驱动桥差速器和主减速器解答
- 格式:ppt
- 大小:40.81 MB
- 文档页数:77
差速器和主减速器结构和工作原理内容简介:发动机的动力经过变速器输出后,必须经过主减速器和差速器才能传递车轮,对于前轮驱动的汽车,如我们常见的轿车,主减速器和差速器设计在变速器壳体内;对于后轮驱动的汽车,如客车和货车,主减速器和差速器安装在后轿内发动机的动力经过变速器输出后,必须经过主减速器和差速器才能传递车轮,对于前轮驱动的汽车,如我们常见的轿车,主减速器和差速器设计在变速器壳体内;对于后轮驱动的汽车,如客车和货车,主减速器和差速器安装在后轿内。
一主减速器主减速器的作用将变速器输出的动力再次减速,以增加转矩,之后将动力传递给差速器。
主减速器的类型:(1)单级主减速器:大部分汽车的主减速器为单级主减速器,减速型式为普通斜齿轮式或锥形齿轮式:锥形齿轮式主减速器图其中锥形齿轮式主减速器如图所示,广泛的应用于后驱汽车的后轿中,变速器输出动力经过传动轴传给主动锥齿轮,经从动锥齿轮减速后传给差速器。
普通斜齿轮式主减速器应用于前驱汽车的变速器中。
注:对于前驱汽车的变速器中的主减速器,如果发动机在机舱在横置,则主减速器为普通斜齿轮式;如果发动机在机舱内纵置,则主减速器为锥形齿轮式,如桑塔纳、帕萨特等。
(2)双级主减速器:在重型货车上,常采用双级主减速器,如下图所示:双级主减速器结构图第一级为锥形齿轮减速,第二级为普通斜齿轮减速。
二减速器:1 差速器的作用:汽车在直线行驶时,左右车轮转速几乎相同,而在转弯时,左右车轮转速不同,差速器能实现左右车轮转速的自动调节,即允许左右车轮以不同的转速旋转。
2 差速器的组成结构:差速器结构图1-差速器壳轴承;2和8-差速器壳体;3和5-调整垫片;4-半轴齿轮(两个);6-行星齿轮(两个或四个);7-主减速器从动锥齿轮;9-行星齿轮轴。
3 差速器的工作原理和工作状态:行星齿轮的自转:差速器工作时,行星齿轮绕行星齿轮轴的旋转称为行星齿轮的自转;行星齿轮的公转:差速器工作时,行星齿轮绕半轴轴线的旋转称为行星齿轮的公转;(1)汽车直线行驶时,主减速器的从动锥齿轮驱动差速器壳旋转,差速器差驱动行星齿轮轴旋转,行星齿轮轴驱动行星齿轮公转,半轴齿轮在行星齿轮的夹持下同速同向旋转,此时,行星齿轮只公转,不自动,左右车轮和转速等于从动锥齿轮的转速。
目录1.绪论 02.总体方案 (1)3.主减速器设计 (2)3.1 主减速器结构形式的布置 (2)3.1.1主减速器的齿轮类型 (2)3.1.2主减速器的减速形式 (2)3.1.3主减速器主、从动锥齿轮的支承方案 (3)3.2 主减速器基本参数选择与计算载荷的确定 (4)3.2.1锥齿轮主要参数的选择 (4)3.2.2主减速器齿轮计算载荷的确定 (5)3.3 主减速器锥齿轮强度计算及校核 (8)3.4 主减速器锥齿轮轴承的载荷计算 (10)3.5 主减速器锥齿轮的材料 (14)4.差速器设计 (14)4.1 差速器结构形式选择 (14)4.2 普通锥齿轮式差速器齿轮设计 (15)4.2.1差速器齿轮主要参数选择 (15)4.2.2差速器齿轮强度计算及校核 (16)4.3 差速器齿轮的材料 (16)5.车轮传动装置设计 (16)5.1 结构形式分析 (16)5.2 半轴计算 (17)5.3 半轴可靠性设计 (18)5.4 半轴的结构设计 (19)6.驱动桥壳设计 (19)6.1 驱动桥壳结构方案分析 (20)6.2 驱动桥壳强度计算及校核 (20)7.花键设计与计算 (22)7.1 花键结构的形式及参数选择 (22)7.2 花键校核 (22)8.驱动桥的结构元件 (23)8.1支撑轴承的预紧 (23)8.2锥齿轮啮合调整 (23)8.3润滑 (24)结论 (25)参考文献 (25)摘要翻译..................................................... 错误!未定义书签。
