技术专家手把手教你计算放大器噪声系数
- 格式:pdf
- 大小:1.30 MB
- 文档页数:15
模拟技术知识课堂:噪声系数的计算及测量方法三于上面的式子。
根据噪声系数定义,F=Tn/290+1,F 是噪声因数(NF=10*log(F)),因而Y=ENR/F+1。
在这个公式中,所有变量均是线性关系,从这个式子可得到上面的噪声系数公式。
我们再次使用MAX2700 作为例子演示如何使用Y 因数法测量噪声系数。
装置图见图3。
连接HP346AENR 到RF 的输入。
连接28V 直流电压到噪声源头。
我们可以在频谱仪上监视输出噪声功率谱密度。
开/关直流电源,噪声谱密度从-90dBm/Hz 变到-87dBm/Hz。
所以Y=3dB。
为了获得稳定和准确的噪声功率谱密度读数,RBW/VBW 设置为0.3。
从表2 得到,在2GHz 时ENR=5.28dB,因而我们可以计算NF 的值为5.3dB。
以上讨论了测量射频器件噪声系数的三种方法。
每种方法都有其优缺点,适用于特定的应用。
表3 是三种方法优缺点的总结。
理论上,同一个射频器件的测量结果应该一样,但是由于射频设备的限制(可用性、精度、频率范围、噪声基底等),必须选择最佳的方法以获得正确的结果。
<CENTER style=“WORD-SPACING: 0px; FONT: 14px/25px 宋体, arial; TEXT-TRANSFORM: none; COLOR: rgb(0,0,0); TEXT-INDENT: 0px; WHITE- SPACE: normal; LETTER-SPACING: normal; Btips:感谢大家的阅读,本文由我司收集整编。
仅供参阅!。
放大电路噪声指标
放大器的由于放大器本身就有噪声,输出端的信噪比和输入端信噪比是不一样的,为此,使用噪声系数来衡量放大器本身的噪声水平
公式表示为:噪声系数NF=输入端信噪比/输出端信噪比,单位常用“dB”。
该系数表征放大器的噪声性能恶化程度的一个参量,并不是越大越好,它的值越大,说明在传输过程中掺入的噪声也就越大,反映了器件或者信道特性的不理想。
在放大器的噪声系数比较低的情况下,通常放大器的噪声系数用噪声温度(T)来表示。
放大电路不仅把输入端的噪声放大,而且放大电路本身也存在噪声。
所以,其输出端的信噪比必小于输入端信噪比。
在放大器中,内部噪声与外部噪声愈小愈好。
放大电路本身噪声越大,它的输出端信噪比越小于输入端信噪比,NF就越大。
当NF用分贝表示时
NF(dB)=10 lg(Po/ApPi)
Po表示输出端的总噪声功率,Pi表示信号源输入端噪声功率,Ap表示功率增益。
[1]噪声系数与噪声温度的关系为:T=(NF-1)T0或NF=T/T0+1 其中:T0-绝对温度(290K)。
2减小噪声的措施
(1)首选低噪放(2)引入负反馈来抑制噪声。
级联放大器噪声系数首先说下噪声系数的定义:一个放大器的噪声系数定义为输入端的信噪比与输出端的信噪比之比,//si niF so noP P N P P =,其中P 代表功率,S 代表信号,N 代表噪声,i 代表输入端,o 代表输出端。
书中有一句话很重要,也很容易被大家忽视:“N F 数值的大小一方面取决于被研究网络本身的噪声电平,另一方面也与采用的噪声源很有关系,这就容易造成同一网络因采用不同的噪声源而具有不同的数值,从而给实用带来了困难。
所以规定噪声源是很重要的。
一般是将信号源内阻的热噪声作为标准噪声源,此时,P ni 就是取自信号源内阻的热噪声功率。
” 大家应该有些概念了吧,一个网络的噪声系数定义为输入端的信噪比与输出端的信噪比之比,还应该加上一个限定条件就是每一个网络的P ni 都应该是同一个固定的值,记为P nref (这个是推级联网络噪声系数公式的重点)。
以下推导级联网络噪声系数公式: 以最简单的两级级联系统为例: 如图所示,令输入第一级系统的噪声功率为P nref (信号源内阻的热噪声功率),则根据噪声系数的定义为111//si nref F so no P P N P P =,级联系统的噪声系数为//si nref F so noP P N P P =,但是注意222//si ni F so noP P N P P ≠,(因为噪声系数的定义中要求输入噪声必须为P nref )注:第一级网络的输出信号及噪声功率与第二级网络的输入信号及噪声功率相同。
即P so1= P si2,P no1= P ni2。
一个放大器对输入信号及噪声产生的作用就是将其分别放大G 倍后,再在输出端引入放大器本身产生的噪声,这个噪声与放大器的增益G 无关。
