3
时间序列
随机过程的一次实现称为时间序列,可用{xt}或 xt表示。随机过程与时间序列的关系图示如下:
样本空间
4
比如某河流一年的水位值, {x1, x2, …, xT-1, xT,}, 可以看做一个随机过程,每一年的水位记录则是一 个时间序列,如{x11, x21, …, xT-11, xT1}。
13
时域分析方法的发展过程
❖ 基础阶段 ❖ 核心阶段 .U.Yule
❖1927年,AR模型
❖ G.T.Walker
❖1931年,MA模型,ARMA模型
15
核心阶段
❖G.E.P.Box和 G.M.Jenkins
❖1970年,出版《Time Series Analysis Forecasting and Control》
❖ 由于SAS系统具有全球一流的数据仓库功能, 因此在进行海量数据的时间序列分析时它具有 其它统计软件无可比拟的优势
18
三、平稳性(Stationarity)
1.严平稳
如果一个时间序列xt的联合概率分布不随时 间而变,即对于任何n和k,x1,x2,…,xn的联合 概率分布与x1+k,x2+k,…xn+k 的联合分布相同,则
而在每年中同一时刻(如t=2时)的水位记录是不 同的,{ x21, x22, …, x2n,} 构成了x2取值的样本空间。
5
时间序列 xt通常包含四个成分: 趋势因素(trend),季节因素(seasonality), 循环因素(cycle)和不规则因素(irregular)。 时间序列的分解通常有加法分解法则和乘法分解 法则,有兴趣的读者可以参阅其他文献。
❖ 特点
❖ 理论基础扎实,操作步骤规范,分析结果易于 解释,是时间序列分析的主流方法