当前位置:文档之家› 岩体力学课程期末考试复习资料

岩体力学课程期末考试复习资料

岩体力学课程期末考试复习资料
岩体力学课程期末考试复习资料

岩体力学课程期末考试

复习资料

目录

一、名词解释总复习 (1)

1、岩体力学 (1)

2、天然应力 (1)

3、研究方法 (1)

4、岩石质量指标(RQD)值 (1)

5、地质体 (1)

6、岩石 (1)

7、岩体 (1)

8、岩块 (1)

9、结构面 (1)

10、造岩矿物 (2)

11、粒间连接分类 (2)

12、风化程度指标 (2)

13、结构面成因分类 (2)

14、机构面的影响因素 (2)

15、岩石软化性 (2)

16、岩体成因分类 (2)

17、岩体工程分类 (2)

18、岩石的物理性质 (2)

19、岩石的水理性质 (2)

20、岩石的吸水率 (2)

21、饱和吸水率 (3)

22、质量损失率 (3)

23、剪切强度 (3)

24、剪切(法向)刚度 (3)

25、单轴抗压(拉)强度 (3)

26、弹性 (3)

27、塑性 (3)

28、粘性 (3)

29、脆性 (3)

30、延性 (3)

31、变形模量 (3)

32、岩石的蠕变 (4)

33、蠕变 (4)

34、蠕变曲线特征 (4)

35、蠕变性质的影响因素 (4)

36、围岩压力 (4)

37、围岩抗力系数 (4)

38、影响边坡应力的分布因素 (4)

39、岩体边坡破坏的因素 (4)

1

40、工程岩体 (4)

41、岩体结构 (4)

42、岩体的不连续性 (4)

43、岩体的非均质性 (5)

44、岩体的各向异性 (5)

45、岩石的可溶性 (5)

46、岩石的崩解性 (5)

47、岩石的软化系数 (5)

48、强度损失率 (5)

49、残余碎胀系数 (5)

50、结构面的产状 (5)

51、岩石质量指标 (5)

52、起伏角 (5)

53、张开度 (6)

54、软弱夹层 (6)

55、地应力 (6)

56、构造应力场 (6)

57、岩爆 (6)

58、力学性质 (6)

59、峰值强度 (6)

60、残余强度 (6)

61、长期强度 (6)

62、弹性滞后 (7)

63、回滞环 (7)

64、应变强化 (7)

65、应变弱化 (7)

66、岩石的记忆 (7)

67、疲劳强度 (7)

68、弹性模量 (7)

69、泊松比 (7)

70、脆性破坏 (8)

71、延性破坏 (8)

72、流变性 (8)

73、松弛 (8)

74、应力-应变全过程曲线 (8)

75、弹性变形 (8)

76、塑性变形 (8)

77、单位法向刚度 (8)

78、常刚度变形 (8)

79、结构面稳滑 (8)

80、结构面粘滑 (9)

81、结构面爬坡 (9)

82、结构面剪断 (9)

83、剪胀 (9)

2

84、峰值剪胀角 (9)

85、震源 (9)

86、震中 (9)

87、震中距 (9)

88、震中区 (9)

89、震源深度 (9)

90、体波 (10)

91、纵波 (10)

92、横波 (10)

93、面波 (10)

94、瑞利波 (10)

95、勒夫波 (10)

96、地震震级 (10)

97、地震烈度 (10)

98、基本烈度 (11)

99、场地烈度 (11)

100、设计烈度 (11)

101、振动液化 (11)

102、地震海啸 (11)

103、岩体质量 (11)

104、BQ (11)

105、RMR (11)

二、章节名词解释 (12)

(一)岩石的物理力学性质 (12)

1、岩体 (12)

2、岩石 (12)

3、岩(体)石力学 (12)

4、结构面 (12)

5、岩石质量指标(RQD) (12)

6、空隙指数 (12)

7、软化性 (12)

8、软化系数 (12)

9、膨胀性 (12)

10、单轴抗压强度 (13)

11、抗拉强度 (13)

12、抗剪强度 (13)

13、形状效应 (13)

14、尺寸效应 (13)

15、延性度 (13)

16、流变性 (13)

17、蠕变 (13)

18、应力松弛 (13)

19、弹性后效 (13)

3

20、峰值强度 (13)

21、长期强度 (13)

22、扩容 (14)

23、应变硬化 (14)

24、疲劳破坏 (14)

25、疲劳强度 (14)

26、速率效应 (14)

27、延性流动 (14)

28、脆性破坏 (14)

29、延性破坏 (14)

30、强度准则 (14)

31、塑性变形 (14)

(二)岩体的力学性质及分类 (15)

l、结构面 (15)

2、原生结构面 (15)

3、构造结构面 (15)

4、次生结构面 (15)

5、结构面频率 (15)

6、结构体 (15)

7、结构效应 (15)

8、剪胀角(angleofdilatancy) (15)

9、节理化岩体 (15)

10、结构面产状的强度效应 (16)

11、结构面密度的强度效应 (16)

12、岩体完整性指标 (16)

13、岩体基本质量 (16)

14、自稳能力 (16)

15、体积节理数 (16)

16、岩石质量指标(RQD) (16)

(三)岩体中天然应力及其量测 (16)

1、地应力 (16)

2、原岩应力 (16)

3、残余应力 (16)

4、初始地应力 (17)

5、自重应力 (17)

6、构造应力 (17)

7、应力重分布 (17)

8、二次应力 (17)

9、垂直应力 (17)

10、切向应力 (17)

11、径向应力 (17)

12、岩爆 (17)

13、构造线 (18)

14、现代构造应力 (18)

4

(四)地下洞室围岩稳定性分析 (18)

1、围岩 (18)

2、围岩压力 (18)

3、静水应力状态 (18)

4、形变围岩压力 (18)

5、松动围岩压力 (18)

6、冲击围岩压力 (19)

7、膨胀围岩压力 (19)

8、应力集中 (19)

9、应力集中系数 (19)

10、侧压系数 (19)

11、围岩(弹性)抗力系数 (19)

12、单位抗力系数 (19)

三、复习题 (20)

(一)填空题(共34小题) (20)

(二)名词解释(共35小题) (21)

(三)判断题(共25小题) (24)

(四)简答题(共52小题) (25)

1、地质体和岩体在概念上有哪些区别? (25)

2、岩体和岩石的各自特征是什么?两者有何区别和联系? (25)

3、岩体力学的一般工作程序(步骤)和主要研究方法? (25)

4、岩体的组成要素是什么? (26)

5、从工程地质研究的角度,简述岩石的主要造岩矿物及其基本性质? (26)

6、岩石颗粒间的联结有哪几种?联结强度如何? (26)

7、岩石物理性质的主要指标及其表示方式是什么? (26)

8、结构面按其成因通常分为哪几种类型?各自有何特点? (27)

9、简述结构面定量统计的内容? (27)

10、泥化夹层有何特性? (27)

11、试述自重应力场与构造应力场的区别和特点。 (28)

12、简述地壳浅部地应力分布的基本规律。 (28)

13、简述高地应力区的标志。 (28)

14、解释单轴压缩作用下,岩石变形全过程的特征及其内在本质。 (28)

15、循环加荷作用下岩石的力学性质? (28)

16、三向作用下岩石的力学性质? (29)

17、岩体结构面粘滑的特征、机制和影响因素? (29)

18、石蠕变一般包括哪几个阶段?各阶段有何特点? (30)

19、简述不同形态结构面剪切强度特征。 (30)

20、岩体与岩石的变形有何异同? (30)

21、岩体压缩变形曲线可分几类?各类变形曲线有何特点? (30)

22、简述岩体抗剪强度参数该如何选取 (31)

23、简述岩体力学性质的影响因素 (31)

24、简述岩体力学性质法则 (31)

25、简述岩体的工程地质分类与质量分级的区别和联系 (31)

5

26、Q分类法和RMR分类法中各考虑了岩体的哪些因素? (32)

27、岩体质量分级在工程中如何应用? (32)

28、什么是全应力应变曲线?为什么普通材料试验机得不出全应力应变曲线? (32)

29、简述岩石在三轴压缩下的变形特征。 (32)

30、按结构面成因,结构面通常分为几种类型? (32)

31、在巷道围岩控制中,可采取哪些措施以改善围岩应力条件? (32)

