2017-2018学年浙教版八年级数学上第4章检测题含答案
- 格式:doc
- 大小:324.00 KB
- 文档页数:6
第4章自我评价一、选择题(每小题2分,共20分)1.点A(-3,2)关于y轴对称的点的坐标为(B)A. (3,-2)B. (3,2)C. (-3,-2)D. (2,-3)2.在平面直角坐标系中,点(-2,x2+1)所在的象限是(B)A. 第一象限B. 第二象限C. 第三象限D. 第四象限3.已知点A在x轴上,且点A到y轴的距离为4,则点A的坐标为(C)A.(4,0) B.(0,4)C.(4,0)或(-4,0) D.(0,4)或(0,-4)4.若点A(x,1)与点B(2,y)关于x轴对称,则下列各点中,在直线AB上的是(A) A.(2,3) B.(1,2)C.(3,-1) D.(-1,2)5.如图,已知棋子“車”的位置表示为(-2,3),棋子“馬”的位置表示为(1,3),则棋子“炮”的位置可表示为(A)(第5题)A.(3,2) B.(3,1)C.(2,2) D.(-2,2)6.若点M(a-1,a-3)在y轴上,则a的值为(C)A.-1B.-3 C.1D.37.在平面直角坐标系中,线段AB的两个端点坐标分别为A(-1,-1),B(1,2),平移线段AB,得到线段A′B′,已知A′的坐标为(3,-1),则点B′的坐标为(B)A. (4,2)B. (5,2)C. (6,2)D. (5,3)8.某天,聪聪的叔叔送给他一个新奇的玩具——智能流氓兔.它的新奇之处在于若第一次向正南跳一下,第二次就掉头向正北跳两下,第三次又掉头向正南跳三下……而且每一跳的距离为20 cm.如果流氓兔位于原点处,第一次向正南跳(记y 轴正半轴方向为正北,1个单位为1 cm),那么跳完第80次后,流氓兔所在位置的坐标为(C )A. (800,0)B. (0,-80)C. (0,800)D. (0,80)【解】 用“-”表示正南方向,用“+”表示正北方向.根据题意,得-20+20×2-20×3+20×4-…-20×79+20×80=20(-1+2)+20(-3+4)+…+20(-79+80)=20×40=800(cm),∴流氓兔最后所在位置的坐标为(0,800).(第9题)9.如图,将斜边长为4的三角尺放在平面直角坐标系xOy 中,两条直角边分别与坐标轴重合,P 为斜边的中点.现将此三角尺绕点O 顺时针旋转120°后点P 的对应点的坐标是(B ) A. (3,1) B. (1,-3)C. (2 3,-2)D. (2,-2 3)(第9题解)【解】 根据题意画出△AOB 绕点O 顺时针旋转120°得到的△COD ,连结OP ,OQ ,过点Q 作QM ⊥y 轴于点M ,如解图所示.由旋转可知∠POQ =120°.易得AP =OP =12AB ,∴∠POA =∠BAO =30°,∴∠MOQ =180°-30°-120°=30°.在Rt △OMQ 中,∵OQ =OP =2,∴MQ =1,OM = 3.∴点P 的对应点Q 的坐标为(1,-3).10.已知P(x ,y)是以坐标原点为圆心,5为半径的圆周上的点,若x ,y 都是整数,则这样的点共有(C )A .4个B .8个C .12个D .16个导学号:91354027【解】 由题意知,点P(x ,y)满足x 2+y 2=25,∴当x =0时,y =±5;当y =0时,x =±5;当x =3时,y =±4;当x =-3时,y =±4;当x =4时,y =±3;当x =-4时,y =±3,∴共有12个点.二、填空题(每小题3分,共30分)11.在平面直角坐标系中,点(-1,5)所在的象限是第二象限.12.若点B(7a +14,a -2)在第四象限,则a 的取值范围是-2<a<2.【解】 由题意,得⎩⎨⎧7a +14>0,a -2<0,解得-2<a<2. 13.已知线段MN 平行于x 轴,且MN 的长为5.若点M(2,-2),则点N 的坐标为(-3,-2)或(7,-2).【解】 ∵MN ∥x 轴,点M(2,-2),∴点N 的纵坐标为-2.∵MN =5,∴点N 的横坐标为2-5=-3或2+5=7,∴点N(-3,-2)或(7,-2).14.在平面直角坐标系中,将点P(-3,2)向右平移2个单位,再向下平移2个单位得点P′,则点P′的坐标为(-1,0).【解】由平移规律可得点P′的坐标为(-3+2,2-2),即点P′(-1,0).15.把以(-1,3),(1,3)为端点的线段向下平移4个单位,此时线段两端点的坐标分别为(-1,-1),(1,-1),所得线段上任意一点的坐标可表示为(x,-1)(-1≤x≤1).16.