拓扑题目
- 格式:doc
- 大小:61.50 KB
- 文档页数:4
拓扑习题及答案拓扑学是数学中的一个分支,研究的是空间的性质和变形。
在拓扑学中,习题是帮助我们理解和掌握基本概念和定理的重要工具。
在本文中,我将为大家提供一些拓扑学的习题及其答案,希望能够帮助大家更好地理解这门学科。
1. 问题:什么是拓扑空间?答案:拓扑空间是一个集合,其中包含一些特定的子集,这些子集被称为开集,满足一些特定的性质。
拓扑空间中的开集可以用来描述集合中元素之间的相互关系。
2. 问题:什么是连通性?答案:在拓扑空间中,如果存在一条路径将空间中的任意两点连接起来,那么这个空间就是连通的。
换句话说,连通性描述了空间中不存在分离的部分。
3. 问题:什么是紧致性?答案:在拓扑空间中,如果空间中的任意开覆盖都可以找到有限个开集作为子覆盖,那么这个空间就是紧致的。
紧致性描述了空间中的元素有限性质。
4. 问题:什么是同胚?答案:在拓扑学中,如果两个拓扑空间之间存在一个双射函数,并且这个函数和其逆函数都是连续的,那么这两个空间就是同胚的。
同胚关系描述了两个空间之间的拓扑性质相同。
5. 问题:什么是拓扑不变量?答案:拓扑不变量是指在同胚变换下保持不变的性质。
例如,欧拉数是一个拓扑不变量,它描述了一个拓扑空间中的曲面的特征。
6. 问题:什么是连续映射?答案:在拓扑学中,如果一个函数将一个拓扑空间中的开集映射到另一个拓扑空间中的开集,那么这个函数就是连续的。
连续映射描述了空间中元素之间的连续性。
7. 问题:什么是同伦等价?答案:在拓扑学中,如果两个拓扑空间中的映射可以通过连续变形相互转化,那么这两个空间就是同伦等价的。
同伦等价关系描述了空间中的元素可以通过连续变形相互转化。
通过以上几个习题及其答案,我们可以初步了解拓扑学的基本概念和性质。
拓扑学作为一门抽象的数学学科,其应用范围非常广泛。
例如,在计算机科学中,拓扑学可以用来描述网络的结构和连接方式;在物理学中,拓扑学可以用来研究物质的性质和相变;在生物学中,拓扑学可以用来研究分子的结构和相互作用等等。
大学数学拓扑真题试卷# 大学数学拓扑真题试卷一、选择题(每题2分,共20分)1. 拓扑空间中的开集,其任意并集还是开集。
这个性质称为:A. 并集公理B. 有限覆盖性质C. 邻域系统D. 闭集性质2. 在度量空间中,下列哪一项不是完备性的定义?A. 任何柯西序列都收敛B. 空间中的每个闭子集都是完备的C. 空间中的每个有界序列都有收敛子序列D. 空间是完备的3. 以下哪个概念不是拓扑空间的基本元素?A. 点B. 开集C. 距离D. 邻域4. 连续映射的定义是:A. 映射的逆像包含开集B. 映射的逆像是闭集C. 映射的逆像包含闭集D. 映射的逆像是邻域5. 以下哪个命题是正确的?A. 任何有限个开集的并集是开集B. 任何无限个开集的交集是开集C. 任何有限个闭集的并集是闭集D. 任何无限个闭集的交集是闭集6. 拓扑空间中的紧性是指:A. 空间是局部紧的B. 空间中任意开覆盖都有有限子覆盖C. 空间是度量空间D. 空间是可分的7. 以下哪个命题是闭区间套定理?A. 闭区间套的交集可能是空集B. 闭区间套的交集至少包含一个点C. 闭区间套的交集是开集D. 闭区间套的交集是闭集8. 度量空间中的完备性与紧性的关系是:A. 完备性蕴含紧性B. 紧性蕴含完备性C. 完备性与紧性无关D. 完备性与紧性总是等价的9. 以下哪个命题是正确的?A. 任何紧空间都是可分的B. 任何可分空间都是紧的C. 任何紧空间都是度量空间D. 任何度量空间都是紧的10. 同胚空间具有相同的:A. 维数B. 体积C. 面积D. 长度二、简答题(每题10分,共20分)1. 简述什么是同胚,并给出一个例子说明两个空间如何是同胚的。
2. 解释什么是紧空间,并给出一个例子说明一个空间是紧的。
三、证明题(每题15分,共30分)1. 证明:在度量空间中,如果一个序列的每个元素都包含在某个紧子集中,那么这个序列有一个收敛子序列。