32、地应力测量方法分哪两类?两类的主要区别在哪里?每类包括哪些主要测量技术? (33)

33、岩石的塑性和流变性有什么不同? (33)

34、试叙述构造应力对原岩应力场的影响及其特点。 (33)

36、影响巷道围岩稳定的主要因素有哪些? (33)

37、采用锚杆支护时如何选择锚杆的杆径? (33)

38、岩石受载时会产生哪些类型的变形? (34)

39、程岩体比尼奥斯基分类法依据哪些指标对岩体进行分类? (34)

40、岩体与岩石相比,其变形性质有何特点? (34)

41、试分析支承压力的有利因素与不利因素。 (34)

42、采用锚杆支护时,如何选择锚杆的类型? (34)

43、在巷道围岩控制中,采用哪些措施可使支护更加合理? (34)

44、峰前区应力应变曲线有几种类型,各表示岩石何种性质? (34)

45、岩体结构基本类型有哪些? (35)

46、结构面的剪切变形、法向变形与结构面的哪些因素有关? (35)

47、简述水压致裂法主要测量步骤及适用条件。 (35)

48、简述斜坡中应力分布特点: (35)

50、试述岩土体稳定性分析刚体极限平衡法的思路 (35)

51、岩石力学、土力学与工程地质学有何关系 (36)

52、水对岩土体稳定性有何影响 (36)

(五)论述题(共7小题) (36)

1、试说明普氏、太沙基地压计算理论,并给予评价。 (36)

2、分析库仑、莫尔、格里菲斯强度理论的基本观点并给予评价。 (36)

3、试分析莫尔与格里菲斯强度理论的基本观点并给予评价,说明各自适用条件。 ··37

4、从岩石力学的角度分析岩质边坡病害的发生机理和研究方法。 (37)

5、岩石力学与土力学在研究对象、研究方法、物理性质、力学性质和渗透性等方面有何异同点? (38)

6、从基本特征、物理性质、力学性质、赋存环境等角度讨论岩体、岩石的区别。 ··38

7、从岩石力学的角度分析3.11日本9级地震的成因机理和破坏特点? (39)

6

一、名词解释总复习

1、岩体力学

是力学的分支学科,是研究岩体在各种立场作用下变形与破坏规律的理论及其实际应用的学科,是一门应用性学科

2、天然应力

人类工程活动之前存在于岩体中的应力。

3、研究方法

工程地质研究法,实验法,数学力学分析法,综合分析法

4、岩石质量指标(RQD)值

大于10cm的岩芯累计长度与钻孔进尺长度之比的百分数。

5、地质体

由一定的岩石组成的和具有一定构造特征的,并占据地球上一定空间的实体。

6、岩石

地壳中由地质作用所形成的、由造岩元素构成的玻璃质或矿物的天然集合体,具有一定结构构造和变化规律的固体物质。

7、岩体

在地质历史过程中所形成的,已经遭受过变形和破坏,具有一定物质成分和结构并赋存于一定地质环境中的地质体,在岩体力学中作为力学研究对象时,称为岩体。

8、岩块

是指不含显著结构面的岩石块体,是构成岩体的最小岩石单元体

9、结构面

地质历史发展过程中,在岩体内形成的具有一定的延伸方向和长度,厚度相对较小的地质界或带

第 1 页共 39 页

10、造岩矿物

含氧岩,氧化物,氢氧化物,卤化物,硫化物,自然元素

11、粒间连接分类

结晶连接,胶结连接

12、风化程度指标

定性指标主要有颜色,矿物腐化程度。定量指标主要有风化孔隙率指标和波速指标

13、结构面成因分类

(1)地质成因类型原生结构面(沉积结构面,岩浆结构面,变质结构面)(2)力学成因:张性结构面,剪性结构面

14、机构面的影响因素

产状,连续性,密度,张开度,形态,填充胶结特征(贴硅胶结的强度最高),结构面的组合关系

15、岩石软化性

是指岩石浸水饱和后强度降低的性质。

16、岩体成因分类

岩浆岩体,沉积岩体(他生沉积岩,自生沉积岩),变质岩体

17、岩体工程分类

岩体质量分级,洞室围岩分类,岩体地质力学分类(RMR分类),巴顿岩石质量分类(Q分类)

18、岩石的物理性质

岩石的密度(颗粒密度,岩块密度),岩石的空隙性

19、岩石的水理性质

岩石的吸水性,岩石的软化性,岩石的抗冻性,岩石的透水性

20、岩石的吸水率

是指岩石在常温压下自由吸入水的质量与岩样干密度之比。岩石的饱和吸水

第 2 页共 39 页

率是指岩试件在高压或者真空的条件下吸收水的质量与岩式样干质量之比。饱水系数:岩石的吸水率与饱和吸水率之比

21、饱和吸水率

岩石试件在高压或真空条件下吸入水的质量与岩样干质量之比

22、质量损失率

是指冻容前后干质量之差与实验前干质量之比——百分数表示

23、剪切强度

在剪切荷载作用下,岩块抵抗剪切破坏的最大剪应力。

24、剪切(法向)刚度

是反应结构面剪切(法向)变形性质的重要参数

25、单轴抗压(拉)强度

在单向压缩(拉伸)条件下,岩块能承受的最大压(拉)应力。

26、弹性

在一定的应力范围内物体受外力作用成生的全部变形而去除外力后能够立即回复其原有的形状和尺寸大小的性质

27、塑性

物体受力后产生变形,在外力去除后不能完全恢复原状的性质

28、粘性

物体受到外力后不能瞬间完成且应变速率随应力的增加而增加的性质

29、脆性

物体受力后,变形很小时就发生破裂的性质

30、延性

物体能承受很大塑性变形而不丧失其承载力的性质

31、变形模量

是指在儋州压缩条件下,轴向应力与轴向应变之比

第 3 页共 39 页

32、岩石的蠕变

是指岩石在恒定荷载作用下,变形随时间的增大而增大的性质

33、蠕变

是指岩石在恒定的荷载作用下,其变形随时间而逐渐增大的性质。

34、蠕变曲线特征

出示蠕变阶段(减速阶段),等速蠕变阶段(稳定阶段),加速蠕变阶段

35、蠕变性质的影响因素

岩性,应力、温度、湿度

36、围岩压力

地下洞室围岩在重分布应力作用下产生过量的塑性变形或松动破坏,进而引起施加于支护衬砌上的压力。

37、围岩抗力系数

使洞壁围岩产生一个单位径向变形所需要的内水压力。

38、影响边坡应力的分布因素

(1)天然应力(2)坡行坡高坡角坡底宽度(3)岩体的性质结构特征

39、岩体边坡破坏的因素

延性、岩体结构、水的作用、风化作用、地震、天然应力、地形地貌及人为因素

40、工程岩体

在岩体内部或表面修建或构造的任何工程为岩体工程,岩体工程所涉及的岩体为工程岩体。

41、岩体结构

结构面和结构体在岩体内的排列组合形式,称为岩体结构。

42、岩体的不连续性

包括岩性不连续性和结构不连续性。

岩性不连续性:指岩体内岩石性质沿一些界面发生突变;

第 4 页共 39 页

结构不连续性:指岩体中一系列宏观分离面,如断层、节理、劈理等。

43、岩体的非均质性

岩体的物理-力学性质随所测点的空间位置不同而有差异的性质。

44、岩体的各向异性

岩体的物理力学性质随取向不同而具有明显方向性差异的性质。

45、岩石的可溶性

岩石在水溶液中被溶解的性质。

46、岩石的崩解性

岩石与水相互作用时失去粘性并变成完全丧失强度的松散物质的性能。

47、岩石的软化系数

岩石饱水状态的抗压强度与其干燥状态的抗压强度的比值。

48、强度损失率

饱水岩石在-25~25℃条件下,反复冻结融化25次(视当地工程要求,有的要求冻融100~200次或更多),冻融试验前后抗压强度之差与试验前的抗压强度的比值,以百分数表示。

49、残余碎胀系数

破碎后的岩石,经过一段时间压实后,其体积(Vh)与破碎前体积(Vo)之比。

50、结构面的产状

结构面在空间的分布状态。(对岩体稳定性和建筑物安危起重要作用)

51、岩石质量指标

即BQD,是一个钻孔中长度大于和等于10cm的单块岩心长度总和与岩心进尺长度之比。

52、起伏角

由起伏差(a)与波长(L)计算:i=arctan(2a/L).

