中考数学教学指导:如何求解旋转扫过的面积
- 格式:doc
- 大小:98.00 KB
- 文档页数:2
ABC OD计算旋转扫过的面积河北 欧阳庆红我们知道线旋转,面在平面上旋转都扫过一定面积,如何计算图形旋转扫过的面积呢,下面跟随我的脚步来领略几例计算旋转扫过的面积问题.例1 (08内江市)如图1,Rt A BC ''△是由Rt ABC △绕B 点顺时针旋转而得,且点A B C ',,在同一条直线上,在Rt ABC △中,若90C =∠,2BC =,4AB =,则斜边AB 旋转到A B '所扫过的扇形面积为 .解析: 欲求斜边AB 旋转到A B '所扫过的扇形面积,已知扇形半径AB=4,只要求出其圆心角∠A AB '度数, ∵Rt A BC ''△是由Rt ABC △绕B 点旋转得到的,∴△ACB ≌△B C A '',∴,2,4=='=='BC C B AB B A ∴∠A '=030,∴∠A AB '=∠C '+∠A '=01203090=+,∴.31636041202ππ=⨯⨯='A AB S 扇形例 2 (08甘肃兰州)如图2,在Rt ABC △中,903C AC ∠==,.将其绕B 点顺时针旋转一周,则分别以BA BC ,为半径的圆形成一圆环.则该圆环的面积为 .解析:本题考察了圆的有关计算,勾股定理,旋转等方面的知识. 根据圆面积公式和勾股定理:圆环的面积为:πAB 2-πBC 2=π(AB 2-BC 2)= πAC 2 =π×32 =9π.所以本题填9π.例3 (08宁波)如图3,菱形OABC 中,120A =∠,1OA =,将菱形OABC 绕点O 按顺时针方向旋转90,则图中由BB ',B A '',A C ',CB 围成的阴影部分的面积是 .解析:本题主要考查扇形面积的计算和菱形的性质,连接BO,O B ',图2ACBCBA图1阴影部分的面积转化为扇形B BO '面积-扇形A CO '面积-三角形BOC 面积-三角形O A B ''面积=扇形B BO '面积-扇形A CO '面积-菱形OABC 的面积,欲求扇形B BO '面积,需要计算OB 的长,于是连接AC,则AC ⊥OB, ∵120A =∠,∴∠AOC=060,∴∠AOB=21∠AOC=030, ∴AD=2121=AO ,根据勾股定理得,OD=22AD OA -=23, ∴OB=3,∵旋转角∠A AO '=,090∴∠A CO '=,030∴∠B BO '=,090∴()OB AC S ⨯⨯-⨯-⨯=2136013036039022ππ阴影=31211243⨯⨯--ππ=23π32-. 例4 (08鄂州)如图4,Rt ABC △中,90ACB ∠=,30CAB ∠=,2BC =,O H ,分别为边AB AC ,的中点,将ABC △绕点B 顺时针旋转120到11A BC △的位置,则整个旋转过程中线段OH 所扫过部分的面积(即阴影部分面积)为( C ) A .77π338- B .47π338+ C .πD .4π33+ 解析:本题考查的知识点有扇形面积的计算,中位线定理和直角三角形的有关性质等,连接BH 和1BH ,∵90ACB ∠=,30CAB ∠=,2BC =,∴AB=2BC=4, ∴AC=,32242222=-=-BC AB∵O H ,分别为边AB AC ,的中点,∴OB=1OB =2,CH=32111==AC H C , ∴BH=()73222211211=+=+=H C BC BH ,易证△HOB ≌△B O H 11,∴线段OH 所扫过部分的面积(即阴影部分面积)为圆心角为图4AHBOC120,半径分别为7和3的两扇形的面积差,即3601202BH S π=阴影3601202BO π-=πππ=-3437.。
