第五章_抽样推断
- 格式:doc
- 大小:26.00 KB
- 文档页数:2
第五章 抽样推断抽样推断定义:是一种非全面调查,是按随机原则,从总体中抽取一部分单位进行调查,并以其结果对总体某一数量特征作出估计和推断的一种统计方法。
(一) 总体和样本在抽样推断中面临两个不同的总体,即全及总体和样本总体,全及总体也叫母体,简称总体。
全及总体的单位数用N 表示全及总体⎪⎩⎪⎨⎧⎩⎨⎧属性总体有限总体无限总体变量总体样本总体又叫抽样总体、子样,简称样本,样本总体的单位数称样本容量,用n 表示。
(二) 参数和统计量参数亦称全及指标,由于全及总体是唯一确定的,故根据全及总体计算的参数也是个定值 对于属性总体,可以有如下参数,全及总体成数p ,全及总体标准差)(2p p σσ方差 属性总体标准差:()p p p-=1σ统计量即样本指标设样本总体有n 个变量:n x x x x ,...,,,321 则:样本平均数 nx x ∑=(三) 样本容量与样本个数样本容量是指一个样本所包含的单位数,用n 来表示,一般地,样本单位数达到或超过30个的样本称为大样本,而在30个以下称为小样本。
社会经济统计的抽样推断多属于大样本,而科学实验的抽样观察则多取小样本。
样本个数又称样本可能数目,是指从全及总体中可能抽取的样本的个数。
一个总体可能抽取多少样本,与样本容量大小有关,也与抽样的方法有关。
在样本容量确定之后,样本的可能数目便完全取决于抽样方法。
抽样误差是抽样调查自身所固有的,不可避免的误差,虽然不能消除这种误差,但有办法进行计算,并能对其加以控制。
抽样平均误差越大,表示样本的代表性越低;抽样平均误差越小,表示样本的代表性越高。
在重复简单随机抽样时,样本平均数的抽样分布有数学期望值E(a)=a(a代表全及总体平均数,即X)X⇔。
样本平均数的平均数=总体平均数抽样平均误差=抽样标准误差=样本平均数的标准差(它反映抽样平均数与总体平均数的平均误差程度)例题:某班组4个工人的月工资(N=4)分别是:1400元,1500元,1600元,1700元,现用重复简单随机抽样的方法从全及总体中抽选出容量大小为2的样本(n=2),求抽样平均误差?解:全及总体平均工资)(15501700160015001400元=+++=X全及总体标准差()4500002=-=∑NX Xσ抽样平均误差x μ=nnσσ=2=)(0569.792*450000元=例题:某班组4个工人的月工资(N=4)分别是:1400元,1500元,1600元,1700元,现用不重复简单随机抽样的方法从全部总体中抽选容量大小为2的样本(n=2),求抽样平均误差?解:全及总体平均工资)(155041700160015001400元=+++==∑NXX全及总体标准差()4500002=-=∑NX Xσx μ=⎪⎭⎫ ⎝⎛--∙12N n N n σ=)(55.6414244*250000元=--∙例题:某电子元件厂,生产某型号晶体管,按正常生产试验,产品中属于一级品的占70%,现在从10000件晶体管中,抽取100件进行抽查检验,求一级品率的抽样平均误差? 解:已知:P=0.7 , P(1-P)=0.21在重复抽样的情况下,抽样平均误差为:()np p p -=1μ=%58.410021.0=在不重复抽样的情况下,抽样平均误差为:()⎪⎭⎫⎝⎛-∙-=N n n p p p 11μ=%56.410000*********.0=⎪⎭⎫ ⎝⎛-∙参数估计()()⎪⎪⎩⎪⎪⎨⎧→-==+≤≤是概率度是置信度,极限误差)样本指标总体指标极限误差—(样本指标区间估计:求不高的情况准确程度与可靠程度要点估计:适用于推断的t t F t F P α1例题:已知某车间某产品的合格率在某个置信度下的估计区间是(85%,95%),还已知样本容量为100,求置信度?