第1课时 棱柱、棱锥、棱台的结构特征
- 格式:ppt
- 大小:2.01 MB
- 文档页数:34
第一章空间几何体1.1 空间几何体的结构第1课时棱柱、棱锥、棱台的结构特征举世闻名的天坛和古老的金字塔是由哪些几何体组成的呢?现代城市的建筑都是由各种各样的漂亮的几何体组成的.我们的生活中离不开各种美妙的几何体1.理解空间几何体、多面体和旋转体的概念.2.理解棱柱、棱锥、棱台的相关概念.(难点)3.掌握棱柱、棱锥、棱台的结构特征.(重点)观察下面的图片,这些图片中的物体具有怎样的形状?日常生活中,我们把这些物体的形状叫做什么?我们如何描述它们的形状?探究点1多面体和旋转体其中(2),(5),(7),(9),(13),(14),(15),(16)具有相同的特点:组成几何体的每个面都是平面图形,并且都是平面多边形.多面体:一般地,我们把由若干个平面多边形围成的几何体叫做多面体.围成多面体的各个多边形叫做多面体的面.相邻两个面的公共边叫做多面体的棱.棱与棱的公共点叫做多面体的顶点.面顶点棱多面体(1),(3),(4),(6),(8),(10),(11),(12)具有同样的特点;组成它们的面不全是平面图形.旋转体:我们把由一个平面图形绕它所在平面内的一条定直线旋转所形成的封闭几何体叫做旋转体.这条定直线叫做旋转体的轴.轴旋转体练一练:C下列命题中正确的是()A.有两个面平行,其余各面都是四边形的几何体叫做棱柱B.有两个面平行,其余各面都是平行四边形的几何体叫做棱柱C.有一个面是多边形,其余各面都是三角形的几何体叫做棱锥D.棱台各侧棱的延长线交于一点[解析]正确理解棱柱、棱锥、棱台的概念。
棱柱:一般地,有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的多面体叫做棱柱.如图:底面底面侧面侧棱顶点探究点2 棱柱的结构特征棱柱棱柱中,两个互相平行的面叫做棱柱的底面,简称底;其余各面叫做棱柱的侧面;相邻侧面的公共边叫做棱柱的侧棱;侧面与底面的公共顶点叫做棱柱的顶点.底面是三角形、四边形、五边形……的棱柱分别叫做三棱柱、四棱柱、五棱柱……我们用表示底面各顶点的字母表示棱柱,如六棱柱ABCDEF-A′B′C′D′E′F′.特殊的棱柱:侧棱不垂直于底面的棱柱叫做斜棱柱;侧棱垂直于底面的棱柱叫做直棱柱;底面是正多边形的直棱柱叫做正棱柱;底面是平行四边形的四棱柱叫做平行六面体;侧棱垂直于底面的平行六面体叫做直平行六面体;底面是矩形的直平行六面体叫做长方体;棱长都相等的长方体叫做正方体.种类较多,可要记清.【提升总结】思考:长方体被截去一部分,剩下的部分是棱柱吗?E CAF解答:是棱柱。
§1.1 空间几何体的结构第1课时 棱柱、棱锥、棱台的结构特征学习目标 1.通过对实物模型的观察,归纳认知棱柱、棱锥、棱台的结构特征.2.理解棱柱、棱锥、棱台之间的关系.3.能运用棱柱、棱锥、棱台的结构特征描述现实生活中简单几何体的结构和有关计算.知识点一 多面体、旋转体的定义思考 构成空间几何体的基本元素是什么?常见的几何体可以分成哪几类?答案 构成空间几何体的基本元素是:点、线、面.常见几何体可以分为多面体和旋转体.知识点二 棱柱的结构特征思考 棱柱的侧面一定是平行四边形吗? 答案 棱柱的侧面一定是平行四边形. 知识点三 棱锥的结构特征知识点四 棱台的结构特征思考 棱台的各侧棱延长线一定相交于一点吗? 答案 一定相交于一点.1.有一个面是多边形,其余各面都是三角形的几何体叫棱锥.(×)2.棱柱的两个底面是全等的多边形.(√)3.棱柱最多有两个面不是四边形.(√)4.棱锥的所有面都可以是三角形.(√)题型一棱柱的结构特征例1(1)下列关于棱柱的说法:①所有的面都是平行四边形;②每一个面都不会是三角形;③两底面平行,并且各侧棱也平行;④被平面截成的两部分可以都是棱柱.其中正确的说法的序号是________.