课题:§线段旋转扫过的面积泉州市经济技术开发区泉州经济技术开发区实验学校黄立内容分析1.课标要求通过具体实例认识平面图形关于旋转中心的旋转,探索它的基本性质;能按要求作出简单平面图形旋转后的图形,能利用旋转进行弧长和面积的相关计算。
2.教材分析知识层面:旋转的基本性质:对应线段相等,对应角相等,图形中每一个点都绕旋转中心按同一旋转方向旋转了同样大小的角度。
角的动态定义:将一条射线绕着端点旋转一定的角度所形成的图形。
圆的定义的轨迹说:将一条线段绕着一个端点旋转一周所形成的图形。
本课时既承接这三个知识点,又通过图形面积的割补法推导所得线段旋转扫过的面积,也丰富了圆中的计算的相关应用。
能力层面:学生在学习了旋转的基本性质,已经具有观察和操作能力,积累了一定的探索和推理经验,具备进行“探索—猜想—证明”线段旋转扫过的面积的基础。
先通过学生课前分组发现问题,操作观察,思考解决方案,培养学生的创新意识和建模能力;由合情推理得出结论,再演绎推理论证结论的合理性,进一步发展学生推理证明的能力;最后回到课前的问题解决来培养学生的应用意识。
思想层面:线段旋转扫过的面积的探索和论证过程为渗透数学思想方法提供一个发展提高平台:通过对不规则图形的割补为规则图形进行计算,体现化归与转化的思想;通过线段端点在垂足同侧→线段端点在垂足异侧,这个探究过程体现从特殊到一般的思想,有助于培养学生几何直观能力和思维层次性。
3.学情分析(1)学生已经学习了旋转的基本性质,角的动态定义,圆的定义的轨迹说,并且进行了实际操作验证,这为探究线段旋转扫过的面积提供了认知基础。
(2)从学生的学习动机与需要上看,他们有探究新事物的欲望和好奇心,这为探究线段旋转扫过的面积的证明策略及方法提供了情感保障。
(3)学生在探究线段旋转扫过的面积过程中,其认知顺序可能是建构型的。
旋转的基本性质,角的动态定义,圆的定义的轨迹说是其原有知识储备的主要图式,通过对原有图式完全可以建立线段旋转过程的几何模型,进一步探究求面积的割补方法。
三角形旋转解题技巧初中篇一:三角形旋转是一种重要的几何变换,可以在解题过程中发挥重要作用。
在初中数学中,三角形旋转通常用于解决角度问题和面积问题。
以下是一些初中三角形旋转的解题技巧:1. 了解三角形旋转的性质:三角形旋转后,其顶点的位置不会改变,而边的长度会发生变化。
同时,三角形的面积也可以通过旋转来变化。
2. 利用旋转角求解角度问题:在初中数学中,常常需要求解三角形中的某个角度。
可以利用三角形旋转的性质,将求解的问题转化为已知角度的问题,然后再通过旋转来解决。
3. 利用旋转来解决面积问题:在解决面积问题时,可以利用三角形旋转的性质,将原来的问题转化为面积相等的三角形,然后再通过旋转来解决。
4. 熟悉三角形旋转的基本公式:三角形旋转的基本公式为:旋转角度=原角度 - 旋转角度,旋转角度=旋转角度 + 原角度。
这些公式可以帮助更好地理解和解决三角形旋转的问题。
三角形旋转在初中数学中是一种常见的几何变换,可以帮助我们更好地理解和解决一些问题。
通过不断练习和积累,可以逐渐掌握三角形旋转的解题技巧,提高解题能力。
篇二:三角形旋转是一种重要的几何变换,可以在解题过程中发挥重要作用。
在初中阶段,三角形旋转通常作为求解几何问题的一种技巧来介绍。
下面是一些常见的三角形旋转解题技巧:1. 了解三角形旋转的基本性质:三角形旋转是一个沿固定轴旋转的变换,可以保持不变的性质有面积、周长、对称中心、对称轴等;可以改变的性质有方向、位置、形状等。
2. 利用旋转变换求解几何问题:在初中阶段,常见的利用三角形旋转求解的几何问题有:求解对称轴、对称中心、重心等;将复杂的几何问题转化为简单的代数问题,从而实现化繁为简、化难为易的目的。