已知点A(0,-3),B(0,-4),点C在x轴上.若△ABC的面积为15,则点C的坐标为(30,0)或(-30,0).【解】∵点A(0,-3),B(0,-4),∴AB=1.∵点C在x轴上,∴可设点C(x,0).又∵△ABC的面积为15,∴12·AB·|x|=15,即12×1×|x|=15,解得x=±30.∴点C的坐标为(30,0)或(-30,0).17.已知点P的坐标为(-4,3),先将点P作x轴的轴对称变换得到点P1,再将点P1向右平移8个单位得到点P2,则点P,P2之间的距离是__10__.【解】由题意得,点P1(-4,-3),P2(4,-3),∴PP2=[4-(-4)]2+(-3-3)2=10.18.如图,将边长为1的等边三角形OAP沿x轴正方向连续翻转2018次,点依次落在点P1,P2,P3,…,P2018的位置,则点P2018的横坐标为2017.(第18题)【解】观察图形并结合翻转的方法可以得出点P1,P2的横坐标是1,点P3的横坐标是2.5;点P4,P5的横坐标是4,点P6的横坐标是5.5……依此类推下去,点P2018的横坐标为2017.19.如图,在平面直角坐标系中,四边形OABC是正方形,点A的坐标为(4,0),P为AB边上的一点,∠CPB=60°,沿CP折叠正方形,折叠后,点B落在平面内的点B′处,则点B′的坐标为(2,4-23).【解】过点B′作B′D⊥y轴于点D.易得B′C=BC=4,∠B′CD=30°,∴B′D=2,CD=2 3,∴OD=4-2 3,∴点B′(2,4-2 3).(第19题)(第20题)20.如图,正方形A1A2A3A4,正方形A5A6A7A8,正方形A9A10A11A12,…(每个正方形从第三象限的顶点开始,按顺时针方向顺序,依次记为A1,A2,A3,A4;A5,A6,A7,A8;A9,A10,A11,A12;…)的中心均在坐标原点O,各边均与x轴或y轴平行.若它们的边长依次是2,4,6,…,则顶点A20的坐标为(5,-5).【解】∵20÷4=5,∴点A20在第四象限.∵点A4所在正方形的边长为2,∴点A4的坐标为(1,-1).同理可得:点A8的坐标为(2,-2),点A12的坐标为(3,-3)……∴点A20的坐标为(5,-5).三、解答题(共50分)21.(6分)已知△ABC在平面直角坐标系中的位置如图所示,请在图中画出△ABC 关于y轴的对称图形△A1B1C1,并写出△A1B1C1各顶点的坐标.(第21题)【解】 画出△ABC 关于y 轴的对称图形如图中△A 1B 1C 1所示,点A 1(4,1),B 1(1,3),C 1(2,-2).(第22题)22.(6分)如图,在等腰△ABC 中,点B 在坐标原点,∠BAC =120°,AB =AC =2,求点A 的坐标.【解】 过点A 作AD ⊥BC 于点D .∵AB =AC ,∴∠ABC =∠ACB .∵∠BAC =120°,∴∠ABC =180°-120°2=30°, ∴AD =12AB =12×2=1.由勾股定理,得BD =AB 2-AD 2=22-12=3,∴点A (3,1).23.(6分)如图,在平面直角坐标系中,点A(1,2),B(-4,-1),C(0,-3),求△ABC 的面积.(第23题)(第23题解)【解】 如解图,先构造长方形ADFE ,使其过点A ,B ,C ,且AE ∥x 轴,AD ∥y 轴.∵点A(1,2),B(-4,-1),C(0,-3),∴点E(-4,2),F(-4,-3),D(1,-3),∴AE =1-(-4)=5,AD =2-(-3)=5.∴S △ABC =S 长方形ADFE -S △AEB -S △BCF -S △ACD=5×5-12×5×3-12×4×2-12×5×1=11.(第24题)24.(12分)如图,在平面直角坐标系xOy 中,A(4,0),C(0,6),点B 在第一象限内,点P 从原点O 出发,以每秒2个单位的速度沿着长方形OABC 移动一周(即沿着O →A →B →C →O 的路线移动).(1)写出点B 的坐标:(4,6).(2)当点P 移动了4 s 时,描出此时点P 的位置,并求出点P 的坐标.(3)在移动过程中,当点P 到x 轴的距离为5个单位时,求点P 移动的时间.【解】 (2)点P 的位置如图所示.由点P 移动了4 s ,得点P 移动了8个单位,即OA +AP =8,则点P 在AB 上且到点A 的距离为4个单位,∴点P 的坐标为(4,4).