小学数学 数阵图(三).教师版
- 格式:pdf
- 大小:928.40 KB
- 文档页数:8
知识要点数阵图就是将一些数按照一定要求排列而成的某种图形,有时简称数阵.常见的数阵图有以下三种:1.有一种数阵图,它们的特点是从一个中心出发,向外作了一些射线,我们把这种数阵图叫做辐射型数阵图.填辐射型数阵图的关键是确定中心数以及每条线段上的几个数的和,然后通过对各数的分析,进行试验填数求解.2.有一种数阵图,它的各边之间相互连接,形成封闭图形,我们称它们为“封闭型数阵图”.填这样的图形,主要是顶点数字,抓住条件提供的关系式,进行分析,用试验的方法确定顶点数以及各边上的数字之和,最后填出数阵图.3.有的数阵图既有辐射型数阵图的特点,又有封闭型数阵图的要求,所以叫做“复合型数阵图”.我们在思考数阵图问题时,首先要确定所求的和与关键数间的关系,再用试验的方法,找到相等的和与关键数字.数阵图的解题关键是找”重复数”。
解题步骤:⨯的形式。
一.从整体考虑,将要求满足相等的几个数字和全部相加,一般为n S二.从个体考虑,分别计算每一个位置数字相加的次数,将比较特殊的(多加或少加几次)位置数字用未知数表示,全部相加,一般为题目所给全部数字和⨯一般位置数字相加次数±特殊位置数字和⨯多加或少加次数的形式。
三.根据整体与个体的关系,列出等式即⨯=题目所给全部数字和⨯一般位置数字相加次数±特殊位置数字和⨯多加或少加次数。
n S四.根据数论知识即整除性确定特殊位置数的取值及相对应的S值。
五.根据确定的特殊位置数字及S值进行数字分组及尝试。
放射型老师带领同学们一起去参加数学灯谜会,同学们在里面玩的热火朝天,其中有个灯谜是这样的: 把5~1这五个数分别填在下图中的方格中,使得横行三数之和与竖列三数之和都等于9.那么应该怎么填呢?【分析】1234515++++=,92153⨯-=,可见中间的重叠数为3。
如此可得填法如右上图。
小猴丁丁和当当一起玩数阵游戏,他们在地上画了个如图所示的数阵,丁丁出题,它在最中间的圆圈中写了数字5,要求当当把4~1这四个数填入剩下的四个○里,使两条直线上的三个数之和相等.你能帮当当解决这道题吗?【分析】根据题意可知两条直线上的三个数的和为(123455)210+++++÷=,在剩下的四个数中14235+=+=,可得填法如右上图。
第六讲数阵图教学目标数阵图问题千变万化,一般没有特定的解法,往往需要综合运用掌握的各种数学知识来解决问题。
本讲除了要讲授填数真阵图的主要技巧,还有以下注意点:1. 引导学生从整体到局部对问题进行观察和判断;2. 教授巧妙利用容斥原理、余数的性质、整体性质的数学方法;3. 锻炼学生利用已知信息枚举,尝试的能力;4. 培养学生综合运用各种数学知识,分析问题,找问题关键,解决问题的能力。
经典精讲数阵图问题千变万化,这一类问题要求数阵中填入了一些数以后,能保证数阵中特定关系线(或关系区域)上的数的和相等,解决这类问题可以按以下步骤解决问题:第一步:区分数阵图中的普通点(或方格),和交叉点(方格)第二步:在数阵图的少数关键点(一般是交叉点)上设置未知数,计算各个点与该点被重复计算次数之积得和得代数式,即数阵图关系线(关系区域)上喝的中和,这个合适关系线(关系区域)的个数的整数倍。
第三步:判断少数关键点上可以填入的数的余数性质,并得出相应的数阵图关系线(关系区域)和。
第四步:运用已经得到的信息进行尝试:数阵图还有一类题型比较少见,解决这一类问题需要理清数阵中数与数之间的相关关系,找出问题关键, 基本类型的数阵图【例1】 将1~6填入左下图的六个○中,是三角形每条边上的三个数之和都等于k ,请指出k 的取值范围。
162435 163254 254163 435162【分析】设三角形三个顶点的数字之和为s ,因为每个顶点属于两条边公有,所以把三条边的数字和加起来,等于将1至6加一遍,同时将三个顶点数字多加一遍,于是有(1+2+3+4+5+6)+ s = 3k ,化简后为213S k +=。