解:显然p p ∆-=85%,p p ∆+=95%,即p=90%,p ∆=5%p ∆=μ⋅t μpt ∆=⇒=()()67.1100%901%90%51=-∙=-∆np p p ()t F =0.9052即置信度为90.51% ★求置信度,只需要求出t影响抽样数目的因素⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧∆样本单位不重置抽样可以少抽些单位,抽样需要多抽一些样本、在同等条件下,重置单位,则反之值越大,则多抽些样本、概率度则反之单位,的值大可以少抽些样本)、允许误差(极限误差越多,则反之值越大,必要抽样数目、总体标准差4321t x σ例题:某城市组织职工家庭生活抽样调查,职工家庭平均每户每月收入的标准差为11.50元,要求把握程度为95.45%,允许误差为1元,问需抽选多少户? 解:()t F =0.95452=⇒t , 元元,150.11=∆=x σxt n 222∆=σ=()户529150.1142=∙。
第五章一、单项选择题1.抽样推断的目的在于( )A.对样本进行全面调查 B.了解样本的基本情况C.了解总体的基本情况 D.推断总体指标2.在重复抽样条件下纯随机抽样的平均误差取决于( )A.样本单位数 B.总体方差C.抽样比例 D.样本单位数和总体方差3.根据重复抽样的资料,一年级优秀生比重为10%,二年级为20%,若抽样人数相等时,优秀生比重的抽样误差( )A.一年级较大 B.二年级较大C.误差相同 D.无法判断4.用重复抽样的抽样平均误差公式计算不重复抽样的抽样平均误差结果将( )A.高估误差 B.低估误差C.恰好相等 D.高估或低估5.在其他条件不变的情况下,如果允许误差缩小为原来的1/2,则样本容量( )A.扩大到原来的2倍 B.扩大到原来的4倍C.缩小到原来的1/4 D.缩小到原来的1/26.当总体单位不很多且差异较小时宜采用( )A.整群抽样 B.纯随机抽样C.分层抽样 D.等距抽样7.在分层抽样中影响抽样平均误差的方差是()A.层间方差 B.层内方差C.总方差 D.允许误差二、多项选择题1.抽样推断的特点有()A.建立在随机抽样原则基础上 B.深入研究复杂的专门问题C.用样本指标来推断总体指标 D.抽样误差可以事先计算E.抽样误差可以事先控制2.影响抽样误差的因素有( )A.样本容量的大小 B.是有限总体还是无限总体C.总体单位的标志变动度 D.抽样方法E.抽样组织方式3.抽样方法根据取样的方式不同分为( )A.重复抽样 B.等距抽样 C.整群抽样D.分层抽样 E.不重复抽样4.抽样推断的优良标准是( )A.无偏性 B.同质性 C.一致性D.随机性 E.有效性5.影响必要样本容量的主要因素有( )A.总体方差的大小 B.抽样方法C.抽样组织方式 D.允许误差范围大小E.要求的概率保证程度6.参数估计的三项基本要素有()A.估计值 B.极限误差C.估计的优良标准 D.概率保证程度E.显著性水平7.分层抽样中分层的原则是( )A.尽量缩小层内方差 B.尽量扩大层内方差C.层量扩大层间方差 D.尽量缩小层间方差E.便于样本单位的抽取三、填空题1.抽样推断和全面调查结合运用,既实现了调查资料的_______性,又保证于调查资料的_______性。
第五章 用样本推断总体(考点讲义)1.样本容量:样本中个体的数目叫做样本容量。
2.在用样本特性估计总体特性时,要注意一是样本要有代表性,二是样本容量要足够大。
3.求平均数的公式:123nx x x x x n++++=L【类型一】利用样本平均数估算总体数量【例1】为了创设全新的校园文化氛围,进一步组织学生开展课外阅读,让学生在丰富多彩的书海中,扩大知识源,亲近母语,提高文学素养.某校准备开展“与经典为友、与名著为伴”的阅读活动,活动前对本校学生进行了“你最喜欢的图书类型(只写一项)”的随机抽样调查,相关数据统计如下:请根据以上信息解答下列问题:(1)该校对_____名学生进行了抽样调查,m = _____n =_____(2)请将图1和图2补充完整,并求出扇形统计图中小说所对应的圆心角度数;(3)已知该校共有学生800人,利用样本数据估计全校学生中最喜欢科幻人数约为多少人?【解析】(1)用其它初一它的百分比即可;(2)用360∘乘以所占得百分比;(3)用样本估计总体.解:(1)20÷10%=200(名).由图1,得n=40,m=100-20-10-40=30答:该校对200名学生进行了抽样调查;m=30,n=40(2)如图:小说对应的圆心角度数为360∘×20%=72∘;(3)800×30%=240.