EV用无线供电技术的
- 格式:pdf
- 大小:6.93 MB
- 文档页数:68
无线充电技术在电动汽车中的应用一、介绍无线充电技术是一种非接触式的充电方式,能够方便地为电动汽车提供电能。
随着电动汽车的普及,无线充电技术成为了新一代电动汽车充电技术的趋势。
本文将探讨无线充电技术在电动汽车中的应用。
二、无线充电技术的原理无线充电技术是基于电磁感应的原理,其主要由两部分组成,发射端和接收端。
发射端通过电源向发射线圈传输电能,形成一个交变磁场。
接收端的接收线圈通过电磁感应原理,将能量从发射端传递的交变磁场中提取出来,输出给电动汽车的电池组,从而实现无线充电。
三、无线充电技术在电动汽车中的应用1. 提供便捷的充电方式无线充电技术能够提供非常便捷的充电方式,消除了传统充电方式的许多不便之处。
通过在路面上布置无线充电设备,电动汽车只需要在布置了无线充电设备的停车位上停车,在没有时间限制的情况下,在停放期间充电。
这样的充电方式不仅减少了充电时间,而且更加方便,使得电动汽车的使用更加灵活。
2. 提高充电效率传统的有线充电方式需要公路和车辆之间进行物理连接,而无线充电技术则是通过电磁感应原理进行能量传递,因此可以提高充电效率。
而且在充电的过程中,车辆可以随时进行移动,不会影响无线充电的效果,从而提高了电动汽车的使用效率。
3. 减少对环境的污染无线充电技术可以减少对环境的污染。
在传统的有线充电方式中,需要安装大量的电缆和插座,占用了许多公共资源,同时产生了许多废弃的充电插头,会对环境造成一定的污染。
而无线充电技术通过电磁感应原理进行能量传递,避免了传统充电方式对环境的污染,有助于保护环境。
4. 提高电动汽车的安全性无线充电技术与传统的有线充电方式相比,具有更高的安全性。
在传统有线充电中,充电插头容易产生电火花,可能导致火灾或触电事故。
而无线充电技术则只需要在车轮下方或车辆底部安装充电设备,车辆驶过时,即可进行无线充电,无需人工干预,提高了使用安全性。
四、应用现状与发展趋势目前无线充电技术尚处于研究试验阶段,主要用于个别电动汽车或者公共交通系统的充电。
无线充电技术在电动汽车中的应用探索随着清洁能源和环保意识的增强,电动汽车已逐渐成为现代社会的一种重要交通工具。
为了解决电动汽车充电过程中的一些不便之处,无线充电技术应运而生,并被广泛应用于电动汽车领域。
本文将对无线充电技术在电动汽车中的应用进行探索和分析。
一、无线充电技术的原理无线充电技术基于电磁感应原理,通过发射器和接收器之间的电磁感应耦合,将电能从发射器传输到接收器中,实现对电动汽车电池的充电。
相比传统的有线充电方式,无线充电技术无需连接充电插头,能够实现更加便捷的充电体验。
二、无线充电技术在电动汽车中的应用优势1. 便捷性:无线充电技术使充电过程更加方便快捷,无需人工插拔充电插头,只需将电动汽车停放在指定位置,即可实现自动充电。
2. 安全性:无线充电技术采用封闭式充电系统,避免了电动汽车充电时与外界环境接触的风险,减少了电击和火灾等意外事故的发生。
3. 高效性:无线充电技术能够提供较高的充电效率,有效地减少充电过程中的能量损失,提高了充电速度和能源利用率。
4. 环保性:无线充电技术不需要使用充电插头,减少了电线和插座的材料消耗,降低了废弃电线对环境的污染。
三、无线充电技术在电动汽车中的应用现状目前,无线充电技术在电动汽车领域已经取得了一些应用进展。
例如,特斯拉在其电动汽车中应用了无线充电技术,通过在车底安装接收器,实现了与地面发射器之间的无线充电。
此外,一些汽车制造商和科技公司也开始进行无线充电技术的研发,并逐步在其电动汽车产品中应用。
然而,无线充电技术在电动汽车中的大规模应用仍面临一些挑战。
首先,充电效率和充电速度需要进一步提高,以满足电动汽车用户对快速充电的需求。
其次,充电设施的建设仍然需要大量的投资,包括充电发射器的安装和维护,这对于电动汽车的普及产生了一定的制约。
