画图形的对称轴
- 格式:ppt
- 大小:1.81 MB
- 文档页数:17
画出对称轴的基本方法
1. 先找个基准呀!就像建房子得找平地一样。
比如说画个正方形,那四条边不就是最好的基准嘛!
2. 然后用眼睛瞅瞅,大致感觉一下对称的方向,这可很重要哦!画个三角形的时候,你就想想从哪个角度看它最对称。
3. 拿把直尺比着呀,可别歪了,要像走直线一样直直的。
画个长方形,直尺就是你的好帮手哟!
4. 轻轻画条线,别太用力,就像温柔地对待小猫咪一样。
画个圆形的时候,小心翼翼地画出那条对称轴。
5. 画错了咋办?哎呀,没关系啦!擦掉重来就好,就像走路摔了一跤,爬起来继续呗。
好比画个复杂的图案,错了就改嘛!
6. 多练习几次呀,不练习怎么能画好呢?就像学走路,多走走就稳了。
画个对称的花朵,多试试才能画得漂亮呀!
7. 观察细节呀,别忽略了小地方,有时候细节决定成败呢!画个对称的建筑时,那些小装饰也得照顾到呀!
8. 和小伙伴比比看呀,看看谁画得更好,多有意思!画个对称的风筝,比比谁的更漂亮。
9. 保持耐心哦,别着急,心急可吃不了热豆腐。
画个很难的对称图形时,耐心就是关键啦!
我觉得呀,只要掌握了这些基本方法,多练习,大家都能画出漂亮的对称轴!。
教案:如何画出轴对称图形?的文章。
一、引言在我们日常生活中,很多物体是对称的,例如正方形、圆形等。
这些物体的对称性带来美感和和谐感,以至于人们能够用很多方式去增加和创造这种对称性。
轴对称图形就是其中一个很好的示例。
轴对称图形是指图形中某个中心轴线(或对称轴线)能将这个图形分成两个完全相等的部分。
假如这个图形是可旋转的,例如一个平面旋转图形,这个中心轴线会让图形每次转一半,还是能够得到相同的结果。
学习如何画出轴对称图形是十分重要的,因为它不仅提高了我们的美学能力,还能帮助我们更好地理解几何学,为今后的学习和探索奠定深厚的基础。
在本文中,将会讨论如何画出轴对称图形的教案。
这个教案适用于初学者,希望读者能够通过这篇文章,对轴对称图形有一个较为全面的了解,并能够通过一些基本技巧和步骤掌握画出轴对称图形的技能。
二、基础理论部分在谈论如何画出轴对称图形之前,有必要先介绍一些基础的理论概念和知识。
1. 轴对称图形的定义和类别轴对称图形是指中心轴线将图形分成两个完全对称的部分的图形。
对称轴线可以存在于纵轴、横轴,还可以为其他方向的轴线。
轴对称图形根据对称轴线的不同方向,又被分为以下几种类型:纵轴对称图形:对称轴线垂直于底边;横轴对称图形:对称轴线水平于底边;轴对称图形:对称轴线垂直于底边和横轴对称轴线都存在。
2. 轴对称图形的性质在学习轴对称图形之前,有必要了解一些图形的默认属性。
这些属性将有助于我们更好地理解轴对称图形的性质。
所有的圆都是对称图形,并且这个对称轴线是过圆心的直径。
所有的等边三角形、正方形和等矩形都有一条划分中心。
任何情况下,底边与中心轴线相垂直的图形总是轴对称的。
3. 轴对称图形的应用轴对称图形有着广泛的应用领域,包括建筑、制造、绘画等领域。
在建筑设计中,轴对称图形可用于构建建筑物的立面、计划和设计;在制造过程中,轴对称图形可用于设计和制造零件或产品的几何结构。
在绘画和艺术领域,轴对称图形被用于创造一种平衡感和视觉和谐感。
画对称轴的三种方法
画对称轴的三种方法:
1.折叠法:将纸对折,然后将图形和对折线对齐。
用铅笔在对折线一侧上画出一个点,然后在对称位置再画出一个点。
最后以这两个点为两端在对折线上画一条直线,就是图形的对称轴了。
2.图形平移法:将图形复制一份,然后使用尺子将图形左右对称平移。
当两个图形完全重合时,在它们之间的对称位置就是图形的对称轴。
3.连接法:在图形上随意选择两个点,然后使用尺子将这两个点连接起来。
将连接起来的线段垂直平分线分成两半,然后在两个半部分中分别找到相等的点。
将这些点连接起来,就是图形的对称轴。
1/ 1。
