是以01, 02为焦点,实轴长为3的双曲线的左支. 3 2 2 ・£ = 2, c = 2,「・b =_c —a ~9 —'•••点M 的轨迹方程为 1X W-3 7 —1 2 . 2=7.1;64【对点练习2】如图8-8-1所示,已知圆A : (x + 2)2+ — 1与点B(2,0) 分别求出满足下列条件的动点 P 的轨迹方程. ("△ PAB 的周长为10; (2) 圆P 与圆A 外切,且过B 点(P 为动圆圆心);(3) 圆P 与圆A 外切,且与直线x = 1相切(P 为动圆圆心). y【解】 ⑴根据题意,知 |FA|+ |PB|+ |AB| = 10,即 |PA|+|PB 匸 6> 4= |AB|, 故P 点轨迹是椭圆,且 2a =6,2c = 4,即a = 3,c = 2,b = ,5. X 2 y 2因此其轨迹方程为9 + y = 1(尸0). (2)设圆 P 的半径为 r ,则 |FA|= r + 1,|PB|= r ,因此 |PA|-|PB|= 1. 图 8-8-1由双曲线的定义知, 1a = 2,c = 2,b =因此其轨迹方程为 ⑶依题意,知动点 开口向左,p = 4.因此其轨迹方程为yP 点的轨迹为双曲线的右支,且2a = 1,2c = 4,即 2 4 2 1 4x -神二 1 x > 2. P 到定点A 的距离等于到定直线x = 2的距离,故其轨迹为抛物线,且2=- 8x.4(2)求过点(3,0)且斜率为4的直线被C 所截线段的长度.【解】(1)设M 的坐标为(x , y ), P 的坐标为(X P , y r ),由已知得'■'P 在圆上,••• x 2+ 4$ 2= 25,即 C 的方程为 25+16=1.44(2)过点(3,0)且斜率为5的直线方程为y = 5(x - 3),设直线与3—何 3 +回 • .x 1 2 , x 2 2y 2),将直线方程y =詼―3)代入C 的方程,得£+x - 3 2 25即 x 2— 3x — 8=0.X P = x ,5 y p =4y.C 的交点为 A(x i , y i ), B(X 2,•线段 AB 的长度为 |AB|=" : x 1 — X 22+ y 1 — y 2 2=1+ 26 X 1— X 22 =2541 41 25X 41=寸【对点练习2】(2014合肥模拟)如图8-8-5所示,以原点O 为圆心的两个 同心圆的半径分别为3和1,过原点O 的射线交大圆于点P ,交小圆于 点Q , P 在y 轴上的射影为 M.动点N 满足PM = ?PN 且PM QN = 0.(1)求点N 的轨迹方程;⑵过点A (0,3)作斜率分别为k 1, k 2的直线|1, |2与点N 的轨迹分别 交于E , F 两点,k 1 k 2= — 9.求证:直线EF 过定点.【解】(1 )由PM = ?PN 且PM (QN = 0可知N , P , M 三点共线且PMQN.过点Q 作QN 丄PM ,垂足为N ,设N(x , y), v|OP|= 3, |OQ|= 1,由相似可知P(3x , y).2 2••P 在圆 x 2 + y 2 = 9 上, (3x)2 + y 2 = 9,即£ + x 2= 1.所以点 N 的轨迹方程为 £+ x 2= 1.y = k 1x + 3,(2)证明:设 E(X E , y E ), F(X F , y F ),依题意,由y 29+ x= 1 (k 1 + 9)x 2 + 6k 1x = 0,①解得x = 0或x = —6k 1 k 2+ 9所以X E = —6k 1 k 1+ 9,6k 127— 3k 1yE=k1-k ?+9+ 3=2+9,6k 1 27 - 3k1 Ek 1+ 9, k 1 + 999vk1k 2=- 9,Ak 2=- ■.用 k 2=-话替代①中的 k 1,同理可得F6k 1k 1+ 9, 3k 2- 27k 2+ 9显然E , F 关于原点对称,•直线EF 必过原点O.一、选择题1.若M , N 为两个定点,【达标训练】且|MN|= 6,动点P满足PM PN = 0,则P点的轨迹是(A •圆B •椭圆C .双曲线D •抛物线1 12. 已知点F 4,0,直线I : x = — 4,点B 是I 上的动点•若过B 垂直于y 轴的直线与线段BF 的垂直平分线交于点M ,则点M 的轨迹是()A .双曲线B .椭圆C .圆D .抛物线3.(2014天津模拟)平面直角坐标系中,已知两点A(3,1), B( —1,3),若点C 满足OC = 2iOA +來金(0为原点),其中21,位€ R ,且刀+龙=1,则点C 的轨迹是()A .直线B .椭圆C .圆D .双曲线4.(2014合肥模拟)如图8-8-4所示,A 是圆0内一定点,B 是圆周上 一个动点,AB 的中垂线CD 与OB 交于E ,则点E 的轨迹是()A .圆B .椭圆C .双曲线D .抛物线5. 设过点P(x , y)的直线分别与x 轴的正半轴和y 轴的正半轴交于 A , B 两点,点Q 与点P 关于y 轴对称, 且OQ AB = 1,则点P 的轨迹方程是(A.3x 2 +1(x >0, y >0)C . 3x 2 — 2v 2= 1(x >0, y >0)6•已知动点P 在曲线2x 2 — y = 0上移动,则点A(0, — 1)与点P 连线中点的轨迹方程是()7. 平面上有三个点 A( — 2, y), B 0, 2 , C(x , y),若AB 丄BC ,则动点C 的轨迹方程是8. 动圆与。
圆锥曲线中求轨迹方程的五种策略
圆锥曲线是一种由球体部分曲面形成的曲线,在三维空间和立体几何中经常使用,它的外表形状完全以圆锥形或椎体形式呈现,具有很高的应用价值。
求轨迹方程是圆锥曲线中常见的问题,解决这个问题需要大家去深入研究并提出合理的策略。
首先,求轡迹方程的最简单方法是利用圆锥曲线的完整公式,即V=((x-