最后,制定统一的无线充电标准和规范也是一个亟待解决的问题,以便不同品牌的电动汽车都能够兼容使用无线充电设施。
四、无线充电技术在电动汽车中的发展趋势尽管目前无线充电技术在电动汽车领域的应用还不够成熟,但其发展潜力巨大。
小功率无线充电方案1. 引言随着移动设备的普及和便携性的要求,无线充电技术成为了一个备受关注的热点。
小功率无线充电方案逐渐受到人们的关注,因为它能够为一些低功耗设备提供便捷的充电方式。
本文将介绍一种基于电磁感应原理的小功率无线充电方案,并探讨其原理、应用场景以及未来的发展方向。
2. 方案原理小功率无线充电方案是基于电磁感应原理实现的。
方案中主要包含两个部分:无线充电发射端和无线充电接收端。
无线充电发射端通过一个电源提供电能,经过电源供给和电源调节电路调整电压和电流。
然后,经过功率驱动电路,将电能转化为高频交流电信号。
通过功率管理单元,调整电流和电压使其适应接收端的要求。
在无线充电接收端,利用接收线圈将无线电能信号接收到接收端。
通过整流电路对信号进行整流,将交流信号变为直流信号。
然后,通过电池管理电路将直流信号充电到电池中。
这样就实现了无线充电的过程。
3. 方案优势小功率无线充电方案相对于传统有线充电方式具有许多优势:•便捷性:无需连接电缆,无线充电可以减少设备使用时的限制,提高使用的便捷性。
•安全性:采用无线充电方案可以减少电线接触产生的火灾风险,提高充电的安全性。
•节约资源:无线充电方式可以避免电线的损耗和浪费,从而节约资源。
4. 应用场景小功率无线充电方案在许多领域都可以找到应用场景。
以下是其中一些典型的应用场景:4.1. 智能家居智能家居设备通常是低功耗设备,利用无线充电方案可以方便地为这些设备充电。
例如,智能插座、无线摄像头等设备可以通过无线充电提供持续稳定的电源。
4.2. 智能手环、智能手表智能手环、智能手表等便携式设备通常需要频繁充电。
采用小功率无线充电方案可以为这些设备提供方便、快速的充电方式。
4.3. 物联网设备物联网设备通常需要长时间运行,采用传统有线充电方式不够灵活。
使用小功率无线充电方案可以为物联网设备提供持续稳定的电源,提高设备的稳定性和可靠性。
5. 发展方向小功率无线充电方案目前仍然存在一些挑战和改进的空间。
无线供电技术发展简介第一章无线供电技术概述电能传输和信号传递是电力电子技术所涉及的两个主要方面,两者往往共存于同一个电力电子应用系统当中,电能用来给系统运行提供动力或能量,而信号用来检测系统操作状态或传递控制指令。
如今,信号传输以移动手机和无线INTERNET为例,以空气为媒介已经实现了长距离的非接触传递,极大地方便人们的生存生活;而电能的传输仍然主要有导线直接接触进行传输,电工电子设备的供电通过插头和插座来进行,其发展远远滞后于信号传输的发展。
长期以来,利用磁耦合原理实现电能传输只是在传统变压器和感应电机当中得到了运用,基于此原理以空气为磁介质实现高等级电能传输最开始认为是不可能的,更不用提通过空气实现远距离的电能传送了。
近年来,很多新的方法应用,无线供电又受到了热捧。
在给移动设备进行供电采用无线供电技术(Wireless Power Technology),简称WPT,越来越成为人们关心的课题。
无线供电技术(WPT)是一种新型的电能传输技术,其具备两大优点:一是让电器与电源完全隔离,使电器的灵活性、美观性、安全性、密封性的表现更好;二是WPT可以通过非导体来传播电能,如水、空气、土壤、玻璃等,因此可以实现隔物供电。
第二章无线供电的历史、发展与现状实际上无线供电的设想早在一百多年前就已经出现。
在1890年,尼古拉·特斯拉,这位现代交流电系统的奠基者就开始构想无线供电方法,最后提出了一个非常宏大的方案——把地球作为内导体、距离地面约60 km的电离层作为外导体,在地球与电离层之间建立起大约8 Hz的低频共振,再利用环绕地球的表面电磁波来远距离传输电力。
