一阶系统与二阶系统
- 格式:ppt
- 大小:4.13 MB
- 文档页数:100
标题一阶二阶系统的公式推导过程自控前两章的学习主要是打基础,到了第三章才真正开始了自控这门课的核心内容。
在前两章建立起系统模型后,接下来要进行的就是认识系统——即分析系统的性能指标,第三章介绍了三种方法中的第一种——时域分析法。
我们首先要明确本章讲了哪些内容。
时域方法是最基本的方法,也是我们在分析时最先想到的方法,它可以直接提供系统时间响应内的所有内容,直观且明确,但是也有它的缺点,那就是这一方法必须要基于求解系统输出的解析法,过程很是繁琐,这一局限性也就决定了应用时域法进行分析的系统阶数不能太高,所以本章我们研究对象只有一阶系统和二阶系统,其中二阶系统是研究的重点。
接下来分别给出一阶系统和二阶系统典型结构和其性能指标的定义,对系统输入典型输入信号,研究对应响应的情况,在这其中,最重点的是二阶系统的阶跃响应,其余的响应仅作了解即可。
注意到性能指标只能定量的描述一个系统响应的情况,考虑前面所提到的对于一个系统的基本要求:“稳、准、快”。
其中“快”——动态性能;“稳”——基本要求;“准”——稳态要求,往后的内容都是围绕这三个字。
对于“快”,其实就是系统的性能指标,对于“稳”,时域法介绍了赫尔维玆判据和劳斯判据,对于“准”,介绍了稳态误差还有校正方法。
以上就是本章的知识结构,接下来我们来一一介绍。
NO.1一阶系统我们从最简单的一阶系统说起,以下是一阶系统的典型结构:一阶系统中,只有特征参数:时间常数T。
虽然有五个典型输入信号,但一般我们只研究阶跃输入对应的响应,我们把阶跃信号称为“标准输入”,其单位阶跃响应曲线如下:对于一阶系统,对应的性能指标有两个:上升时间和调节时间。
1.上升时间从终值的10%上升到终值的90%所用的时间。
(此定义式基于非振荡的动态过程,要区别于后续的振荡动态过程)。
在一阶系统单位阶跃曲线上表示如下:2.调节时间指第一次进入误差带且信号以后都不出误差带的时间。
在响应曲线上表示为:注意:如上图,调节时间不是到A点的时间,因为曲线在A点以后还有出了误差带的部分。
一二阶系统频率特性测试与分析一、引言二阶系统是控制系统中常见的一种类型,它的频率特性对系统的稳定性和性能具有重要影响。
频率特性测试是分析系统动态响应的重要手段之一,通过对二阶系统进行频率特性测试和分析,可以获取系统的幅频特性和相频特性,进一步了解系统的稳定性和性能指标。
本文将介绍二阶系统频率特性测试的基本原理和方法,并通过实例进行分析。
二、二阶系统频率特性测试原理二阶系统是由两个一阶系统级联组成的复合系统,其传递函数可以表示为:G(s)=K/((s+a)(s+b))其中K为系统的增益,a和b为系统的两个极点。
二阶系统的频率特性可以通过系统的幅频特性和相频特性来描述。
1.幅频特性:幅频特性反映了系统对不同频率输入信号的增益响应。
在频率特性测试中,可以通过给系统输入正弦信号,并测量系统输出信号的幅值与输入信号的幅值之比来得到系统的幅频特性。
一般情况下,可以使用频率响应仪或示波器进行测量。
2.相频特性:相频特性反映了系统对不同频率输入信号的相位响应。
在频率特性测试中,可以通过测量系统输出信号与输入信号的相位差来得到系统的相频特性。
一般情况下,可以使用频率响应仪或示波器进行测量。
三、二阶系统频率特性测试方法二阶系统的频率特性测试方法主要有两种,一种是激励法,另一种是响应法。
1.激励法:激励法是通过给系统输入不同频率的正弦信号,并测量系统的输出响应来获取系统的频率特性。
具体步骤如下:(1)设置输入信号的幅值和频率范围;(2)给系统输入不同频率的正弦信号,并记录系统的输出响应;(3)根据记录的数据,绘制系统的幅频特性曲线和相频特性曲线。
2.响应法:响应法是通过给系统输入一个周期或多个周期的脉冲信号,并测量系统的输出响应的特性来获取系统的频率特性。
具体步骤如下:(1)设置输入信号的幅值、频率和脉冲宽度;(2)给系统输入一个周期或多个周期的脉冲信号,并记录系统的输出响应;(3)根据记录的数据,绘制系统的幅频特性曲线和相频特性曲线。
