合成膜电阻器
- 格式:ppt
- 大小:4.52 MB
- 文档页数:150
电阻类别(带实物图)一、基础知识电阻器是电路元件中应用最广泛的一种,在电子设备中约占元件总数的30%以上,其质量的好坏对电路工作的稳定性有极大影响。
它的主要用途是稳定和调节电路中的电流和电压,其次还作为分流器分压器和负载使用。
1.分类在电子电路中常用的电阻器有固定式电阻器和电位器,按制作材料和工艺不同,固定式电阻器可分为:膜式电阻(碳膜RT、金属膜RJ、合成膜RH和氧化膜RY)、实芯电阻(有机RS和无机RN)、金属线绕电阻(RX)、特殊电阻(MG型光敏电阻、MF型热敏电阻)四种。
表1 几种常用电阻的结构和特点2.主要性能指标额定功率:在规定的环境温度和湿度下,假定周围空气不流通,在长期连续负载而不损坏或基本不改变性能的情况下,电阻器上允许消耗的最大功率。
为保证安全使用,一般选其额定功率比它在电路中消耗的功率高1-2倍。
额定功率分19个等级,常用的有0.05W、0.125W、0.25 W、0.5 W、1 W、2 W、3 W、5 W、7 W、10 W,在电路图中非线绕电阻器额定功率的符号表示如下图:电阻器阻值标示方法1、直标法:用数字和单位符号在电阻器表面标出阻值,其允许误差直接用百分数表示,若电阻上未注偏差,则均为±20%。
2、文字符号法:用阿拉伯数字和文字符号两者有规律的组合来表示标称阻值,其允许偏差也用文字符号表示。
符号前面的数字表示整数阻值,后面的数字依次表示第一位小数阻值和第二位小数阻值。
表示允许误差的文字符号文字符号 D F G J K M允许偏差±0.5% ±1% ±2% ±5% ±10% ±20%3、数码法:在电阻器上用三位数码表示标称值的标志方法。
数码从左到右,第一、二位为有效值,第三位为指数,即零的个数,单位为欧。
偏差通常采用文字符号表示。
4、色标法:用不同颜色的带或点在电阻器表面标出标称阻值和允许偏差。
国外电阻大部分采用色标法。
电阻分类、标识及识读一、实验目的:1.了解电阻的分类2.掌握电阻的标识及识读方法二、实验器材:电阻若干三、实验内容1.电阻分类1.1按结构可分为:可变电阻和固定电阻1.1.1可变电阻(大致分为14种)合成碳膜电位器、有机实心电位器、金属玻璃釉电位器、线绕电位器、金属膜电位器、导电塑料电位器、带开关的电位器、预调式电位器、直滑式电位器、双连电位器、多连电位器(四连)、无触点电位器。
电位器是一种机电元件,它靠电刷在电阻体上的滑动,取得与电刷位移成一定关系的输出电压。
1)合成碳膜电位器是目前使用最多的一种电位器。
其电阻体是用碳黑、石墨、石英粉、有机粘合剂等配制的混合物,涂在胶木板或玻璃纤维板上制成的。
优点:分辨率高、阻值范围宽。
缺点:滑动噪声大、耐热耐湿性不好。
用途:品种:普通合成碳膜电位器带开关小型合成碳膜电位器单联带开关(无开关)电位器双联同轴无开关(带开关)电位器双联异轴无开关(带开关)电位器小型精密合成碳膜电位器推拉开关合成碳膜电位器直滑式合成碳膜电位器精密多圈合成碳膜电位器等。
2)有机实心电位器是一种新型电位器,它是用加热塑压的方法,将有机电阻粉压在绝缘体的凹槽内。
优点:耐热性好、功率大、可靠性高、耐磨性好。
缺点:温度系数大、动噪声大、耐潮性能差、制造工艺复杂、阻值精度较差。
用途:在小型化、高可靠、高耐磨性的电子设备以及交、直流电路中用作调节电压、电流。
品种:小型实心电位器直线式实心电位器对数式实心电位器。