到了20世纪20年代中期,日本的H.Yagi和s.Uda论述了无线供电概念的可行性;20世纪30年代美国的学者开始研究不利用导线去点亮电灯的输电方案。
随着大功率、高效率真空电子管微波源的研制成功,20世纪60-70年代,Raytheon公司的William C.Brown 做了大量的无线供电方面的研究工作,使得这一概念变成实验结果,奠定了现代无线供电的实验基础。
无线充电技术工作原理无线充电的工作原理主要基于电磁感应、电磁共振、无线电波(RF)、电场耦合传输技术,这些技术允许电能通过非物理接触的方式从充电基座(或发射器)传输到电子设备(或接收器)的电池中。
以下是这三种主要无线充电技术的工作原理:①电磁感应式无线充电:1.这是目前应用最广泛、技术最成熟的无线充电方式。
其基本原理与变压器相似,利用交变电流通过初级线圈产生交变磁场,次级线圈则感应出电动势并转换为电流,从而实现电能的无线传输。
2.充电时,充电设备(如手机)放置在无线充电板上,两者内置的线圈相互靠近。
充电板上的线圈连接至电源并产生交变磁场,手机内的线圈感应到这一磁场后产生电流,进而为手机电池充电。
3.优点:效率高、技术成熟、成本相对较低。
4.缺点:传输距离短(一般需几毫米至几厘米),且要求设备位置相对固定。
②电磁共振式无线充电:1.电磁共振技术通过调整发射器和接收器的频率,使它们在同一频率上共振,从而更有效地传输电能。
这种技术的传输距离比电磁感应更远,可达数米。
2.发射器和接收器都包含能够产生和接收共振的线圈,它们被调谐到相同的频率。
当发射器通电并产生交变磁场时,与接收器线圈频率相同的部分会被放大并传输给接收器。
3.优点:传输距离较远,适用于多个设备同时充电。
4.缺点:效率相对较低,且对设备位置和方向有一定要求。
③无线电波(RF)传输式无线充电:1.无线电波式无线充电利用微波或毫米波等无线电波将电能传输到接收设备。
这种方法类似于无线通信,但传输的是电能而非信息。
2.发射器将电能转换为无线电波并发射出去,接收器则捕捉这些无线电波并将其转换回电能。
这种技术可以实现较远距离的电能传输,但技术复杂度和成本较高。
3.优点:传输距离远,理论上可以实现较远的无线充电。
4.缺点:效率低,能量在传输过程中会有较大损失;且可能对周围电子设备产生干扰。
总的来说,无线充电技术的发展为人们的生活带来了极大的便利,不同的技术各有优缺点,适用于不同的应用场景。
2.无线充电原理详解(图文)(1)支持无线充电的智能手机从2011年夏季前后开始上市。
任何厂商的任何机型均可使用的“Qi”规格将成为全球标准。
停车即可充电的EV(电动汽车)用充电系统也在推进研发。
无线充电已经在电动牙刷、电动剃须刀、无线电话等部分家电产品中实用化,现在其应用范围又扩大到了智能手机领域。
NTT DoCoMo在2011年夏季以后陆续上市了多款支持无线充电的智能手机和充电座。
这些手机无需在手机上插上充电线缆,只需放置在充电座上即可为电池充电。
今后NTT DoCoMo 将在电影院、餐厅、酒店、机场休息室等公共场所设置充电座,便于用户在外出时使用。
软银移动也预定2012年1月上市支持无线充电的智能手机。
KDDI正在开发车载式智能手机的无线充电座。
未来无线充电的应用范围将有望扩大到EV的充电系统。
目前,市场上支持无线充电的智能手机和充电器大部分都符合总部位于美国的业界团体“无线充电联盟(WPC)”所制定的“Qi”规格。
Qi源自汉语“气功”中的“气”,以松下、韩国三星电子、英国索尼爱立信、芬兰诺基亚、电装为首,许多国家的家电厂商和汽车厂商都相继加盟了WPC。
无线充电方式包括“磁共振”及“电波接收”等多种方式,Qi采用的是“电磁感应方式”。
通过实现标准化,只要是带有Qi标志的产品,无论是哪家厂商的哪款机型均可充电。
19世纪发现的物理现象电磁感应方式采用了19世纪上半期发现的物理现象。
众所周知,电流流过线圈时,周围会产生磁场。