a)^2+(y-b)^2)/R^2=z,在该公式中,x和y分别是x和y的坐标,a和b是圆锥的圆心坐标,R是圆锥曲线的半径,z是圆锥轨道的高度。
通过这个公式,我们就可
以求出圆锥曲线的的轨迹方程。
其次,在求轨迹方程时,还可以采用图解法来进行求解。
首先,确定圆锥曲线
的参数,然后绘制出圆锥曲线的图形,最后在图形中找到轨迹直线,计算这条轨迹直线和圆锥曲线之间的关系,就可以确定出轨迹方程。
第三,利用牛顿迭代法来求解轨迹方程。
这一方法运用牛顿迭代算法,以求出
满足条件的圆锥曲线轨迹方程。
该策略涉及变成原理、微积分和数学递归的知识,因此比较复杂。
第四,对于相对简单的圆锥曲线,可以从无数平面线段进行拼接,求出轨迹方程。
拼接的原则是:点的坐标吸引轨迹直线,这样就得到了轨迹方程,因此也是一种有效的策略。
最后,如果圆锥曲线轨迹不是相对简单,可以利用圆锥参数方程,在xz平面
和yz平面做投影,对投影后的坐标进行直线拼接,得到轨迹方程。
总之,求解圆锥曲线的轨迹方程有五种常见的策略,分别是完全公式法、图解法、牛顿迭代法、无数平面线段拼接法以及圆锥参数方程法,这些策略各有特色,其中一些需要一定数学基础,一些则可以简单高效求解,大家可以根据实际情况来选择合适的方法。
《圆锥曲线―轨迹方程》2010届高考数学复习强化双基系列课件《圆锥曲线-轨迹方程》基本知识概要:一、求轨迹的一般方法:1.直接法:如果动点运动的条件就是一些几何量的等量关系,这些条件简单明确,易于表述成含x,y的等式,就得到轨迹方程,这种方法称之为直接法。
用直接法求动点轨迹一般有建系,设点,列式,化简,证明五个步骤,最后的证明可以省略,但要注意“挖”与“补”。
2.定义法:运用解析几何中一些常用定义(例如圆锥曲线的定义),可从曲线定义出发直接写出轨迹方程,或从曲线定义出发建立关系式,从而求出轨迹方程。
3.代入法:动点所满足的条件不易表述或求出,但形成轨迹的动点P(x,y)却随另一动点Q(x’,y’)的运动而有规律的运动,且动点Q的轨迹为给定或容易求得,则可先将x’,y’表示为x,y的式子,再代入Q 的轨迹方程,然而整理得P的轨迹方程,代入法也称相关点法。
4.参数法:求轨迹方程有时很难直接找到动点的横坐标、纵坐标之间的关系,则可借助中间变量(参数),使x,y之间建立起联系,然而再从所求式子中消去参数,得出动点的轨迹方程。
5.交轨法:求两动曲线交点轨迹时,可由方程直接消去参数,例如求两动直线的交点时常用此法,也可以引入参数来建立这些动曲线的联系,然而消去参数得到轨迹方程。
可以说是参数法的一种变种。
6.几何法:利用平面几何或解析几何的知识分析图形性质,发现动点运动规律和动点满足的条件,然而得出动点的轨迹方程。
7.待定系数法:求圆、椭圆、双曲线以及抛物线的方程常用待定系数法求 .8.点差法:求圆锥曲线中点弦轨迹问题时,常把两个端点设为A( x1 , y1 ), B( x2 , y 2 ) 并代入圆锥曲线方程,然而作差求出曲线的轨迹方程。
二、注意事项:1.直接法是基本方法;定义法要充分联想定义、灵活动用定义;代入法要设法找到关系式x’=f(x,y), y’=g(x,y);参数法要合理选取点参、角参、斜率参等参数并学会消参;交轨法要选择参数建立两曲线方程再直接消参;几何法要挖掘几何属性、找到等量关系。
最全的圆锥曲线轨迹方程求法圆锥曲线轨迹方程的解法目录错误!未定义书签。
一题多解......................................................................................................... 错误!未定义书签。
一.直接法..................................................................................................... . 相关点法错误!未定义书签。
.................................................................................................. 二三. 错误!未定义书签。
几何法...................................................................................................... ...................................................................................................... 参数法错误!未定义书签。
四. ...................................................................................................... 错误!未定义书签。
五. 交轨法定义法...................................................................................................... 错误!未定义书签。
圆锥曲线轨迹方程的求法知识归纳求轨迹方程的常用方法:⒈直接法:直接将条件翻译成等式,整理化简后即得动点的轨迹方程,这种求轨迹方程的方法通常叫做直接法。
⒉定义法:如果能够确定动点的轨迹满足某种已知曲线的定义,则可利用曲线的定义写出方程,这种求轨迹方程的方法叫做定义法。
⒊相关点法:用动点M 的坐标x ,y 表示相关点P 的坐标(Xo 、Yo ),然后代入点P 的坐标(Xo 、Yo )所满足的曲线方程,整理化简便得到动点Q 轨迹方程,这种求轨迹方程的方法叫做相关点法。