由于s 是三个数之和,故最小为1+2+3=6,最大为4+5+6=15,由此求出912k ≤≤。
s 和k 有四组取值:96k s =⎧⎨=⎩ 109k s =⎧⎨=⎩ 1112k s =⎧⎨=⎩ 1215k s =⎧⎨=⎩ 通过实验,每组取值都相应一种填数方法(见右上图)。
四年级数学数阵图(三)解说数阵问题是多种多样的,解题方法也是多种多样的,这就需要我们依据题目条件灵巧解题。
例 1 把 20 之内的质数分别填入下列图的一个○中,使得图顶用箭头连结起来的四个数之和都相等。
剖析与解:由上图看出,三组数都包含左、右两头的数,因此每组数的中间两数之和必定相等。
20 之内共有2,3,5,7,11,13,17,19 八个质数,两两之和相等的有5+19= 7+ 17=11+13,于是获得下列图的填法。
例 2 在右图的每个方格中填入一个数字,使得每行、每列以及每条对角线上的方格中的四个数字都是 1,2,3,4。
剖析与解:如左下列图所示,受列及对角线的限制, a 处只好填 1,从而 b 处填 3;从而推知 c 处填 4, d 处填 3, e 处填 4,右下列图为填好后的数阵图。
例 3 将 1~8 填入左下列图的○内,要求依据自然数次序相邻的两个数不可以填入有直线连结的相邻的两个○内。
剖析与解:因为中间的两个○各自只与一个○不相邻,而 2~ 7 中的任何一个数都与两个数相邻,因此这两个○内只好填 1 和 8。
2 只好填在与 1 不相邻的○内, 7 只好填在与 8 不相邻的○内。
其他数的填法见右上图。
例 4 在右图的六个○内各填入一个质数(可取同样的质数),使它们的和等于 20,并且每个三角形(共 5 个)极点上的数字之和都相等。
剖析与解:因为大三角形的三个极点与中间倒三角形的三个极点正好是图中的六个○,又因为每个三角形极点上的数字之和相等,因此每个三角形极点上的数字之和为 20÷2= 10。
10 分为三个质数之和只好是 2+3+5,由此获得右图的填法。
例 5 在右图所示立方体的八个极点上标出 1~9 中的八个,使得每个面上四个极点所标数字之和都等于 k,并且 k 不可以被未标出的数整除。
剖析与解:设未被标出的数为a,则被标出的八个数之和为1+2++ 9-a =45-a 。
数阵图与数字谜知识要点解决数阵类问题可以采取从局部到整体再到局部的方法入手:第一步:区分数阵图中的普通点(或方格)和关键点(或方格);第二步:在数阵图的少数关键点(一般是交叉点)上设置未知数,计算这些关键点与相关点的数量关系,得到关键点上所填数的范围;第三步:运用已经得到的信息进行尝试.这个步骤并不是对所有数阵题都适用,很多数阵题更需要对数学方法的综合运用.数字谜问题往往综合了数字的整除特征、质数与合数、分解质因数、个位数字、余数、分数与小数互化、方程、估算、找规律等题型,因此要求同学们能够很好地掌握上述知识点,并加以灵活运用.数字谜一般分为横式数字谜和竖式数字谜.横式数字谜经常和数论里面的知识结合考察,有些时候也可以转化为竖式数字谜;竖式数字谜通常有如下突破口:末位和首位、进位和借位、个位数字、位数的差别等.数字谜的常用分析方法有:个位数字分析法、高位数字分析法、数字大小估算分析法、进位错位分析法、分解质因数法、奇偶分析法等.数论知识【例1】(第一届“华罗庚金杯”少年数学邀请赛决赛一试)如图,4个小三角形的顶点处有6个圆圈。
如果在这些圆圈中分别填上6个质数,它们的和是20,而且每个小三角形3个顶点上的数之和相等。
问这6个质数的积是多少?【分析】 设每个小三角形三个顶点上的数的和都是S ,4个小三角形的和S 相加时,中间三角形每个顶点上的数被算了3次,即多算了2次,所以 4220S S =+,即10S =这样,每个小三角形顶点上出现的三个质数只能是2,3,5,从而六个质数是2,2,3,3,5,5,它们的积是:223355900⨯⨯⨯⨯⨯=【例2】 一个整数乘以13后,乘积的最后三位数是123,这样的整数中最小的是多少? 【分析】 方法一:由于13的倍数满足其后三位与前面隔开后,差是13的倍数。