第 5 页共 39 页

岩石力学-硕士研究生课程报告-中南大学

硕士研究生课程报告 题目顺层高边坡稳定性影响因素 及工程灾害防治 姓名曾义 专业班级岩土13级 任课教师阳军生张学民 中南大学土木工程学院

引言 近年来,随着铁路公路建设步伐加快,铁路公路等级不断提高,边坡防护建设工程中所遇到的岩土边坡安全稳定性问题也相应增多,并成为岩土工程中比较常见的技术难题。由于工程建设的需要,往往在一定程度上破坏或扰动原来较为稳定的岩土体而形成新的人工边坡,因而普遍存在着边坡稳定的问题需要解决。国家实施西部大开发战略以来,西部山区高等级公路得到迅速发展。在山区修建高等级公路不可避免会遇到大量的深挖高填路基,就目前建设的高速公路情况看:一般情况下,100km长的山区高等级公路,挖填方路基段落长度占路线总长度的60%以上。已建高速公路最高的填方已达到50多米,最高的挖方边坡高度已超过100m。尽管山区高等级公路的建设越来越倡导环境保护,尽量避免深挖高填,但路基作为公路的主要结构,其边坡稳定问题不可避免。在山区复杂多变的地质条件下建设高等级公路,其边坡稳定性问题必将受到人们的普遍关注,高边坡岩土安全状况直接关系到公路交通运输安全。 虽然计算理论方法、地质探测技术、现代监测技术、边坡加固技术及施工技术不断的在进步,但顺层边坡稳定性问题和高边坡稳定性问题,时至今日依然是国内外学者研究的热点问题,并逐步涌现出许多的新的研究方向。 1、顺倾高边坡稳定性研究现状 随着人类工程活动的发展,对边坡问题的研究也在不断深入,归纳前人对边坡问题的研究大致可分为以下几个阶段: 人们对边坡稳定性的关注和研究最早是从滑坡现象开始的(张倬元等,2001)。19世纪末和20世纪初期,伴随着欧美资本主义国家的工业化而兴起的大规模土木工程建设(如修筑铁路、公路,露天采矿,天然建材开采等),出现了较多的人工边坡,诱发了大量滑坡和崩塌,造成了很大的损失。这时,人们才开始重视边坡失稳给人类造成的危害,并开始借用一般材料分析中的工程力学理论对滑坡进行半经验、半理论的研究。 20世纪50年代,我国学者引进苏联工程地质的体系,继承和发展了“地质历史分析”法,并将其应用于滑坡的分析和研究中,对边坡稳定性研究起到了推动作用(张倬元等,1994)。该阶段学者们着重边坡地质条件的描述和边坡类型的划分,采用工程地质类比法评价边坡稳定性。 20世纪60年代,世界上几起灾难性的边坡失稳事件的发生(如意大利的瓦依昂滑坡造成近3000人死亡和巨大的经济损失)(张倬元等,1994),使人们逐渐认识到了结构面对边坡稳定性的控制作用以及边坡失稳的时效特征,初步形

岩体力学期末考试复习资料

岩体力学期末考试复习资料 第一章岩体地质与结构特征 1、结构面:是指地质历史发展中,在岩体内形成的具有一定的延伸方向和长度,厚度相对较小的地质界面或带。 2、岩体:在地质历史中形成的由岩块和结构面网络组成的,具有一定的结构并赋存与一定的天然应力和地下水等地质环境中的地质体,是岩体力学研究的对象。 3、结构面的分类 (1)根据地质成因类型分为原生结构面、构造结构面、次生结构面; (2)根据力学成因类型分为张性结构面、剪性结构面; (3)根据结构面的规模和分级为五级; 1)Ⅰ级结构面:延伸几km~几十km 以上,破碎带宽度几十m 以上 的大断层,对区域构造起控制作用。 2)Ⅱ级结构面:延伸几百m~几km,破碎带宽度几m~几十mm 的断层、层 间错动带、接触带、风化夹层等,对山体稳定起控制作用。 3)Ⅲ级结构面:延伸几百m 的断层、接触带、风化夹层等,宽度小于1m, 对岩体稳定起控制作用。 4)Ⅳ级结构面:延伸在几十m 范围内的节理、裂隙,未错动、不夹泥,影 响岩体质量。 5)Ⅴ级结构面:延伸差,无厚度,随机分布的隐裂隙等细小结构面,影响 岩石质量。 4、结构面的基本特征 (1)方位(产状):结构面在空间的分布状态,用倾向、倾角表示。 (2)间距:相邻结构面之间的垂直距离。 线裂隙率Ks:沿测线方向单位长度上结构面或裂隙的条数。(s为结构面平均间距) Ks=1 s 面裂隙率Ka:单位测量面积中裂隙面积所占的百分率。

Ka=各裂隙面积(长?宽)之和 所测量的岩体面积 ×100% 体积裂隙率Kv:单位测量岩体中裂隙体积所占的百分率。 Kv=各裂隙体积(长?宽?厚)之和 s所测量的岩体体积 ×100% 单位体积裂隙数Jv:单位岩体体积内通过的总裂隙数。 (3)延续性:表征结构面的展布范围和延伸长度。 (4)粗糙度:指结构面侧壁的粗糙程度,用起伏度和起伏差表示。形态: 台阶形; 波浪形; 平直形;剖面类型: 粗糙的; 平坦的; 光滑的。 (5)结构面侧壁强度:与岩石类型和岩体风化或蚀变有关。 (6)张开度:指结构面相邻岩壁间的垂直距离,用插尺测定。 (7)充填物:指充填于结构面相邻岩壁间的物质。 1)机械充填(砂、粘土、粉土、角砾等) 2)胶结充填(方解石、石英、石膏) 3)敷膜式充填(钙膜、泥膜、铁锰渲染) 充填物厚度(t)与起伏差(h)之比:t > h :填充物决定结构面力学性质;t < h :侧壁特征决定结构面力学性质。 (8)渗流; (9)节理组数; (10)块体大小; (11)岩石质量指标 RQD: 用直径为 75mm 的金刚石钻头和双管单动直径岩芯管在岩石中钻进,连续取直径为 54mm 的岩芯,回次钻进所取岩芯中,长度大于 10cm 的岩芯段长度之和与该回次进尺之比的百分数,表征岩体的节理、裂隙等发育程度的指标。 (12)岩体的完整性系数K V K V=(V pm V pr )^2

岩石力学研究进展报告

岩石力学研究新进展报告 姓名:XXX 学号:XXXXXXXX 专业:岩土工程

岩石力学研究新进展报告 1 引言 时光如白驹过隙,一学期的《XXXXX》课程在不知不觉间结课了。这一学期的学习,使我在岩石力学方面有了很大的启发,特别是分形理论在岩石力学中的应用令我神往。下面我对岩石力学研究的新进展做简要报告。 岩石力学可以作为固体力学的一个新分支,用以研究岩石材料的力学性能和岩石工程的特殊设计方法。岩石力学经过近50年的发展,在土木工程、水利工程、采矿工程、石油工程、国防工程等领域都得到了广泛的应用,随着科学技术的进步,岩石力学涉及的领域会进一步扩大。岩石力学是一门内涵深,工程实践性强的发展中学科。岩石力学面对的是“数据有限”的问题,输入给模型的基本参数很难确定,而且没有多少对过程(特别是非线性工程)的演化提供信息的测试手段。另一方面,对岩体的破坏机体还不能准确的解释。岩石力学所涉及的力学问题是多场(应力场、温度场、渗流场、甚至还存在电磁场等)、多相(固、液、气)影响下的地质构造和工程构造相互作用的耦合问题。这就表明,工程岩体的变形破坏特征是极为复杂的,其大多数是高度非线性的。目前,岩石力学的许多数学模型是不准确和不完整的,可以广泛接受和适用的概化模型并不多。基于此,近年来,多种数值方法、细观力学、断裂与损伤力学、系统科学、分形理论、块体理论等在岩石力学中的应用以及各种人工智能、神经网络、遗传算法、进化算法、非确定性数学等域岩石力学的交叉学科的兴起,为我们提供了全新和有效的思维方式和研究方法,更能激发研究者的创新精神,这也为突破岩石力学的确定性研究方法提供了强有力的理论基础[1]。 本报告主要对分形岩石力学、块体岩石力学、断裂与损伤岩石力学和岩石细观力学四部分的研究新进展做简要报告。由于时间和精力有限(最近导师安排的任务非常多,而且要准备英语和政治期末考试),每部分内容除第一大段的研究新进展综述外,只对近几年的三篇比较好的文献做分析说明,包括两篇中文学术论文和一篇外文学术论文,这12篇学术论文我都比较仔细的看了。以后若有机会和时间,我会在导师和各位老师同学的不吝赐教下,努力做岩石力学的创新性研究,届时会在文献综述部分查阅和介绍更多最新以及更优秀的文献。 2 分形岩石力学 从古至今,岩石已成为人们熟知的工程材料,它是由矿物晶粒、胶结物质和大量各种不同阶次、不规则分布的裂隙、薄弱夹层等缺陷构成,是一种成分和结构高度复杂的孔隙体。岩石力学经过近50年的发展,人们尝试用各种数学力学方法研究和描述岩石复杂的自然结构性状和物理力学性质,提出了多种岩石力学分析和计算方法,为解决实际工程中的岩石力学问题创造了条件。19世纪70年代Mandelbrot创立分形几何学,提出了一种定量研究和描述自然界中极不规则且看似无序的复杂结构、现象或行为的新方法,从此分形几何学广泛地应用于自然科学研究的各个领域,并且在经济学等社会科学也有很巧妙的应用。19世纪80年代,分形几何学开始应用于岩石力学研究,开始形成分形岩石力学这一门新兴交叉学科。人们逐渐发现岩石力学领域中的分形现象相当普遍,不仅岩石的自然结构性状、缺陷几何形态、分布以及地质结构产状、断层几何形态、分布都观察到分形特征或分形结构,而且岩石体强度、变形、破断力学行为以及能量耗