轻型卡车驱动桥设计摘要:驱动桥作为汽车四大总成之一,它的性能的好坏直接影响整车性能,而对于载重汽车显得尤为重要。
当采用大功率发动机输出大的转矩以满足目前载重汽车的快速、重载的高效率、高效益的需要时,必须要搭配一个高效、可靠的驱动桥。
所以采用传动效率高的单级减速驱动桥已成为未来重载汽车的发展方向。
第五章驱动桥组成:主减速器、差速器、半轴、轮毂及桥壳。
功用:①降速增矩;②改变转矩传递方向;③差速作用。
类型:▲非断开式驱动桥;▲断开式驱动桥。
1.非断开式驱动桥如CA1091,EQ1090E,CA1040等车的后桥。
参见图5-1a。
特点:①整体式桥壳;②两侧半轴、驱动轮在横向平面内无相对运动;③非独立悬架(整个车桥通过弹性元件与车架相联)。
2.断开式驱动桥如CA7220、Audi100等轿车常用的转向驱动桥。
参见图5-1b。
特点:①断开式桥壳(主减速器固装于车架上,半轴为万向传动轴);②两驱动轮相对车架彼此独立上、下跳动。
③独立悬架(两侧车轮各自单独与车架由弹簧相联)。
§5.1 主减速器分类:▲按齿轮副个数分:单级:如EQ1090E,CA1040,CA7220,Audi100等。
双级:①一、二级齿轮均于主减速器壳体内,如CA1091;②一级齿轮于主减速器壳体内,二级为轮边减速。
多用于矿用车如SH380A,Terex33-07、33-11E,BJZ3530等。
▲按传动比档数分:①单速:i o为单一定值,目前常见车大都是此类;②i o为2个值(即主减速器有2个档)。
▲按齿轮结构型式分:圆柱齿轮,螺旋(曲线)锥齿轮,准双曲面齿轮。
▲常用的齿轮型式:1)斜齿圆柱齿轮特点是主从动齿轮轴线平行。
2)曲线齿锥齿轮特点是主从动锥齿轮轴线垂直且相交。
3)准双曲面锥齿轮特点是主从动锥齿轮轴线垂直但不相交,有轴线偏移。
▲圆锥齿轮齿轮旋向:常用主动小齿轮左旋:从小端向大端看齿向线向左偏斜;从动大齿轮右旋:从小端向大端看齿向线向右偏斜。
一.单级主减速器轿车,轻、中型货车用之。
≤7。
一般i下面以EQ1090E车为例,其i o=Z2/Z1=38/6=6.33 。
▲动力传递过程:见图5-2,动力从万向传动装置连接的叉形凸缘11→主动锥齿轮18→从动锥齿轮→差速器壳5→行星齿轮十字轴24→行星齿轮21→两半轴齿轮23→两半轴→…。
题目驱动桥一、填空:1. 驱动桥一般是由()、()、()、()。
2. 驱动桥的功用是将由万向传动装置传来的发动机转矩传给驱动车轮,并经()、改变()方向,使汽车行驶,而且允许左右驱动车轮以不同的转速旋转。
3. 对于发动机横向布置的汽车,单级主减速器采用一对()齿轮即可。
4. 从动锥齿轮的调整包括从动锥齿轮()的调整和主、从动锥齿轮之间的()的调整。
5. 为了提高汽车通过坏路面的能力,可采用()差速器。
6. 防滑差速器是特意增加内摩擦力矩,使转的慢的驱动轮(驱动桥)获得的转矩(),转的快的驱动轮(驱动桥)获得的转矩(),提高了汽车通过坏路面的能力。