1820年,丹麦物理学家汉斯·奥斯特(Hans Oersted)发现了这种电磁效应。
用没有通电的其他线圈接近该磁场,线圈中就会产生电流,由此点亮灯泡。
1831年,英国物理学家迈克尔·法拉第(Michael Faraday)发现了这个可从线圈向线圈供电的物理现象,并称之为电磁感应现象。
无线充电使用的充电座和终端分别内置了线圈,使二者靠近便开始从充电座向终端供电。
wifi充电技术原理是什么技术原理无线网络是一种能够将个人电脑、手持设备(如PDA、手机)等终端以无线方式互相连接的技术。
Wi-Fi是一个无线网络通信技术的品牌,由Wi-Fi联盟(Wi-FiAlliance)所持有。
目的是改善基于IEEE802.11标准的无线网络产品之间的互通性。
有人把使用IEEE802.11系列协议的局域网就称为无线保真。
甚至把无线保真等同于无线网际网路(Wi-Fi是WLAN的重要组成主要功能但是无线保真信号也是由有线网提供的,比如家里的ADSL,小区宽带等,只要接一个无线路由器,就可以把有线信号转换成无线保真信号。
国外很多发达国家城市里到处覆盖着由政府或大公司提供的无线保真信号供居民使用,我国也有许多地方实施”无线城市“工程使这项技术得到推广。
在4G牌照没有发放的试点城市,许多地方使用4G转无线保真让市民试用无线充电已经在电动牙刷、电动剃须刀、无线电话等部分家电产品中实用化,现在其应用范围又扩大到了智能手机领域。
NTTDoCoMo在2011年夏季以后陆续上市了多款支持无线充电的智能手机和充电座。
这些手机无需在手机上插上充电线缆,只需放置在充电座上即可为电池充电。
今后NTTDoCoMo将在电影院、餐厅、酒店、机场休息室等公共场所设置充电座,便于用户在外出时使用。
软银移动也预定2012年1月上市支持无线充电的智能手机。
KDDI正在开发车载式智能手机的无线充电座。
未来无线充电的应用范围将有望扩大到EV的充电系统。
目前,市场上支持无线充电的智能手机和充电器大部分都符合总部位于美国的业界团体“无线充电联盟(WPC)”所制定的“Qi”规格。
Qi源自汉语“气功”中的“气”,以松下、韩国三星电子、英国索尼爱立信、芬兰诺基亚、电装为首,许多国家的家电厂商和汽车厂商都相继加盟了WPC。
无线充电方式包括“磁共振”及“电波接收”等多种方式,Qi 采用的是“电磁感应方式”。
通过实现标准化,只要是带有Qi标志的产品,无论是哪家厂商的哪款机型均可充电。
电力电子技术中的无线充电技术有哪些应用电力电子技术在现代社会中扮演着重要的角色,其应用领域不断拓展和深化。
而无线充电技术作为电力电子技术的一个重要分支,在智能手机、电动汽车、无人机等领域得到了广泛的应用。
本文将围绕电力电子技术中的无线充电技术,讨论其在不同领域中的具体应用。
1. 智能手机领域智能手机已经成为我们日常生活中必不可少的工具,而无线充电技术为其带来了更便捷的使用体验。
传统的有线充电方式存在插拔不方便、易断、易损等问题,而无线充电则可以通过电磁感应原理,消除了纠缠的充电线缆,使得手机的充电更加自由灵活。
用户只需要将手机放置在充电器上即可进行充电,无需再将充电线与手机连接,大大提高了充电效率和用户的使用便利性。
2. 电动汽车领域随着电动汽车的快速发展,无线充电技术在电动汽车领域的应用越来越受到关注。
传统的有线充电方式需要通过连接充电桩和车辆进行充电,不仅操作繁琐,而且存在安全隐患。
而无线充电技术可以通过电磁感应原理,在地面或者路面上布置充电设备,当电动汽车停靠在充电设备的上方时,通过电磁感应将电能传输给电动汽车,实现无线充电。
这样的无线充电方式不仅充电效率高,操作简单方便,还可以减少充电设备的投资和建设成本,为电动汽车的普及提供了更好的基础条件。
3. 无人机领域无人机作为近年来发展最为迅猛的领域之一,对于电池容量和续航能力的要求不断提高。
而无线充电技术为无人机的续航能力提供了有效的解决方案。