2011岩石力学考试试题(含答案).

1、岩体的强度小于岩石的强度主要是由于()。 ( A )岩体中含有大量的不连续面 ( B )岩体中含有水 ( C )岩体为非均质材料 ( D )岩石的弹性模量比岩体的大 2、岩体的尺寸效应是指()。 ( A )岩体的力学参数与试件的尺寸没有什么关系 ( B )岩体的力学参数随试件的增大而增大的现象 ( C )岩体的力学参数随试件的增大而减少的现象 ( D )岩体的强度比岩石的小 3 、影响岩体质量的主要因素为()。 (A)岩石类型、埋深 (B)岩石类型、含水量、温度 (C)岩体的完整性和岩石的强度 (D)岩体的完整性、岩石强度、裂隙密度、埋深 4、我国工程岩体分级标准中岩石的坚硬程序确定是按照()。 (A)岩石的饱和单轴抗压强度 (B)岩石的抗拉强度 (C)岩石的变形模量 (D)岩石的粘结力 5、下列形态的结构体中,哪一种具有较好的稳定性?() (A)锥形(B)菱形(C)楔形(D)方形 6、沉积岩中的沉积间断面属于哪一种类型的结构面?() (A)原生结构面(B)构造结构面(C)次生结构面 7、岩体的变形和破坏主要发生在() (A)劈理面(B)解理面(C)结构 (D)晶面 8、同一形式的结构体,其稳定性由大到小排列次序正确的是() (A)柱状>板状>块状 (B)块状>板状>柱状 (C)块状>柱状>板状 (D)板状>块状>柱状 9、不同形式的结构体对岩体稳定性的影响程度由大到小的排列次序为() (A)聚合型结构体>方形结构体>菱形结构体>锥形结构体 (B)锥形结构体>菱形结构体>方形结构体>聚合型结构体 (C)聚合型结构体>菱形结构体>文形结构体>锥形结构体 (D)聚合型结构体>方形结构体>锥形结构体>菱形结构体 10、岩体结构体是指由不同产状的结构面组合围限起来,将岩体分割成相对的完整坚硬的单无块体,其结构类型的划分取决于() (A)结构面的性质(B)结构体型式 (C)岩石建造的组合(D)三者都应考虑

2018岩体力学复习资料(考试知识点复习考点归纳总结)

岩体力学复习资料(考点归纳总结版) 1.岩石:是组成地壳的基本物质,它是由矿物或岩屑在地质作用下按一定规律凝聚而成的自然地质体。一般认为它是均质的和连续的。 岩体:是地质历史过程中形成的,由岩块和结构面网络组成的具有一定结构并赋存于一定的天然应力状态和地下水等地质环境中的地质体。(区别是岩体包含若干不连续面。) 结构面:岩体内具有一定方向、延展较大、厚度较小的面状地质界面,包括物质的分界面和不连续面,它是在地质发展历史中,尤其是在地质构造变形过程中形成的。结构体:被结构面分割而形成的岩块,四周均被结构面所包围,这种由不同产状的结构面组合切割而形成的单元体成为结构体。 2.岩体结构分为六类:块状结构、镶嵌、层状、碎裂、层状碎裂、松散结构 3.风化作用:岩石长期暴露在地表之后,经受太阳辐射热、大气、水及生物等作用,使岩石结构逐渐破碎、疏松,或矿物成分发生次生变化,称为风化。 衡量岩石(块)风化程度的指标:(1)定性指标:颜色、矿物蚀变程度、破碎程度及开挖锤击技术特征等。(2)定量指标:风化空隙率指标Iw、波速比指标kv和风化系数kfδ等。 岩石风化分级:未微中等强全 4.相对密度G s:岩石的干重量W s(KN)除以岩石的实体积V s(m3)(不包括岩石中孔隙体积)所得的量与1个大气压下4℃时纯水的重度(γw)的比值。G s=W s/ (V sγw)。相对相对密度是一个无量纲量,其值可用比重瓶法测定,试验时先将岩石研磨成粉末并烘干;然后用量杯量取相同体积的纯水和岩石粉末并分别称重,其比值即为岩石的相对密度。岩石的相对密度取决于组成岩石的矿物相对密度,岩石中重矿物含量越多其相对密度越大,大部分岩石的相对密度介于2.50~2.80之间。 5.孔隙率n:岩石试样中孔隙体积Vv与岩样总体积V之 比。 孔隙比e:指孔隙的体积VV与固体的体积Vs的比值。 6.含水率w:天然状态下岩石中水的重量W w与岩石烘干 重量W s的百分比。w=W W / W s ×100% 吸水率W a:指干燥岩石试样在一个大气压和室温条件下 吸入水的重量W w与岩样干重量W s的百分率。w a=W W / W s= (W o-W s)/ W s ×100% 7.渗透性:指在水压力作用下,岩石的孔隙和裂隙透过 水的能力。渗透系数的量纲与速度的量纲相同。(渗透系 数的大小取决于①岩石的物理特性和结构特性②流体的 物理化学特性) 8.膨胀性:指岩石浸水后体积增大的性质。岩石膨胀性 一般用膨胀力和膨胀率两项指标表示。 膨胀力Pe:指原状岩(土)样在体积不变时,由浸水膨 胀而产生的最大内应力。(常用平衡加压法测定)。 膨胀率δep(%):在一定压力下,试样浸水膨胀后的高 度增量与原高度之比,用百分数表示。 9.崩解性:是指岩石与水作用时失去黏结性并变成完全 丧失强度的松散物质的性能。这种现象是由于水化作用 削弱了岩石内部的结构联结而造成的。 10.软化性:指岩石与水相互作用时强度降低的特性。影 响因素:矿物成分(亲水性可溶性)、粒间联结方式(结 晶联结胶结联结)、孔隙率、微裂隙发育程度等。岩石的 软化性一般用软化系数表示,软化系数是岩样饱水状态 下的抗压强度R cw与干燥状态的抗压强度R c的比值。η c=R cw/R c ,软化系数总是小于1的。 11.岩石的抗冻性:指岩石抵抗冻融破坏的性能。 抗冻系数Cf:指岩样在±25℃的温度区间内,经多次“降 温、冻结、升温、融解”循环后,岩样抗压强度下降量 与冻融前的抗压强度的比值,用百分率表示。 岩石在反复冻融后其强度降低的主要原因:一是构成岩 石的各种矿物的膨胀系数不同,当温度变化时由于矿物 的胀缩不均而导致岩石结构的破坏;二是当温度降低到 0°C以下时,岩石孔隙中的水将结冰,其体积增大约9%, 会产生很大的膨胀压力,使岩石的结构发生改变,直至 破坏。 12.岩石强度:指岩石在荷载作用下破坏时所承受的最大 荷载应力。有抗压强度(单轴、三轴)、抗剪强度、抗拉 强度。影响因素:①岩石特性(矿物组成、结构特征、 风化程度各向异性)②环境条件(水、温度)③试验条 件(围岩大小、端部效应、试件形状和尺寸、加载速率) 13.端部效应:加压板与试件端部存在摩擦力,约束试件 端部的侧向变形,导致端部应力状态不是非限制性的而 出现复杂应力状态。 减小“端部效应”:将试件端部磨平,并抹上润滑剂,或 加橡胶垫层等。使试件长度达到规定要求,以保证在试 件中部出现均匀应力状态。 14.高径比h/D=2~2.5为宜。 15.加载速率影响:加载速率增加,强度和弹性模量增 加,峰值应力越明显。 16.围压影响:岩石抗压强度随围压增加而提高。通常 岩石类脆性材料随围压的增加而具有延性。 17.确定岩石抗剪强度的方法:①直接剪切试验②楔形剪 切试验③三轴压缩试验 18.库仑准则:若用σ和τ代表受力单元体某一平面上 的正应力和剪应力,则当τ达到如下大小时,该单元就 会沿此平面发生剪切破坏,即式中:c——黏 聚力;f——内摩擦系数。引入内摩擦角,并定义f=tan φ,这个准则在τ—σ平面上是一条直线。若将τ和σ 用主应力σ1和σ3表示(这里σ1> σ3),则: 式中:θ—剪切面法线方向与最 大主应力σ1的夹角。 (库仑准则不 适合σ3<0和高 围压的情况。) 19.岩石典型应 力-应变曲线: ①OA段:曲线稍 微向上弯曲,属 于压密阶段,这期间岩石中初始的微裂隙受压闭合;②AB 段:接近于直线,近似于线弹性工作阶段;③BC段:曲 线向下弯曲,属于非弹性阶段,主要是在平行于荷载方 向开始逐渐生成新的微裂隙以及裂隙的不稳定,B点是 岩石从弹性转变为非弹性的转折点;④CD段:为破坏阶 段,C点的纵坐标就是单轴抗压强度RC。 20.①弹性变形:能恢复的变形。②塑性变形:不可恢复 的变形。③变形模量:在应力-应变曲线上的任何点与坐 标原点相连的割线的斜率。④残余强度:破坏后的岩石 仍可能具有一定的强度,从而也具有一定的承载能力。 21.a.流变性:岩石在力的作用下发生与时间相关的变形 的性质。b.蠕变:指在应力为恒定的情况下岩石变形随 时间发展的现象;c.松弛指在应变保持恒定的情况下岩 石的应力随时间 而减少的现象。d. 弹性后效指在卸 载过程中弹性应 变滞后于应力的 现象。 22.蠕变:第Ⅰ阶 段:称为初始蠕变 段。在此阶段的应变一时间曲线向下弯曲;应变与时间 大致呈对数关系,即ε∝㏒t。第Ⅱ阶段:称为等速蠕 变段或稳定蠕变段。在此阶段内变形缓慢,应变与时间 近于线性关系。第Ⅲ阶段:称为加速蠕变段。此阶段内