(用未知表示已知,带入已知求未知)⒋参数法:当动点坐标x 、y 之间的直接关系难以找到时,往往先寻找x 、y 与某一变数t 的关系,得再消去参变数t ,得到方程,即为动点的轨迹方程,这种求轨迹方程的方法叫做参数法。
⒌交轨法:将两动曲线方程中的参数消去,得到不含参数的方程,即为两动曲线交点的轨迹方程,这种求轨迹方程的方法叫做交轨法。
类型一 直接法求轨迹方程【例1】已知两点M(-2,0),N(2,0),点P 为坐标平面内的动点,满足|MN ⃑⃑⃑⃑⃑⃑ |⋅|MP ⃑⃑⃑⃑⃑⃑ |+MN ⃑⃑⃑⃑⃑⃑ ⋅NP ⃑⃑⃑⃑⃑ =0 ,则动点P(x ,y)的轨迹方程为 。
【点评】直接法求曲线方程时最关键的就是把几何条件或等量关系翻译为代数方程,要注意翻译的等价性.通常将步骤简记为建系设点、列式、代换、化简这四个步骤,如果给出了直角坐标系则可省去建系这一步,求出曲线的方程后还需注意检验方程。
【变式训练】1.已知抛物线C :y 2=2x 的焦点为F ,平行于x 轴的两条直线l 1,l 2分别交C 于A ,B 两点,交C 的准线于P ,Q 两点.若△PQF 的面积是△ABF 的面积的两倍,求AB 中点的轨迹方程.2.已知两点M(-1,0),N(1,0),点P 为坐标平面内的动点,且满足|MN ⃑⃑⃑⃑⃑⃑⃑ |⋅|MP ⃑⃑⃑⃑⃑⃑ |+MN ⃑⃑⃑⃑⃑⃑⃑ ⋅NP ⃑⃑⃑⃑⃑ =0,则动点P 的轨迹方程为3.在平面直角坐标系xOy 中,点P(a ,b)为动点,F 1,F 2分别为椭圆x 2a 2+y2b 2=1(a >b >0)的左、右焦点,已知△F 1PF 2为等腰三角形.设直线PF 2与椭圆相交于A ,B 两点,M 是直线PF 2上的点,满足AM →·BM →=-2,求点M 的轨迹方程.类型二 定义法求轨迹方程【例2】已知圆M:(x+1)2+y2=1,圆N:(x-1)2+y2=9,动圆P与圆M外切并且与圆N 内切,圆心P的轨迹为曲线C,求C的方程.【点评】定义法求轨迹方程1.概念:求轨迹方程时,若动点与定点、定线间的等量关系满足圆、椭圆、双曲线、抛物线的定义,则可以直接根据定义先定轨迹类型,再写出其方程,这种求轨迹方程的方法叫做定义法,其关键是准确应用解析几何中有关曲线的定义.(1)在利用圆锥曲线的定义求轨迹方程时,若所求的轨迹符合某种圆锥曲线的定义,则根据曲线的方程,写出所求的轨迹方程.(2)利用定义法求轨迹方程时,还要看轨迹是不是完整的曲线,如果不是完整的曲线,则应对其中的变量x或y进行限制.【变式训练】1. 在△ABC中,BC=4,△ABC的内切圆切BC于D点,且BD-CD=22,则顶点A的轨迹方程为______________.2.设定点F(1,0),动圆D过点F且与直线x=−1相切.则动圆圆心D的轨迹方程为3.如图所示:在圆C:(x+1)2+y2=16内有一点A(1,0),点Q为圆C上一动点,线段AQ的垂直平分线与直线CQ 的连线交于点M ,根据椭圆定义可得点M 的轨迹方程为x 24+y 23=1;利用类比推理思想:在圆C :(x +3)2+y 2=16外有一点A(3,0),点Q 为圆C 上一动点,线段AQ 的垂直平分线与直线CQ 的连线交于点M ,根据双曲线定义可得点M 的轨迹方程为______.类型三 相关点法求轨迹方程【例3】 如图所示,抛物线E :y 2=2px(p >0)与圆O :x 2+y 2=8相交于A ,B 两点,且点A 的横坐标为2.过劣弧AB 上动点P(x 0,y 0)作圆O 的切线交抛物线E 于C ,D 两点,分别以C ,D 为切点作抛物线E 的切线l 1,l 2,l 1与l 2相交于点M. (1)求p 的值;(2)求动点M 的轨迹方程.【点评】相关点法的基本步骤(1)设点:设被动点坐标为(x ,y),主动点坐标为(x 1,y 1); (2)求关系式:求出两个动点坐标之间的关系式⎩⎪⎨⎪⎧x 1=f (x ,y ),y 1=g (x ,y ); (3)代换:将上述关系式代入已知曲线方程,便可得到所求动点的轨迹方程.【变式训练】1.如图,动圆C 1:x 2+y 2=t 2,1<t <3与椭圆C 2:x 29+y 2=1相交于A ,B ,C ,D 四点.点A 1,A 2分别为C 2的左、右顶点,求直线AA 1与直线A 2B 交点M 的轨迹方程.2.已知三角形ABC 的顶点A (−3,0)、B (3,0),若顶点C 在抛物线y 2=6x 上移动,则三角形ABC 的重心的轨迹方程为______类型四 参数法求轨迹方程【例4】在平面直角坐标系xOy 中,已知两点M(1,-3),N(5,1),若点C 的坐标满足OC →=tOM →+(1-t)ON →(t ∈R),且点C 的轨迹与抛物线y 2=4x 相交于A ,B 两点. (1)求证:OA ⊥OB ;(2)在x 轴上是否存在一点P(m,0)(m≠0),使得过点P 任意作一条抛物线y 2=4x 的弦,并以该弦为直径的圆都经过原点?若存在,求出m 的值及圆心的轨迹方程;若不存在,请说明理由.【点评】利用参数法求轨迹方程:一是选择合适的参数(可以是单参数,也可以是双参数);二是建立参数方程后消掉参数,消参数的方法有代入消参法、加减消参法、平方消参法等.【变式训练】设椭圆中心为原点O,一个焦点为F(0,1),长轴和短轴的长度之比为t.(1)求椭圆的方程;(2)设经过原点且斜率为t的直线与椭圆在y轴右侧部分的交点为Q,点P在该直线上,且OP2-1,当t变化时,求点P的轨迹方程,并说明轨迹是什么图形.OQ=t t类型五 交轨法法求轨迹方程例5 如右图,垂直于x 轴的直线交双曲线12222=-by a x 于M 、N 两点,21,A A 为双曲线的左、右顶点,求直线M A 1与N A 2的交点P 的轨迹方程,并指出轨迹的形状.【变式训练】抛物线)0(42>=p px y 的顶点作互相垂直的两弦OA 、OB ,求抛物线的顶点O 在直线AB 上的射影M 的轨迹。