7. 驱动桥壳既是传动系的组成部分,同时也是()的组成部分。
8. 托森差速器由差速器壳、()个蜗轮、()根蜗轮轴、()个直齿圆柱齿轮及前、后轴蜗杆组成。
二、选择:1. 驱动桥行驶时驱动桥有异响,脱档滑行时异响减弱或消失说明:A 圆锥和圆柱主从动齿轮、行星齿轮、半轴齿轮啮合间隙过大B主动锥齿轮轴承松旷C差速器行星齿轮半轴齿轮不匹配 D 车轮轮毂轴承损坏,轴承外圈松动2. 汽车直线行驶时无异响,当汽车转弯时驱动桥处有异响说明:A主、从动锥齿轮啮合不良B差速器行星齿轮半轴齿轮不匹配,使其啮合不良C制动鼓内有异物D齿轮油加注过多3. 行驶时驱动桥有异响,脱档滑行时亦有异响说明:A半轴齿轮花键槽与半轴的配合松旷B主动圆柱齿轮轴承松旷C差速器十字轴轴颈磨损D轴承处过热三、判断:1. 整体式驱动桥与非独立悬架配用。
( )2. 断开式驱动桥与非独立悬架配用。
( )3. 要先进行轴承预紧度的调整,再进行锥齿轮啮合的调整。
( )4. 锥齿轮啮合调整时,啮合间隙首要,啮合印痕次要,否则将加剧齿轮磨损。
( )5. 汽车直线行驶时,两半轴存在转速差。
()6. 汽车转向行驶时两侧驱动车轮所受到的地面阻力相同。
( )7. 普通锥齿轮差速器的转矩分配特性:即转矩等量分配特性。
( )8. 全浮式半轴支承半轴只在两端承受转矩,不承受其他任何反力和弯矩。
汽车驱动桥-主减速器、差速器、半轴和驱动桥壳知识主减速器驱动桥由主减速器、差速器、半轴和驱动桥壳等⼏部分组成,其功⽤是将万向传动装置传来的发动机转矩传给驱动车轮,实现降速以增⼤转矩。
主减速器是汽车传动系中减⼩转速、增⼤扭矩的主要部件。
对发动机纵置的汽车来说,主减速器还利⽤锥齿轮传动以改变动⼒⽅向。
汽车正常⾏驶时,发动机的转速通常在2000⾄3000r/min左右,如果将这么⾼的转速只靠变速箱来降低下来,那么变速箱内齿轮副的传动⽐则需很⼤,⽽齿轮副的传动⽐越⼤,两齿轮的半径⽐也越⼤,换句话说,也就是变速箱的尺⼨会越⼤。
另外,转速下降,⽽扭矩必然增加,也就加⼤了变速箱与变速箱后⼀级传动机构的传动负荷。
所以,在动⼒向左右驱动轮分流的差速器之前设置⼀个主减速器,可使主减速器前⾯的传动部件如变速箱、分动器、万向传动装置等传递的扭矩减⼩,也可变速箱的尺⼨质量减⼩,操纵省⼒。
现代汽车的主减速器,⼴泛采⽤螺旋锥齿轮和双曲⾯齿轮。
双曲⾯齿轮⼯作时,齿⾯间的压⼒和滑动较⼤,齿⾯油膜易被破坏,必须采⽤双曲⾯齿轮油润滑,绝不允许⽤普通齿轮油代替,否则将使齿⾯迅速擦伤和磨损,⼤⼤降低使⽤寿命。
差速器驱动桥两侧的驱动轮若⽤⼀根整轴刚性连接,则两轮只能以相同的⾓速度旋转。
这样,当汽车转向⾏驶时,由于外侧车轮要⽐内侧车轮移过的距离⼤,将使外侧车轮在滚动的同时产⽣滑拖,⽽内侧车轮在滚动的同时产⽣滑转。
即使是汽车直线⾏驶,也会因路⾯不平或虽然路⾯平直但轮胎滚动半径不等(轮胎制造误差、磨损不同、受载不均或⽓压不等)⽽引起车轮的滑动。
车轮滑动时不仅加剧轮胎磨损、增加功率和燃料消耗,还会使汽车转向困难、制动性能变差。
为使车轮尽可能不发⽣滑动,在结构上必须保证各车辆能以不同的⾓速度转动。
通常从动车轮⽤轴承⽀承在⼼轴上,使之能以任何⾓速度旋转,⽽驱动车轮分别与两根半轴刚性连接,在两根半轴之间装有差速器。
这种差速器⼜称为轮间差速器。
多轴驱动的越野汽车,为使各驱动桥能以不同⾓速度旋转,以消除各桥上驱动轮的滑动,有的在两驱动桥之间装有轴间差速器。