3)金属玻璃铀电位器用丝网印刷法按照一定图形,将金属玻璃铀电阻浆料涂覆在陶瓷基体上,经高温烧结而成。
优点:阻值范围宽,耐热性好,过载能力强,耐潮,耐磨。
缺点:接触电阻和电流噪声大。
用途:4)绕线电位器将康铜丝或镍铬合金丝作为电阻体,并把它绕在绝缘架上制成。
优点:是接触电阻小,精度高,温度系数小;缺点:分辨力差,阻值偏低,高频特性差。
用途:主要用作分压器、变阻器、仪器中调零和工作点等。
品种:有普通线绕电位器、普通多圈线绕电位器、精密多圈线绕电位器、直滑式精密多圈线绕电位器、函数式精密多圈线绕电位器等。
电阻制造材料和方式1、实芯碳质电阻器用碳质颗粒壮导电物质、填料和粘合剂混合制成一个实体的电阻器。
特点:价格低廉,但其阻值误差、噪声电压都大,稳定性差,目前较少用。
1.1无机合成实心碳质电阻器1.2有机合成实心碳质电阻器2、绕线电阻器用高阻合金线绕在绝缘骨架上制成,外面涂有耐热的釉绝缘层或绝缘漆。
绕线电阻具有较低的温度系数,阻值精度高,稳定性好,耐热耐腐蚀,主要做精密大功率电阻使用,缺点是高频性能差,时间常数大。
2.1通用线绕电阻器2.2精密线绕电阻器2.3大功率线绕电阻器2.4高频线绕电阻器3、薄膜电阻器用蒸发或沉积等方法将一定电阻率材料蒸镀于绝缘材料表面制成。
主要如下:3.1 碳膜电阻器将结晶碳沉积在陶瓷棒骨架上制成。
碳膜电阻器成本低、性能稳定、阻值范围宽、温度系数和电压系数低,是目前应用最广泛的电阻器。
3.2 金属膜电阻器用真空蒸发的方法将合金材料蒸镀于陶瓷棒骨架表面。
金属膜电阻比碳膜电阻的精度高,稳定性好,噪声,温度系数小。
在仪器仪表及通讯设备中大量采用。
3.3 金属氧化膜电阻器在绝缘棒上沉积一层金属氧化物。
由于其本身即是氧化物,所以高温下稳定,耐热冲击,负载能力强。
3.4 合成膜电阻将导电合成物悬浮液涂敷在基体上而得,因此也叫漆膜电阻。
由于其导电层呈现颗粒状结构,所以其噪声大,精度低,主要用他制造高压,高阻,小型电阻器。
4、金属玻璃铀电阻器将金属粉和玻璃铀粉混合,采用丝网印刷法印在基板上。
耐潮湿,高温,温度系数小,主要应用于厚膜电路。
5、贴片电阻SMT片状电阻是金属玻璃铀电阻的一种形式,他的电阻体是高可靠的钌系列玻璃铀材料经过高温烧结而成,电极采用银钯合金浆料。
体积小,精度高,稳定性好,由于其为片状元件,所以高频性能好。
6、敏感电阻敏感电阻是指器件特性对温度,电压,湿度,光照,气体,磁场,压力等作用敏感的电阻器。
敏感电阻的符号是在普通电阻的符号中加一斜线,并在旁标注敏感电阻的类型,如:t. v等。
电阻器常见的失效模式与失效机理失效模式:各种失效的现象及其表现的形式。
失效机理:是导致失效的物理、化学、热力学或其他过程。
1、电阻器的主要失效模式与失效机理为:1)开路:主要失效机理为电阻膜烧毁或大面积脱落,基体断裂,引线帽与电阻体脱落。
2)阻值漂移超规范:电阻膜有缺陷或退化,基体有可动钠离子,保护涂层不良。
3)引线断裂:电阻体焊接工艺缺陷,焊点污染,引线机械应力损伤。
4)短路:银的迁移,电晕放电。
2、失效模式占失效总比例表(1)、线绕电阻失效模式占失效总比例开路90%阻值漂移2%引线断裂7%其它1%(2)、非线绕电阻失效模式占失效总比例开路49%阻值漂移22%引线断裂17%其它7%3、失效机理分析电阻器失效机理是多方面的,工作条件或环境条件下所发生的各种理化过程是引起电阻器老化的原因。
(1)、导电材料的结构变化:薄膜电阻器的导电膜层一般用汽相淀积方法获得,在一定程度上存在无定型结构。