实验名称:一二阶系统的电子模拟及时域响应测试课程名称:自动控制原理实验目录(一)实验目的 (3)(二)实验内容 (3)(三)实验设备 (3)(四)实验原理 (3)(五)一阶系统实验结果 (3)(六)一阶系统实验数据记录及分析 (7)(七)二阶系统实验结果记录 (8)(八)二阶系统实验数据记录及分析 (11)(九)实验总结及感想............................................................................错误!未定义书签。
图片目录图片1 一阶模拟运算电路 (3)图片2 二阶模拟运算电路 (3)图片3 T=0.25仿真图形 (4)图片4 T=0.25测试图形 (4)图片5 T=0.5仿真图形 (5)图片6 T=0.5测试图形 (5)图片7 T=1仿真图形 (6)图片8 T=1测试图形 (6)图片9 ζ=0.25s仿真图形 (8)图片10 ζ=0.25s测试图形 (8)图片11 ζ=0.5s仿真图形 (9)图片12 ζ=0.5s测试图形 (9)图片13 ζ=0.8s仿真图形 (10)图片14 ζ=0.8s测试图形 (10)图片15 ζ=1s仿真图形 (11)图片16 ζ=1s测试图形 (11)表格目录表格1 一阶系统实验结果 (7)表格2 二阶系统实验结果 (11)一二阶系统的电子模拟及时域响应测试(一)实验目的1.了解一、二阶系统阶跃响应及其性能指标与系统参数之间的关系。
2.学习在电子模拟机上建立典型环节系统模型的方法。
3.学习阶跃响应的测试方法。
(二)实验内容1.建立一阶系统的电子模型,观测并记录在不同时间常数T时的跃响应曲线,并测定其过渡过程时间TS。
2.建立二阶系统的电子模型,观测并记录在不同阻尼比ζ时的跃响应曲线,并测定其超调量σ%及过渡过程时间TS。
(三)实验设备HHMN电子模拟机,实验用电脑,数字万用表(四)实验原理一阶系统:在实验中取不同的时间常数T,由模拟运算电路,可得到不同时间常数下阶跃响应曲线及不同的过渡时间。
控制系统的时域分析_一二阶时间响应讲述时域分析是控制系统理论中的重要内容,主要用于分析系统的时间响应。
在时域分析中,我们会关注系统的输入和输出之间的关系,并研究系统在时间上的性能指标和特征。
本文将重点讲述一阶和二阶系统的时间响应。
一、一阶系统的时间响应一阶系统是指系统的传递函数中只有一个一阶多项式的系统,其传递函数形式为:G(s)=K/(Ts+1)其中,K是系统的增益,T是系统的时间常数。
一阶系统的单位阶跃响应是常用的时间响应之一,通过对系统施加一个单位阶跃输入,可以得到系统的响应曲线。
单位阶跃输入可以表示为:u(t)=1由于一阶系统的传递函数是一个一阶多项式,因此它的拉普拉斯变换可以通过部分分式展开得到:G(s)=K/(Ts+1)=A/(s+1/T)通过进行拉普拉斯逆变换,可以得到系统的单位阶跃响应函数y(t):y(t) = K(1 - exp(-t/T))其中,exp(-t/T)为底数为e的指数函数,表示系统的响应曲线在t时刻的衰减程度。
从单位阶跃响应函数可以看出,一阶系统的时间常数T决定了系统的响应速度和衰减程度。
时间常数越小,系统的响应越快速,衰减程度也越快。
二、二阶系统的时间响应二阶系统是指系统的传递函数中有一个二阶多项式的系统,通常可以表示为:G(s) = K / (s^2 + 2ξω_ns+ω_n^2)其中,K是系统的增益,ξ是系统的阻尼比,ω_n是系统的自然频率。
二阶系统的时间常数和质量阻尼比是描述系统性能的重要参数。
时间常数决定了系统响应的速度,质量阻尼比则影响了系统的稳定性和衰减程度。
对于二阶系统的单位阶跃响应,可以通过拉普拉斯逆变换得到响应函数y(t):y(t) = K*(1 - (1-ξ^2)^0.5 * exp(-ξω_nt) * cos((1-ξ^2)^0.5 * ω_nt + φ))其中,φ为相位角,由初始条件和变量确定。
从单位阶跃响应函数可以看出,二阶系统的阻尼比ξ决定了系统的过阻尼、临界阻尼和欠阻尼的响应形式。