(3)设点P 移动的时间为t (s).当点P 在AB 边上,AP =5时,OA +AP =9=2t ,解得t =92.当点P 在OC 边上,且OP =5时,OA +AB +BC +CP =4+6+4+(6-5)=2t ,解得t =152.综上所述,点P 移动的时间为92 s 或152 s.25.(10分)如图①,在6×6的方格纸中,给出如下三种变换:P 变换,Q 变换,R 变换.将图形F 沿x 轴向右平移1格得到图形F 1,称为作1次P 变换;将图形F 沿y 轴翻折得到图形F 2,称为作1次Q 变换;将图形F 绕坐标原点顺时针旋转90°得到图形F 3,称为作1次R 变换.规定:PQ 变换表示先作1次Q 变换,再作1次P 变换;QP 变换表示先作1次P 变换,再作1次Q 变换;R n 变换表示作n 次R 变换,解答下列问题:(1)作R 4变换相当于至少作__2__次Q 变换.(2)请在图②中画出图形F 作R 2018变换后得到的图形F 4.(3)PQ 变换与QP 变换是否是相同的变换?请在图③中画出PQ 变换后得到的图形F 5,在图④中画出QP 变换后得到的图形F 6.(第25题)【解】 (1)根据操作,观察发现:每作4次R 变换便与原图形F 重合.因此R 4变换相当于作2n 次Q 变换(n 为正整数).(2)∵2018÷4=504……2,故R 2018变换即为R 2变换,其图象如解图①所示.(3)PQ 变换与QP 变换不是相同的变换.画出图形F 5,F 6如解图②③所示.(第25题解)26.(10分)在平面直角坐标系中,O 为坐标原点,已知点A(4,0),B(0,3).若有一个直角三角形与Rt △ABO 全等,且它们有一条公共边,请写出这个三角形未知顶点的坐标.导学号:91354028【解】 如解图.分三种情况讨论:①若AO 为公共边,易得未知顶点为B′(0,-3)或B″(4,3)或B′′′(4,-3).②若BO 为公共边,易得未知顶点为A′(-4,0)或A″(4,3)(与点B″重合)或A′′′(-4,3).③若AB 为公共边,易得此时有三个未知顶点O′,O ″,O ′′′,其中点O′(4,3)(与点B″重合).过点O 作OD ⊥AB 于点D ,过点D 作DE ⊥y 轴于点E ,DF ⊥x 轴于点F.易得AB =5,OD =OA·OB AB =2.4,∴BD =OB 2-OD 2=1.8,ED =BD·OD OB=1.44. 同理可得DF =1.92.连结O ″D.易知点O 和点O″关于点D(1.44,1.92)对称,∴点O″(2.88,3.84).设AB 与OO′交于点M ,则点M(2,1.5).易知点O″与点O′′′关于点M 对称,∴点O′′′(1.12,-0.84).(第26题解)。
浙教版八年级上册数学第4章图形与坐标含答案一、单选题(共15题,共计45分)1、在平面直角坐标系xOy中,点P(2,-3)关于原点O对称的点的坐标是()A.(2,3)B.(-2,3)C.(-2,-3)D.(2,-3)2、如图,在一次“寻宝”游戏中,寻宝人找到了如图所示的两个标志点A (3,1),B(2,2),则“宝藏”点C的位置是()A.(1,0)B.(1,2)C.(2,1)D.(1,1)3、在平面直角坐标系中,点P(-2,x2+1)所在的象限是( )A.第一象限B.第二象限C.第三象限D.第四象限4、点P(3,﹣1)关于x轴对称的点的坐标是()A.(﹣3,1)B.(﹣3,﹣1)C.(1,﹣3)D.(3,1)5、如果,那么点P(x,y)在()A.第二象限B.第四象限C.第四象限或第二象限D.第一象限或第三象限6、能确定某学生在教室中的具体位置的是()A.第3排B.第2排以后C.第2列D.第3排第2列7、点P(m+3,m-1)在x轴上,则m的值为()A.1B.2C.D.08、点P(2,﹣5)关于y轴的对称点的坐标是()A.(﹣2,5)B.(2,5)C.(﹣5,2)D.(﹣2,﹣5)9、如图,将△PQR向右平移2个单位长度,再向下平移3个单位长度,则顶点P 平移后的坐标是( )A.(-2,-4)B.(-2,4)C.(2,-3)D.(-1,-3)10、在平面直角坐标系中,将点A(﹣1,﹣2)向右平移3个单位长度得到点B,则点B关于x轴的对称点B′的坐标为()A.(﹣3,﹣2)B.(2,2)C.(﹣2,2)D.