1.轴对称变换一个图形与其关于直线l 对称后的图形之间的关系(1)由一个平面图形可以得到与它关于一条直线l 对称的图形,这个图形与原图形的形状、大小完全相同.(2)新图形上的每一点都是原图形上的某一点关于直线l 的对称点.(3)连接任意一对对应点的线段被垂直平分.【注意】(1)成轴对称的两个图形中,任何一个图形都可以看成是由另一个图形经过轴对称变换得到的.(2)一个轴对称图形也可以看成是以它的一部分为基础经过轴对称变换而得到的.2.画轴对称图形几何图形都可以看作由点组成,对于某些图形,我们只要画出图形中的一些特殊点(如线段端点)关于对称轴的,连接这些对称点,就可以得到原图形的轴对称图形.画轴对称图形的方法:(1)找——在原图形上找特殊点(如线段的端点);(2)画——画各个特殊点关于对称轴对称的点;(3)连——依次连接各对称点.3.用坐标表示轴对称关于坐标轴对称的点的坐标特点:(1)点(x,y)关于x 轴对称的点的坐标为;(2)点(x,y)关于y 轴对称的点的坐标为(-x,y).已知两个点的坐标分别为P1(x1,y1),P2(x2,y2),若x1=x2,y1+y2=0,则点P1,P2关于x 轴对称;若x1+ x2=0,y1= y2,则点P1,P2关于y 轴对称.反之也成立.在坐标系中画轴对称图形的方法:(1)计算——计算对称点的坐标;(2)描点——根据对称点的坐标描点;(3)连接——依次连接所描各点得到成轴对称的图形.K—重点画轴对称图形和轴对称变换的应用,用坐标表示轴对称K—难点关于坐标轴对称的点的坐标特点K—易错轴对称的性质,关于坐标轴对称的点的坐标特点一、轴对称图形1.找特殊点对画轴对称图形极为重要,除线段的端点外,线与线的交点也是画图过程中的特殊点.2.对称轴上任一点的对称点是它本身.【例1】正方形绿化场地拟种植两种不同颜色的花卉,要求种植的花卉能组成轴对称图形.下面是两种不同设计方案中的一部分,请把图1、图2 补成轴对称图形,并画出一条对称轴(在你所设计的图案中用阴影部分和非阴影部分表示两种不同颜色的花卉).【例2】如图,△ABC 和△A1B1C1是两个成轴对称的图形,请作出它的对称轴.二、关于坐标轴对称的点的坐标关于谁对称谁不变,即若关于x 轴对称,则横坐标x 的值不变,简记为“横同纵反”;若关于y 轴对称,则纵坐标y 的值不变,简记为“纵同横反”.【例3】点(4,3)与点(4,-3)的关系是A.关于原点对称B.关于x 轴对称C.关于y 轴对称D.不能构成对称关系【例4】若点A(a,4)和B(3,b)关于y 轴对称,则a、b 的值分别为A.3,4 B.2,-4 C.-3,4 D.-3,-4三、平面直角坐标系中的轴对称在坐标系中画关于坐标轴对称的图形的“四字诀”(1)找:在直角坐标系中,找出已知图形中的一些特殊点(如多边形的顶点)的坐标.(2)求:求出其对应点的坐标.(3)描:根据所求坐标,描出对应点.(4)连:根据原图形的连接方式顺次连接这些对应点,就可以得到与这个图形关于坐标轴对称的图形.【例5】如图,△ABC 与△DEF 关于y 轴对称,已知A(-4,6),B(-6,2),E(2,1),则点D 的坐标为A.(-4,6)B.(4,6)C.(-2,1)D.(6,2)1.已知点P 关于y 轴的对称点P1 的坐标是(2,3),则点P 坐标是A.(-3,-2)B.(-2,3)C.(2,-3)D.(3,-2)2.点M 关于y 轴对称点M1的坐标为(2,-4),则M 关于x 轴对称点M2的坐标为A.(-2,4)B.(-2,-4)C.(2,4)D.(2,-4)3.如图,正方形网格中,已有两个小正方形被涂黑,再将图中其余小正方形涂黑一个,使整个图案构成一个轴对称图形,那么涂法共有A.2 种B.3 种C.4 种D.5 种4.△ABC 的三个顶点的横坐标都乘以-1,纵坐标不变,则所得三角形与原三角形的位置关系是A.关于x 轴对称B.关于y 轴对称C.关于原点对称D.将△ABC 向右平移了1 个单位长度5.