答案③④解析①错误,棱柱的底面不一定是平行四边形.②错误,棱柱的底面可以是三角形.③正确,由棱柱的定义易知.④正确,棱柱可以被平行于底面的平面截成两个棱柱,所以说法正确的序号是③④.(2)如图所示,长方体ABCD-A1B1C1D1,M,N分别为棱A1B1,C1D1的中点.①这个长方体是棱柱吗?如果是,是几棱柱?为什么?②用平面BCNM把这个长方体分成两部分,各部分形成的几何体还是棱柱吗?如果是,是几棱柱,并用符号表示;如果不是,请说明理由.解①是棱柱,并且是四棱柱,因为以长方体相对的两个面作底面,是互相平行的,其余各面都是矩形,且四条侧棱互相平行,符合棱柱的定义.②截面BCNM右上方部分是三棱柱BB1M-CC1N,左下方部分是四棱柱ABMA1-DCND1.反思感悟棱柱结构的辨析方法(1)扣定义:判定一个几何体是不是棱柱的关键是棱柱的定义.①看“面”,即观察这个多面体是否有两个互相平行的面,其余各面都是四边形;②看“线”,即观察每相邻两个四边形的公共边是否平行.(2)举反例:通过举反例,如与常见几何体或实物模型、图片等不吻合,给予排除.跟踪训练1下列命题中正确的是()A.有两个面互相平行,其余各面都是四边形的几何体叫棱柱B.棱柱中互相平行的两个面叫棱柱的底面C.棱柱的侧面都是平行四边形,而底面不是平行四边形D.棱柱的侧棱都相等,侧面是平行四边形答案 D题型二棱锥、棱台的结构特征例2(1)有下列三种叙述:①用一个平面去截棱锥,棱锥底面和截面之间的部分是棱台;②两个面平行且相似,其余各面都是梯形的多面体是棱台;③有两个面互相平行,其余四个面都是等腰梯形的六面体是棱台.其中正确的有()A.0个B.1个C.2个D.3个考点棱台的结构特征题点棱台的概念的应用答案 A解析①中的平面不一定平行于底面,故①错;②③可用反例去检验,如图所示,侧棱延长线不能相交于一点,故②③错.故选A.(2)下列说法中,正确的是()①棱锥的各个侧面都是三角形;②四面体的任何一个面都可以作为棱锥的底面;③棱锥的侧棱平行.A.①B.①②C.②D.③考点棱锥的结构特征题点棱锥的结构特征的应用答案 B解析由棱锥的定义,知棱锥的各侧面都是三角形,故①正确;四面体就是由四个三角形所围成的几何体,因此四面体的任何一个面作底面的几何体都是三棱锥,故②正确;棱锥的侧棱交于一点不平行,故③错.反思感悟判断棱锥、棱台的方法(1)举反例法结合棱锥、棱台的定义举反例直接判断关于棱锥、棱台结构特征的某些说法不正确.(2)直接法跟踪训练2下列关于棱锥、棱台的说法:①棱台的侧面一定不会是平行四边形;②由四个平面围成的封闭图形只能是三棱锥;③棱锥被平面截成的两部分不可能都是棱锥.其中正确说法的序号是________.考点棱锥的结构特征题点棱锥的结构特征的应用答案①②解析①正确,棱台的侧面一定是梯形,而不是平行四边形;②正确,由四个平面围成的封闭图形只能是三棱锥;③错误,如图所示的四棱锥被平面截成的两部分都是棱锥.空间几何体的平面展开图典例(1)某同学制作了一个对面图案均相同的正方体礼品盒,如图所示,则这个正方体礼品盒的平面展开图应该为(对面是相同的图案)()答案 A解析其展开图是沿盒子的棱剪开,无论从哪条棱剪开,剪开的相邻面在展开图中可以不相邻,但未剪开的相邻面在展开图中一定相邻.相同的图案是盒子上相对的面,展开后不能相邻.(2)如图是三个几何体的侧面展开图,请问各是什么几何体?解图①中,有5个平行四边形,而且还有两个全等的五边形,符合棱柱特点;图②中,有5个三角形,且具有共同的顶点,还有一个五边形,符合棱锥特点;图③中,有3个梯形,且其腰的延长线交于一点,还有两个相似的三角形,符合棱台的特点.把侧面展开图还原为原几何体,如图所示:所以①为五棱柱,②为五棱锥,③为三棱台.[素养评析](1)多面体展开图问题的解题方法①绘制展开图:绘制多面体的平面展开图要结合多面体的几何特征,发挥空间想象能力或者是亲手制作多面体模型.