2. 证明:在欧几里得空间中,闭区间是紧的。
拓扑学考试题及答案一、选择题(每题2分,共10分)1. 拓扑空间中,开集的补集是:A. 闭集B. 既开又闭集C. 非开集D. 非闭集答案:A2. 以下哪个概念不是拓扑学中的基本元素?A. 开集B. 连续函数C. 极限点D. 线性方程答案:D3. 拓扑空间中,两个开集的交集仍然是:A. 开集B. 闭集C. 既开又闭集D. 非开集答案:A4. 拓扑空间中,一个集合是连通的,当且仅当它不能表示为两个非空不相交开集的并集。
以下哪个集合不是连通的?A. 一个区间B. 两个不相交的区间的并集C. 一个单点集D. 一个空集答案:B5. 拓扑空间中的紧致性意味着:A. 每个开覆盖都有有限子覆盖B. 每个闭覆盖都有有限子覆盖C. 每个开覆盖都有有限子覆盖或闭覆盖D. 每个闭覆盖都有有限子覆盖或开覆盖答案:B二、填空题(每题3分,共15分)1. 如果拓扑空间X中的每个点都有一个邻域,该邻域与X同胚,则称X是________。
答案:局部连通的2. 拓扑空间X中的点x称为________,如果X中包含x的每个开集也包含该序列的某个项。
答案:序列极限点3. 拓扑空间X中的点x称为________,如果对于x的每个邻域U,都存在一个点y≠x,使得y也在U中。
答案:凝聚点4. 如果拓扑空间X中的每个序列都有一个收敛的子序列,则称X是________。
答案:序列紧致的5. 拓扑空间X中的点x称为________,如果对于x的每个邻域U,都存在一个不包含x的开集V,使得V⊆U。
答案:孤立点三、简答题(每题10分,共20分)1. 描述拓扑空间中的紧性与序列紧致性之间的关系。
答案:在Hausdorff空间中,紧性等价于序列紧致性。
这意味着如果一个Hausdorff空间中的每个序列都有一个收敛的子序列,则该空间是紧的,反之亦然。
2. 解释什么是同胚映射,并给出一个例子。
答案:同胚映射是两个拓扑空间之间的双射函数,它既是连续的,其逆映射也是连续的。
拓扑试题及答案一、选择题(每题2分,共10分)1. 拓扑空间中,任意两个开集的并集还是开集,这是拓扑空间的哪个公理?A. 任意并集公理B. 有限并集公理C. 有限交公理D. 任意交公理答案:A2. 连续映射的定义是?A. 映射的逆映射是连续的B. 映射的原像与像的连续性一致C. 映射的像与原像的连续性一致D. 映射的原像与像的连续性不一致答案:B3. 在拓扑学中,一个空间的基是什么?A. 空间中所有开集的集合B. 空间中所有闭集的集合C. 空间中所有单点集的集合D. 空间中所有有限集的集合答案:A4. 拓扑空间中,一个集合的闭包是指什么?A. 集合本身B. 集合的内部C. 包含集合的所有极限点D. 集合的外部答案:C5. 什么是紧致性?A. 空间中任意开覆盖都有有限子覆盖B. 空间中任意闭覆盖都有有限子覆盖C. 空间中任意开覆盖都有无限子覆盖D. 空间中任意闭覆盖都有无限子覆盖答案:B二、填空题(每题2分,共10分)1. 如果拓扑空间X的任意开覆盖都有一个有限子覆盖,则称X是________。
答案:紧致的2. 拓扑空间中,如果一个映射是连续的,那么它的逆映射也是________。
答案:连续的3. 在拓扑空间X中,如果存在一个开集U包含点x,使得x是U的极限点,则称x是X的________。
答案:累积点4. 拓扑空间X的基B,如果X中任意开集都可以表示为B中开集的并集,则称B是X的一个________。
答案:基5. 如果拓扑空间X的任意子集的闭包都是闭集,则称X是________。
答案:T1空间三、简答题(每题5分,共20分)1. 请简述什么是拓扑空间?答案:拓扑空间是一个集合X,配合一个定义在其上的拓扑结构,这个结构由X的子集构成,满足任意并集公理、有限交公理和空集与全集为开集的条件。