圆锥曲线中轨迹方程的求法临沂——李宝峰求曲线的轨迹方程是解析几何的两个基本问题之一.求符合某种条件的动点的轨迹方程,其实质就是利用题设中的几何条件,用“坐标化”将其转化为寻求变量间的关系.这类问题除了考查学生对圆锥曲线的定义,性质等基础知识的掌握,还充分考查了各种数学思想方法及一定的推理能力和运算能力,因此这类问题成为高考命题的热点,也是同学们的一大难点.一:直接法:是求轨迹方程最基本的方法,如果动点P 满足的等量关系易于建立,可以先表示出点P 所满足的几何上的等量关系,再用点P 的坐标(x ,y )表示该等量关系式,构成F (x ,y )=0,即可得到轨迹方程。
一般有设点,列式,代换,化简,证明(可省略)五个步骤。
但要注意“挖”与“补”。
直接根据等量关系式建立方程.例1已知点(20)(30)A B -,,,,动点()P x y ,满足2PAPB x =·,则点P 的轨迹是() A.圆 B.椭圆 C.双曲线 D.抛物线解析:由题知(2)PA x y =---,,(3)PB x y =--,, 由2PAPB x =·,得22(2)(3)x x y x ---+=,即26y x =+, P ∴点轨迹为抛物线.故选D.例1:两个定点的距离为6,点M 到两个定点的距离的平方和为26,求点M 的轨迹。
分析:根据题意建立合适的坐标系,列出等量关系即可。
二:定义法(待定系数法):适用于根据条件可直接判断轨迹是什么曲线,且知道其方程形式的情形(如圆、椭圆、双曲线、抛物线),运用解析几何中定义,则可先设出轨迹方程,再根据已知条件,待定方程中的常数,即可得到轨迹方程。
,例2在ABC △中,24BC AC AB =,,上的两条中线长度之和为39,求ABC △的重心的轨迹方程.解:以线段BC 所在直线为x 轴,线段BC 的中垂线为y 轴建立直角坐标系,如图1,M 为重心,则有239263BM CM +=⨯=.M ∴点的轨迹是以B C ,为焦点的椭圆,其中1213c a ==,.225b a c =-=∴.∴所求ABC △的重心的轨迹方程为221(0)16925x y y +=≠. 注意:求轨迹方程时要注意轨迹的纯粹性与完备性.例2:已知:⊙c 1(x+3)2+y 2=1和⊙c 2(x-3)2+y 2=9,动圆M 与⊙c 1,⊙c 2相外切,求动圆 圆心M 的轨迹方程。
解析几何 专题一:轨迹方程一、知识储备 1、曲线方程的定义一般地,如果曲线C 与方程(,)0F x y =之间有以下两个关系: ①曲线C 上的点的坐标都是方程(,)0F x y =的解; ②以方程(,)0F x y =的解为坐标的点都是曲线C 上的点.此时,把方程(,)0F x y =叫做曲线C 的方程,曲线C 叫做方程(,)0F x y =的曲线. 2、求曲线方程的一般步骤:(1)建立适当的直角坐标系(如果已给出,本步骤省略); (2)设曲线上任意一点的坐标为),(y x ; (3)根据曲线上点所适合的条件写出等式; (4)用坐标表示这个等式,并化简; (5)确定化简后的式子中点的范围.上述五个步骤可简记为:求轨迹方程的步骤:建系、设点、列式、化简、确定点的范围. 3、求轨迹方程的方法: (1)定义法:如果动点P 的运动规律合乎我们已知的某种曲线(如圆、椭圆、双曲线、抛物线)的定义,则可先设出轨迹方程,再根据已知条件,待定方程中的常数,即可得到轨迹方程。
(2)直译法:如果动点P 的运动规律是否合乎我们熟知的某些曲线的定义难以判断,但点P 满足的等量关系易于建立,则可以先表示出点P 所满足的几何上的等量关系,再用点P 的坐标(,)x y 表示该等量关系式,即可得到轨迹方程。
(3)参数法:如果采用直译法求轨迹方程难以奏效,则可寻求引发动点P 运动的某个几何量t ,以此量作为参变数,分别建立P 点坐标,x y 与该参数t 的函数关系()x f t =,()y g t =,进而通过消参化为轨迹的普通方程(,)0F x y =.(4)代入法(相关点法):如果动点P 的运动是由另外某一点P '的运动引发的,而该点的运动规律已知,(该点坐标满足某已知曲线y x 、方程),则可以设出(,)P x y ,用(,)x y 表示出相关点P '的坐标,然后把P '的坐标代入已知曲线方程,即可得到动点P 的轨迹方程。
圆锥曲线轨迹方程的求法
一、直接法求轨迹方程
利用动点运动的条件得到等量关系,表示为x和y的等式。
例如,已知点A(-2,0)和B(3,0),动点P(x,y)满足PA·PB=x²,
那么点P的轨迹是抛物线。
二、有定义法求轨迹方程
根据圆锥曲线的基本定义解题。
例如,已知圆O的方程
为x²+y²=100,点A的坐标为(-6,0),M为圆O上的任意一点,AM的垂直平分线交OM于点P,那么点P的轨迹方程为
25/16=(x+3)²/y²,即椭圆。
三、用相关点法求轨迹方程
当动点M随着已知方程的曲线上另一动点C(x,y)运动时,找出点M与点C之间的坐标关系式,用(x,y)表示(x,y),再将
x和y代入已知曲线方程,即可得到点M的轨迹方程。
例如,从双曲线x²-y²=1上一点Q引直线x+y=2的垂线,垂足为N,
求线段QN的中点P的轨迹方程。
设动点P的坐标为(x,y),点
Q的坐标为(x₁,y₁),则N点的坐标为(2x-x₁,2y-y₁)。
因为N
点在直线x+y=2上,所以2x-x₁+2y-y₁=2.又因为PQ垂直于直线x+y=2,所以x-y+y₁-x₁=0.将两个方程联立,得到
x₁=2x+2y-1和y₁=2x+2y-1.因为点Q在双曲线上,所以x₁²-y₁²=1.将x₁和y₁代入公式中,得到动点P的轨迹方程式为2x²-2y²-2x+2y-1=0.