(2,﹣2)11、在平面直角坐标系中,将点向右平移3个单位长度后得到的点所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限12、坐标平面内有一点到轴的距离为3,到轴的距离为9,点在第二象限,则点坐标为()A. B. C. D.13、平面直角坐标系内,点A(-2,-3)在()A.第一象限B.第二象限C.第三象限D.第四象限14、在平面直角坐标系中,将点A(-3,-2)向右平移5个单位长度得到点B,则点B关于y轴对称点B’的坐标为()A.(2,2)B.(-2,2)C.(-2,-2)D.(2,-2)15、若点M(a,b)在第四象限,则点(-a,-b+2)是在()A.第一象限B.第二象限C.第三象限D.第四象限二、填空题(共10题,共计30分)16、如图是标准围棋盘的一部分,棋盘上有三枚黑子.若棋子所处位置的坐标为;棋子所处位置的坐标为,则棋子所处位置的坐标为________.的坐标是17、已知点A的坐标为(﹣2,3),则点A关于x轴的对称点A1________.18、在平面直角坐标系xOy中,点P在x轴上,且与原点的距离为,则点P的坐标为________19、如图,把“QQ”笑脸放在直角坐标系中,已知左眼A的坐标是,嘴唇C点的坐标为、,则此“QQ”笑脸右眼B的坐标________.20、已知A(﹣2,1),B(﹣6,0),若白棋A飞挂后,黑棋C尖顶,黑棋C的坐标为(________).21、点A(2,-1)关于x轴对称的点的坐标是________.22、三角形A′B′C′是由三角形ABC平移得到的,点A(-1,4)的对应点为A′(1,-1),若点C′的坐标为(0,0),则点C′的对应点C的坐标为________.23、如图,在直角坐标系中,A、B两点的坐标分别为(0,8)和(6,0),将一根橡皮筋两端固定在A、B两点处,然后用手勾住橡皮筋向右上方拉升,使橡皮筋与坐标轴围成一个矩形AOBC,则橡皮筋被拉长了________个单位长度.24、已知点P在第三象限,到x轴的距离为3,到y轴的距离为5,则点P的坐标为________.25、如图,在菱形OABC中,点B在x轴上,点A的标为(2,3),则点C的坐标为________.三、解答题(共5题,共计25分)26、已知点P(x+1,x−1)关于x轴对称的点在第一象限,试化简:|x+1|+|x−1|.27、已知:如图,B,C两点把线段AD分成2:4:3三部分,M是AD的中点,CD=6cm,则线段MC的长度为多少。
第4章图形与坐标4.1探索确定位置的方法01基础题知识点1用有序数对确定平面上物体的位置1.到电影院看电影需要对号入座,“对号入座”的意思是(C)A.只需要找到排号B.只需要找到座位号C.既要找到排号又要找到座位号D.随便找座位2.如图,如果规定行号写在前面,列号写在后面,那么A点表示为(A)A.(1,2)B.(2,1)C.(1,2)或(2,1)D.以上都不对第2题图第3题图3.做课间操时,袁露、李婷、张茜的位置如图所示,李婷对袁露说:“如果我们三人的位置相对于我而言,我的位置用(0,0)表示,张茜的位置用(5,8)表示.”则袁露的位置可表示为(C)A.(4,3)B.(3,4)C.(2,3)D.(3,2)4.剧院里2排5号可以用(2,5)来表示,那么3排7号可以表示为(3,7),(7,4)表示的含义是7排4号,(4,7)表示的含义是4排7号.5.某市中心有3个大型商场,位置如图所示,若甲商场的位置可表示为(B,2),则乙商场的位置可表示为(D,4),丙商场的位置可表示为(G,1).知识点2用方向和距离确定物体的位置6.小明看小丽的方向为北偏东30°,那么小丽看小明的方向是(B)A.东偏北30°B.南偏西30°C.东偏北60°D.南偏西60°7.生态园位于县城东北方向5公里处,如图表示准确的是(B)A BC D8.如图是雷达探测到的6个目标,若目标B用(30,60°)表示,目标D用(50,210°)表示,则表示为(40,120°)的是(B)A.目标AB.目标CC.目标ED.目标F9.小明家在学校的北偏西40°的方向上,离学校300 m,小华家在学校的南偏西50°的方向上,离学校400 m,小明和小华两家之间的距离是多少?解:小明和小华两家之间的距离是500 m.知识点3用经度、纬度确定物体的位置10.北京时间2016年1月21日01时13分在青海海北州门源县发生6.4级地震,震源深度10千米,能够准确表示这个地点位置的是(D)A.北纬37.68°B.东经101.62°C.海北州门源县D.北纬37.68°,东经101.62°02中档题11.如图,已知棋子“”的位置表示为(-2,3),棋子“”的位置表示为(1,3),则棋子“”的位置表示为(A)A.