3. 掌握常见的旋转变换公式:在三角形旋转中,存在一些常用的旋转公式,如旋转角度、旋转角度与旋转中心的关系、旋转前后面积的变化等。
熟悉这些公式可以更好地理解和解决旋转问题。
4. 实践三角形旋转的技巧:在初中阶段,可以通过一些简单的例子来实践三角形旋转的技巧,如求解三角形的重心、对称中心、对称轴等。
三角形旋转体面积的求法
在数学中,三角形旋转体是指由一个三角形绕着其中一条边旋转而成的立体图形。
要计算三角形旋转体的表面积,可以使用积分来解决这个问题。
首先,我们需要知道三角形的边长和高。
假设三角形的底边长为a,高为h。
现在,我们将三角形绕底边旋转360度,形成一个旋转体。
这个旋转体的表面积可以通过积分来求解。
首先,我们将三角形绕着底边旋转,得到的旋转体可以看作是由无数个小矩形叠加而成的。
每个小矩形的宽度可以看作是一个微小的长度dx,而高度则是三角形的高h。
因此,每个小矩形的面积可以表示为2πxh,其中x是距离底边的距离。
为了计算整个旋转体的表面积,我们需要对所有这些小矩形的面积进行求和。
因此,旋转体的表面积S可以表示为:
S = ∫(0到a) 2πxh dx.
通过对上式进行积分,我们可以得到三角形旋转体的表面积。
这个方法可以用于任意形状的旋转体,只需要根据具体的形状和旋
转轴来确定积分的上下限和积分式。
通过这种方法,我们可以很方便地求解三角形旋转体的表面积,同时也可以推广到其他形状的旋转体,为解决更加复杂的几何问题
提供了一种有效的工具。
线段旋转所扫边的图形面积线段AB和点O在同一平面内,将线段AB绕点O旋转,在旋转过程中,线段AB所扫过的图形面积该如何计算?笔者认为可从点与线段的位置及旋转的角度等几个方面研究.一、旋转中心O在线段AB上如图1,设AO=a,BO=b(a≥b),旋转角度为α.(1)当0°≤α≤180°时,线段AB所扫过的图形如图2中的阴影部分所示,其蕊积为扇形OAA'与扇形OBB'的面积和,故2222S a b a b360360360(2)当180°<α≤360°时,线段AB所扫过的图形如图3中的阴影部分所示,其面积为以AO为半径的圆的面积减去图中空白部分的面积,故二、旋转中心O在线段AB的延长线上如图4,设AO=a,BO=b,旋转角度为α.线段AB所扫过的图形如图5中的阴影部分所示,其面积为扇形OAA'减去扇形OBB'的面积,故2222360360360S a b a b 三、旋转中心O 不在直线AB 上(1)当线段AB 的两个端点分别是线段AB 上到旋转中心O 的距离最长的点和距离最短的点时,如图6(1).设AO =a ,BO =b(a>b),旋转角度为α.线段AB 所扫过的图形如图6(2)中的阴影部分所示.因为△OAB ≌△OA'B',所以阴影部分的面积可转化为其面积为扇形OAA'减去扇形OBB'的面积,故2222360360360S a b a b (2)当线段AB 的两个端点不是线段AB 上到旋转中心O 的距离最短的点时,如图7.作OD ⊥AB ,垂足为D ,设OA =a ,OB =b(a ≥b),OD =h ,∠BOD =β,旋转的角度为α.①若0°<α<2β时,线段AB 所扫过的图形如图8中的阴影部分所示,计算线段AB 所扫过的图形面积比较复杂,限于初中学生的知识水平,不需要掌握.②若2β≤α≤360°-2β时,线段AB 所扫过的图形如图9中的阴影部分所示.作OI ⊥A'B',垂足为I ,则△OAD ≌△OA'I ,所以阴影部分的面积可以用以OA 和OD 为半径的两个扇形的面积差加上一个弓形的面积表示,即22222tan 360360S a b h b .③若360°-2β<α<360°时,线段AB 所扫过的图形如图9中的阴影部分所示.此时阴影部分的面积以初中学生的知识也不能计算.④若α=360°时,线段AB所扫过的图形如图11中的阴影部分所示,为一个圆环的面积,故S=π(a2-h2).计算线段AB绕点O旋转所形成的图形面积,关键在于准确画出AB旋转所形成的图形.其形状是由线段AB的初始位置、终止位置及点A、B、D(点D是线段AB上到O 点距离最近的点)的运动轨迹所围成的封闭图形.。