1231396÷=L L ,所以123与6的差是13的倍数,所以6123一定是13的倍数,且为满足条件的最小自然数。
1. 了解数阵图的种类2. 学会一些解决数阵图的解题方法3. 能够解决和数论相关的数阵图问题.一、数阵图定义及分类:1. 定义:把一些数字按照一定的要求,排成各种各样的图形,这类问题叫数阵图.2. 数阵是一种由幻方演变而来的数字图.数阵图的种类繁多,这里只向大家介绍三种数阵图:即封闭型数阵图、辐射型数阵图和复合型数阵图. 3.二、解题方法:解决数阵类问题可以采取从局部到整体再到局部的方法入手: 第一步:区分数阵图中的普通点(或方格)和关键点(或方格);第二步:在数阵图的少数关键点(一般是交叉点)上设置未知数,计算这些关键点与相关点的数量关系,得到关键点上所填数的范围;第三步:运用已经得到的信息进行尝试.这个步骤并不是对所有数阵题都适用,很多数阵题更需要对数学方法的综合运用.数阵图与数论【例 1】 把0—9这十个数字填到右图的圆圈内,使得五条线上的数字和构成一个等差数列,而且这个等差数列的各项之和为55,那么这个等差数列的公差有种可能的取值.【考点】数阵图与数论 【难度】3星 【题型】填空 【关键词】迎春杯,三年级,初赛,第8题 【解析】 设顶点分别为A 、B 、C 、D 、E ,有45+A +B +C +D +E =55,所以A +B +C +D +E =10,所以A 、B 、C 、D 、E 分别只能是0-4中的一个数字.则除之外的另外5个数(即边上的)为45-10=35.设所形成的等差数列的首项为a 1,公差为d .利用求和公式5(a 1+a 1+4d )2=55, 得a 1+2d =11,故大于等于0+1+5=6,且为奇数,只能取7、9或11,而对应的公差d 分别为2、1和0.经试验都能填出来所以共有3中情况,公差分别为2、1、0.【答案】2种可能【例 2】 将1~9填入下图的○中,使得任意两个相邻的数之和都不是3,5,7的倍数.例题精讲知识点拨教学目标5-1-3-3.数阵图【考点】数阵图与数论【难度】4星【题型】填空【解析】根据题意可知1的两边只能是3与7;2的两边只能是6与9;3的两边只能是1、5或8;4的两边只能是7与9.可以先将3—1—7--写出来,接下来7的后面只能是4,4的后面只能是9,9的后面只能是2,2的后面只能是6,可得:3—1—7—4—9—2—6--,还剩下5和8两个数.由于6814+=是7的倍数,所以接下来应该是5,这样可得:3—1—7—4—9—2—6—5—8—3.检验可知这样的填法符合题意.【答案】3—1—7—4—9—2—6—5—8—3【例 3】在下面8个圆圈中分别填数字l,2,3,4,5,6,7,8(1已填出).从1开始顺时针走1步进入下一个圆圈,这个圆圈中若填n(n≤8)。
数阵图(一)在神奇的数学王国中,有一类非常有趣的数学问题,它变化多端,引人入胜,奇妙无穷。
它就是数阵,一座真正的数字迷宫,它对喜欢探究数字规律的人有着极大的吸引力,以至有些人留连其中,用毕生的精力来研究它的变化,就连大数学家欧拉对它都有着浓厚的兴趣。
那么,到底什么是数阵呢?我们先观察下面两个图:左上图中有3个大圆,每个圆周上都有四个数字,有意思的是,每个圆周上的四个数字之和都等于13。
右上图就更有意思了,1~9九个数字被排成三行三列,每行的三个数字之和与每列的三个数字之和,以及每条对角线上的三个数字之和都等于15,不信你就算算。
上面两个图就是数阵图。
准确地说,数阵图是将一些数按照一定要求排列而成的某种图形,有时简称数阵。
要排出这样巧妙的数阵图,可不是一件容易的事情。
我们还是先从几个简单的例子开始。
例1把1~5这五个数分别填在左下图中的方格中,使得横行三数之和与竖列三数之和都等于9。