按热力学观点,无定型结构均有结晶化趋势。
在工作条件或环境条件下,导电膜层中的无定型结构均以一定的速度趋向结晶化,也即导电材料内部结构趋于致密化,能常会引起电阻值的下降。
结晶化速度随温度升高而加快。
电阻线或电阻膜在制备过程中都会承受机械应力,使其内部结构发生畸变,线径愈小或膜层愈薄,应力影响愈显著。
一般可采用热处理方法消除内应力,残余内应力则可能在长时间使用过程中逐步消除,电阻器的阻值则可能因此发生变化。
结晶化过程和内应力清除过程均随时间推移而减缓,但不可能在电阻器使用期间终止。
可以认为在电阻器工作期内这两个过程以近似恒定的速度进行。
与它们有关的阻值变化约占原阻值的千分之几。
电负荷高温老化:任何情况,电负荷均会加速电阻器老化进程,并且电负荷对加速电阻器老化的作用比升高温度的加速老化后果更显著,原因是电阻体与引线帽接触部分的温升超过了电阻体的平均温升。
通常温度每升高10℃,寿命缩短一半。
如果过负荷使电阻器温升超过额定负荷时温升50℃,则电阻器的寿命仅为正常情况下寿命的1/32。
各种电阻图说明金属膜电阻片状电阻低阻值低温度系数电阻可调电阻贴片电阻电阻排铝壳电阻热敏电阻压敏电阻碳膜电阻金属玻璃釉电阻器线绕电阻电阻器的型号命名法电阻器的型号命名由四部分组成示例:RJ71-0.125-5.1kI型的命名含义:R电阻器-J金属膜-7精密-1序号-0.125额定功率-5.1k标称阻值-I误差5%。
国内贴片电阻的命名方法:1、5%精度的命名:RS-05K102JT2、1%精度的命名:RS-05K1002FTR -表示电阻S -表示功率0402是1/16W、0603是1/10W、0805是1/8W、1206是1/4W、1210是1/3W、1812是1/2W、2010是3/4W、2512是1W。
05 -表示尺寸(英寸):02表示0402、03表示0603、05表示0805、06表示1 206、1210表示1210、1812表示1812、10表示1210、12表示2512。
K -表示温度系数为100PPM,102-5%精度阻值表示法:前两位表示有效数字,第三位表示有多少个零,基本单位是Ω,102=1000Ω=1KΩ。
1002是1%阻值表示法:前三位表示有效数字,第四位表示有多少个零,基本单位是Ω,1002=10000Ω=10KΩ。
J -表示精度为5%、F-表示精度为1%。
T -表示编带包装1、贴片电阻的阻值表示与贴片电容容值表示都是数字与“R”组合表示的。
譬如:3ohm用3R0表示,10ohm用100表示,100ohm用101表示,也就是说“R”表示点“.”的意思,而101后面个位数的“1”表示的是带有1个0,例如102表示1 0000。
2、电阻上的数字和字母表示的就是阻值,R002就表示0.002 ohm,180表示的就是18 ohm.3、怎样区分贴片的电阻与电容,由于电阻上面有白色的字体表示,所以除端角外背景颜色应该是黑色的,而电容上就没有字体表示,也不会有黑色的颜色,因为有黑色的话容易让人产生误会电容被氧化。
各种电阻的特性
碳膜电阻器(RT)
材料:高温下将有机化合物(烷,苯等碳氢化合物)热分解产生的碳积在陶瓷肌体表面。
碳膜电阻器阻值范围宽,由良好的稳定性,温度系数不大且是负值,是目前应用最广泛的电阻器。
超小型碳膜电阻:RT13 功率:0.125W 阻值范围:1-1M 允差:G,J,K环境温度范围:-55---125C 额定温度70 C 最大工作电压:150V温度系数:
-400---1500PPM 最大重量:0.1G
碳膜电阻:RT-0.25 功率:0.25W 阻值范围:10-5.1M 允差:J,K环境温度范围:-55---100C 额定温度40 C 最大工作电350V 温度系数:
-600---1200PPM 最大重量:1.5G
碳膜电阻:RT-1 功率:1W 阻值范围:27-10M 允差:J,K
环境温度范围:-55---100C 额定温度40 C 最大工作电压:700V温度系数:-600---1200PPM 最大重量:3.4G
金属膜电阻(RJ)
材料:通过真空蒸发或阴极溅射,沉积在陶瓷肌体表面上一层很薄的金属或合金膜。
特点:金属膜电阻比碳膜电阻的精度高,稳定性好,噪声,温度系数小,金属膜电阻由于结构不均匀,因此使他的脉冲负载能力差。
RJ13 功率:0.125W 阻值范围:100-510K 允差:,J,K
最大工作电压:150V 温度系数:+-500PPM 最大重量:0.1G。
1.薄膜类在玻璃或陶瓷基体上沉积一层碳膜、金属膜、金属氧化膜等形成电阻薄膜,膜的厚度一般在几微米以下。
(1)金属膜电阻(型号:RJ)。
在陶瓷骨架表面,经真空高温或烧渗工艺蒸发沉积一层金属膜或合金膜。
其特点是:精度高、稳定性好、噪声低、体积小、高频特性好。
且允许工作环境温度范围大(-55~+125℃)、温度系数低((50~100)×10-6/℃)。
目前是组成电子电路应用最广泛的电阻之一。
常用额定功率有1/8W、1/4W、1/2W、1W、2W等,标称阻值在10W~10MW之间。
(2)金属氧化膜电阻(型号:RY)。
在玻璃、瓷器等材料上,通过高温以化学反应形式生成以二氧化锡为主体的金属氧化层。
该电阻器由于氧化膜膜层比较厚,因而具有极好的脉冲、高频和过负荷性能,且耐磨、耐腐蚀、化学性能稳定。
但阻值范围窄,温度系数比金属膜电阻差。
(3)碳膜电阻(型号:RT)。
在陶瓷骨架表面上,将碳氢化合物在真空中通过高温蒸发分解沉积成碳结晶导电膜。
碳膜电阻价格低廉,阻值范围宽(10W~10MW),温度系数为负值。
常用额定功率为1/8W~10W,精度等级为±5%、±10%、±20%,在一般电子产品中大量使用。
2.合金类用块状电阻合金拉制成合金线或碾压成合金箔制成电阻,主要包括:(1)线绕电阻(型号:RX)。
将康铜丝或镍铬合金丝绕在磁管上,并将其外层涂以珐琅或玻璃釉加以保护。
线绕电阻具有高稳定性、高精度、大功率等特点。
温度系数可做到小于10-6/℃,精度高于±0.01%,最大功率可达200W。
但线绕电阻的缺点是自身电感和分布电容比较大,不适合在高频电路中使用。
(2)精密合金箔电阻(型号:RJ)。
在玻璃基片上粘和一块合金箔,用光刻法蚀出一定图形,并涂敷环氧树脂保护层,引线封装后形成。
该电阻器最大特点是具有自动补偿电阻温度系数功能,故精度高、稳定性好、高频响应好。
这种电阻的精度可达±0.001%,稳定性为±5×10-4%/年,温度系数为±10-6/℃。
薄膜电阻原理
薄膜电阻原理是指在薄膜材料中,电流通过时会产生电阻,这种电阻是由于电子在薄膜中的散射和反射而产生的。
薄膜电阻原理在电子学、光学、热学等领域都有广泛的应用。
在电子学中,薄膜电阻被广泛应用于电路中的电阻器。
电阻器是一种用于限制电流的电子元件,它的电阻值可以通过改变材料的电阻率和几何形状来调节。
薄膜电阻器是一种采用薄膜材料制成的电阻器,它的电阻值可以通过改变薄膜的厚度和面积来调节。