答:全校学生中最喜欢小说的人数约为240名.【对应训练1】为了估计湖里有多少条鱼,小刚先从湖里捞出了100条鱼做上标记,然后放回湖里去.经过一段时间,带有标记的鱼完全混合于鱼群后,小刚又从湖里捞出200条鱼,如果其中15条有标记,那么估计湖里有鱼()A.1333条B.3000条C.300条D.1500条【答案】A【解析】在样本中“捕捞200条鱼,发现其中15条有标记”,即可求得有标记的所占比例,而这一比例也适用于整体,据此即可解答.【对应训练2】我国古代数学名著《九章算术》有“米谷粒分”.粮仓开仓收粮,有人送来谷米1608石,验得其中夹有谷粒.现从中抽取谷米一把,共数得256粒,其中夹有谷粒32粒,则这批谷米内夹有谷粒约是________石.【答案】201【解析】根据256粒内夹谷32粒,可得比例,再乘以1608石,即可得出答案.【解答】解:根据题意,得1608×32=201(石),256∴这批谷米内夹有谷粒约201石.【对应训练3】某山区中学280名学生参加植树节活动,要求每人植3至6棵,活动结束后随机抽查了若干名学生每人的植树量,并分为四种类型,A:3棵;B:4棵;C:5棵;D:6棵,将各类的人数绘制成扇形图(如图1)和条形图(如图2).回答下列问题:(1)这次调查一共抽查了________名学生的植树量;请将条形图补充完整;(2)被调查学生每人植树量的众数是________棵、中位数是________棵;(3)求被调查学生每人植树量的平均数,并估计这280名学生共植树多少棵?【解析】(1)由B类型的人数及其所占百分比可得总人数,总人数乘以D类型的对应的百分比即可求出其人数,据此可补全图形;(2)根据众数和中位数的概念可得答案;(3)先求出样本的平均数,再乘以总人数即可.【解答】(1)这次调查一共抽查植树的学生人数为8÷40%=20(人),D类人数=20×10%=2(人);条形图补充如图:(2)植树4棵的人数最多,则众数是4,共有20人植树,其中位数是第10、11人植树数量的平均数,则中位数是4,(3)x=4×48×562×7=5.3(棵),205.3×280=148(棵).答:估计这3280名学生共植树1484棵.【类型二】用样本估计总体【例2】为了提高学生的综合素养,某校开设了五门第二课堂活动课,按照类别分为:A“剪纸”、B“绘画”、C“雕刻”、D“泥塑”、E“插花”.为了了解学生对每种活动课的喜爱情况,随机抽取了部分同学进行调查,将调查结果绘制成如下两幅不完整的统计图.根据信息,回答下列问题:(1)本次调查的样本容量为________,统计图中的a=________,b=________;(2)通过计算补全条形统计图;(3)该校共有3000名学生,请你估计全校喜爱“雕刻”的学生人数.解:(1)样本容量为1815%=120,a=120×10%=12,b=120×30%=36.故答案为:120;12;36.(2)组频数:120―18―12―30―36=24(人),补全条形统计图如图所示:(3)3000×30120=750(人),答:该校喜爱“雕刻”约有750人.【跟踪训练1】在一个不透明的盒子中装有20个黄、白两种颜色的乒乓球,除颜色外其它都相同,小明进行了多次摸球试验,发现摸到白色乒乓球的频率稳定在0.2左右,由此可知盒子中黄色乒乓球约有…()A.2个B.4个C.18个D.16个【答案】D【跟踪训练2】质检部门从1000件电子元件中随机抽取100件进行检测,其中有2件是次品.试据此估计这批电子元件中大约有________件次品.【答案】20【解析】根据随机抽取100件进行检测,其中有2件是次品,可以计算出这批电子元件中大约有多少件次品.【跟踪训练3】书籍是人类进步的阶梯.为了解学生的课外阅读情况,某校随机抽查了部分学生本学期阅读课外书的册数,并绘制出如下统计图.(1)共抽查了多少名学生?(2)请补全条形统计图,并写出被抽查学生本学期阅读课外书册数的众数、中位数;(3)根据抽查结果,请估计该校1200名学生中本学期课外阅读5册书的学生人数.