同学们可能会觉得这道题太容易了,七拼八凑就写出了右上图的答案,可是却搞不清其中的道理。
下面我们就一起来分析其中的道理,只有弄懂其中的道理,才可能解出复杂巧妙的数阵问题。
分析与解:中间方格中的数很特殊,横行的三个数有它,竖列的三个数也有它,我们把它叫做“重叠数”。
也就是说,横行的三个数之和加上竖列的三个数之和,只有重叠数被加了两次,即重叠了一次,其余各数均被加了一次。
因为横行的三个数之和与竖列的三个数之和都等于9,所以(1+2+3+4+5)+重叠数=9+9,重叠数=(9+9)-(1+2+3+4+5)=3。
重叠数求出来了,其余各数就好填了(见右上图)。
试一试:练习与思考第1题。
例2把1~5这五个数填入下页左上图中的○里(已填入5),使两条直线上的三个数之和相等。
分析与解:与例1不同之处是已知“重叠数”为5,而不知道两条直线上的三个数之和都等于什么数。
所以,必须先求出这个“和”。
根据例1的分析知,两条直线上的三个数相加,只有重叠数被加了两遍,其余各数均被加了一遍,所以两条直线上的三个数之和都等于[(1+2+3+4+5)+5]÷2=10。
第4讲数阵图初步内容概述各种较为基本的数阵图问题,了解重数的概念,并以此进行分析;学会分析特殊位置上的数值;某些情况下还需要考虑对称性。
典型问题兴趣篇1. 在图4-1中的三个圆圈内填入三个不同的自然数,使得三角形每条边上的三个数之和都等于11.【答案】:【分析与解】:先如下图将空白处标上字母:根据题意:a=11-2-5=4;b=11-4-1=6;c=11-2-6=3.2. 请分别将1,2,4,6这四个数填在图4-2中的各空白区域内,使得每个圆圈里四个数之和都等于15.【答案】:【分析与解】:如下图,先将空白区域标上字母根据题意:上面圆内四个数之和等于15,可得a+d=15-5-7=3=1+2;同理,b+d=15-5-3=7=1+6;c+d=15-7-3=5=1+4。
由于d属于三个圆的公共部分,经对比发现可得:d=1;a=2;b=6;c=4.3. 如图4-3所示,请在三个空白圆圈内填入三个数,使得每条直线上三个数之和都相等。
【答案】:【分析与解】:如下图:因为8+9+a=b+a+7可得b=10;那么每条线的和=8+3+10=21;那么a=21-8-9=4;c=21-8-7=6.4. 把1至8分别填入图4-4的八个方格内,使得各列上两个数之和都相等,各行四个数之【答案】:1 7 6 48 2 3 5【分析与解】:因为1+2+3+……+8=36;所以每行的和等于36÷2=18;每列的和=36÷4=9;从列入手,可将1~8这八个数分为和等于9的四组:1+8=2+7=3+6=4+5。
再调整使行和等于18:我们发现1+4=2+3;8+5=6+7.经过调整可得答案。
5. 把1至12分别填入图4-5的圆圈内,使图中三个小三角形三条边上的六个数之和相等。
【答案】:【分析与解】:经过观察发现,此图是个具有对称性的图案;若使三个小三角形的三边之和相等;只需要使得图中每条边上的两个数之和相等即可。
因此可将1~12对称性地分为六组如下:1+12=2+11=3+10=4+9=5+8=6+7.6. 在如图4-6所示的3×3方格表内填入1、2、3这三个数字各三次,使得每行每列以及两条对角线上的三个数字之和都相等。
--------数阵图(★★★★★)1.学习简单的数阵图;2.学习解决简单的数学问题。
知识结构我们在以前已经学习过辐射型和封闭型数阵,其解题的关键在于“重叠数”。
本讲和下一讲,我们学习三阶方阵,就是将九个数按照某种要求排列成三行三列的数阵图,解题的关键仍然是“重叠数”。
我们先从一道典型的例题开始。
(★★★★★)把20以内的质数分别填入下图的一个○中,使得图中用箭头连接起来的四个数之和都相等。
分析与解:由上图看出,三组数都包括左、右两端的数,所以每组数的中间两数之和必然相等。