隧道与地下工程设计结课论文

关于隧道等地下工程支护结构设计理论浅析 摘要:本文简要介绍了隧道等地下工程支护结构设计理论的发展历程,对各阶段支护理论的力学原理及其要点进行了简要分析,通过现有的对围岩—支护相互作用理论的认识的分析,得出了现有理论方法和认识的不足,并对未来隧道等地下工程支护理论发展方向以及发展趋势进行了表述。 关键词:隧道;地下工程;力学原理;支护结构;围岩—支护相互作用理论; 0 前言 世界近代建筑发展的历史大致可划分为三个阶段,即人们一般认为的19世纪是桥梁建设的世纪、20世纪是高层建筑的世纪、而21世纪则为地下空间发展的世纪。随着地下工程建设规模不断扩大,在城乡建设、水电、交通、矿山等诸多领域都涉及围岩的支护问题,地下工程围岩的稳定性和支护方法已成为地下工程中迫切需要解决的问题。围岩变形尤其是软岩变形有明显的时间效应,表现为初始变形速度大,变形趋向稳定后仍以较大的速度产生流变,且持续时间很长,有时达数年之久,对支护的要求很高。因此地下工程的支护问题仍然是工程技术人员最关注的研究课题。实际上自20世纪以来,随着人类对地下空间的需求越来越多,因而对地下工程的研究也有了一个突飞猛进的发展。同时在大量的地下工程实践中,人们也普遍认识到::隧道及地下洞室工程,其核心问题都归结在开挖和支护两个关键工序上。即如何开挖,才能更有利于洞室的稳定和便于支护;若需支护时,又如何支护才能更有效地保证洞室稳定和便于开挖。这是隧道及地下工程中两个相互促进又相互制约的问题。在隧道及地下洞室工程中,围绕着以上核心问题的实践和研究,在不同的时期,人们提出了不同的理论,并逐步建立了不同的理论体系。每一种理论体系都包含和解决或正在研究解决了从工程认识概念、力学原理、工程措施到施工方法、工艺等一系列工程问题。一种理论是20 世纪20 年代提出的传统的“松弛荷载理论”。其核心内容是: 稳定的岩体有自稳能力,不产生荷载; 不稳定的岩体则可能产生坍塌,需要用支护结构予以支撑。这样,作用在支护结构上的荷载就是围岩在一定范围内由于松弛并可能塌落的岩体重力。这是一种传统的理论,其代表人物有太沙基和普氏等人。它类似于地面工程考虑问题的思想,至今仍被广泛的应用着。另一种理论是20 世纪50 年代提出的现代支护理论或称“岩承理论”[1-9]。其核心内容是:围岩稳定显然是岩体自身有承载自稳能力,不稳定围岩丧失稳定是有一个过程的。如果在这个过程中提供必要的帮助或限制,则围岩仍然能够进入稳定状态。这种理论体系的代表性人物有拉布西维兹、米勒-菲切尔、芬纳-塔罗勃和卡斯特奈等人。这是一种比较现代的理论,它已经脱离了地面工程考虑问题的思路,而更接近于地下工程实际。近半个世纪以来已被广泛接受和推广应用,并且表现出了广阔的发展前景。由以上可以看出,前一种理论更注意结果和对结果的处理,而后一种理论则更注意过程和对过程的控制,即对围岩自承能力的充分利用[7-9]。由于有此区别,因而两种理论体系在过程和方法上各自表现出不同的特点,新奥法就是岩承理论在隧道工程实践中的代表方法。 1 地下工程结构的特点及设计的基本要求 1.1地下工程结构的特点 地下工程支护结构是一种复杂的工程结构体系,按照工程结构所处的环境,可将其界定为土体地下结构和岩石地下结构;按工程结构所处深度或开挖深度可将其分为深埋和浅埋地下结构;按其施工方法有可将其分为明挖和暗挖结构等。无论是按哪种方法分类,其结构构成都是由围岩(或者是土体等原围护体)和其支护结构体构成。构筑过程中整个结构体系的力学特性和稳定性不仅受到岩石的生成条件和地质作用

岩石力学考试试题(含答案)

岩石力学考试试题 1、岩体的强度小于岩石的强度主要是由于(A )。 (A )岩体中含有大量的不连续面 (B )岩体中含有水 (C )岩体为非均质材料 (D )岩石的弹性模量比岩体的大 2、岩体的尺寸效应是指( C )。 (A )岩体的力学参数与试件的尺寸没有什么关系 (B )岩体的力学参数随试件的增大而增大的现象 (C )岩体的力学参数随试件的增大而减少的现象 (D )岩体的强度比岩石的小 3 、影响岩体质量的主要因素为( C )。 (A)岩石类型、埋深 (B)岩石类型、含水量、温度 (C)岩体的完整性和岩石的强度 (D)岩体的完整性、岩石强度、裂隙密度、埋深 4、我国工程岩体分级标准中岩石的坚硬程序确定是按照(A )。 (A)岩石的饱和单轴抗压强度 (B)岩石的抗拉强度 (C)岩石的变形模量 (D)岩石的粘结力