解:(1)12÷30%=40(名).(2)如图所示,由图知,众数为5,中位数为5.(3)∵抽查的样本中,课外阅读5册书的学生人数占14×100%=35%,40∴估计该校学生课外阅读5册书的学生人数约占35%,∴该校1200名学生中课外阅读5册书的学生人数约为1200×35%=420(人).【类型三】用样本频率估计总体频率【例3】中长跑(男生1000m,女生800m)是河南省某市中招体育考试的必考项目.甲、乙两校为了解本校九年级学生的训练情况,各随机抽取了20名九年级学生的中长跑模拟测试成绩(满分:30分),将成绩进行统计、整理与分析,过程如下:【收集数据】【整理数据】整理以上数据,得到模拟测试成绩x(分)的频数分布表.【分析数据】根据以上数据,得到以下统计量.根据以上信息,回答下列问题:(1)填空:a= ________,b=_________, m=________, n=________;(2)综合上表中的统计量,推断________校学生中长跑成绩更好,理由为________(写出一条即可)(3)若甲、乙两校各有800名学生,请估计两校中长跑模拟测试成绩不低于25分的学生一共有多少名?解:(1)由数据可得,a=7,b=8,m=24.75,n=23.4. 故答案为:7;8;24.75;23.4.(2)甲校学生成绩的平均数比乙校学生成绩的平均数高,且甲校学生成绩的方差比乙校学生成绩的方差小,成绩较稳定.(答案不唯一,合理即可)故答案为:甲.=720(名),(3)(800+800)×1082020答:估计两校中长跑模拟测试成绩不低于25分的学生一共有720名.【跟踪训练】今年是建党100周年,为了让全校学生牢固树立爱国爱党的崇高信念,某校开展了形式多样的党史学习教育活动,八、九年级(各有500名学生)举行了一次党史知识竞答(满分为100分),然后随机各抽取20名同学的成绩进行了收集、统计与分析,过程如下:【收集数据】两个年级抽取的20名同学的成绩如下表:八年级:7968878985598997898998938586899077898379九年级:8688979194625194877194789255979294948598【整理数据】将两个年级的抽样成绩进行分组整理:成绩x(分)50≤x<6060≤x<7070≤x<8080≤x<9090≤x<100八年级113114九年级2a b411【分析数据】抽样的平均数、众数、中位数、方差和优秀率(90分及以上为优秀)如下表:年级统计量平均数众数中位数方差优秀率八年级8589c80.420%九年级859491.5192d请根据以下信息,回答下列问题:(1)填空:a=________,b= ________,c=________,d=________;(2)请估计此次知识竞答中,八年级成绩优秀的学生人数;(3)小李同学认为九年级的整体成绩更好,请从至少两个方面分析其合理性.解:(1)由表中数据可知,九年级落在60≤x<70内的只有62,故a=1;九年级落在70≤x<80内的有71,78,故b=2;八年级成绩按照从小到大的顺序排列后,落在第10,11的数为87,89,∴中位数为88,故c=88;九年级90分及以上的学生有11人,∴九年级的优秀率为1120×100%=55%.故答案为:1;2;88;55%.(2)∵500×20%=100,∴估计此次知识竞答中,八年级成绩优秀的学生人数为100人.(3)九年级抽样成绩的众数,中位数和优秀率均高于八年级,说明九年级平均成绩更高,高分更多,因此九年级整体成绩更好.【类型四】用样本推断总体的实际应用【例4】某运动鞋经销商随机调查某校40名女生的运动鞋号码,结果如下表:鞋的号码35.53636.53737.5人数4616122现在该经销商要进200双上述五种运动鞋,你认为应该怎样进货比较合理?解析:先求出各鞋码所占比例,再乘200,即可得到所需进货数.解:由表中数据可知各鞋码的女生的比例,根据比例进货.需要进35.5码运动鞋:200×440=20(双),需要进36码运动鞋:200×640=30(双)需要进36.5码运动鞋:200×1640=80(双),需要进37码运动鞋:200×1240=60(双)需要进37.5码运动鞋:200×240=10(双)。