在解题过程中,常常给多面体的顶点标上字母,先把多面体的底面画出来,然后依次画出各侧面,便可得到其平面展开图.②由展开图复原几何体:若是给出多面体的平面展开图,来判断是由哪一个多面体展开的,则可把上述过程逆推.同一个几何体的平面展开图可能是不一样的,也就是说,一个多面体可有多种平面展开图.(2)借助几何直观和空间想象感知事物的形态与变化,利用空间形式特别是图形,理解和解决数学问题是直观想象的核心素养.1.下面多面体中,是棱柱的有()A.1个B.2个C.3个D.4个考点空间几何体题点空间几何体结构判断答案 D解析根据棱柱的定义进行判定知,这4个图都满足.2.下面图形中,为棱锥的是()A.①③B.①③④C.①②④D.①②答案 C解析根据棱锥的定义和结构特征可以判断,①②是棱锥,③不是棱锥,④是棱锥.故选C.3.有一个多面体,由四个面围成,每一个面都是三角形,则这个几何体为()A.四棱柱B.四棱锥C.三棱柱D.三棱锥答案 D解析根据棱锥的定义可知该几何体是三棱锥.4.如图所示,不是正四面体(各棱长都相等的三棱锥)的展开图的是()A.①③B.②④C.③④D.①②答案 C解析可选择阴影三角形作为底面进行折叠,发现①②可折成正四面体,③④不论选哪一个三角形作底面折叠都不能折成正四面体.故选C.5.下列说法中正确的是()A.棱柱的面中,至少有两个面互相平行B.棱柱中两个互相平行的平面一定是棱柱的底面C.棱柱中一条侧棱就是棱柱的高D.棱柱的侧面一定是平行四边形,但它的底面一定不是平行四边形考点棱柱的结构特征题点棱柱的结构特征的应用答案 A解析棱柱的两底面互相平行,故A正确;棱柱的侧面也可能有平行的面(如正方体),故B 错;立在一起的一摞书可以看成一个四棱柱,当把这摞书推倾斜时,它的侧棱就不是棱柱的高,故C错;由棱柱的定义知,棱柱的侧面一定是平行四边形.但它的底面可以是平行四边形,也可以是其他多边形,故D错.1.棱柱、棱锥定义的关注点(1)棱柱的定义有以下两个要点,缺一不可:①有两个平面(底面)互相平行;②其余各面(侧面)每相邻两个面的公共边(侧棱)都互相平行.(2)棱锥的定义有以下两个要点,缺一不可:①有一个面(底面)是多边形;②其余各面(侧面)是有一个公共顶点的三角形.2.根据几何体的结构特点判定几何体的类型,首先要熟练掌握各几何体的概念,把握好各类几何体的性质,其次要有一定的空间想象能力.一、选择题1.有两个面平行的多面体不可能是()A.棱柱B.棱锥C.棱台D.以上都错考点空间几何体题点空间几何体结构判断答案 B解析由棱锥的结构特征可得.2.下列关于棱柱的说法中,错误的是()A.三棱柱的底面为三角形B.一个棱柱至少有五个面C.若棱柱的底面边长相等,则它的各个侧面全等D.五棱柱有5条侧棱、5个侧面,侧面为平行四边形考点棱柱的结构特征题点棱柱的结构特征的应用答案 C解析显然A正确;底面边数最少的棱柱是三棱柱,它有五个面,故B正确;底面是正方形的四棱柱,有一对侧面与底面垂直,另一对侧面不垂直于底面,此时侧面并不全等,故C错误;D正确,故选C.3.观察如图所示的四个几何体,其中判断不正确的是()A.①是棱柱B.②不是棱锥C.③不是棱锥D.④是棱台考点 空间几何体 题点 空间几何体结构判断 答案 B解析 结合棱柱、棱锥、棱台的定义可知①是棱柱,②是棱锥,④是棱台,③不是棱锥,故B 错误.4.下列命题中正确的是( ) A.三棱柱的侧面为三角形B.两个底面平行且相似,其余各面都是梯形的多面体是棱台C.棱台的底面是两个相似的正方形D.棱锥的侧面和底面可以都是三角形 答案 D5.下列图形经过折叠可以围成一个棱柱的是( )答案 D6.