2. 什么是连续映射?答案:连续映射是指在拓扑空间X和Y之间定义的映射f,对于Y中的任意开集V,其原像f^(-1)(V)在X中也是开集。
拓扑期末试题及答案一、选择题1. 下面哪个选项不是拓扑的基本概念?A. 连通性B. 邻域C. 紧致性D. 可分性答案:B. 邻域2. 拓扑空间的定义中包括以下哪些要素?A. 集合B. 拓扑C. 运算D. 距离答案:A. 集合,B. 拓扑3. 以下哪个定理用于判断一个集合是否为紧致集?A. Heine-Borel定理B. Bolzano-Weierstrass定理C. 单调有界定理D. Cantor定理答案:A. Heine-Borel定理4. 一个空间若每个点都有至少一个可数邻域,则称该空间满足:A. 可分性B. 连通性C. 紧致性D. 完备性答案:A. 可分性5. 以下哪个不是拓扑空间上的基本拓扑?A. 离散拓扑B. 序拓扑C. 紧致拓扑D. Hausdorff拓扑答案:C. 紧致拓扑二、填空题1. 在连通空间中,_________只有一个子集,即空集和整个集合本身。
答案:极大连通子集2. 设X是一个度量空间,如果序列{an}在X中收敛到点x,则它的任意一个子列也在X中收敛到点x,这个定理称为_________定理。
答案:Bolzano-Weierstrass定理3. 设X、Y是两个度量空间,f:X→Y是一个映射,若对X中任意一致收敛的序列{an}都有序列{f(an)}一致收敛于f(a),则称f是一个_________映射。
答案:连续映射4. 在一个度量空间中,若集合E能被包含在一列开集内,即E⊆∪(n=1)∞O(n),则E称为_________集。
答案:可分集5. 在度量空间中,_________是指个别的点被聚集成簇,而某个区域内不能含有过多的点。
答案:Hausdorff性三、计算题1. 已知拓扑空间X为实数集R上的子集,其基本拓扑为以区间(a,b)为开集的集合族T,计算X中元素x=1的极限点。
解答:首先,极限点是指一个点周围存在无穷多的序列点。
对于x=1来说,我们可以构造一个序列{a_n},其中a_n = 1+1/n。
考研拓扑学试题及答案一、选择题(每题3分,共30分)1. 在拓扑学中,一个集合的子集被称为开集,如果它是全空间的开集。
以下哪个选项不是开集的特征?A. 包含空集B. 任意两个开集的交集是开集C. 任意有限个开集的并集是开集D. 任意无限个开集的并集不是开集2. 拓扑空间中的一个基本性质是连续性。
以下哪个选项不是连续函数的特征?A. 函数的逆像是开集B. 函数的值域是开集C. 函数的图像是连续的曲线D. 函数在其定义域内连续3. 以下哪个命题是正确的?A. 有限个连通空间的不交并仍然是连通的B. 任意个连通空间的不交并是连通的C. 任意个连通空间的并集是连通的D. 有限个连通空间的并集是连通的4. 在拓扑空间中,一个点的闭包是指包含该点的最小闭集。
以下哪个说法是错误的?A. 闭包是闭集B. 闭包包含该点的所有邻域C. 闭包是唯一的D. 闭包可能是开集5. 以下哪个选项不是紧空间的特征?A. 任意开覆盖都有有限子覆盖B. 任意序列都有收敛的子序列C. 任意闭区间是紧的D. 任意闭集在空间中是紧的6. 拓扑空间中的分离公理是描述空间中点和子集之间关系的一种性质。
以下哪个选项是错误的?A. T0空间中,每个点由其闭包唯一确定B. T1空间中,每个点由其开核唯一确定C. T2空间中,任意两个不同点都由不相交的开集分离D. T3空间中,任意闭集和任意开集都由不相交的开集分离7. 以下哪个命题是错误的?A. 任意两个拓扑空间的乘积空间是豪斯多夫空间B. 任意两个豪斯多夫空间的乘积空间是豪斯多夫空间C. 任意两个紧致空间的乘积空间是紧致的D. 任意两个可数紧空间的乘积空间是可数紧的8. 以下哪个选项不是局部紧空间的特征?A. 每个点都有一个紧致的邻域B. 空间本身是紧致的C. 每个点都有一个开集邻域,其闭包是紧致的D. 每个点都有一个紧致子集作为其邻域9. 以下哪个命题是正确的?A. 任意两个拓扑空间的和空间是豪斯多夫空间B. 任意两个豪斯多夫空间的和空间是豪斯多夫空间C. 任意两个紧致空间的和空间是紧致的D. 任意两个可数紧空间的和空间是可数紧的10. 在拓扑空间中,一个点的导集是指所有包含该点的序列的极限点的集合。