已知xy≠0,则坐标平面内四个点A(x,y),B(x,-y),C(-x,y),D(-x,-y)中关于y 轴对称的是A.A 与C,B 与D B.A 与B,C 与DC.A 与D,B 与C D.A 与B,B 与C6.如图,点A 的坐标(-1,2),点A 关于y 轴的对称点的坐标为A.(1,2)B.(-1,-2)C.(1,-2)D.(2,-1)7.若点A(1+m,1-n)与点B(-3,2)关于y 轴对称,则m+n 的值是A.-5 B.-3 C.3 D.18.点A(-5,-6)与点B(5,-6)关于对称.9.如图,在方格纸上建立的平面直角坐标系中,Rt△ABC 关于y 轴对称的图形为Rt△DEF,则点A 的对应点D 的坐标是.10.把如图中所示的某两个空白小方格涂上阴影,使整个图形是以虚线为对称轴的轴对称图形.A( 2 ,a) ,B( b ,4) ,分别根据下列条件求a ,b 的值.11.已知A ,B 关于y 轴对称;(1)A ,B 关于x 轴对称.(2)12.如图,按要求完成下列问题:作出这个小红旗图案关于y 轴对称的轴对称图形,写出所得到图形相应各点的坐标.13.下列关于A、B 两点的说法中,正确的个数是(1)如果点A 与点B 关于y 轴对称,则它们的纵坐标相同;(2)如果点A 与点B 的纵坐标相同,则它们关于y 轴对称;(3)如果点A 与点B 的横坐标相同,则它们关于x 轴对称;(4)如果点A 与点 B 关于x 轴对称,则它们的横坐标相同.A.1 个B.2 个C.3 个D.4 个14.如图,△ABC 在平面直角坐标系中的第二象限内,顶点A 的坐标是(-2,3),先把△ABC 向右平移4 个单位长度得到△A1B1C1,再作△A1B1C1关于x 轴对称的图形△A2B2C2,则顶点A2的坐标是A.(-3,2)B.(2,-3)C.(1,-2)D.(3,-l)15.如图所示,是用笔尖扎重叠的纸得到成轴对称的图案,请根据图形写出:(1)两组对应点和;(2)两组对应线段和;(3)两组对应角和.。
怎样画轴对称图形南京财经大学李航在现实生活中,我们经常会见到轴对称图形,如雄伟的北京天安门、美丽的蝴蝶以及漂亮的窗花等等。
那怎么画轴对称图形呢?我们知道几何图形是由点、线、面构成的,由点构成线、由线构成面、再由面构成日常生活中的空间图形。
下面我们从平面上的点开始,从简单到复杂逐步深入的来讨论轴对称图形的画法。
给定平面中的一点和一条直线,怎么作这一点关于这条直线的对称点呢?l 由轴对称图形的性质,我们知道对称轴是垂直平分一对对称点连线。
也就是说,两个对称点在对称轴的两边,且到对称轴的距离相等。
根据这一性质,从已知点向已知直线做垂线段并延长一倍,即可得到这一点关于已知直线的对称点。
A ··B 如左图1,已知点A和直线l,从A点做l的垂线段并延长一倍即可得到A点关于l的对称点B。
如果点在直线上,则该点的对称点是它本身。
图1如果平面上由无数个点构成一条直线,那么怎么去确定一条直线的轴对称图形呢?我们知道,平面上两个不同的点可以确定一条直线,很容易想到,我们只要确定已知直线上两个不同的点的对称点就可以确定这条直线的轴对称直线了。
l 如图2,已知直线AB和直线l,要画出AB关于l的对称图形只需要在直线AB上选两个不同的点,作这两点关于l的对称点就可以确定直线AB的对称图形CD。
··点构成线,线构成面,类似的,作出构成这个平面图形的直线的轴对称图形即可确定这个平面的对称图形。
我们以平面三角形为例,如图3,△ABC为平面上的三··角形,作这个三角形关于直线l的轴对称图形。
三角形的三个顶点就可以确定这个平面三角形,将三个顶点的轴对称点确定了,就可以作出平面三角形的轴对称图形了。
图2 l通过以上对点、线、面轴对称图形的探究,我们可以作出任意的不规则图形的轴对称图形。
只需要找出这个不规则图形的关键点,作出关键点的轴对称点,再依据图形的形状和性质画出最终的轴对称图形。