5、下列形态的结构体中,哪一种具有较好的稳定性?( D )(A)锥形(B)菱形(C)楔形(D)方形 6、沉积岩中的沉积间断面属于哪一种类型的结构面?( A )(A)原生结构面(B)构造结构面 (C)次生结构面 7、岩体的变形和破坏主要发生在( C ) (A)劈理面(B)解理面(C)结构 (D)晶面 8、同一形式的结构体,其稳定性由大到小排列次序正确的是( B ) (A)柱状>板状>块状 (B)块状>板状>柱状 (C)块状>柱状>板状 (D)板状>块状>柱状 9、不同形式的结构体对岩体稳定性的影响程度由大到小的排列次序为( A ) (A)聚合型结构体>方形结构体>菱形结构体>锥形结构体(B)锥形结构体>菱形结构体>方形结构体>聚合型结构体(C)聚合型结构体>菱形结构体>文形结构体>锥形结构体(D)聚合型结构体>方形结构体>锥形结构体>菱形结构体10、岩体结构体是指由不同产状的结构面组合围限起来,将岩体分割成相对的完整坚硬的单无块体,其结构类型的划分取决于

《岩石力学》课程论文

************ 《岩石力学》课程论文 专业 ******* 年级班别 ****** 学号 ******* 姓名 ****** 土木工程与建设管

岩体的强度在检测中的应用 摘要:随着地球板块的运动越来越剧烈,地震等多种地质灾害的发生,人们 清晰地认识到岩体强度的重要性。故此,岩体强度的确定方法尤其重要。本 文介绍试验确定法以及及估算法。 关键字:试验确定法;估算法;岩体强度 引言 目前在岩石力学与工程领域中广泛采用了数值模拟技术,但是在进行数值模拟时遇 到的最主要的困难之一就是如何准确地确定岩体强度参数以开展模拟计算。公认比 较准确的仅限于室内岩石力学试验参数,同时现场岩体原位试验成本都十分昂贵, 因此寻找适合的岩体强度估算方法就成为摆在众多研究人员面前的一个问题。 1 岩体强度的确定方法 1.试验的确定法 (一)岩体单轴抗压强度的测定 切割成的试件。在拟加压的试件表面抹一层水泥砂浆,将表面抹平,并在其上放置方木和工字钢组成的垫层,以便把千斤顶施加的荷载经垫层均匀传给试体。根据试体受载截面积,计算岩体的单轴抗压强度。 (二)岩体的抗剪强度的测定 一般采用双千斤顶法:一个垂直千斤顶施加的正压力,另一个千斤顶施加的横 推力。 为使剪切面上不产生力矩效应,合力通过剪切面中心,使其接近于纯剪切破坏,另外一个千斤顶成倾斜布置。一般采取倾角a=15°。试验时,每组试体应有5个以 上,剪切面上应力按式(1-1)计算。然后根据τ、σ绘制岩体的强度曲线。 F a T P sin += σ a f t cos =τ (1-1)

(三)岩体三轴压缩强度试验 地下工程的受力状态是思维的,所以做三轴力学试验非常重要。但由于现场原位三轴力学实验在技术上很复杂,只在非常必要时才进行。现场岩体三轴试验装置,用千斤顶施加轴向荷载,用压力枕施加围压荷载。 根据围压情况可分为等围压三轴试验(32σσ=)和真三轴试验(321σσσ>>)。研究表明,中间主应力在岩体强度中起重要作用,再多节理的岩体中尤为重要。因此,真三轴试验越来越受重视。而等围压三轴试验的实用性更强。 2.经验的估算法 (一)准岩体强度 这种方法实质是用某种简单的试验指标来修正岩块强度作为岩体强度的估算值。 节理,裂隙等结构面是影响岩体强度的主要因素,其分布情况可通过弹性波传 播来查明。弹性波穿过岩体时,遇到裂隙便发生绕射或被吸收,传播速度将有所降低。裂隙越多,波速降低越大,小尺寸试件含裂隙少,传播速度大。因此根据弹性波在岩石试块和岩体中的传播速度比,可判断岩体中裂隙发育程度。称此比值的平方为岩体完整性(龟裂)系数,以K 表示。 2 ???? ??=K cl ml νν (二)Hoek-Brown 经验方程 1) Hoek-Brown 强度准则的发展历史 最初的Hoek-B rown 强度准则是Hoek E 在专著《岩石地下工程》( Underground Excavations in Rock,1980)一书中发展起来的。当时在设计地下岩石开挖工程时需要输入一些参数, 这就要求提供一个准则来估算岩体强度。Hoek E 和Brown E T 在分析Giffith 理论和修正的Griffith 理论的基础上, 凭借自己在岩石力学方面深厚的理论功底和丰富的实践经验, 通过对大量岩石三轴试验资料和岩体现场试验成果的统计分析,用试错法导出的岩块和岩体破坏时极限主应力之间的关系式(2-1) , 即为Hoek-Brown 强度准则 , 也称为狭义Hoek-Brown 强度准则。Hoek, Brown 最为突出的贡献是将数学公式与地质描述联系到了一起。起初使用的Bieniawski 岩体分级系统( RMR 法)、后来使用的地质强度指数法(GSI 法)、随后发展完善的Hoek-Brown 准则都使用了GSI 系统。

《岩石力学》期末试卷及答案印 (1)

《岩石力学》期末试卷及答案 姓名 学号 成绩 一、 选择题(每题1分,共20分) 1. 已知岩样的容重为γ,天然含水量为0w ,比重为s G ,40C 时水的容重为w γ,则该岩样的饱和容重m γ为( A ) A. ()()w s s G w G γγ++-011 B. ()()w s s G w G γγ+++011 C. ()()γγ++-s s w G w G 011 D. ()()w s s G w G γγ+--011 2. 岩石中细微裂隙的发生和发展结果引起岩石的( A ) A .脆性破坏 B. 塑性破坏 C. 弱面剪切破坏 D. 拉伸破坏 3. 同一种岩石其单轴抗压强度为c R ,单轴抗拉强度t R ,抗剪强度f τ之间一般关系为( C ) A.f c t R R τ<< B. f t c R R τ<< C. c f t R R <<τ D. t f c R R <<τ 4. 岩石的蠕变是指( D ) A. 应力不变时,应变也不变; B. 应力变化时,应变不变化; C. 应力变化时,应变呈线性随之变化; D. 应力不变时应变随时间而增长 5. 模量比是指(A ) A .岩石的单轴抗压强度和它的弹性模量之比 B. 岩石的 弹性模量和它的单轴抗压强度之比 C .岩体的 单轴抗压强度和它的弹性模量之比 D .岩体的 弹性模量和它的单轴抗压强度之比 6. 对于均质岩体而言,下面岩体的那种应力状态是稳定状态( A ) A.??σσσσsin 23131<++-cctg B.?? σσσσsin 23131>++-cctg C. ??σσσσsin 23131=++-cctg D.??σσσσsin 23131≤++-cctg 7. 用RMR 法对岩体进行分类时,需要首先确定RMR 的初始值,依据是( D ) A .完整岩石的声波速度、RQD 值、节理间距、节理状态与地下水状况 B. 完整岩石的强度、RQD 值、节理间距、节理状态与不支护自稳时间 C. 完整岩石的弹性模量、RQD 值、节理间距、节理状态与地下水状况 D. 完整岩石的强度、RQD 值、节理间距、节理状态与地下水状况 8. 下面关于岩石变形特性描述正确的是( B ) A. 弹性就是加载与卸载曲线完全重合,且近似为直线 B. 在单轴实验中表现为脆性的岩石试样在三轴实验中塑性增强 C. 加载速率对应力-应变曲线没有影响 D. 岩基的不均匀沉降是由于组成岩基的不同岩石材料含水量不同导致的 9. 下面关于岩石水理性质描述正确的是( B )