薄膜电阻器具有体积小、重量轻、精度高、稳定性好等优点,因此被广泛应用于电子设备中。
在光学中,薄膜电阻被应用于光学薄膜的制备。
光学薄膜是一种用于改变光的传播特性的材料,它可以用于制作反射镜、透镜、滤光片等光学元件。
薄膜电阻可以用于制备金属薄膜,金属薄膜具有良好的反射性能和导电性能,因此被广泛应用于光学元件中。
在热学中,薄膜电阻被应用于热敏电阻的制备。
热敏电阻是一种随温度变化而改变电阻值的电子元件,它可以用于温度测量、温度控制等领域。
薄膜电阻可以用于制备金属薄膜热敏电阻,金属薄膜热敏电阻具有响应速度快、精度高等优点,因此被广泛应用于热敏电阻中。
薄膜电阻原理是一种重要的物理原理,它在电子学、光学、热学等
领域都有广泛的应用。
随着科技的不断发展,薄膜电阻原理的应用也将不断拓展和深化。
电阻器(电位器)种类及选用电阻是电子产品、设备中使用最多的电子元件,约占总数的35%,而有些产品如彩电则占50%以上,因此电阻器质量对产品影响很大。
根据材料,可将电阻分为:碳膜电阻、金属膜电阻、金属氧化膜电阻、实心(碳质)电阻和绕线电阻。
一、种类按电阻器(电位器)构成材料分类,常见电阻器(电位器)有以下三种:1.碳膜(包括合成碳膜)电阻阻值范围宽(1Ω~10MΩ);耐高压;精度差(误差为5%、10%、20%),高频特性较差,常用作放大电路中的偏置电阻、数字电路中的上拉及下拉电阻。
由于精度低,因此标称阻值及误差用E6(精度为20%)、E12(精度为10%)、E24(精度为5%)分度。
额定功率范围从1/8W到10W,其中耗散功率为1/4W、1/2W,偏差为5%和10%的碳膜电阻器用得最多。
热稳定性较差,温度系数典型值为5000ppm/℃。
即温度升高1℃,阻值的变化量为百万分之5000,即千分之五。
例如一个标称阻值为10K的碳膜电阻,当温度升高10℃时,阻值增加10K×5‰×10,约0.5K。
2.金属膜(包括金属氧化膜)电阻用真空镀膜或阴极溅射工艺,将特定金属或合金(例如镍铬合金、氧化锡或氮化钽)淀积在绝缘基体(如模制酚醛塑料、陶瓷基片)表面上形成的薄膜电阻器成为金属膜电阻或金属氧化膜电阻。
阻值范围也宽(从10~10MΩ),精度高(误差为0.1%~1%),温度系数小(金属膜电阻为10~100ppm/°C;金属氧化膜电阻典型值为300ppm/°C),噪声低,体积小,频率响应特性好,常用作电桥电路、RC振荡电路及有源滤波器的参数电阻、高频及脉冲电路、运算放大电路中的匹配电阻。
但耐压较低。
由于精度高,因此标称阻值及误差用E48(精度为1%)、E116(精度为0.5%~1%)分度。
阻值用3位有效数字表示。
金属氧化膜电阻温度系数比金属膜电阻大一些(300~400ppm/°C),耗散功率较大。
薄膜电阻原理薄膜电阻原理薄膜电阻是一种常用的电阻器类型,它的电阻元件是利用将薄膜材料沉积在导电材料上形成的。
薄膜电阻器的工作原理是将电流限制在一个对应电阻值的电阻元件中,而阻值大小由电阻元件材料、长度、宽度、厚度等因素决定。
薄膜电阻的制作薄膜电阻的制作是在一个封闭的真空室中,通过物理气相沉积,化学气相沉积和物理化学共沉积等方法,将金属等材料沉积在导电材料上形成的。
薄膜电阻的特点1. 阻值稳定性好:薄膜电阻的阻值稳定性优异,且长期使用也不会出现明显的偏差。
2. 精度高:薄膜电阻的阻值精度较高,可达到1%以上,是精度较高的电阻器之一。