(3,2)B.(3,1)C.(2,2)D.(-2,2)12.如图为晓莉使用微信与晓红的对话纪录.据图中两个人的对话纪录,若下列有一种走法能从邮局出发走到晓莉家,此走法为(A)A.向北直走700米,再向西直走100米B.向北直走100米,再向东直走700米C.向北直走300米,再向西直走400米D.向北直走400米,再向东直走300米13.下图是围棋棋盘的一部分,如果用(0,0)表示A点的位置,用(7,1)表示C点的位置,那么:(1)图中B,D,E三点的位置如何表示?(2)图中(6,5),(4,2)的位置在哪里?请在图中用点F,G表示出来.解:(1)B(2,1),D(5,6),E(1,4).(2)略.14.常用的确定物体位置的方法有两种.如图,在4×4个边长为1的正方形组成的方格中,标有A,B两点.请你用两种不同的方法表述点B相对于点A的位置.解:方法1,用有序实数对(a,b)表示,比如:以点A为原点,则B(3,3);方法2,用方向和距离表示,比如:B点位于A点的北偏东45°方向上,距离A点32处.15.如图是小明家和学校所在地的简单地图,已知OA=2 cm,OB=2.5 cm,OP=4 cm,C为OP的中点,回答下列问题:(1)图中距小明家距离相同的是哪些地方?(2)商场、学校、公园、停车场分别位于小明家的什么方位?哪两个地方的方位是相同的?(3)若学校距离小明家400 m,则商场和停车场分别距离小明家多少米?解:(1)学校和公园.(2)商场:北偏西30°;学校:北偏东45°;公园和停车场都是南偏东60°.公园和停车场的方位是相同的.(3)商场距离小明家500 m,停车场距离小明家800 m.03综合题16.将正整数按如图所示的规律排列下去.若用有序实数对(n,m)表示第n排,从左到右第m个数,如(4,3)表示的数是9,则(7,2)表示的数是23.微课堂4.2平面直角坐标系第1课时平面直角坐标系01基础题知识点1平面直角坐标系1.如图所示,平面直角坐标系的画法正确的是(B)知识点2点的坐标2.(柳州中考)如图,点A(-2,1)到y轴的距离为(C)A.-2B.1C.2D. 53.(嘉兴期末)点P在第二象限内,P到x轴的距离是4,到y轴的距离是3,那么点P的坐标为(C)A.(-4,3)B.(-3,-4)C.(-3,4)D.(3,-4)4.如图,图中小正方形的边长均为1,以点O为坐标原点,写出图中点A、B、C、D、E、F的坐标.解:A(-3,-2),B(-5,4),C(5,-4),D(0,-3),E(2,5),F(-3,0).知识点3点的坐标特征5.(杭州开发区期末)下列坐标系表示的点在第四象限的是(C)A.(0,-1)B.(1,1)C.(2,-1)D.(-1,2)6.如图,下列各点在阴影区域内的是(A)A.(3,2)B.(-3,2)C.(3,-2)D.(-3,-2)第6题图第7题图7.如图,点A与B的横坐标(A)A.相同B.相隔3个单位长度C.相隔1个单位长度D.无法确定8.(金华金东区期末)若点P(a,4-a)是第二象限的点,则a必须满足(C)A.a<4 B.a>4C.a<0 D.0<a<49.在直角坐标系中,如果点P(a+3,a+1)在x轴上,那么P点的坐标为(B)A.(0,2)B.(2,0)C.(4,0)D.(0,-4)10.过点M(3,2)且平行于x轴的直线上点的纵坐标是2,过点M(3,2)且平行于y轴的直线上的点的横坐标是3.11.如图,A点、B点的坐标分别是(-2,0)和(2,0).(1)请你在图中描出下列各点:C(0,5),D(4,5),E(-4,-5),F(0,-5);(2)连结AC、CD、DB、BF、FE、EA,并写出图中的任意一组平行线.解:(1)如图所示.(2)如图所示,平行线有AB∥CD∥EF,CE∥DF.02中档题12.(杭州上城区期末)平面直角坐标系内有一点A(a,-a),若a>0,则点A位于(D)A.第一象限B.第二象限C.第三象限D.第四象限13.在平面直角坐标系xOy中,若A点坐标为(-3,3),B点坐标为(2,0),则△ABO的面积为(D)A.15 B.7.5C.6 D.314.点P的坐标为(2-a,3a+6),且到两坐标轴的距离相等,则点P的坐标为(D)A.(3,3)B.(3,-3)C.(6,-6)D.(3,3)或(6,-6)15.周日,小华做作业时,把老师布置的一个正方形忘了画下来,打电话给小云,小云在电话中答复他:“你可以这样画,正方形ABCD的顶点A,B,C的坐标分别是(1,2),(-2,2),(-2,-1),顶点D的坐标你自己想吧!”