四、用参数法求轨迹方程
选取适当的参数,分别用参数表示动点坐标得到动点轨迹的普通方程。
专题1 圆锥曲线的轨迹方程问题轨迹与轨迹方程高考题中在选择题或填空题中单独考查,在解答题中也会出现轨迹与轨迹方程的问题.本文主要研究圆锥曲线中关于轨迹方程求法。
首先正确理解曲线与方程的概念,会用解析几何的基本思想和坐标法研究几何问题,用方程的观点实现几何问题的代数化解决,并能根据所给条件选择适当的方法求曲线的轨迹方程,常用方法有:直译法、定义法、相关点法、参数(交轨)法等方法1、直译法:若动点运动的条件是一些已知(或通过分析得出)几何量的等量关系,可转化成含x,y 的等式,就得到轨迹方程。
直译法知识储备:两点间距离公式,点到直线的距离公式,直线的斜率(向量)公式。
经典例题:1.(2020·江苏徐州市·高三月考)古希腊著名数学家阿波罗尼斯与欧几里得、阿基米德齐名,他发现:平面内到两个定点A 、B 的距离之比为定值λ(1λ≠)的点所形成的图形是圆.后来,人们将这个圆以他的名字命名,称为阿波罗尼斯圆,简称阿氏圆.已知在平面直角坐标系xOy 中,()2,0A -、()4,0B ,点P 满足12PA PB =,设点P 所构成的曲线为C ,下列结论正确的是( ) A .C 的方程为()22416x y ++= B .在C 上存在点D ,使得D 到点()1,1的距离为3 C .在C 上存在点M ,使得2MO MA = D .在C 上存在点N ,使得224NO NA += 【答案】ABD【分析】设点P 的坐标,利用12PA PB =,即可求出曲线C 的轨迹方程,然后假设曲线C 上一点坐标,根据BCD 选项逐一列出所满足条件,然后与C 的轨迹方程联立,判断是否有解,即可得出答案.【详解】设点P (x ,y ),()2,0A -、()4,0B ,由12PA PB =,12=,化简得x 2+y 2+8x =0,即:(x +4)2+y 2=16,故A 选项正确;曲线C 的方程表示圆心为(﹣4,0),半径为4的圆,圆心与点(1,1)=﹣4,+4,而3∈﹣4,故B 正确;对于C 选项,设M (x 0,y 0),由|MO |=2|MA |,=又 ()2200416x y ++=,联立方程消去y 0得x 0=2,解得y 0无解,故C 选项错误;对于D 选项,设N (x 0,y 0),由|NO |2+|NA |2=4,得 ()2222000024x y x y ++++=,又()2200416x y ++=,联立方程消去y 0得x 0=0,解得y 0=0,故D 选项正确.2.(2020·湖南省高三期末)点(,)P x y 与定点(1,0)F 的距离和它到直线:4l x =距离的比是常数12. 求点P 的轨迹方程;【答案】22143x y +=12=,化简即可求出;12=,化简得:223412x y +=,故1C 的方程为22143x y +=.【点睛】该题考查的是有关解析几何的问题,涉及到的知识点是动点轨迹方程的求解.3.(2021年湖南省高三月考)已知动点P 到定点A (5,0)的距离与到定直线165x =的距离的比是54,求P 点的轨迹方程.【答案】轨迹方程是221169x y -=.【分析】利用动点P 到定点A (5,0)的距离与到定直线165x =的距离的比是54可得方程,化简由此能求出轨迹M 的方程.【详解】由题意,设P (x ,y ),则()22252516165x y x -+=⎛⎫- ⎪⎝⎭,化简得轨迹方程是221169x y -=. 故答案为221.169x y -=【点睛】本题主要考查轨迹方程的求法,属于基础题.由2、3题推广:圆锥曲线统一定义(第二定义):到定点的距离与到定直线的距离的比e 是常数的点的轨迹叫做圆锥曲线。
专题 圆锥曲线(求轨迹方程)求轨迹方程的常用方法(1)直接法:直接利用条件建立x ,y 之间的关系或F (x ,y )=0;(2)定义法:先根据条件得出动点的轨迹是某种已知曲线,再由曲线的定义直接写出动点的轨迹方程;(3)代入转移法(相关点法):动点P (x ,y )依赖于另一动点Q (x 0,y 0)的变化而变化,并且Q (x 0,y 0)又在某已知曲线上,则可先用x ,y 的代数式表示x 0,y 0,再将x 0,y 0代入已知曲线得要求的轨迹方程.1.一个区别——“轨迹方程”与“轨迹”“求动点的轨迹方程”和“求动点的轨迹”是不同的.前者只须求出轨迹的方程,标出变量x ,y 的范围;后者除求出方程外,还应指出方程的曲线的图形,并说明图形的形状、位置、大小等有关的数据.2.双向检验——求轨迹方程的注意点求轨迹方程,要注意曲线上的点与方程的解是一一对应关系,检验应从两个方面进行:一是方程的化简是否是同解变形;二是是否符合实际意义,注意轨迹上特殊点对轨迹的“完备性与纯粹性”的影响.考向一 直接法求轨迹方程【例1】 已知动点P (x ,y )与两定点M (-1,0),N (1,0)连线的斜率之积等于常数λ(λ≠0).(1)求动点P 的轨迹C 的方程;(2)试根据λ的取值情况讨论轨迹C 的形状.【解】 (1)由题意可知,直线PM 与PN 的斜率均存在且均不为零,所以k PM ·k PN =y x +1·yx -1=λ,整理得x 2-y 2λ=1(λ≠0,x ≠±1).