点集拓扑考试题及答案一、单项选择题(每题2分,共10分)1. 点集拓扑中,下列哪个概念不是拓扑空间的公理之一?A. 开集的任意并集仍是开集B. 空集和整个空间是开集C. 有限个开集的交集仍是开集D. 任意多个开集的交集仍是开集答案:D2. 在拓扑空间中,若集合A是集合B的闭包,则以下哪个说法是正确的?A. A是B的子集B. B是A的子集C. A和B互为子集D. A和B没有交集答案:A3. 拓扑空间中,连续函数的定义是?A. 函数的值域是连续的B. 函数的图像是连续的C. 函数的逆映射是开集D. 函数的逆映射是闭集答案:C4. 拓扑空间中的紧性是指?A. 每个开覆盖都有有限子覆盖B. 每个闭覆盖都有有限子覆盖C. 每个开覆盖都有开子覆盖D. 每个闭覆盖都有闭子覆盖答案:B5. 拓扑空间中的连通性是指?A. 空间不能被分割成两个不相交的非空开集B. 空间不能被分割成两个不相交的非空闭集C. 空间不能被分割成两个不相交的非空子集D. 空间不能被分割成两个不相交的非空有限集答案:A二、填空题(每题3分,共15分)1. 在拓扑空间中,若集合A是集合B的内部,则A是B的______。
答案:开子集2. 拓扑空间中的闭集是指其补集是______。
答案:开集3. 拓扑空间中的邻域是指包含某点的______。
答案:开集4. 拓扑空间中的序列收敛是指序列的极限点是唯一的,并且该极限点属于序列的______。
答案:闭包5. 拓扑空间中的紧集是指其任意开覆盖都有______。
答案:有限子覆盖三、简答题(每题10分,共20分)1. 请简述拓扑空间中极限点的定义。
答案:在拓扑空间中,如果点x的每个邻域都至少包含一个不同于x 的点y,则称x为集合A的极限点。
2. 请简述拓扑空间中紧集和列紧集的区别。
答案:紧集是指每个开覆盖都有有限子覆盖的集合,而列紧集是指每个序列都有收敛子序列的集合。
在有限维欧几里得空间中,紧集和列紧集是等价的,但在无限维空间中,列紧集是紧集的更强条件。
拓扑学基础试题及答案一、选择题(每题2分,共10分)1. 拓扑空间中,以下哪个概念不是基本的?A. 开集B. 闭集C. 连续函数D. 距离函数答案:D2. 以下哪个选项不是拓扑空间的性质?A. 空集和整个空间是开集B. 任意开集的并集是开集C. 有限个开集的交集是开集D. 任意集合的补集是闭集答案:D3. 在拓扑学中,两个拓扑空间之间的映射被称为?A. 同胚B. 连续映射C. 同伦D. 同调答案:B4. 拓扑空间中的邻域系统是指?A. 包含某点的所有开集的集合B. 包含某点的任意集合的集合C. 包含某点的有限个开集的交集D. 包含某点的任意开集答案:A5. 拓扑空间中的连通性是指?A. 空间不能被分割成两个不相交的非空开集B. 空间中的任意两点都可以通过连续路径相连C. 空间中的任意两点都可以通过直线相连D. 空间中的任意两点都可以通过曲线相连答案:A二、填空题(每题3分,共15分)1. 如果拓扑空间中任意两个不同的点都存在不相交的邻域,则称该空间为________。
答案:豪斯多夫空间2. 拓扑空间中的紧致性是指该空间的任意开覆盖都有________。
答案:有限子覆盖3. 拓扑空间中的连通空间是指不能表示为两个不相交的非空开集的并集的空间,这种性质也称为________。
答案:不可分割性4. 拓扑空间中的基是指由开集构成的集合,使得空间中的每一个开集都可以表示为基中集合的________。
答案:并集5. 拓扑空间中的同胚是指两个拓扑空间之间存在一个双射的连续映射,并且其逆映射也是连续的,这种映射也称为________。