那么顶点D的坐标是(1,-1).16.如图,在平面直角坐标系中,有若干个横坐标分别为整数的点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(1,1),(1,2),(2,2),…,根据这个规律,第2 016个点的横坐标为45.习题解析17.如图是某公园的平面图(每个方格的边长为100米).(1)写出任意五个景点的坐标;(2)某星期天的上午,苗苗在公园沿(-500,0),(-200,-100),(200,-200),(300,200),(500,0)的路线游玩了半天,请你写出她路上经过的地方.解:(1)湖心亭(-300,200),望春亭(-200,-100),音乐台(0,400),牡丹园(300,200),游乐园(200,-200).(2)西门→望春亭→游乐园→牡丹园→东门.18.(1)已知点P(a-1,3a+6)在y轴上,求点P的坐标;(2)已知两点A(-3,m),B(n,4),若AB∥x轴,求m的值,并确定n的范围.解:(1)∵点P在y轴上,∴a-1=0,即a=1.∴3a+6=9.∴点P的坐标为(0,9).(2)∵A (-3,m ),B (n ,4),且AB ∥x 轴, ∴m =4,n ≠-3. 03 综合题19.(金华期末)在平面直角坐标系xOy 中,有点A (2,1)和点B ,若△AOB 为等腰直角三角形,则点B 的坐标为(1,-2),(-1,2),(3,-1),(1,3),(32,-12)或(12,32).第2课时用坐标系确定点的位置01基础题知识点1建立适当的平面直角坐标系,求点的坐标1.一个正方形在平面直角坐标系中三个顶点的坐标为(-2,-3),(-2,1),(2,1),则第四个顶点的坐标为(D)A.(2,2)B.(3,2)C.(2,3)D.(2,-3)2.在方格纸上有A、B两点,若以B点为原点建立直角坐标系,则A点坐标为(2,5),若以A点为原点建立直角坐标系,则B点坐标为(A)A.(-2,-5)B.(-2,5)C.(2,-5)D.(2,5)3.如图所示,在平面直角坐标系中,四边形MNPO的顶点P的坐标是(3,4),且OM=OP,则顶点M的坐标是(C)A.(3,0)B.(4,0)C.(5,0)D.(6,0)4.小宇在平面直角坐标系中画一个正方形,其中四个顶点到原点的距离相等,其中一个顶点的坐标为(2,2),则在第四象限内的顶点的坐标是(2,-2).5.已知点A、B的坐标分别为(2,0)、(2,4),以A、B、P为顶点的三角形与△ABO全等,写出一个符合条件的点P的坐标:(4,0).6.已知等腰三角形ABC的底边BC=6,腰AB=AC=5,若点C与坐标原点重合,点B在x轴的负半轴上,点A 在x轴的上方,则点A的坐标是(-3,4),点B的坐标是(-6,0).7.(金华金东区期末)已知长方形的两条边长分别为4,6.建立适当的坐标系,使它的一个顶点的坐标为(-2,-3).画出示意图,然后写出其他各顶点的坐标.解:如图所示:点A的坐标为(-2,-3),则其他各点的坐标是B(4,-3)、C(4,1)、D(-2,1).知识点2建立适当的平面直角坐标系,用坐标表示地理位置8.如图,小明从点O出发,先向西走40米,再向南走30米到达点M,如果点M的位置用(-40,-30)表示,那么(10,20)表示的位置是(B)A.点AB.点BC.点CD.点D9.有一张图纸被损坏,但上面有如图所示的两个标志点A(-3,1),B(-3,-3)可认,而主要建筑C(3,2)处破损,请通过建立直角坐标系找到图中C点的位置,并求△ABC的周长.解:略.02中档题10.一个平行四边形的三个顶点的坐标分别是(0,0),(2,0),(1,2),则第四个顶点的坐标为(D)A.(-1,2)B.(1,-2)C.(3,2)D.(1,-2)或(-1,2)或(3,2)11.(赤峰中考)如图所示,在象棋盘上建立平面直角坐标系,使“马”位于点(2,2),“炮”位于点(-1,2),写出“兵”所在位置的坐标是(-2,3).第11题图第12题图12.如图,在平面直角坐标系中,B,C两点的坐标分别为(-3,0)和(7,0),AB=AC=13,则点A的坐标为(2,12).13.平面直角坐标系中有两点M(a,b),N(c,d),规定(a,b)(c,d)=(a+c,b+d),则称点Q(a+c,b+d)为M,N的“和点”.