即动点P 的轨迹C 的方程为x 2-y 2λ=1(λ≠0,x ≠±1).(2)①当λ>0时,轨迹C 为中心在原点,焦点在x 轴上的双曲线(除去顶点);②当-1<λ<0时,轨迹C 为中心在原点,焦点在x 轴上的椭圆(除去长轴的两个端点); ③当λ=-1时,轨迹C 为以原点为圆心,1为半径的圆除去点(-1,0),(1,0). ④当λ<-1时,轨迹C 为中心在原点,焦点在y 轴上的椭圆(除去短轴的两个端点).【对点练习1】已知A ,B 为平面内两定点,过该平面内动点M 作直线AB 的垂线,垂足为N .若MN →2=λAN →·NB →,其中λ为常数,则动点M 的轨迹不可能是( )A .圆B .椭圆C .抛物线D .双曲线 【解析】以AB 所在直线为x 轴,AB 的中垂线为y 轴,建立坐标系,设M (x ,y ),A (-a,0),B (a,0),则N (x,0).因为MN →2=λAN →·NB →,所以y 2=λ(x +a )(a -x ),即λx 2+y 2=λa 2,当λ=1时,是圆的轨迹方程;图8-8- 2图8-8- 1当λ>0且λ≠1时,是椭圆的轨迹方程; 当λ<0时,是双曲线的轨迹方程; 当λ=0时,是直线的轨迹方程.综上,方程不表示抛物线的方程. 【答案】 C考向二 定义法求轨迹方程【例2】已知两个定圆O 1和O 2,它们的半径分别是1和2,且|O 1O 2|=4.动圆M 与圆O 1内切,又与圆O 2外切,建立适当的坐标系,求动圆圆心M 的轨迹方程,并说明轨迹是何种曲线.【解】 如图所示,以O 1O 2的中点O 为原点,O 1O 2所在直线为x 轴建立平面直角坐标系. 由|O 1O 2|=4,得O 1(-2,0),O 2(2,0).设动圆M 的半径为r ,则由动圆M 与圆O 1内切,有|MO 1|=r -1; 由动圆M 与圆O 2外切,有|MO 2|=r +2.∴|MO 2|-|MO 1|=3.∴点M 的轨迹是以O 1,O 2为焦点,实轴长为3的双曲线的左支. ∴a =32,c =2,∴b 2=c 2-a 2=74.∴点M 的轨迹方程为4x 29-4y 27=1⎝ ⎛⎭⎪⎫x ≤-32.【对点练习2】如图8-8-1所示,已知圆A :(x +2)2+y 2=1与点B (2,0),分别求出满足下列条件的动点P 的轨迹方程.(1)△P AB 的周长为10;(2)圆P 与圆A 外切,且过B 点(P 为动圆圆心);(3)圆P 与圆A 外切,且与直线x =1相切(P 为动圆圆心).【解】(1)根据题意,知|P A |+|PB |+|AB |=10,即|P A |+|PB |=6>4=|AB |,故P 点轨迹是椭圆,且2a =6,2c =4,即a =3,c =2,b = 5.因此其轨迹方程为x 29+y 25=1(y ≠0).(2)设圆P 的半径为r ,则|P A |=r +1,|PB |=r ,因此|P A |-|PB |=1.由双曲线的定义知,P 点的轨迹为双曲线的右支,且2a =1,2c =4,即a =12,c =2,b =152,因此其轨迹方程为4x 2-415y 2=1⎝ ⎛⎭⎪⎫x ≥12.(3)依题意,知动点P 到定点A 的距离等于到定直线x =2的距离,故其轨迹为抛物线,且开口向左,p =4. 因此其轨迹方程为y 2=-8x .考向三 代入法(相关点法)求轨迹方程 【例3】如图8-8-2所示,设P 是圆x 2+y 2=25上的动点,点D 是P 在x 轴上的投影,M 为PD 上一点,且|MD |=45|PD |. (1)当P 在圆上运动时,求点M 的轨迹C 的方程;图8-8-5(2)求过点(3,0)且斜率为45的直线被C 所截线段的长度.【解】(1)设M 的坐标为(x ,y ),P 的坐标为(x P ,y P ),由已知得⎩⎨⎧x P =x ,y P =54y .∵P 在圆上,∴x 2+⎝ ⎛⎭⎪⎫54y 2=25,即C 的方程为x 225+y 216=1.(2)过点(3,0)且斜率为45的直线方程为y =45(x -3),设直线与C 的交点为A (x 1,y 1),B (x 2,y 2),将直线方程y =45(x -3)代入C 的方程,得x 225+(x -3)225=1,即x 2-3x -8=0. ∴x 1=3-412,x 2=3+412. ∴线段AB 的长度为|AB |=(x 1-x 2)2+(y 1-y 2)2=⎝ ⎛⎭⎪⎫1+1625(x 1-x 2)2=4125×41=415.【对点练习2】(2014·合肥模拟)如图8-8-5所示,以原点O 为圆心的两个 同心圆的半径分别为3和1,过原点O 的射线交大圆于点P ,交小圆于点Q ,P 在y 轴上的射影为M .动点N 满足PM →=λPN →且PM →·QN →=0.(1)求点N 的轨迹方程;(2)过点A (0,3)作斜率分别为k 1,k 2的直线l 1,l 2与点N 的轨迹分别 交于E ,F 两点,k 1·k 2=-9.求证:直线EF 过定点.【解】(1)由PM →=λPN →且PM →·QN→=0可知N ,P ,M 三点共线且PM ⊥QN .