如图,能推断这个几何体可能是三棱台的是( )A.A 1B 1=2,AB =3,B 1C 1=3,BC =4B.A 1B 1=1,AB =2,B 1C 1=1.5,BC =3,A 1C 1=2,AC =3C.A 1B 1=1,AB =2,B 1C 1=1.5,BC =3,A 1C 1=2,AC =4D.AB =A 1B 1,BC =B 1C 1,CA =C 1A 1 答案 C解析 选项A 中A 1B 1AB ≠B 1C 1BC ,故A 不正确;选项B 中B 1C 1BC ≠A 1C 1AC ,故B 不正确;选项C 中A 1B 1AB=B1C1BC=A1C1AC,故C正确;选项D中满足这个条件的可能是一个三棱柱,不是三棱台,故选C.7.一个棱锥的各棱长都相等,那么这个棱锥一定不是()A.三棱锥B.四棱锥C.五棱锥D.六棱锥答案 D解析由题意可知,每个侧面均为等边三角形,每个侧面的顶角均为60°,如果是六棱锥,因为6×60°=360°,所以顶点会在底面上,因此不是六棱锥.8.下面图形中是正方体展开图的是()考点空间几何体的平面展开图题点多面体的平面展开图答案 A解析由正方体表面展开图性质知A是正方体的展开图;B折叠后第一行两个面无法折起来,而且下边没有面,故不能折成正方体;C缺少一个正方形;D折叠后有一个面重合,另外还少一个面,故不能折成正方体.故选A.二、填空题9.四棱柱有________条侧棱,________个顶点.答案4810.一个棱台至少有________个面,面数最少的棱台有________个顶点,有________条棱.答案56911.一个无盖的正方体盒子的平面展开图如图,A,B,C是展开图上的三点,则在正方体盒子中,∠ABC=________.答案60°12.在正方体上任意选择4个顶点,它们可能是如下各种几何体的4个顶点,这些几何体是________.(写出所有正确结论的编号)①矩形;②不是矩形的平行四边形;③有三个面为等腰直角三角形,有一个面为等边三角形的四面体;④每个面都是等边三角形的四面体;⑤每个面都是直角三角形的四面体. 答案 ①③④⑤解析 在正方体ABCD -A 1B 1C 1D 1上任意选择4个顶点,它们可能是如下各种几何体的4个顶点,这些几何体是:①矩形,如四边形ACC 1A 1;③有三个面为等腰直角三角形,有一个面为等边三角形的四面体,如A -A 1BD ;④每个面都是等边三角形的四面体,如A -CB 1D 1;⑤每个面都是直角三角形的四面体,如A -A 1DC ,故填①③④⑤.三、解答题13.如图,在正方形ABCD 中,E ,F 分别为AB ,BC 的中点,沿图中虚线将3个三角形折起,使点A ,B ,C 重合,重合后记为点P .问:(1)折起后形成的几何体是什么几何体?(2)若正方形边长为2a ,则每个面的三角形面积为多少?解 (1)如图折起后的几何体是三棱锥.(2)S △PEF =12a 2,S △DPF =S △DPE =12×2a ×a =a 2,S △DEF =32a 2.14.一个长方体共顶点的三个面的面积分别是2,3,6,则这个长方体对角线的长是________.考点 棱柱的结构特征题点 与棱柱有关的运算答案 6解析 设长方体长、宽、高为x ,y ,z ,则yz =2,xz =3,yx =6,三式相乘得x 2y 2z 2=6,即xyz =6,解得x=3,y=2,z=1,所以x2+y2+z2=3+2+1= 6.15.试从正方体ABCD-A1B1C1D1的八个顶点中任取若干个点,连接后构成以下空间几何体,并且用适当的符号表示出来.(1)只有一个面是等边三角形的三棱锥;(2)四个面都是等边三角形的三棱锥;(3)三棱柱.考点空间几何体题点空间几何体结构应用解(1)如图所示,三棱锥A1-AB1D1(答案不唯一).(2)如图所示,三棱锥B1-ACD1(答案不唯一).(3)如图所示,三棱柱A1B1D1-ABD(答案不唯一).。