第五章 抽样推断
一、填空题
2、抽样推断的基础是________,抽样推断中产生的抽样误差不但可以________,而且还能加以________。
9、抽样平均误差就是所有可能的样本的________与________的平均误差。
14、区间估计必须具备三个要素:________、________ 和 ________。
15、如果全及平均数落在区间(550,650)内的概率是95.45%,则抽样平均误差等于________。
18、影响样本容量的主要因素有________、________、________、________ 和 ________。
二、是非题
2、对于无限总体,不能进行全面调查,只能使用抽样推断。
( )
4、变量总体中构成总体的各个单位可以用一定的数量标志加以计量。
( )
6、抽样平均误差越大,样本的代表性越大。
( )
8、不重复简单随机抽样全部样本可能的数目为C n N . ( )
10、对一个服从正态分布的全及总体进行抽样调查,不论样本容量大小如何,其样本平均数的分布总是趋近正态分布的。
( )
12、点估计是用样本的统计量直接估计和代表总体参数。
( )
16、样本方差S 2 n 与修正样本方差S 2 n-1关系可表示为 S 2 n =
n n 1 S 2 n-1 。
( )
三、单项选择题
1、 全及总体是惟一确定的,样本总体( )
A 、 也惟一
B 、有无数个
C 、不惟一
D 、有C n N 个
3、 重复简单随机抽样下,抽样平均误差要减少1/3,则样本单位数就要扩大到( )
A 、4倍
B 、2倍
C 、3倍
D 、9倍
5、 满足条件( )时,可以认为抽样成数的概率分布近似正态分布( )。
A 、n<30 np<5 n(1-p)<5
B 、n>30 np<5 n(1-p)>5
C 、n>30 np>5 n(1-p)<5
D 、n>30 np>5 n(1-p)>5
7、计算抽样平均误差时,如有多个标准差的资料,应根据( )计算。
A 、中间一个
B 、平均值
C 、最大一个
D 、最小一个
9、区间估计的置信度是指( )
A 、概率
B 、允许误差的大小
C 、概率保证程度
D 、抽样平均误差的大小
四、多项选择题
3、全面调查和抽样调查中都存在的误差是( )
A 、系统性误差
B 、登记性误差
C 、责任心误差
D 、技术性误差
E 、代表性误差
4、重复随机抽样的特点是()
A、总体中每个单位在各次抽样中被抽取的机会相等
B、总体中每个单位在各次抽样中被抽取的机会不等
C、n次抽样就是n次相互独立的实验
D、每次抽选时,总体单位数始终不变
E、每次抽选时,总体单位数逐渐减少
8、在概率度t一定的条件下()
A、允许的相对误差越大,应抽取的单位数越少
B、允许的相对误差越小,应抽取的单位数越少
C、抽样误差范围越大,样本标志值之间的离差越大
D、抽样误差范围越大,应抽取的单位数越多
E、抽样误差范围越小,应抽取的单位数越多
10、影响抽样数目的因素有()
A、被调查标志的变异程度
B、允许误差
C、概率度
D、抽样方法
E、抽样的组织方式
五、简答题
1、什么是抽样推断?它有哪些基本的特点?
六、综合题
3、某电子公司,生产某型号集成电路,按正常生产试验,产品中属于一级品的占80%,
现在从20000件集成电路中,抽取200件进行抽样检验,求一级品率的抽样平均误差。
5、采用随机重复抽样的方法,在2000件产品中抽查200件,其中合格品190件,要求:
(1)计算合格品率及其抽样平均误差;
(2)以95.45%的概率保证程度(t=2)对合格品率和合格品数量进行区间估计。
6、调查一批机械零件的合格率。
根据过去的资料,合格品率曾有过98%,97%和96%三种
情况。
现在要求极限误差不超过2%,推断的把握程度为95.45%,问需要抽查多少个零件?
9、某乡某年播种小麦400公顷。
随机抽查40公顷,测得每公顷产量为3500kg,标准差为20kg,试计算:
(1)概率为95%的条件下,平均每公顷产量的可能范围。
(2)推算400公顷小麦总产量的可能范围。