过点Q 作QN ⊥PM ,垂足为N ,设N (x ,y ),∵|OP |=3,|OQ |=1,由相似可知P (3x ,y ).∵P 在圆x 2+y 2=9上,(3x )2+y 2=9,即y 29+x 2=1. 所以点N 的轨迹方程为y29+x 2=1.(2)证明:设E (x E ,y E ),F (x F ,y F ),依题意,由⎩⎨⎧y =k 1x +3,y 29+x 2=1⇒(k 21+9)x 2+6k 1x =0,①解得x =0或x =-6k 1k 21+9. 所以x E =-6k 1k 21+9,y E =k 1⎝ ⎛⎭⎪⎫-6k 1k 21+9+3=27-3k 21k 21+9,∴E ⎝ ⎛⎭⎪⎪⎫-6k 1k 21+9,27-3k 21k 21+9. ∵k 1k 2=-9,∴k 2=-9k 1.用k 2=-9k 1替代①中的k 1, 同理可得F ⎝ ⎛⎭⎪⎪⎫6k 1k 21+9,3k 21-27k 21+9. 显然E ,F 关于原点对称,∴直线EF 必过原点O .【达标训练】一、选择题1.若M ,N 为两个定点,且|MN |=6,动点P 满足PM →·PN →=0,则P 点的轨迹是( )图8-8-4A .圆B .椭圆C .双曲线D .抛物线2.已知点F ⎝ ⎛⎭⎪⎫14,0,直线l :x =-14,点B 是l 上的动点.若过B 垂直于y 轴的直线与线段BF 的垂直平分线交于点M ,则点M 的轨迹是( )A .双曲线B .椭圆C .圆D .抛物线3.(2014·天津模拟)平面直角坐标系中,已知两点A (3,1),B (-1,3),若点C 满足OC →=λ1OA →+λ2OB →(O 为原点),其中λ1,λ2∈R ,且λ1+λ2=1,则点C 的轨迹是( ) A .直线 B .椭圆 C .圆 D .双曲线4.(2014·合肥模拟)如图8-8-4所示,A 是圆O 内一定点,B 是圆周上 一个动点,AB 的中垂线CD 与OB 交于E ,则点E 的轨迹是( )A .圆B .椭圆C .双曲线D .抛物线5.设过点P (x ,y )的直线分别与x 轴的正半轴和y 轴的正半轴交于A ,B 两点,点Q 与点P 关于y 轴对称,O 为坐标原点,若BP →=2P A →,且OQ →·AB →=1,则点P 的轨迹方程是 ( )A.32x 2+3y 2=1(x >0,y >0)B.32x 2-3y 2=1(x >0,y >0)C .3x 2-32y 2=1(x >0,y >0)D .3x 2+32y 2=1(x >0,y >0) 6.已知动点P 在曲线2x 2-y =0上移动,则点A (0,-1)与点P 连线中点的轨迹方程是( )A .y =2x 2B .y =8x 2C .2y =8x 2-1D .2y =8x 2+1 二、填空题7.平面上有三个点A (-2,y ),B ⎝ ⎛⎭⎪⎫0,y 2,C (x ,y ),若AB→⊥BC →,则动点C 的轨迹方程是_______________________.8.动圆与⊙C 1:x 2+y 2=1外切,与⊙C 2:x 2+y 2-8x +12=0内切,则动圆圆心的轨迹是_______________________.9.已知△ABC 的顶点B (0,0),C (5,0),AB 边上的中线长|CD |=3,则顶点A 的轨迹方程为_______________________.10.(2014·佛山模拟)在△ABC 中,A 为动点,B ,C 为定点,B ⎝ ⎛⎭⎪⎫-a 2,0,C ⎝ ⎛⎭⎪⎫a 2,0(a >0),且满足条件sin C -sin B =12sin A ,则动点A 的轨迹方程是_____________.三、解答题11.已知定点F (0,1)和直线l 1:y =-1,过定点F 与直线l 1相切的动圆的圆心为点C . (1)求动点C 的轨迹方程;(2)过点F 的直线l 2交轨迹于P ,Q 两点,交直线l 1于点R ,求RP →·RQ →的最小值. 12.(2011·课标全国卷)在平面直角坐标系xOy 中,已知点A (0,-1),B 点在直线y =-3上,M 点满足MB →∥OA →,MA →·AB →=MB →·BA →,M 点的轨迹为曲线C .(1)求C 的方程;(2)P 为C 上的动点,l 为C 在P 点处的切线,求O 点到l 距离的最小值.13.(2013·课标全国卷Ⅱ)在平面直角坐标系xOy 中,已知圆P 在x 轴上截得线段长为22,在y 轴上截得线段长为2 3.(1)求圆心P 的轨迹方程;(2)若P 点到直线y =x 的距离为22,求圆P 的方程.【达标训练】 参考答案一、选择题1.A. 【解析】∵PM →·PN →=0,∴PM ⊥PN ,∴点P 的轨迹是以线段MN 为直径的圆. 2.D. 【解析】由已知:|MF |=|MB |,由抛物线定义知,点M 的轨迹是以F 为焦点,l 为准线的抛物线.3.A .【解析】设C (x ,y ),因为OC →=λ1OA →+λ2OB →,所以(x ,y )=λ1(3,1)+λ2(-1,3),即⎩⎪⎨⎪⎧x =3λ1-λ2,y =λ1+3λ2,解得⎩⎨⎧λ1=y +3x 10,λ2=3y -x10,又λ1+λ2=1,所以y +3x 10+3y -x10=1,即x +2y =5,所以点C 的轨迹为直线,故选A.4.B .