岩体力学考试资料(名词解释、填空、判断、问答)-1

一、判断题: 1.结构面组数越多,岩体强度越接近于结构面强度。(∨) 2.岩石三向抗压强度不是一个固定值,将随围压变化而改变。(∨) 3.流变模型元件并联组合时,各元件满足应力相等,应变相加关系。(×) 4.在未受开采影响的原岩体内存在着原岩应力,其方向与水平方向垂直。(×) 5.岩石抗压强度值的离散系数越大,说明岩石抗压强度平均值的可信度越高。(×) 6.根据服务年限要求,矿井运输大巷应按照等应力轴比设计其断面尺寸。(×) 7.岩石蠕变与岩石类别有关,与应力大小有关。(∨) 8.有粘聚力的固结岩体体,由地表开始侧压力与深度成线性增长。(×) 9.椭圆断面巷道,其长轴方向与最大主应力方向一致时,周边受力条件最差。(×) 10.在力学处理上,弱面不仅能承受压缩及剪切作用,还能承受拉伸作用。(×) 1.结构面组数越多,岩体越接近于各向异性。(×) 2.流变模型元件串联组合时,各元件满足应变相等,应力相加关系。(×) 3.软弱岩层受力后变形较大,表明构造应力在软弱岩层中表现显著。(×) 4.岩石限制性剪切强度不是固定值,与剪切面上作用的正压力有关。(∨) 5.软岩破坏为渐进过程,首先对破坏部位支护,可使软岩控制取得好的效果。(∨) 6.随开采深度增加,巷道围岩变形将明显增大。(∨) 7.从巷道周边围岩受力情况看,拱型断面巷道要比梯形巷道断面差。(×) 8.塑性变形与静水应力无关,只与应力偏量有关,与剪应力有关。(∨) 9.对无粘聚力的松散体,由地表开始侧压力即与深度成线性增长。(∨) 10巷道返修是一种较好的巷道支护对策。(×) 1.水库蓄水前,河间地块存在地下分水岭,蓄水后将不会产生库水向邻 谷的渗漏。×

岩石力学课后思考题

岩石:是由各种造岩矿物或岩屑在地质作用下按一定规律组合而形成的多种矿物颗粒的集合体,是组成地壳的基本物质。 岩体:是相对于岩块而言的,是指地面或地下工程中范围较大的、由岩块(结构体)和结构面组成的地质体。 岩石结构:是指岩石中矿物颗粒的大小、形状、表面特征、颗粒相互关系、胶结类型特征等。岩石构造:是指岩石中不同矿物集合体之间及其与其他组成部分之间在空间排列方式及充填形式。 岩石的密度:是指单位体积岩石的质量,单位为kg/ 3 m。 块体密度:是指单位体积岩石(包括岩石孔隙体积)的质量。 颗粒密度:是岩石固相物质的质量与其体积的比值。 孔隙性:把岩石所具有的孔隙和裂隙特性,统称为岩石的孔隙性。 孔隙率:岩石试件中孔隙体积与岩石试件体积之比 渗透系数:岩石渗透系数是表征岩石透水性的重要指标,渗透系数K 在数值上等于水力梯度为 1 时的渗流速度,单位为cm/s 或m/d。 软化系数:软化系数K R 为岩石试件的饱和抗压强度σ cw (MPa)与干抗压强度σ c (MPa)的比值。 岩石的膨胀性:是指岩石浸水后发生体积膨胀的性质。 岩石的吸水性:岩石在一定的实验条件下吸收水分的能力,称为岩石的吸水性,其吸水量的大小取决于岩石孔隙体积的大小及其敞开或封闭的程度等。 扩容:是指岩石在外力作用下,形变过程中发生的非弹性的体积增长。 弹性模量:是指在单向压缩条件下,弹性变形范围内,轴向应力与试件轴向应变之比,即E =σ ε 。 变形模量:是指岩石在单轴压缩条件下,轴向应力与轴向总应变(为弹性应变ε e 和塑性应变ε p 之和)之比。 泊松比:在单向载荷作用下,横向应变( ε x = ε y )与轴向应变( ε z )之比。 脆性度:通常把抗压强度与抗拉强度的比值称为脆性度,n = c t δ δ 尺寸效应:岩石试件的尺 寸越大,则强度越低,反之越高,这一现象称为尺寸效应。 常规三轴试验:常规三轴试验的应力状态为σ 1 > σ 2 = σ 3 > 0 ,即岩石试件受轴压和围压作用,试验主要研究围压(σ 2 = σ 3 )对岩石变形、强度或破坏的影响。 真三轴试验:真三轴试验的应力状态为σ 1 > σ 2 > σ 3 > 0 ,即岩石试件在三个彼此正交方向上受到不相等的压力,试验的主要目的是研究中间主应力(σ 2 )的影响。 岩石三轴压缩强度:是指岩石在三轴压缩荷载作用下,试件破坏时所承受的最大轴向压应力。流变性:是指介质在外力不变条件下,应力或应变随时间而变化的性质。 蠕变:是指介质随在大小和方向均不改变的外力作用下,介质的变形随时间的变化而增大的现象。 松弛:是指介质的变形(应变)保持不变时,内部应力随时间变化而降低的现象。 弹性后效:是指对介质加载或卸载时,弹性应变滞后于应力的现象。其是一种延迟发生的弹性变形和弹性恢复,外力卸除后最终不留下永久变形。 岩石长期强度:岩石的强度是随外载作用时间的延长而降低,通常把作用时间t → ∞ 的强度(最低值)S ∞ 称为岩石长期强度。 强度准则:它表征岩石破坏条件的应力状态与岩石强度参数间的函数关系,一般可以用破坏条件下(极限应力状态)的应力间关系σ 1 = f (σ 2 , σ 3 ) 或τ = f (σ ) 来表示。通过强度准则判断岩石在什么样应力、应变条件下破坏。 岩石结构与岩石构造有何区别?并举例加以说明。岩石结构是指岩石中矿物颗粒的大小、形状、表面特征、颗粒相互关系、胶结类型特征等。岩石颗粒间连接方式分为结晶连接和胶结连接两类。岩石构造是指岩石中不同矿物集合体之间及其与其他组成部分之间在空间排列方式及充填形式。如层理、片理、流面等。 岩石颗粒间连接方式有哪几种?岩石颗粒间连接方式分为结晶连接和胶结连接两类。

(完整版)重庆大学岩石力学往年题

这是我自己搜集的,答案可能不全,仅供参考。 1. 试论述岩石的水理性 岩石与水相互作用时所表现的性质称为 岩石的水理性。包括岩石的吸水性、透水性、软化性和抗冻性。 A 天然含水率 天然状态下岩石中水的质量m w 与岩石的 烘干质量m dr 的比值,称为岩石的天然含水率,以百分率表示,即: %100?= dr m m ω ? B 吸水性 定义:岩石在一定条件下吸收水份的性能。 影响因素:孔隙的数量、大小、开闭程度和分布情况等。 表征岩石吸水性指标吸水率、饱和吸水率、饱水系数。 (1)吸水率a ω是岩石在常压下吸入水的质量与其烘干质量dr m 的比值,即 %1000?-= dr dr a m m m ω 式中,0m 为烘干岩样浸水48小时后的总质量。 (2)饱和吸水率是岩石在强制状态下岩石吸入水的质量与岩样烘干质量的比值,即 %100?-= dr dr sa sa m m m ω 式中,sa ω为岩石的饱和吸水率;dr m 为真 空抽气饱和或煮沸后之间的质量(kg )。 (3)饱水系数w k 是指岩石吸水率与饱和率的比值,即 %100?= sa a w k ωω C 透水性 透水性:岩石能被水透过的性能 达西定律:当地下水沿着岩石中的孔隙或裂隙流动时,其水流速度与水力梯度成正比,即 dl dh k l h h K -=?--=12ν D 软化性 定义:岩石浸水后强度降低的性能 软化系数:c cw c σση= 式中:c η为岩石的软化系数 cw σ为饱水岩样的抗压强度(MPa) c σ为自然风干岩样的抗压强度(MPa) E 抗冻性 定义:岩石抵抗冻融破坏的性能,岩石的抗冻性常用抗冻系数来表示。 抗冻系数: %100?-= c cf c f c σσσ 式中,f c 为岩石的抗冻系数,c σ为岩石动容钱的抗压强度(kpa )。cf σ为岩样冻融后的抗压强度(kpa )。 2.论述影响岩石力学性质的主要因素 (A )水对岩石力学性质的影响 地下水包括结合水和重力水。对岩石力学性质影响的5个方面:连接作用、润滑作用、水楔作用、孔隙压力作用、溶蚀及潜蚀作用 (B )温度对岩石力学性质的影响 随着温度的增高,岩石的延性加大,屈服点降低,峰值强度也降低。 (C )加载速度对岩石力学性质的影响 随着加荷速度的降低,岩石的延性加大,屈服点降低,峰值强度也降低。 (D )围压对岩石力学性质的影响 随着围压的增高,岩石的延性加大,屈服点增加,峰值强度也增加。 (E )风化对岩石力学性质的影响 主要表现在以下3个方面: 产生新的裂隙、矿物成分发生变化、结构和构造发生变化 3.试论述岩体中的初始地应力及分布规律 a.定义:地应力是存在于地层中的未受工程扰动的天然应力,也称岩体初始应力、绝对应力或原岩应力。 b.组成:自重应力、构造应力、热应力、地震应力、扰动应力 c. 地应力的成因 大陆板块边界受压、地幔热对流、地心引力、岩浆侵入、地温梯度、地表剥蚀等引起的地应力场。 d.地应力分布的基本规律(归纳) 1)地应力是一个具有相对稳定的非稳定应力场,它是时间和空间的函数 2)实测垂直应力基本等于上覆岩层的重量 3)水平应力普遍大于垂直应力