利用地面的充电设备,无人机可以在飞行过程中进行无线充电,提高飞行的时间和距离。
这种无线充电方式极大地提升了无人机的应用范围和全天候的使用能力,如应急救援、物流配送等领域都可以得到更好的发展。
4. 医疗设备领域在医疗设备领域,无线充电技术同样具有重要的应用价值。
例如,对于植入式医疗设备,如心脏起搏器等,传统的有线充电方式存在安全隐患和感染风险。
而通过无线充电技术,可以避免植入式医疗设备的外连接线,减少感染风险,并且保证充电的便利性和稳定性。
evb工作原理
EV车辆的工作原理是基于电动机和电池的组合,而不是依靠
内燃机。
以下是EV车辆的简单工作原理:
1. 电池供电:EV车辆使用高容量的可充电电池组作为主要能
源储存装置。
这些电池通常是锂离子电池,能够储存大量的电能。
2. 控制系统:EV车辆配备了一个智能控制系统,用于监控电
池状态、电动机工作、能量回收等关键参数。
控制系统通过电子芯片和传感器对车辆进行精确控制和管理。
3. 电动机传动:通过控制系统,电池将储存的电能通过逆变器变换为交流电。
然后,交流电供给电动机,产生动力,将车辆推动前进。
4. 再生制动:当EV车辆减速或刹车时,电动机可切换为发电
机模式,将动能转换为电能,并将之再次储存在电池中。
这个过程称为再生制动,能够提高车辆的能源效率并延长电池续航里程。
5. 辅助系统:EV车辆还配备了辅助系统,如制冷系统、空调、音响等。
这些系统通常通过电池供电,通过控制系统进行管理。
通过以上步骤,EV车辆能够实现电池供电的纯电驱动,无需
依赖石油燃料,从而减少尾气排放和环境污染。
此外,EV车
辆的电动机具有高效率和强大的扭矩输出,提供良好的行驶性
能。
尽管电池续航里程和充电设施等问题仍存在,但EV车辆在减少碳排放和实现可持续交通方面具有巨大潜力。
电动汽车无线充电技术研究综述赵争鸣;刘方;陈凯楠【摘要】Wireless charging technology for electric vehicles (EV) has become more and more popular for its advantages of operation safety, flexibility, convenience and low cost. This paper reviews current researches and key points on the technology from the aspects of power transmission coils, compensation networks and power electronics converters as well as their control methods. Hot issues and the future of wireless charging technology are discussed in the end.%无线充电技术以其运行安全、灵活便捷和低维护成本等优点,受到越来越多的关注,是未来电动汽车供电技术的发展趋势之一。
本文从传输线圈结构、谐振网络及系统特性、电力电子变换器及其控制方法三个角度对当前的研究现状和热点问题进行了综述,分析讨论了亟待解决的问题及今后的发展趋势。
【期刊名称】《电工技术学报》【年(卷),期】2016(031)020【总页数】11页(P30-40)【关键词】电动汽车;无线充电;磁耦合谐振【作者】赵争鸣;刘方;陈凯楠【作者单位】电力系统及发电设备安全控制和仿真国家重点实验室清华大学北京100084;电力系统及发电设备安全控制和仿真国家重点实验室清华大学北京100084;电力系统及发电设备安全控制和仿真国家重点实验室清华大学北京100084【正文语种】中文【中图分类】TM910.6;U469.72随着全球环境和能源问题的日渐凸显,发展和普及电动汽车等新能源汽车变得越来越重要。