答案:同胚映射三、简答题(每题10分,共20分)1. 请简述拓扑空间中闭集的定义。
答案:在拓扑空间中,如果一个集合的补集是开集,则称该集合为闭集。
2. 请解释什么是拓扑空间中的同伦等价。
答案:如果存在两个拓扑空间之间的连续映射,使得这两个映射的复合与各自空间上的恒等映射是同伦的,则称这两个空间是同伦等价的。
拓扑空间复习题及答案1. 定义拓扑空间。
拓扑空间是一个集合X,连同一个子集的集合T,这些子集满足以下三个条件:空集和X本身都在T中;T中任意有限个元素的交集也在T中;T中任意元素的并集也在T中。
这个集合T被称为X上的拓扑。
2. 描述开集和闭集。
在拓扑空间(X, T)中,如果集合U属于T,则称U为开集。
闭集是指其补集是开集的集合,即如果U的补集V属于T,则称U为闭集。
3. 举例说明连续函数。
设f是从拓扑空间(X, T_X)到拓扑空间(Y, T_Y)的函数。
如果对于Y中的每一个开集V,其原像f^(-1)(V)在X中也是开集,则称f是连续的。
4. 什么是紧致性?在拓扑空间(X, T)中,如果X的每一个开覆盖都有有限子覆盖,则称X 是紧致的。
5. 描述连通性。
如果拓扑空间(X, T)不能被分成两个不相交的非空开集,则称X是连通的。
6. 什么是分离公理?分离公理是拓扑空间中的一种性质,它要求空间中的任意两个不同的点,都存在不相交的开集分别包含这两个点。
7. 举例说明Hausdorff空间。
Hausdorff空间是一种满足T2分离公理的拓扑空间,即对于空间中的任意两个不同的点,都存在不相交的开集分别包含这两个点。
8. 什么是基和子基?基是拓扑空间中满足以下条件的开集集合:空间中的每一个开集都可以表示为基中元素的并集。
子基是拓扑空间中满足以下条件的开集集合:空间中的每一个开集都可以表示为子基中元素的有限交集的并集。
9. 描述商空间。
设f是从拓扑空间(X, T_X)到集合Y的满射。
如果Y上的拓扑由所有形如f^(-1)(U)的集合(其中U是Y中的开集)生成,则称这个拓扑空间为X关于f的商空间。
10. 什么是同胚?如果存在一个双射函数f,它从拓扑空间(X, T_X)到拓扑空间(Y, T_Y),并且f及其逆函数都是连续的,则称f是同胚,且称X和Y是同胚的。
韩山师范学院2012-2013年度第二学期试题(考查)
一、写出X={0,1,2}的一个拓扑,使得它是T
0但不是T
1
的。
(10分)
二、设X={0,1,2,3},}}
3,1,0{
},
3,0{
},
1,0{
},
0{,
,
{X
T∅
=,A={0,2},请写出A在拓扑空间(X,T)中的边界点,内点,外点,聚点。
(12分)
三、已知,a ,,b R b a <∈且把开区间(a,b )看为欧氏空间1E 的子空间,请构造出
一个同胚映射()1,:E b a h →.(12分) (提示:先考虑构造(-2π,2π)到1E 的同胚,再构造()b a ,到(-2π,2
π
)的同胚,复合即可)
四、请证明分离性3T ,紧性,连通性都是拓扑性质,并回答闭区间(作为欧氏空间的子空间)上连续函数的有界性,最值性和介值性分别是由闭区间的哪种拓扑性质决定的.
(提示:P 是一个拓扑性质,指的是若空间X 具备性质P 而h :X Y →是同胚,则Y 也必具备性质P ) (30分)
五、设 (0,1),[0,1),[0,1]都是欧氏空间1E的子空间,2是欧氏空间2E的子空
间,证明以上四个空间两两不同胚.(15分)
(提示:证明两个空间不同胚,常考虑证明一个空间具备某种拓扑性质而另一个不具备)
六、R R R d →⨯22:定义如下,对任意22211),(),,(R y x y x ∈,
()|}||,max{|),(),,(21212211y y x x y x y x d --=,证明d 是一个度量.(10分)
七、把中国汉字看成欧氏空间2E 的子空间,请写出三个只有三笔的汉字使得它们都同胚,写出两个四笔以上的汉字使它们同胚.(11分)。