所以放大器的噪声系数还可以表示为:'2'22//()si nrefF sinref P P N P G P G 2δ=⋅⋅+,解得222(1nref F P G N )δ=⋅−111//()si nrefF si nref P P N PG P G 1δ=⋅⋅+,解得111(1nref F P G N )δ=⋅−注:从以上两个式子并不能认为δ与放大器的增益有关11221///si nrefso no si ni F P P P P P P N ==,2212122221221122/()si so si so no ni no nref P G P G P G G P P P G P G P G G δδδ⋅⋅⋅⋅===δ⋅+⋅+⋅+⋅+将12,δδ代入上式,并考虑到//si nref F so noP P N P P =,即可得到级联放大器的噪声系数公式:2111F F F N N NG −=+。
射频级联噪声系数nf计算公式
射频级联噪声系数(NF)是衡量射频系统噪声性能的重要指标,它表示了整个射频系统中噪声的增益。
NF的计算公式如下:
NF = 10 log10( F1 + (F2-1)/G1 + (F3-1)/(G1G2) + ... + (Fn-1)/(G1G2...Gn-1) )。
其中,F1, F2, ..., Fn 分别代表每个级联元件的噪声系数,
G1, G2, ..., Gn-1 分别代表每个级联元件的增益。
这个公式是根
据级联放大器的噪声性能计算得出的。
在实际应用中,需要根据具
体的电路结构和元件参数来进行计算。
另外,有时候也会用噪声温度来表示系统的噪声性能。
噪声温
度和NF 之间的关系是通过以下公式计算的:
NF = 10 log10(1 + (T/NF0))。
其中,T 代表系统的总噪声温度,NF0 代表参考噪声系数(通
常为1dB)。
这个公式用于将噪声温度转换为噪声系数,便于进行
系统噪声性能的分析和比较。
总的来说,NF的计算公式是根据级联元件的噪声系数和增益来计算的,它是评估射频系统噪声性能的重要参数之一。
在实际应用中,需要根据具体的电路结构和元件参数来进行准确的计算。
噪声系数噪声参数
噪声系数是一种用来衡量电子设备或系统内部噪声对信号的影响的参数,通常用分贝(dB)表示。
它是输入信噪比与输出信噪比的比值,即:噪声系数N F =输入端信噪比/输出端信噪比。
在放大器的噪声系数比较低的情况下,通常放大器的噪声系数用噪声温度(T)来表示。
放大电路不仅把输入端的噪声放大,而且放大电路本身也存在噪声。
所以,其输出端的信噪比必小于输入端信噪比。
在放大器中,内部噪声与外部噪声愈小愈好。
放大电路本身噪声越大,它的输出端信噪比越小于输入端信噪比,N F就越大。
如需获取更多关于“噪声系数”的信息,建议查阅相关文献或咨询物理学领域专家。
噪声系数计算方法噪声系数计算方法研究噪声的目的在于如何减少它对信号的影响。
因此,离开信号谈噪声是无意义的。
从噪声对信号影响的效果看,不在于噪声电平绝对值的大小,而在于信号功率与噪声功率的相对值,即信噪比,记为S/N(信号功率与噪声功率比)。
即便噪声电平绝对值很高,但只要信噪比达到一定要求,噪声影响就可以忽略。
否则即便噪声绝对电平低,由于信号电平更低,即信噪比低于1,则信号仍然会淹没在噪声中而无法辨别。
因此信噪比是描述信号抗噪声质量的一个物理量。
1 噪声系数的定义要描述放大系统的固有噪声的大小,就要用噪声系数,其定义为设Pi为信号源的输入信号功率,Pni为信号源内阻RS产生的噪声功率,Po和Pno分别为信号和信号源内阻在负载上所产生的输出功率和输出噪声功率,Pna表示线性电路内部附加噪声功率在输出端的输出。
已知噪声功率是与带宽B相联系的。
噪声系数与输入信号大小无关。
定义:Pni为信号源内阻Rs的最大输出功率,为kTB噪声系数的大小与四端网络输入端的匹配情况无关噪声系数的定义只适用于线性或准线性电路信噪比与负载的关系设信号源内阻为RS,信号源的电压为US(有效值),当它与负载电阻RL相接时,在负载电阻RL上的信噪比计算如下:在负载两端的信噪比结论:信号源与任何负载相接本不影响其输入端信噪比,即无论负载为何值,其信噪比都不变,其值为负载开路时的信号电压平方与噪声电压均方值之比。
2. 噪声系数的计算用额定功率和额定功率增益表示的噪声系数放大器输入信号源电路如图所示。
任何信号源加上负载后,其信噪比与负载大小无关,信噪比均为信号均方电压(或电流)与噪声均方电压(或电流)之比。
放大器的噪声系数NF为Pasi和Pao分别为放大器的输入和输出额定信号功率,Pani和Pano分别为放大的输入和输出额定噪声功率,Gpa为放大器的额定功率增益。