线段旋转所扫边的图形面积线段AB 和点O 在同一平面内,将线段AB 绕点O 旋转,在旋转过程中,线段AB 所扫过的图形面积该如何计算?笔者认为可从点与线段的位置及旋转的角度等几个方面研究.一、旋转中心O 在线段AB 上如图1,设AO =a ,BO =b(a ≥b),旋转角度为α.(1)当0°≤α≤180°时,线段AB 所扫过的图形如图2中的阴影部分所示,其蕊积为扇形OAA'与扇形OB B'的面积和,故()2222360360360S a b a b αααππ=+=+(2)当180°<α≤360°时,线段AB 所扫过的图形如图3中的阴影部分所示,其面积为以AO 为半径的圆的面积减去图中空白部分的面积,故二、旋转中心O 在线段AB 的延长线上如图4,设AO =a ,BO =b ,旋转角度为α.线段AB 所扫过的图形如图5中的阴影部分所示,其面积为扇形OAA'减去扇形OBB'的面积,故()2222360360360S a b a b αααππ=-=-三、旋转中心O 不在直线AB 上(1)当线段AB 的两个端点分别是线段AB 上到旋转中心O 的距离最长的点和距离最短的点时,如图6(1).设AO =a ,BO =b(a>b),旋转角度为α.线段AB 所扫过的图形如图6(2)中的阴影部分所示.因为△OAB ≌△OA'B',所以阴影部分的面积可转化为其面积为扇形OAA'减去扇形OBB'的面积,故()2222360360360S a b a b αααππ=-=-(2)当线段AB 的两个端点不是线段AB 上到旋转中心O 的距离最短的点时,如图7.作OD ⊥AB ,垂足为D ,设OA =a ,OB =b(a ≥b),O D =h ,∠BOD =β,旋转的角度为α.①若0°<α<2β时,线段AB 所扫过的图形如图8中的阴影部分所示,计算线段AB 所扫过的图形面积比较复杂,限于初中学生的知识水平,不需要掌握.②若2β≤α≤360°-2β时,线段AB 所扫过的图形如图9中的阴影部分所示.作OI ⊥A'B',垂足为I ,则△OAD ≌△OA'I ,所以阴影部分的面积可以用以OA 和OD 为半径的两个扇形的面积差加上一个弓形的面积表示,即()22222tan 360360S a b h bαβπβπ=-+-∙.③若360°-2β<α<360°时,线段AB 所扫过的图形如图9中的阴影部分所示.此时阴影部分的面积以初中学生的知识也不能计算.④若α=360°时,线段AB 所扫过的图形如图11中的阴影部分所示,为一个圆环的面积,故S =π(a 2-h 2).计算线段AB 绕点O 旋转所形成的图形面积,关键在于准确画出AB 旋转所形成的图形.其形状是由线段AB 的初始位置、终止位置及点A 、B 、D (点D 是线段AB 上到O 点距离最近的点)的运动轨迹所围成的封闭图形.。
如何求解旋转扫过的面积我们知道线旋转、面在平面上旋转都扫过一定面积,如何计算图形旋转扫过的面积呢?下面跟随我的脚步来领略几例此类问题.例 1如图,在Rt ABC △中,903C AC ∠==,.将其绕B 点顺时针旋转一周,则分别以BA BC ,为半径的圆形成一圆环.则该圆环的面积为 .析解:本题考查了圆的有关计算,勾股定理,旋转等方面的知识. 根据圆面积公式和勾股定理,得圆环的面积为: πAB 2-πBC 2=π(AB 2-BC 2)= πAC 2 =π×32 =9π.