20以内共有2,3,5,7,11,13,17,19八个质数,两两之和相等的有5+19=7+17=11+13,于是得到下图的填法。
(★★★★★)在右图的每个方格中填入一个数字,使得每行、每列以及每条对角线上的方格中的四个数字都是1,2,3,4。
分析与解:如左下图所示,受列及对角线的限制,a处只能填1,从而b处填3;进而推知c处填4,d处填3,e处填4,……右下图为填好后的数阵图。
(★★★★★)将1~8填入左下图的○内,要求按照自然数顺序相邻的两个数不能填入有直线连接的相邻的两个○内。
分析与解:因为中间的两个○各自只与一个○不相邻,而2~7中的任何一个数都与两个数相邻,所以这两个○内只能填1和8。
2只能填在与1不相邻的○内,7只能填在与8不相邻的○内。
其余数的填法见右上图。
(★★★★★)在右图的六个○内各填入一个质数(可取相同的质数),使它们的和等于20,而且每个三角形(共5个)顶点上的数字之和都相等。
分析与解:因为大三角形的三个顶点与中间倒三角形的三个顶点正好是图中的六个○,又因为每个三角形顶点上的数字之和相等,所以每个三角形顶点上的数字之和为20÷2=10。
10分为三个质数之和只能是2+3+5,由此得到右图的填法。
(★★★★★)在右图所示立方体的八个顶点上标出1~9中的八个,使得每个面上四个顶点所标数字之和都等于k,并且k不能被未标出的数整除。
5-1-3-3.数阵图教学目标1.了解数阵图的种类2.学会一些解决数阵图的解题方法3.能够解决和数论相关的数阵图问题知识点拨.一、数阵图定义及分类:1.定义:把一些数字按照一定的要求,排成各种各样的图形,这类问题叫数阵图.2.数阵是一种由幻方演变而来的数字图.数阵图的种类繁多,这里只向大家介绍三种数阵图:即封闭型数阵图、辐射型数阵图和复合型数阵图.3.二、解题方法:解决数阵类问题可以采取从局部到整体再到局部的方法入手:第一步:区分数阵图中的普通点(或方格)和关键点(或方格);第二步:在数阵图的少数关键点(一般是交叉点)上设置未知数,计算这些关键点与相关点的数量关系,得到关键点上所填数的范围;第三步:运用已经得到的信息进行尝试.这个步骤并不是对所有数阵题都适用,很多数阵题更需要对数学方法的综合运用.例题精讲数阵图与数论【例1】把0—9这十个数字填到右图的圆圈内,使得五条线上的数字和构成一个等差数列,而且这个等差数列的各项之和为55,那么这个等差数列的公差有种可能的取值.【考点】数阵图与数论【难度】3星【题型】填空【关键词】迎春杯,三年级,初赛,第8题【解析】设顶点分别为A、B、C、D、E,有45+A+B+C+D+E=55,所以A+B+C+D+E=10,所以A、B、C、D、【解析】E分别只能是0-4中的一个数字.则除之外的另外5个数(即边上的)为45-10=35.设所形成的等差数列的首项为a1,公差为d.利用求和公式5(a1+a1+4d)2=55,得a1+2d=11,故大于等于0+1+5=6,且为奇数,只能取7、9或11,而对应的公差d分别为2、1和0.经试验都能填出来所以共有3中情况,公差分别为2、1、0.【答案】2种可能【例2】将1~9填入下图的○中,使得任意两个相邻的数之和都不是3,5,7的倍数.【考点】数阵图与数论【难度】4星【题型】填空【解析】根据题意可知1的两边只能是3与7;2的两边只能是6与9;3的两边只能是1、5或8;4的两边只【解析】能是7与9.可以先将3—1—7--写出来,接下来7的后面只能是4,4的后面只能是9,9的后面只能是2,2的后面只能是6,可得:3—1—7—4—9—2—6--,还剩下5和8两个数.由于6814+=是7的倍数,所以接下来应该是5,这样可得:3—1—7—4—9—2—6—5—8—3.检验可知这样的填法符合题意.【答案】3—1—7—4—9—2—6—5—8—3【例3】在下面8个圆圈中分别填数字l,2,3,4,5,6,7,8(1已填出).从1开始顺时针走1步进入下一个圆圈,这个圆圈中若填n(n≤8)。