§1.1 第1课时棱柱、棱锥、棱台的结构特征【课标要求】1.通过对实物模型的观察,归纳认知简单多面体——棱柱、棱锥、棱台的结构特征.2.能运用棱柱、棱锥、棱台的结构特征解决简单多面体的有关计算.【核心扫描】1.在观察认知棱柱、棱锥、棱台的结构特征过程中培养抽象概括能力和空间想象能力.(重点)2.通过棱柱、棱锥、棱台结构特征的应用提高分析解决问题的能力,增强应用意识.(难点)【新知探究】新知导学1.空间几何体、多面体的概念(1)空间几何体如果只考虑物体的和,而不考虑其他因素,那么由这些物体抽象出来的空间图形叫做空间几何体.(2)多面体一般地,由若干个围成的几何体叫做多面体.围成多面体的各个叫做多面体的面;相邻两个面的叫做多面体的棱;棱与棱的叫做多面体的顶点.温馨提示:(1)按多面体是否在任一面的同侧关系分,可分为凸多面体(把一个多面体的任意一个面延展为平面,如果其余的各面都在这个平面的同一侧)和凹多面体.我们所研究的多面体若不特别说明,都是指凸多面体.(2)多面体按围成它的面的个数分,可分为四面体、五面体、六面体……2.简单的多面体——棱柱、棱锥、棱台多面体结构特征图形表示法棱柱有两个面互相,其余各面都是,并且每相邻两个四边形的公共边都互相,由这如上、下底面分别是四边形A′B′C′D′、四边形ABCD的四棱些面所围成的多面体叫做棱柱.棱柱中,的面叫做棱柱的底面,简称底;叫做棱柱的侧面;相邻的侧面的叫做棱柱的侧棱;侧面与底面的叫做棱柱的顶点柱,可记为棱柱ABCD-A′B′C′D′棱锥有一个面是,其余各面都是有一个公共顶点的,由这些面所围成的多面体叫做棱锥.这个面叫做棱锥的底面或底;有公共顶点的各个叫做棱锥的侧面;各侧面的叫做棱锥的顶点;相邻侧面的叫做棱锥的侧棱如图所示,该棱锥可表示为棱锥S-ABCD棱台用一个的平面去截棱锥,底面和截面之间的部分叫做棱台.原棱锥的和分别叫做棱台的下底面和上底面如上、下底面分别是四边形A′B′C′D′、四边形ABCD的四棱台,可记为棱台ABCD-A′B′C′D′温馨提示:棱柱、棱锥、棱台的形状虽然不同,但它们可以互相转化:当台体的上、下底全等时,棱台转化为棱柱,当棱台的上底面收缩为一点时,棱台转化为棱锥,即:因此,棱柱与棱锥都是棱台的特例.互动探究探究点1 面数最少的多面体有几个面?探究点2 (1)有一个面是多边形,其余各面都是平行四边形的几何体一定是棱柱吗?(2)有一个面是多边形,其余各面都是三角形的几何体一定是棱锥吗?探究点3 (1)棱台的上下底面一定平行且相似吗?棱台的一个侧面可为平行四边形吗?(2)有两个面平行且相似,其余各面都是梯形的几何体一定是棱台吗?【题型探究】类型一棱柱、棱锥、棱台的结构特征【例1】下列三个命题中,正确的有().①棱柱中互相平行的两个面叫做棱柱的底面;②各个面都是三角形的几何体是三棱锥;③有两个面互相平行,其余四个面都是等腰梯形的六面体是棱台;④五棱台的各侧棱的延长线可能无法交于一点.A.0个B.1个C.2个D.3个[思路探索]根据棱柱、棱锥、棱台的结构特征判断.[规律方法]解决这类问题,关键在于准确把握简单多面体的结构特征,也就是以概念的本质内涵为依据,以具体实物和图形为模型来进行判定.【活学活用1】判断下列说法是否正确.(1)三棱柱有6个顶点,(2)三棱锥有4个顶点;(3)用一个平面去截棱锥,棱锥底面和截面之间的部分是棱台;(4)如果棱柱有一个侧面是矩形,则其余各侧面也都是矩形.类型二空间几何体的平面展开图【例2】如图是三个几何体的侧面展开图,请问各是什么几何体?[思路探索]可动手做一模型解决问题.[规律方法]立体图形的展开或平面图形的折叠是培养空间想象能力的好方法,解此类问题可以结合常见几何体的定义与结构特征,进行空间想象,或亲自动手制作平面展开图进行实践.【活学活用2】如图所示,不是正四面体(各棱长都相等的三棱锥)的展开图的是().A.①③B.②④C.③④D.①②类型三多面体的有关计算【例3】若三棱锥的底面为正三角形,侧面为等腰三角形,侧棱长为2,底面周长为9,求棱锥的高(过顶点向底面作垂线,顶点与垂足的距离).