3. 工作温度范围广:薄膜电阻的阻值变化受温度影响较小,可适用于大温度范围内的工作环境。
薄膜电阻的分类薄膜电阻器一般根据不同的用途分为几种类型:金属膜电阻、氧化物膜电阻、碳膜电阻等等。
1. 金属膜电阻:金属膜电阻是制作薄膜电阻器最常见的一种,其电阻层主要是钨、铬、钛、铜等金属材料。
2. 氧化物膜电阻:氧化物膜电阻的电阻层是将金属制成的电极材料通过氧化形成的薄膜,通常使用铬、铝等金属,使其与氧气形成化学反应形成氧化层。
3. 碳膜电阻:碳膜电阻是将碳化合物沉积在玻璃、陶瓷或半导体衬底上形成的薄膜,一般使用的材料是SiC、SiO2等。
薄膜电阻的应用薄膜电阻器在电子元器件、仪器仪表、家用电器、汽车电子设备等领域中广泛应用。
在电路中,薄膜电阻器可以起到分压、限流、比较、隔离等作用,其在模拟电路中的应用尤为广泛。
综上所述,薄膜电阻的制作原理简单、制造工艺便利、使用效果稳定,是目前常用的电阻器之一,随着科技的发展和应用领域的拓展,在未来还将有更广泛的应用前景。
各种电阻的特性RH是合成膜电阻。
材料:将导电合成物悬浮液涂敷在基体上而得,因此也叫漆膜电阻。
特点:由于其导电层呈现颗粒状结构,所以其噪声大,精度低,主要用他制造高压,高阻,小型电阻器。
碳膜电阻器(RT)材料:高温下将有机化合物(烷,苯等碳氢化合物)热分解产生的碳积在陶瓷肌体表面。
碳膜电阻器阻值范围宽,由良好的稳定性,温度系数不大且是负值,是目前应用最广泛的电阻器。
超小型碳膜电阻:RT13功率:0.125W 阻值范围:1-1M 允差:G,J,K环境温度范围:-55---125C 额定温度70 C 最大工作电压:150V温度系数:-400---1500PPM 最大重量:0.1G碳膜电阻:RT-0.25功率:0.25W 阻值范围:10-5.1M 允差:J,K环境温度范围:-55---100C 额定温度40 C 最大工作电350V 温度系数:-600---1200PPM 最大重量:1.5G碳膜电阻:RT-1功率:1W 阻值范围:27-10M 允差:J,K环境温度范围:-55---100C 额定温度40 C 最大工作电压:700V温度系数:-600---1200PPM 最大重量:3.4G金属氧化膜电阻:(RJ)材料:利用金属氯化物(氯化锑,氯化锌,氯化锡)高温下在绝缘体水解形成金属氧化物电阻膜。
特点:由于其本身即是氧化物,所以高温下稳定,耐热冲击,负载能力强。
但其在直流下容易发生电解使氧化物还原,性能不太稳定。
RY 功率:0.25W阻值范围:1-1K 允差:J,K最大工作电压:250V温度系数:+-700PPM(负温:+-1200PPM)最大重量:0.25GRY 功率:2W阻值范围:1-10K 允差:J,K 最大重量:3.5G最大工作电压:750V 温度系数+-700PPM(负温:+-1200PPM)RY70 功率:1W阻值范围:10-1K 允差:D,F,G 最大重量:3.5G温度系数+-200PPM(负温:+300PPM)SMT 电阻:(RI)材料:片状电阻是金属玻璃铀电阻的一种形式,他的电阻体是高可靠的钌系列玻璃铀材料经过高温烧结而成,电极采用银钯合金浆料。
电阻器类别知识介绍
电阻器是电子电路中应用数量最多的元件,主要用来调节和稳定电流与电压。
以下是一些常见的电阻器类型:
碳膜电阻器:这种电阻器是将炭在真空高温条件下分解的结晶炭蒸镀沉积在陶瓷骨架上制成的。
金属膜电阻器:金属膜电阻器是将金属或合金材料在真空高温的条件下加热蒸发沉积在陶瓷骨架上制成的。
