(2)由双曲线的渐近线方程为
2
− 4 =1.
1
2 2
y=±2x,可设双曲线方程为 2 -y =λ(λ≠0).
的形式,
在a≠0的情况下可得:
(1)Δ>0时,直线与双曲线有两个不同的公共点;
(2)Δ=0时,直线与双曲线只有一个公共点;
(3)Δ<0时,直线与双曲线没有公共点.
此外,当直线平行于双曲线的渐近线时,直线与双曲线只有一个公共点,故
直线与双曲线只有一个公共点是直线与双曲线相切的必要不充分条件.
重难探究·能力素养速提升
9 12
- =
2 2
42
∴所求的双曲线方程为
9
=
25
,
9
解得
1,
2
− =1.
4
2
=
9
,
4
2 = 4.
3 );
(3)已知双曲线的渐近线方程为2x±3y=0,且两顶点间的距离是6.
2
2
4
9
解 设双曲线方程为 4x -9y =λ(λ≠0),即 − =1(λ≠0),由题意得 a=3.
4
−
6
2 =1.
2
=
4
,
3
2 = 3.
2
− =1.
3
5
(2)已知双曲线的焦点在x轴上,离心率为 3 ,且经过点M(-3,2
解
2
设所求双曲线方程为 2
2
5
∵e= ,∴e2= 2
3
∴
=
=
−
2
2 =1(a>0,b>0).