若以坐标原点O与任意两点及它们的“和点”为顶点能构成四边形,则称这个四边形为“和点四边形”,现有点A(2,5),B(-1,3),若以O,A,B,C四点为顶点的四边形是“和点四边形”,则点C的坐标是(1,8),(-3,-2)或(3,2).14.已知等腰直角△ABC的斜边两端点的坐标分别为A(-4,0),B(2,0),求直角顶点C的坐标.解:C(-1,3)或C(-1,-3).15.如图是某台阶的一部分,如果建立适当的坐标系,使A 点的坐标为(0,0),B 点的坐标为(1,1).(1)直接写出C ,D ,E ,F 的坐标;(2)如果台阶有10级,你能求得该台阶的长度和高度吗?解:(1)以A 点为原点,水平方向为x 轴,建立平面直角坐标系, 所以C ,D ,E ,F 各点的坐标分别为C (2,2),D (3,3),E (4,4),F (5,5). (2)每级台阶高为1,宽也为1,所以10级台阶的高度是10,长度为11.16.温州一位老人制作的仿真郑和宝船尺寸如图,已知在某一直角坐标系中点A 坐标为(9,0),请你直接在图中画出该坐标系,并写出其余五点的坐标.解:坐标系如图所示: 各点的坐标为B (5,2),C (-5,2),D (-9,0),E (-5,-2),F (5,-2).03 综合题 17.如图所示,在Rt △ABC 中,∠C =90°,AC =3,BC =4.建立以A 为坐标原点,AB 为x 轴的平面直角坐标系.求B ,C 两点的坐标.解:∵∠C =90°,AC =3,BC =4, ∴AB =AC 2+BC 2=5, 即B 点的坐标为(5,0). 过C 作CD ⊥AB 于D , 则S △ABC =12AC·BC =12AB·CD ,∴CD =AC·BC AB =125,AD =AC 2-CD 2=95.∴C 点坐标为(95,125).4.3坐标平面内图形的轴对称和平移第1课时用坐标表示轴对称01基础题知识点1关于坐标轴对称的点的坐标特征1.点P(-2,3)关于x轴对称的点的坐标是(C)A.(-3,2)B.(2,-3)C.(-2,-3)D.(2,3)2.如图,在平面直角坐标系xOy中,点P(-3,5)关于y轴的对称点的坐标为(B)A.(-3,-5)B.(3,5)C.(3,-5)D.(5,-3)3.(金华金东区期末)点A(-4,0)与点B(4,0)是(A)A.关于y轴对称B.关于x轴对称C.关于坐标轴都对称D.以上答案都错4.(杭州六校12月月考)已知点A(a,-3),B(4,b)关于y轴对称,则a+b的值为(C)A.1 B.7C.-7 D.-15.将点P(-4,-5)先关于y轴对称得P1,将P1关于x轴对称得P2,则P2的坐标为(A)A.(4,5)B.(-4,5)C.(4,-5)D.(-4,-5)6.(杭州开发区期末)已知点A(m,3)与点B(2,n)关于y轴对称,则m=-2,n=3.知识点2图形的轴对称变换7.(海南中考)如图,△ABC与△DEF关于y轴对称,已知A(-4,6),B(-6,2),E(2,1),则点D的坐标为(B)A.(-4,6)B.(4,6)C.(-2,1)D.(6,2)8.线段MN在直角坐标系中的位置如图所示,若线段M′N′与MN关于y轴对称,则点M的对应点M′的坐标为(D)A.(4,2)B.(-4,2)C.(-4,-2)D.(4,-2)9.将平面直角坐标系内的△ABC的三个顶点坐标的横坐标乘以-1,纵坐标不变,则所得的三角形与原三角形(B)A.关于x轴对称B.关于y轴对称C.关于原点对称D.无任何对称关系10.(江山期末)已知:如图,在△ABC中,点A(-3,2),B(-1,1).(1)根据上述信息确定平面直角坐标系,并写出点C的坐标;(2)在平面直角坐标系中,作出△ABC关于y轴的对称图形△A1B1C1.解:(1)直角坐标系如图,点C(-1,4).(2)如图所示,△A1B1C1就是所求作的三角形.02中档题11.下列语句:①点A(5,-3)关于x轴对称的点A′的坐标为(-5,-3);②点B(-2,2)关于y轴对称的点B′的坐标为(-2,-2);③若点D在第二、四象限坐标轴夹角的角平分线上,则点D的横坐标与纵坐标相等.其中正确的是(D)A.①B.②C.③D.①②③都不正确12.已知点P1(a-1,5)和P2(2,b-1)关于x轴对称,则(a+b)2 017的值为(B)A.0 B.-1 C.1 D.(-3)2 01713.(嵊州期末)如图,在3×3的正方形网格中有四个格点A,B,C,D,以其中一点为原点,网格线所在直线为坐标轴,建立平面直角坐标系,使其余三个点中存在两个点关于一条坐标轴对称,则原点是(B)A.A点B.B点C.C点D.D点第13题图第14题图习题解析14.