金属氧化膜电阻器:金属氧化膜电阻器就是将锡和锑的金属盐溶液经过高温喷雾沉积在陶瓷骨架上制成的。
合成碳膜电阻器:合成碳膜电阻器是将碳黑、填料还有一些有机黏合剂调配成悬浮液,喷涂在绝缘骨架上,再进行加热聚合而成的。
玻璃釉电阻器:玻璃釉电阻器是将银、铑、钌等金属氧化物和玻璃釉黏合剂调配成浆料,喷涂在绝缘骨架上,再经过高温聚合而成的。
水泥电阻器:水泥电阻器是采用陶瓷、矿质材料封装的电阻器件。
排电阻器:排电阻器简称排阻。
贴片式电阻器:贴片式电阻器是一种表面安装设备(SMD),它们小巧,适合于自动装配。
合成膜电阻
合成膜电阻是一种在电子器件中常用的材料。
它由多个薄膜层组成,每个薄膜层都有不同的电阻值。
合成膜电阻的制备过程通常涉及将不同材料的薄膜层叠加在一起。
这些材料可以是金属、半导体或绝缘体,它们的电阻值可以通过调整每个层的厚度和材料组成来控制。
合成膜电阻具有多个优点。
首先,它可以实现高阻值和低噪声特性。
其次,它的电阻值可以根据需要调整,从几欧姆到几百欧姆不等。
此外,合成膜电阻还具有较低的温度系数和较好的稳定性,使其在温度变化时能够保持相对稳定的电阻值。
在电子器件中,合成膜电阻常用于电阻器、传感器和电流限制器等应用中。
例如,在电子电路中,可以将合成膜电阻用作电流限制器,限制电流流过某些元件的最大值。
总的来说,合成膜电阻是一种广泛应用于电子器件中的材料,它的电阻值可以调节和控制,并具有高阻值、低噪声、低温度系数和较好的稳定性等特点。
合成电阻的计算公式有几种在电路设计和分析中,合成电阻是一个重要的概念。
合成电阻是指由多个电阻器组合而成的一个整体电阻。
在实际的电路中,我们经常会遇到需要计算合成电阻的情况。
那么,合成电阻的计算公式有几种呢?本文将对合成电阻的计算公式进行详细的介绍和分析。
合成电阻的计算公式可以根据不同的电路结构和连接方式分为几种不同的情况。
下面我们将逐一介绍这些情况。
1. 串联电阻的合成电阻计算公式。
当电阻器串联连接时,它们的电阻值将简单地相加。
假设有n个电阻器串联连接,它们的电阻值分别为R1、R2、...、Rn,则它们的合成电阻Rc可以用下面的公式计算:Rc = R1 + R2 + ... + Rn。
这是最简单的合成电阻计算公式,适用于串联连接的电阻器。
2. 并联电阻的合成电阻计算公式。
当电阻器并联连接时,它们的电阻值将按照倒数的方式计算。
假设有n个电阻器并联连接,它们的电阻值分别为R1、R2、...、Rn,则它们的合成电阻Rc可以用下面的公式计算:1/Rc = 1/R1 + 1/R2 + ... + 1/Rn。
然后将上式两边取倒数即可得到合成电阻Rc的值。
3. 复杂电路的合成电阻计算公式。
对于更复杂的电路结构,如混合串联和并联连接的情况,可以通过分解成简单的串联和并联连接来计算合成电阻。
首先将电路进行简化,将串联和并联的电阻器分别计算出它们的合成电阻值,然后再将这些合成电阻值按照串联或并联的方式进行组合,最终得到整个电路的合成电阻值。
此外,对于非线性电阻器或者温度敏感电阻器,合成电阻的计算公式可能会更加复杂,需要考虑到电阻值随温度或电压变化而变化的情况。
在这种情况下,需要使用更加复杂的数学模型和计算方法来确定合成电阻的值。
总结来说,合成电阻的计算公式可以根据电路的连接方式和电阻器的特性来进行选择和应用。
在实际的电路设计和分析中,我们需要根据具体的情况来选择合适的计算公式,并且在计算过程中需要注意保留适当的精度和考虑到电阻器的非线性特性。