岩体力学复习资料(版)

1.岩石:是组成地壳的基本物质,它是由矿物或岩屑在地质作用下按一定规律凝聚而成的自然地质体。一般认为它是均质的和连续的。 岩体:是地质历史过程中形成的,由岩块和结构面网络组成的具有一定结构并赋存于一定的天然应力状态和地下水等地质环境中的地质体。(区别是岩体包含若干不连续面。) 结构面:岩体内具有一定方向、延展较大、厚度较小的面状地质界面,包括物质的分界面和不连续面,它是在地质发展历史中,尤其是在地质构造变形过程中形成的。 结构体:被结构面分割而形成的岩块,四周均被结构面所包围,这种由不同产状的结构面组合切割而形成的单元体成为结构体。 2.岩体结构分为六类:块状结构、镶嵌、层状、碎裂、层状碎裂、松散结构 3.风化作用:岩石长期暴露在地表之后,经受太阳辐射热、大气、水及生物等作用,使岩石结构逐渐破碎、疏松,或矿物成分发生次生变化,称为风化。 衡量岩石(块)风化程度的指标:(1)定性指标:颜色、矿物蚀变程度、破碎程度及开挖锤击技术特征等。(2)定量指标:风化空隙率指标Iw、波速比指标kv和风化系数kfδ等。 岩石风化分级:未微中等强全 4.相对密度G s:岩石的干重量W s(KN)除以岩石的实体积V s(m3)(不包括岩石中孔隙体积)所得的量与1个大气压下4℃时纯水的重度(γw)的比值。G s=W s / (V s γw)。相对相对密度是一个无量纲量,其值可用比重瓶法测定,试验时先将岩石研磨成粉末并烘干;然后用量杯量取相同体积的纯水和岩石粉末并分别称重,其比值即为岩石的相对密度。岩石的相对密度取决于组成岩石的矿物相对密度,岩石中重矿物含量越多其相对密度越大,大部分岩石的相对密度介于2.50~2.80之间。 5.孔隙率n:岩石试样中孔隙体积Vv与岩样总体积V 之比。 孔隙比e:指孔隙的体积VV与固体的体积Vs的比值。 6.含水率w:天然状态下岩石中水的重量W w与岩石烘 干重量W s的百分比。w=W W / W s ×100% 吸水率W a:指干燥岩石试样在一个大气压和室温条件下 吸入水的重量W w与岩样干重量W s的百分率。w a=W W/ W s= (W o-W s)/ W s ×100% 7.渗透性:指在水压力作用下,岩石的孔隙和裂隙透过 水的能力。渗透系数的量纲与速度的量纲相同。(渗透 系数的大小取决于①岩石的物理特性和结构特性②流 体的物理化学特性) 8.膨胀性:指岩石浸水后体积增大的性质。岩石膨胀性 一般用膨胀力和膨胀率两项指标表示。 膨胀力Pe:指原状岩(土)样在体积不变时,由浸水 膨胀而产生的最大内应力。(常用平衡加压法测定)。 膨胀率δep(%):在一定压力下,试样浸水膨胀后的 高度增量与原高度之比,用百分数表示。 9.崩解性:是指岩石与水作用时失去黏结性并变成完全 丧失强度的松散物质的性能。这种现象是由于水化作用 削弱了岩石内部的结构联结而造成的。 10.软化性:指岩石与水相互作用时强度降低的特性。 影响因素:矿物成分(亲水性可溶性)、粒间联结方式 (结晶联结胶结联结)、孔隙率、微裂隙发育程度等。 岩石的软化性一般用软化系数表示,软化系数是岩样饱 水状态下的抗压强度R cw与干燥状态的抗压强度R c的比 值。ηc=R cw/R c ,软化系数总是小于1的。 11.岩石的抗冻性:指岩石抵抗冻融破坏的性能。 抗冻系数Cf:指岩样在±25℃的温度区间内,经多次 “降温、冻结、升温、融解”循环后,岩样抗压强度下 降量与冻融前的抗压强度的比值,用百分率表示。 岩石在反复冻融后其强度降低的主要原因:一是构成岩 石的各种矿物的膨胀系数不同,当温度变化时由于矿物 的胀缩不均而导致岩石结构的破坏;二是当温度降低到 0°C以下时,岩石孔隙中的水将结冰,其体积增大约 9%,会产生很大的膨胀压力,使岩石的结构发生改变, 直至破坏。 12.岩石强度:指岩石在荷载作用下破坏时所承受的最 大荷载应力。有抗压强度(单轴、三轴)、抗剪强度、 抗拉强度。影响因素:①岩石特性(矿物组成、结构特 征、风化程度各向异性)②环境条件(水、温度)③试 验条件(围岩大小、端部效应、试件形状和尺寸、加载 速率) 13.端部效应:加压板与试件端部存在摩擦力,约束试 件端部的侧向变形,导致端部应力状态不是非限制性的 而出现复杂应力状态。 减小“端部效应”:将试件端部磨平,并抹上润滑剂, 或加橡胶垫层等。使试件长度达到规定要求,以保证在 试件中部出现均匀应力状态。 14.高径比h/D=2~2.5为宜。 15.加载速率影响:加载速率增加,强度和弹性模量增 加,峰值应力越明显。 16.围压影响:岩石抗压强度随围压增加而提高。通常 岩石类脆性材料随围压的增加而具有延性。 17.确定岩石抗剪强度的方法:①直接剪切试验②楔形 剪切试验③三轴压缩试验 18.库仑准则:若用σ和τ代表受力单元体某一平面上 的正应力和剪应力,则当τ达到如下大小时,该单元就 会沿此平面发生剪切破坏,即式中:c——黏 聚力;f——内摩擦系数。引入内摩擦角,并定义f=tan φ,这个准则在τ—σ平面上是一条直线。若将τ和σ 用主应力σ1和σ3表示(这里σ1> σ3),则: 式中:θ—剪切面法线方向与最 大主应力σ1的夹角。 (库仑准则不适合σ3<0和高围压的情况。) 19.岩石典型应力-应变曲线:①OA段:曲线稍微向上 弯曲,属于压 密阶段,这期 间岩石中初始 的微裂隙受压 闭合;②AB段: 接近于直线, 近似于线弹性 工作阶段; ③BC段:曲线向下弯曲,属于非弹性阶段,主要是在 平行于荷载方向开始逐渐生成新的微裂隙以及裂隙的 不稳定,B点是岩石从弹性转变为非弹性的转折点;④ CD段:为破坏阶段,C点的纵坐标就是单轴抗压强度 RC。 20.①弹性变形:能恢复的变形。②塑性变形:不可恢 复的变形。③变形模量:在应力-应变曲线上的任何点 与坐标原点相连的割线的斜率。④残余强度:破坏后的 岩石仍可能具有一定的强度,从而也具有一定的承载能 力。 21.a.流变性:岩石在力的作用下发生与时间相关的变 形的性质。b.蠕变:指在应力为恒定的情况下岩石变形 随时间发展的现 象;c.松弛指在应 变保持恒定的情 况下岩石的应力 随时间而减少的 现象。d.弹性后效 指在卸载过程中 弹性应变滞后于 应力的现象。 22.蠕变:第Ⅰ阶段:称为初始蠕变段。在此阶段的应 变一时间曲线向下弯曲;应变与时间大致呈对数关系, 即ε∝㏒t。第Ⅱ阶段:称为等速蠕变段或稳定蠕变段。 在此阶段内变形缓慢,应变与时间近于线性关系。 第Ⅲ

相关主题
文本预览
相关文档 最新文档