例2如图,菱形OABC 中,120A =∠,1OA =,将菱形OABC 绕点O 按顺时针方向旋转90,则图中由弧BB ′,B ′A ′,弧A ′C ,CB 围成的阴影部分的面积是 .析解:本题主要考查扇形面积的计算和菱形的性质,连接BO,O B ',阴影部分的面积转化为扇形B BO '面积-扇形A CO '面积-三角形BOC 面积-三角形O A B ''面积=扇形B BO '面积-扇形A CO '面积-菱形OABC 的面积,欲求扇形B BO '面积,需要计算OB 的长,于是连接AC,则AC ⊥OB, ∵120A =∠,∴∠AOC=060,∴∠AOB=21∠AOC=030,∴AD=2121=AO , 根据勾股定理得,OD=22AD OA -=23, ∴OB=3,∵旋转角∠A AO '=,090∴∠A CO '=,030∴∠B BO '=,090∴()OB AC S ⨯⨯-⨯-⨯=2136013036039022ππ阴影=31211243⨯⨯--ππ=2π3例3 如图,Rt ABC △中,90ACB ∠=,30CAB ∠=,2BC =,O H ,分别为边AB AC ,的中点,将ABC △绕点B 顺时针旋转120到11A BC △的位置,则整个旋转过程中线段OH 所扫过部分的面积(即阴影部分面积)为( )A.7π3-B.4π3+C .πD.4π3+析解:本题考查的知识点有扇形面积的计算,中位线定理和直角三角形的有关性质等,连接BH 和1BH ,∵90ACB ∠=,30CAB ∠=,2BC =, ∴AB=2BC=4,∴AC=,32242222=-=-BC AB ∵O H ,分别为边AB AC ,的中点,∴OB=1OB =2,CH=32111==AC H C ,∴BH=()73222211211=+=+=H C BC BH ,易证△HOB ≌△B O H 11,∴线段OH 所扫过部分的面积(即阴影部分面积)为圆心角为120,半径分别为7和3的两扇形的面积差,即3601202BH S π=阴影3601202BO π-=πππ=-3437.AH BOC 1O 1H1A1C。
旋转背景下的面积比值问题——2021年宜昌市中考数学第23题旋转背景下的面积比值问题——2021年宜昌市中考数学第23题作为初中几何三大变换之一的旋转变换,之所以放在九年级学习,是有道理的,按教材编排,先学习的是平移,其次是轴对称,最后是旋转,因为它和后面的章节《圆》联系紧密。
我们在学习旋转时,多数情况下是旋转背景下的全等三角形,再到后来加入了相似三角形,例如“手拉手模型”、“一线三直角模型”等,所以这一类问题的解决,应该从旋转变换的概念开始,旋转中心、旋转方向、旋转角的确定,是成功构造旋转模型的关键,辅助线的作法也多半出自于此。
题目如图,在矩形ABCD中,E是边AB上一点,BE=BC,EF⊥CD,垂足为F,将四边形CBEF绕点C顺时针旋转α(0°<α<90°),得到四边形CB'E'F',B'E'所在的直线分别交直线BC于点G,交直线AD于点P,交CD于点K,E'F'所在的直线分别交直线BC于点H,交直线AD 于点Q,连接B'F'交CD于点O.(1)如图1,求证:四边形BEFC是正方形;(2)如图2,当点Q和点D重合时.①求证:GC=DC;②若OK=1,CO=2,求线段GP的长;(3)如图3,若BM∥F'B'交GP于点M,tan∠G=1/2,求S△GMB:S△CF'H的值.