【解析】由题意知,|EA |+|EO |=|EB |+|EO |=r (r 为圆的半径)且r >|OA |,故E 的轨迹为以O ,A 为焦点的椭圆,故选B.5.A. 【解析】设P (x ,y ),A (x A,0),B (0,y B ),则BP →=(x ,y -y B ),P A →=(x A -x ,-y ),∵BP →=2P A →,∴⎩⎪⎨⎪⎧x =2(x A -x ),y -y B =-2y ,即⎩⎨⎧x A =32x ,y B =3y .∴A ⎝ ⎛⎭⎪⎫32x ,0,B (0,3y ). 又Q (-x ,y ),∴OQ →=(-x ,y ),AB →=⎝ ⎛⎭⎪⎫-32x ,3y ,∴OQ →·AB →=32x 2+3y 2=1,则点P 的轨迹方程是32x 2+3y 2=1(x >0,y >0).6.C .【解析】设AP 中点M (x ,y ),P (x ′,y ′),则x =x ′2,y =y ′-12,∴⎩⎪⎨⎪⎧x ′=2x ,y ′=2y +1,代入2x 2-y =0,得2y =8x 2-1,故选C.二、填空题7.y 2=8x 。
圆锥曲线综合--求轨迹方程
教学任务
教学流程说明
教学过程设计
圆锥曲线综合--求轨迹方程
求轨迹的常用方法:
(1)定义法:如果能够确定动点的轨迹满足某已知曲线的定义,则可由曲线的定义直接写出方程; (2)代入求轨法(坐标平移法或转移法):若动点P(x,y)依赖于另一动点Q(x 1,y 1)的变化而变化,并且Q(x 1,y 1)
又在某已知曲线上,则可先用x 、y 的代数式表示x 1、y 1,再将x 1、y 1带入已知曲线得要求的轨迹方程;
(3)直接法:直接通过建立x 、y 之间的关系,构成F(x,y)=0,是求轨迹的最基本的方法;
(4)待定系数法:所求曲线是所学过的曲线:如直线,圆锥曲线等,可先根据条件列出所求曲线的方程,
再由条件确定其待定系数,代回所列的方程即可
(5)参数法:当动点P (x,y )坐标之间的关系不易直接找到,也没有相关动点可用时,可考虑将x 、y 均
用一中间变量(参数)表示,得参数方程,再消去参数得普通方程。
1、(1)一动圆过定点)0,1(A 且与定圆16)1(2
2
=++y x 相切,求动圆圆心的轨迹方程; (2)又若定点)0,2(A 定圆为4)2(22
=++y x 呢?
2、△ABC 中,B (-3,8)、C (-1,-6),另一个顶点A 在抛物线y 2=4x 上移动,求此三角形重心G 的轨迹方程.
3、在平面直角坐标系中,若}2,{},2,{-=+=y x b y x a
8=+。
求动点),(y x M 的轨迹C 的方程;
一、填空:
1.平面内到点A (0,1)、B (1,0)距离之和为2的点的轨迹为
2.已知M (-2,0)、N (2,0),动点P 满足|PM |-|PN |=4,则动点P 的轨迹方程是____________ 3.已知lg(2),lg |2|,lg(16)x y x -成等差数列,则点(,)P x y 的轨迹方程 __
4.P 是椭圆15
92
2=+y x 上一点,过P 作其长轴垂线,M 是垂足,则PM 中点轨迹方程为______ 5.点M 到F (3,0)的距离比它到直线x+4=0 的距离小1,则点M 的轨迹方程是
6.动点p 与定点A(-1,0), B(1,0)的连线的斜率之积为-1,则p 点的轨迹方程是 。
7、动圆与x 轴相切,且被直线y=x 所截得的弦长为2,则动圆圆心的轨迹方程为 。
8、倾斜角为
4
π
的直线交椭圆42
x +y 2=1于A 、B 两点,则线段AB 中点的轨迹方程是
9、理)两条直线ax+y+1=0和x -ay -1=0(a ≠±1)的交点的轨迹方程是
二、选择:
10、,a b 为任意实数,若(,)a b 在曲线(,)0f x y =上,则(,)b a 也在曲线(,)0f x y =上,那么曲线(,)0f x y =的几何特征是( )
(A )关于x 轴对(B )关于y 轴对称 (C )关于原点对称 (D )关于直线x -y =0对称 11、方程2
2
2
2
(1)0x x y ++-=的图象是( )
(A )y 轴或圆(B )两点(0,1)与(0,-1)(C )y 轴或直线y =1±(D )答案均不对 12、若一动圆与两圆x 2+y 2=1, x 2+y 2-8x+12=0都外切,则动圆圆心的轨迹为: ( ) A 、抛物线 B 、圆 C 、双曲线的一支 D 、椭圆 三、解答
17、已知动点p 到定点F (1,0)和直线x=3的距离之和等于4,求p 点的轨迹方程。
18、抛物线y 2=x +1,定点A (3,1),B 是抛物线上任意一点,点P 在AB 上满足
BP :P A =1:2,当点B 在抛物线上运动时,求点P 的轨迹方程并指出轨迹是什么曲线?
19、理)过原点作直线l 和抛物线642
+-=x x y 交于A 、B 两点,求线段AB 中点M 的轨迹方程。