额定功率, 又称资用功率或可用功率, 是指信号源所能输出的最大功率, 它是一个度量信号源容量大小的参数, 是信号源的一个属性, 它只取决于信号源本身的参数——内阻和电动势, 与输入电阻和负载无关, 如图所示。
导读] 本文简要介绍了两种放大器架构的噪声系数计算,包括inverting,non-inverting 架构的噪声系数计算,并提供计算小工具。
关键词:噪声系数放大器
1. 引言
在各种放大器使用的场合,我们时常需要计算到放大器,却没有一个直观的方式来看放大器这一级对链路噪声的影响。
本文讨论了各种放大器架构下,放大器的噪声系数的计算方式。
2. 放大器噪声指标
电子元件应用中,常见如下5 种噪声来源:
1. 散弹噪声(shot noise,白噪声,在频谱中表现为平坦的)
2. 热噪声(thermal noise,白噪声,在频谱中表现为平坦的)
3. 闪烁噪声(flicker noise,1/f 噪声)
4. 突发噪声(burst noise,脉冲噪声)
5. 雪崩噪声(Avalanche noise,反向击穿时才出现的噪声)
基本上每个放大器都有输入电压噪声和输入电流噪声两个指标。
在频域,通常其单位用nV/rtHz,和pA/rtHz 来表征。
如下图:
Figure 1 输入电压噪声和电流噪声曲线图例
按噪声种类来分,其大致贡献在不同的频段如下:
Figure 2 噪声种类分布图
如果把所有电容,电感都看做无噪声的器件,一个普通的放大器的输出噪声按主要的贡献可以按如下图所示:
Figure 3 放大器噪声分量分解
根据这个估计,可以得到如下电阻值的电压噪声:
在输出的噪声中,上图的各个分量其贡献如下:
输出的噪声是这些分量的均方和:
Figure 4 放大器电压噪声等效输出模型
同理,对上式中的第4 项,负端的电流噪声,也可以建立这样的模型:
Figure 5 放大器电流噪声等效输出模型
3. 信噪比计算
以上的计算还仅限于噪声谱密度的计算,在实际应用中其实主要要关注的是信噪比,这就要引入噪声计算中很重要的一点:带宽。
所以还需要考虑到带宽积分后的总噪声。
在得到一定带宽内的电压噪声密度后,需要把电压噪声换算成功率,才能进行积分计算,而不能直接把电压噪声直接积分,如下:假设我们已知一个放大器的电压噪声密度为5nV/rtHz,如果要计算10Hz 以内的积分噪声,则按如下方式计算:
Figure 6 通过噪声谱密度计算综合噪声
如我们上面所述,放大器的噪声分布是分区域的,如果再算上通道的滤波效应,计算积分噪声的步骤如下:
Figure 7 输入电压噪声及电流噪声谱密度频率分布图1. 1/f 噪声区域(en1/f)
Figure 8 1/f 噪声
Figure 9 平坦带噪声
以上的电路只是一个运放的通用模型,实际应用的场景下,运放的配置可能千差万别,可能可以是inverting 输入形式,也可能是non-inverting 输入的形式,还可能是全差分的运放形式。
且实际应用的时候,运放可能作为放大器,也可能作为ADC 驱动器,我们可能不仅关心运放等效输出的噪声有多大,同时也会关注运放这一级对整条链路的噪声恶化有多少,也就是运放的噪声系数。
下面我们就对三种形式的运放: inverting 输入运放,和Non-Inverting 输入运放进行分别的计算。
4. 放大器噪声系数计算
4.1 Inverting 输入运放噪声系数计算
假定:
计算出总的输出噪声如下:
4.2 Non-Inverting 输入运放噪声系数计算
同样的计算方法,假定一个Non-Inverting 电路如下:
Figure 13 Non-Inverting 放大器噪声模型
根据如下信噪比计算公式:
5. 案例分析
由附件里的计算工具可以得到:Rs=50 Ohm,
Rg=80 Ohm
Rf=2.4 KOhm
RM=133 Ohm
RT=116 Ohm
此时算上源阻抗后的信号增益是-15V/V,
由计算工具可以得到,此时的NF=4.6dB
更改配置为Non-inverting 输入,如下:
Figure 15 Non-inverting 放大器输入电路
Rs=50 Ohm,
RT=50 Ohm
Rg=25 Ohm
Rf=725Ohm
此时算上源阻抗,signal gain 为15V/V,得到NF 为6.11dB。
可以看出不同的配置下,即使增益相同,得到的噪声系数也是不同的。
在这种增益下,Inverting 配置得到的噪声系数要远比Non-Inverting 的好。
6. 总结
放大器的噪声计算需要考虑诸多因素,如放大器本身的噪声,外围匹配电阻带来的噪声,以及带后续滤波器宽带来的影响。
通过上面所给的公式,就可以把放大器对整条链路的影响计算清楚。