解析:(1)由矩形ABCD以及EF⊥CD可得∠B=∠BCF=∠EFC=90°,再加上BE=BC,得到正方形BEFC;(2)当点Q和点D重合时,围绕旋转中心C,有CB'=CF',①观察GC与DC,GC和CB'在△GCB'中,DC与CF'在△DCF'中,本小题的目标就是证明这一对全等三角形,我们已经知道这是两个直角三角形,且有一条直角边相等,并且∠GCB'+∠B'CK=90°,∠DCF'+∠B'CK=90°,所以∠GCB'=∠DCF',于是△GCB'≌△DCF',最后得到GC=DC;②新增条件OK=1,CO=2,除了能得到CK=3之外,观察△B'OK 和△F'OC,它们是一对相似三角形,并且相似比为1:2,于是可得B'K是正方形边长CF'的一半,即K为B'E'中点;这样可以很容易证明△B'CK≌△E'DK,从而得到CK=DK,再由它进一步证明△GCK≌△PDK,得到GK=PK,即K为PG中点;在得到上述等量关系之后,接下来我们开始求线段长,仍然从已知求得的CK=3出发,它在Rt△B'CK中,并且这个三角形三边之比为1:2:√5,同时看图中Rt△GCK,它与△B'CK相似,因此它的三边之比也满足1:2:√5,所以可求出GK=3√5,最后得到GP=6√5;(3)这种图形中给平行线,明摆着是和相似三角形有关,又给出tan∠G=1/2,看一眼这个角所处的直角三角形,又是1:2:√5的直角三角形,最后求三角形面积的比值,从常规思路出发,三角形面积公式,这两个三角形中,△CF'H是直角三角形,面积相对容易求,并且∠F'CH=∠G,显然Rt△CF'H的三边之比为1:2:√5,设正方形CB'E'F'边长为2a,Rt△CF'H的面积可表示为a²;对于△GMB,它是一个钝角三角形,底和高均未知,不妨先将能表示出来的线段罗列一下,BC=B'C=E'F'=2a,CH=√5a,F'H=a,顺便求得E'H=3a;由BM∥F'B'可得∠BMK=∠F'B'K=45°,所以过点B作BN⊥GP于点N,如下图:先看Rt△GE'H,它的三边之比为1:2:√5,且E'H=3a,于是GH=3√5a,则GB=3√5a-2a-√5a=2√5a-2a,再看Rt△GNB,它与△GE'H相似,所以可求出BN=(2-2√5/5)a,这就是△GMB的高,还可以求出GN=2BN=(4-4√5/5)a;由等腰Rt△BMN可求MN=BN=(2-2√5/5)a,GM=GN-MN=(2-2√5/5)a,这是△GMB的底;现在可以表示出△GMB的面积了,2(1-√5/5)²a²,所以比值为2(1-√5/5)²,化简结果为(12-4√5)/5.这是常规解法,也是从三角形面积公式触发而想到的一条路,有没有别的思路呢?有的.这次的触发点是平行线,BM∥F'B'不妨延长B'F'和CH,交于点L,如下图:仍然设正方形CB'E'F'边长为2a,F'H=a,这一次我们却得到△LF'H∽△LB'C,相似比同样为1:2,因此可求出LH=CH=√5a,用前面的方法同样求出GH=3√5a,可得GL=4√5a,GB=GL-BC-CL=4√5a-2a-2√5a=2√5a-2a;再观察△GMB与△CF'L,可证明它们相似,相似比为GB:CL=1-√5/5,面积比为(1-√5/5)²,由于点H是CL中点,于是△CF'H的面积是△CF'L面积的一半,因此S△GMB:S△CF'H=2(1-√5/5)²,化简结果仍为(12-4√5)/5.解题反思在遇到特殊直角三角形时,灵活运用三边之比不失为一条捷径,若两个直角三角形有一个锐角相等,我们可证明它们为相似三角形,同样也利用这个锐角的三角函数,所以记住一些常见特殊边长比的直角三角形,对解题肯定有好处,例如本题中的边长之比为1:2:√5的直角三角形。