则从这个圆圈开始顺时针走n步进入另一个圆圈.依此下去,走7次恰好不重复地进入每个圆圈,最后进入的一个圆圈中写8.请给出两种填法.【考点】数阵图与数论【难度】4星【题型】填空【关键词】走美杯,5年级,决赛,第12题,15分【解析】按顺时针方向:1,2,5,3,8,7,4,6或1,5,2,4,8,6,7,3或1,6,2,3,8,5,7,4或1,6,4,2,8,7,5,3(答对任一种给6分,总得分不超过12)由于无论如何填8都是最后一个填写,而填之前,已经走过了28步,因为28÷8=3余4,即8永远只能在最底下的圆圈里。
顺推:试算,从1到8顺序填写发现可以,此时从1顺时针为1、2、5、3、8、7、4、6;逆推:8前面的一个填有2、3、5、6、7共5种可能。
假设为2,如上图,再往前一个数有3、4、5、7共4种可能,设为3,再前推一个数可能是4或6,设为4,…依次类并排除错误的选择,可得1、5、2、4、8、6、7、3。
【答案】1、5、2、4、8、6、7、3。
【例4】在圆的5条直径的两端分别写着1~10(如图)。
现在请你调整一部分数的位置,但保留1、10、5、6不动,使任何两个相邻的数之和都等于直径另一端的相邻两数之和(画在另一个圆上)。
【考点】数阵图与数论【难度】5星【题型】填空【关键词】走美杯,五年级,初赛,第4题【解析】共6种【答案】【例5】图中是一个边长为1的正六边形,它被分成六个小三角形.将4、6、8、10、12、14、16各一个填入7个圆圈之中.相邻的两个小正三角形可以组成6个菱形,把每个菱形的四个顶点上的数相加,填在菱形的中心A 、B 、C 、D 、E 、F 位置上(例如:a b g f A +++=).已知A 、B 、C 、D 、E 、F 依次分别能被2、3、4、5、6、7整除,那么a g d ⨯⨯=___________.【考点】数阵图与数论【难度】5星【题型】填空【关键词】迎春杯,六年级,初赛,第12题【解析】先考虑菱形顶点的和为3、6的倍数,7个数被3除的余数分别为1、0、2、1、0、2、1,可以得到中间数g =8或14,同样分析5的倍数,7的倍数,得到具体的填法(如图),a ⨯g ⨯d =4⨯8⨯10=320评注:采用余数分析法,找到关键数的填法。
【答案】320【例6】在如图所示的圆圈中各填入一个自然数,使每条线段两端的两个数的差都不能被3整除。
请问这样的填法存在吗?如存在,请给出一种填法;如不存在,请说明理由。
【考点】数阵图与数论【难度】4星【题型】填空【关键词】希望杯,六年级,二试,第18题,10分【解析】图中共有4个不同的数,每个数除以3的余数只可能有0、1、2三种,根据抽屉原理可知,这4个数中必然至少存在一对同余的数,那么这两个数的差必然为3的倍数,故不存在这样的填法。
【答案】不存在这样的填法【例7】如图ABC ∆被分成四个小三角形,请在每个小三角形里各填入一个数,满足下面两个要求:(1)任何两个有公共边的三角形里的数都互为倒数(如:23和32是互为倒数);(2)四个小三角形里的数字的乘积等于225。
则中问小三角形里的数是【考点】数阵图与数论【难度】3星【题型】填空【关键词】希望杯,六年级,初赛,第3题,6分【解析】四个小三角形共三对相邻三角形,这三对的积都是1,所以将这三对数乘起来,得到的积还是1,但其中中间的数被乘了3次,如果只乘1次那么积为225,所以中间的数是1 15 .【答案】1 15【例8】(2010年第8届走美杯3年级初赛第8题)2010年是虎年,请把1~11这11个数不重复的填入虎额上的“王”字中,使三行,一列的和都等于18【考点】复合型数阵图【难度】5星【题型】填空【关键词】走美杯,3年级,初赛【解析】三个答案均可三个交叉点数的和是:()12114186+++-⨯=,只能是6123=++。