[思路探索]求出底面正三角形的中心到三角形顶点的距离,再利用它与棱锥的高、侧棱构成的直角三角形解决.[规律方法](1)要把侧面的高与几何体的高分开,不能混为一谈.(2)注意结合条件,构造直角三角形来解决问题.而对于棱台的有关计算常恢复到棱锥并借助相似比来解决.【活学活用3】一个棱台的上、下底面积之比为4∶9,若棱台的高是4 cm,求截得这个棱台的棱锥的高.方法技巧多面体表面距离最短问题表面距离最短问题,一般方法是展成平面图形,利用两点间距离最短来解决.【示例】如图(1)所示,在侧棱长为23的正棱锥VABC中(底面为正三角形,过顶点与底面垂直的直线过底面的中心),∠AVB=∠BVC=∠CVA=40°,过A作截面△AEF,求截面△AEF周长的最小值.[思路分析]把正三棱锥的侧面展开成平面图形,当△AEF的各边在同一直线上时,其周长最小.[题后反思] 有关几何体的距离的最值问题有两类基本方法:(1)函数思想:设出变量,把所求距离写出关于变量的函数表达式,再利用函数方法求最值.(2)转化思想:通过表面展开,转化为平面问题变曲为直,利用几何性质求解.【课堂小结】1.在理解的基础上,要牢记棱柱、棱锥、棱台的含义,能够根据定义判断几何体的形状.2.对几何体定义的理解要准确,另外,要想真正把握几何体的结构特征,必须多角度、全面地分析,多观察实物,提高空间想象能力.【课堂达标】1.三棱锥的四个面中可以作为底面的有().A.1个B.2个C.3个D.4个2.棱台不具备的性质是().A.两底面相似B.侧面都是梯形C.侧棱都相等D.侧棱延长后都交于一点3.不在棱柱同一个平面上的两个顶点的连线叫做棱柱的体对角线,则长方体共有________条体对角线.4.纸制的正方体的六个面根据其方位分别标记为上、下、东、南、西、北,现在沿该正方体的一些棱将正方体剪开,外面朝上展平,得到右图的平面图形,则标“△”的面的方位是________.5.如图,在边长为2a的正方形ABCD中,E,F分别为AB,BC的中点,沿图中虚线将3个三角形折起,使点A、B、C重合,重合后记为点P.问:(1)折起后形成的几何体是什么几何体?(2)这个几何体共有几个面,每个面的三角形有何特点(3)每个面的三角形面积为多少?【参考答案】【新知探究】新知导学1.(1) 形状大小(2)平面多边形多边形公共边公共点2.多面体结构特征图形表示法棱柱平行四边形平行两个互相平行其余各面公共边公共顶点棱锥多边形三角形多边形三角形面公共顶点公共边棱台平行于棱锥底面底面截面互动探究探究点1提示面数最少的多面体是四面体(三棱锥),有4个面.探究点2提示(1)不一定.如图所示(1)的几何体就不是棱柱.图(1)图(2)(2)不一定.如图(2)所示的几何体就不是棱锥.探究点3提示(1)棱台的上下底面一定平行且相似;棱台的一个侧面不能为平行四边形,否则侧棱延长后不能相交于一点.(2)不一定.当两个面平行且相似,对应边成比例;其余各面都是梯形才是棱台如图(1);当两个面平行且相似,对应边不成比例,其余各面都是梯形,也不是棱台如图(2).【题型探究】类型一棱柱、棱锥、棱台的结构特征【例1】解析①错误.底面为正六边形的棱柱相对的两个侧面互相平行,但不能作为底面.②错误.如图所示的几何体各面均为三角形,但不是棱锥.③错误.因为不能保证侧棱相交于同一点(如探究3中的图形).④错误.棱台的侧棱延长后一定相交于同一点.答案A【活学活用1】解(1)正确.符合棱柱顶点的定义.(2)不正确.对于一个三棱锥,只能一个顶点,一个底面.(3)不正确.因为截面不一定与底面平行.(4)不正确.如果棱柱有一个侧面是矩形,只能保证侧棱垂直于该侧面的底边,其余侧面的侧棱与相应底边不一定垂直,因此其余侧面不一定是矩形.类型二空间几何体的平面展开图【例2】解①五棱柱;②五棱锥;③三棱台.如图所示.【活学活用2】解析可选择阴影三角形作为底面进行折叠,发现①②可折成正四面体,③④不论选哪一个三角形作底面折叠都不能折成正四面体. 