线段旋转的面积问题作者:黄栋来源:《中学数学杂志(初中版)》2014年第03期旋转虽然在初中课本出现的并不多,但是却经常与函数组合成复杂的数学问题;许多对数学感兴趣并且空间思维敏锐的学生,也经常深入分析旋转中的面积问题,并且提出各种各样的疑问和见解.下面笔者将和大家一起来探究在旋转过程中,线段扫过的面积问题.首先根据旋转中心位置的不同,把线段的旋转分为三类:旋转中心为线段的端点,旋转中心在线段上,旋转中心在线段之外.旋转中心为线段的端点.如图1,可以很明显看出,线段扫过的面积为扇形的面积,从而得出(0°旋转中心在线段的端点之间.通过图2我们亦可以轻松得出,旋转角度小于180°时,线段扫过的面积为两块扇形的面积和.即:S=α360π(BC2+AC2)(0°先看最简单的图11,很显然在旋转角大于等于360°的情况下,阴影区域为一个圆环,这个圆环可以看做是线段AC所扫出的阴影,因为线段BC被覆盖,所以在此情况下可以直接当线段BC不存在.因此面积为S=π(OA2-OC2)=πAC2(α=360°).图7、8、9、10我们从整体上想象下:用剪刀沿着A′B′(图10沿着A′E与AC)把阴影分成两部分,大的部分为线段AC旋转扫过的面积,小的部分为线段BC旋转扫过的没被大的阴影覆盖的面积;所以此类面积可以分成两部分相加.第一部分线段AC扫过的面积为S1=α360π(OA2-OC2)=α360πAC2.图8、9中第二部分为以OB为半径的弓形面积(注:∠BOC=β,这个角必须给出或者可以根据长度用三角函数很容易求出,否则面积无法计算).则弓形面积为:S2=2β360πOB2-OC×BC.只有旋转角在2∠BOC与360°-2∠BOC之间时,第二部分才为一个弓形.所以图8、9总体的阴影面积为:S=S1+S2(2β≤α≤360°-2β).〖TPhd-6.tif,Y〗〖TS (〗〖JZ〗图12〖TS)〗图7中的第二部分为不规则图形,下面单独把图7里面两个圆的部分放大.如图12所示,区域①(弧BB′,线段B′E及线段BE围合而成)为线段BC扫过还没有被覆盖的区域,区域②(弧BD′,线段BE及线段ED′围合而成)为线段BC没有扫过,线段CD旋转到线段C′D′的位置,也没有扫到的区域(即图7中的空白区域).我们发现区域①+区域②就是之前所求过的弓形,所以如果能把区域②面积求出,那么那个不规则的区域①的面积就知道了.我们知道∠BOD=2β,当点D′到达或超过点B时,区域②就不存在了,就变成了图8、9这种情况.所以图7是在旋转角α下面我们专注于扇形OBD′这个区域,做EF垂直OB与点F.∠BOD′=∠BOD-∠DOD′=2β-α,∠BOE=12(2β-α)=β-α2,∠OBE=90°-∠BOC=90°-β.因为OF=EF·cot∠BOE=EF·cot(β-α2),FB=EF·cot∠OBE=EF·cot(90°-β)=EF·tanβ,OF+FB=OB.所以OB=EF·〖JB([〗cot (β-α2)+tanβ〖JB)]〗,所以EF=OBtanβ+cot(β-α2)所以区域②的面积为扇形减去俩三角形:S3=2β-α360πOB2-OB2tanβ+cot(β-α2).则区域①面积为之前所求弓形面积减去区域②面积:S4=2β360πOB2-OC×BC-〖JB([〗2β-α360πOB2-OB2tanβ+cot(β-α2)〖JB)]〗.所以图7总的面积为:S=S1+S4(0经过图7的分析,后面就简单多了.图10与图7是一模一样的,刚图7里面第二块阴影是空白部分需要减去,在图10里面,第二块面积正好是重叠部分,也是需要减去,在这里需要大家注意的只有一件事情,就是α的取值范围.通过上面分析我们可以得出当360°-2β因为∠B′OD=α+2β-360°,所以∠B′OE=12(α+2β-360°).下面只需要把角度改一下,重叠部分的面积就出来了:S5=α+β-360360πOB2-OB2tanβ+cot(α2+β).那么弓形面积-重叠部分就是:。
如何求解旋转扫过的面积
我们知道线旋转、面在平面上旋转都扫过一定面积,如何计算图形旋转扫过的面积呢?下面跟随我的脚步来领略几例此类问题.