剩下通过整数分拆即可得到如图的三种实质不同的答案【答案】【例9】将1~9这9个数字填入下图的9个圆圈内,使得每条线段两端上的两个数字之和各不相同(即可得到12个不同的和)。
【考点】数阵图与数论【难度】5星【题型】填空【关键词】走美杯,3年级,决赛,第4题,8分【解析】答案不唯一。
例如:【答案】【例10】在棋盘中,如果两个方格有公共点,就称为相邻的。
右图中A有3个相邻的方格,而B有8个相邻的方格。
图中每一个奇数表示与它相邻的方格中,偶数的个数(如3表示相邻的方格中有3个偶数),每个偶数表示与它相邻的方格中,奇数的个数(如4表示相邻的方格中有4个奇数)。
请在下面的4×4的棋盘中填数(至少有一个奇数),满足上面的要求。
【考点】数阵图与数论【难度】5星【题型】填空【关键词】走美杯,4年级,决赛,第12题,12分【解析】如右图【答案】答案不唯一【例11】在右图所示的5⨯5方格表的空白处填入适当的自然数,使得每行、每列、每条对角线上的数的和都是30。
要求:填入的数只有两种不同的大小,且一种是另一种的2倍。
【考点】复合型数阵图【难度】5星【题型】填空【关键词】走美杯,3年级,决赛,第12题,12分【解析】提示:设填入的较小的数为a,则较大的数为2a。
第一行要填的两数之和为16,最后一列要填的两数之和为8,由此知第一行填入了两个较大的数,第一列填入了两个较小的数。
较大的数为16÷2=8,较小的数为8÷2=4。
得到下图。
其余数容易填入。
【答案】【例12】请在右图所示4×4的正方形的每个格子中填入l 或2或3,使得每个2×2的正方形中所填4个数的和各不相同。
【考点】数阵图与数论【难度】4星【题型】填空【关键词】走美杯,4年级,决赛,第10题,12分【解析】【答案】答案不唯一【例13】请在8×8表格的每个格子中填人1或2或3,使得每行、每列所填数的和各不相同。
【考点】数阵图与数论【难度】4星【题型】填空【关键词】走美杯,决赛,5年级,决赛,第12题,10分【解析】答案不唯一【答案】【例14】在8×8表格的每格中各填入一个数,使得任何一个5×5正方形中25个数的平均数都大于3,而整个8×8表格中64个数的平均数都小于2.【考点】【难度】星【题型】填空【关键词】走美杯,5年级,决赛,第12题,15分【解析】如图所示,根据题意,在任何一个任何一个5×5正方形中的总和应该大于75,而整个的数之和要小于128,其中粗线格部分的在所有的5×5的正方形里都存在,我们要让它尽可能的大,同时让外边的尽可能的小,则外面的60个方格最小和为60,中间四个方格,应该小于68。
在每一个5×5的正方形内除去这4个,所有之和为21,则中间四个数之和应该大于54,即只要中间四个数的和在54到68之间即可。
如14+14+14+14.其他方格里均填写1.【答案】答案不唯一可以在粗线格里添14,其余方格添1【例15】将最小的10个合数填到图中所示表格的10个空格中,要求满足以下条件:(1)填入的数能被它所在列的第一个数整除(2)最后一行中每个数都比它上面那一格中的数大。
那么,最后一行中5个数的和最小是【考点】数阵图与数论【难度】4星【题型】填空【解析】【解析】最小的10个合数分别是4,6,8,9,10,12,14,15,16,18.这10个合数当中10和15一定是在5的下面,其中15在最后一行;4、8、14、16一定是在2和4下面,其中14一定在2的下面;剩下的6、9、12、18在3或6下面,其中9一定在3的下面,对2和4所在的列和3和6所在的列分别讨论.4、8、14、16,这四个数中最大的数16一定在最后一行,最小的数4一定在第二行,所以2和4所在的列中最后一行的数的和最小是16824+=,当14、16在2下面,4和8在4下面时成立;6、9、12、18,这四个数中最大的数18一定在最后一行,最小的数6一定在第二行,所以3和6所在的列中最后一行的数的和最小是18927+=,当12和18在6下面,6和9在3下面时成立.所以最后一行的5个数的和最小是24152766++=。