答案 C类型三 多面体的有关计算 【例3】解 底面正三角形中,边长为3,高为3×sin 60°=332,中心到顶点距离为332×23=3,则棱锥的高为22-32=1.【活学活用3】解 如图所示,将棱台还原为棱锥,设PO 是原棱锥的高,O 1O 是棱台的高, ∵棱台的上、下底面积之比为4∶9,∴它们的底面对应边之比A 1B 1∶AB =2∶3,∴P A 1∶P A =2∶3. 由于A 1O 1∥AO ,∴P A 1P A =PO 1PO ,即PO -O 1O PO =PO -4PO =23.∴PO =12 (cm),即原棱锥的高是12 cm. 【示例】解 将三棱锥沿侧棱VA 剪开,并将其侧面展开平铺在一个平面上,如图(2)所示, 线段 AA 1的长为所求△AEF 周长的最小值,取AA 1的中点D ,则VD ⊥AA 1,∠AVD =60°,可求AD =3,则AA 1=6. 【课堂达标】1.解析 由于三棱锥的每一个面均可作为底面,应选D. 答案 D2.解析 用棱台的定义去判断. 答案 C3.解析 通过观察实物(如粉笔盒)可知长方体有4条对角线. 答案 44. 解析 如图所示的正方体ABCD A 1B 1C 1D 1,沿棱DD 1,D 1C 1,C 1C 剪开,使正方形DCC 1D 1向北方向展开;沿棱AA 1,A 1B 1,B 1D 剪开,使正方形ABB 1A 1向南方向展开,然后将正方体沿BC剪开并展开,则标“△”的面的方位是北.答案北5.解(1)如图,折起后的几何体是三棱锥.(2)这个几何体共有4个面,其中△DEF为等腰三角形,△PEF为等腰直角三角形,△DPE和△DPF均为直角三角形.(3)S△PEF=12a2,S△DPF=S△DPE=12×2a×a=a2,S△DEF=3 2a2.。
第一章空间几何体1.1 空间几何体的结构第1课时棱柱\棱锥\棱台的结构特征课标导航1、知道空间几何体的概念及其含义、了解空间几何体的分类及相关概念。
2、了解棱柱、棱锥、棱台的定义。
3、掌握棱柱、棱锥、棱台的结构特征及其关系。
知识梳理1、空间几何体(1)概念:如果只考虑物体的_________和_________,而不考虑其他因素,那么由这些物体抽象出来的空间图形叫做空间几何体。
(2)特殊几何体:①多面体:一般地,由若干个_________围成的几何体叫做多面体。
围成多面体的各个多边形叫做多面体的_________;相邻两个面的_________叫做多面体的棱;棱与棱的_________叫做多面体的顶点。
②旋转体:由一个平面图形绕它所在平面内的一条定直线旋转所形成的_________叫做旋转体,这条定直线叫做旋转体的_________。
2、几种常见的多面体思考探究1、多面体最少有几个面,几个顶点,几条棱?2、有一个面是多边形,其余各面都是三角形的几何体一定是棱锥吗?3、“两个面互相平行,其余各面都是平行四边形,由这些面围成的几何体是否一定是棱柱?”自主测评1、具有下列哪个条件的多面体是棱台()A.两底面是相似多边形的多面体B.侧面是梯形的多面体C.两底面平行的多面体D.两底面平行,侧棱延长后交于一点的多面体2、有一个多面体,共有四个面围成,每一个面都是三角形,则这个几何体为()A.四棱柱B.四棱锥C.三棱柱D.三棱锥3、下列说法正确的是()A.棱柱的底面一定是平行四边形B.棱锥的底面一定是三角形C.棱锥被平面分成的两部分不可能是棱锥D.棱柱被平面分成的两部分可能都是棱柱4、六棱台有_________个侧面,_________个顶点,_________条侧棱。
典例探究突破类型一:棱柱、棱锥、棱台的概念例1:试判断下列说法是否正确:(1)棱柱中互相平行的两个面叫做棱柱的底面;(2)棱柱的侧面是平行四边形,而底面不是平行四边形;(3)用一个平面去截棱锥,底面与截面间的部分叫棱台。