例 1如图,在Rt ABC △中,903C AC ∠== ,.将其绕B 点顺时针旋转一
周,则分别以BA BC ,为半径的圆形成一圆环.则该圆环的面积为 .
析解:本题考查了圆的有关计算,勾股定理,旋转等方面的知识. 根据圆面积公式和勾股定理,得圆环的面积为: πAB 2-πBC 2=π(AB 2-BC 2)= πAC 2 =π×32 =9π.
例2如图,菱形OABC 中,120A = ∠,1OA =,将菱形OABC 绕点O 按顺时针方向旋转90 ,则图中由弧BB ′,B ′A ′,弧A ′C ,CB 围成的阴影部分的面积是 .
析解:本题主要考查扇形面积的计算和菱形的性质,连接BO,O B ',阴影部分的面积转化为扇形B BO '面积-扇形A CO '面积-三角形BOC 面积-三角形O A B ''面积=扇形B BO '面积-扇形A CO '面积-菱形OABC 的面积,欲求扇形B BO '面积,需要计算OB 的长,于是连接AC,则AC ⊥OB, ∵120A = ∠,∴∠AOC=060,
∴∠AOB=21
∠AOC=030,∴AD=2
121=AO , 根据勾股定理得,OD=22AD OA -=2
3, ∴OB=3,∵旋转角∠A AO '=
,090∴∠A CO '=,030∴∠B BO '=,090
∴()
OB AC S ⨯⨯-⨯-⨯=
21360130360
39022
ππ阴影
=3121
1243⨯⨯--ππ=2π3-例3 如图,Rt ABC △中,90ACB ∠= ,30CAB ∠= ,2BC =,O H ,分别为边
AB AC ,的中点,将ABC △绕点B 顺时针旋转120 到11A BC △的位置,则整个旋
转过程中线段OH 所扫过部分的面积(即阴影部分面积)为( )
A
.7π3 B
.4π3+
C .π
D
.4
π3
+析解:本题考查的知识点有扇形面积的计算,中位线定理和直角三角形的有关性质等,连接BH 和1BH ,
∵90ACB ∠= ,30CAB ∠= ,2BC =, ∴AB=2BC=4,
∴AC=,32242
2
2
2
=-=-BC AB
∵O H ,分别为边AB AC ,的中点,
∴OB=1OB =2,CH=32
1
11==AC H C ,
∴BH=()7322
2211211=+=+=H C BC BH ,
易证△HOB ≌△B O H 11,∴线段OH 所扫过部分的面积(即阴影部分面积)为圆心角为120 ,半径分别为7和3的两扇形的面积差,即
3601202BH S π=阴影
360
1202BO π-
=ππ
π=-3437.
A
H B
O
C 1O 1H
1A
1C。