如图,在平面直角坐标系中,正方形ABCD的顶点坐标分别为A(1,1),B(1,-1),C(-1,-1),D(-1,1),y轴上有一点P(0,2).作点P关于点A的对称点P1,作点P1关于点B的对称点P2,作点P2关于点C的对称点P3,作点P3关于点D的对称点P4,作点P4关于点A的对称点P5,作点P5关于点B的对称点P6,…,按此操作下去,则点P2 016的坐标为(A)A.(0,2)B.(2,0)C.(0,-2)D.(-2,0)15.已知在平面直角坐标系中,点A,B的坐标分别为A(-3,4),B(4,-2).(1)求点A,B关于y轴对称的点的坐标;(2)在平面直角坐标系中分别作出点A,B关于x轴的对称点M,N,顺次连结AM,BM,BN,AN,求四边形AMBN的面积.解:(1)根据轴对称的性质,得A(-3,4)关于y轴对称的点的坐标是(3,4);点B(4,-2)关于y轴对称的点的坐标是(-4,-2).(2)根据题意:点M,N与点A,B关于x轴对称,可得M(-3,-4),N(4,2).四边形AMBN的面积=42.为(4+8)×7×1216.在图上建立直角坐标系,用线段顺次连结点(0,0),(1,3),(4,4),(4,0),(0,0).作出这个图形关于x 轴对称的图形,并求它的面积和周长.解:作图略,面积为2×12×1×3+3×3=12,周长为2×12+32+4+4=8+210.03综合题17.如图,在直角坐标系中,已知两点A(0,4),B(8,2),点P是x轴上的一点,求PA+PB的最小值.A点关于x轴对称的点A′坐标为(0,-4),由勾股定理得:A′B=PA+PB=10,即PA+PB的最小值为10.第2课时用坐标表示平移01基础题知识点1用坐标表示点的平移1.(杭州六校12月月考)在直角坐标系中,点A(2,1)向右平移2个单位长度后的坐标为(A)A.(4,1)B.(0,1)C.(2,3)D.(2,-1)2.在直角坐标系中,将点P(3,6)向左平移4个单位长度,再向下平移8个单位长度后,得到的点位于(C)A.第一象限B.第二象限C.第三象限D.第四象限3.点(-4,b)沿y轴正方向平移2个单位得到点(a+1,3),则a,b的值分别为(D)A.a=-3,b=3 B.a=-5,b=3C.a=-3,b=1 D.a=-5,b=14.将点P(-2,1)先向左平移1个单位,再向上平移2个单位得到点P′,则点P′的坐标为(-3,3).5.将点P(m+2,2m+4)向右平移若干个单位后得到(4,6),则m的值为1.6.(嘉兴期末)把点A(a+2,a-1)向上平移3个单位,所得的点与点A关于x轴对称,则a的值为-1 2.知识点2用坐标表示图形的平移7.已知△ABC在平面直角坐标系中的位置如图所示,将△ABC先向下平移5个单位,再向左平移2个单位,则平移后C点的坐标是(B)A.(5,-2)B.(1,-2)C.(2,-1)D.(2,-2)第7题图第8题图8.(萧山区万向中学月考)如图,与图1中的三角形相比,图2中的三角形发生的变化是(A)A.向左平移了3个单位B.向左平移了1个单位C.向上平移了3个单位D.向上平移了1个单位9.如图,在平面直角坐标系中,平行于x轴的线段AB上所有点的纵坐标都是-1,横坐标的取值范围是1≤x≤5,则线段AB上任意一点的坐标可以用“(x,-1)(1<x<5)”表示,按照这样的规定,回答下列问题:(1)怎样表示线段CD上任意一点的坐标?(2)把线段AB向上平移3个单位,画出所得到的线段,线段上任意一点的坐标可以怎样表示?(3)把线段CD向右平移3个单位,画出所得到的线段,线段上任意一点的坐标又可以怎样表示?解:(1)(-1,x)(-1<x<2).(2)如图所示,(x,2)(1<x<5).(3)如图所示,(2,x)(-1<x<2).02中档题10.如图,△ABC的顶点坐标分别为A(-4,-3),B(0,-3),C(-2,1),如将B点向右平移2个单位后,再向上平移4个单位到达B1点,若设△ABC的面积为S1,△AB1C的面积为S2,则S1,S2的大小关系为(C)A.S1>S2B.S1<S2C.S1=S2D.不能确定11.如图,把图1中的△ABC经过一定的变换得到图2中的△A′B′C′,如果图1中△ABC上点P的坐标为(a,b),那么这个点在图2中的对应点P′的坐标为(C)图1图2)A.(a-2,b-3)B.(a-3,b-2)C.(a+3,b+2)D.(a+2,b+3)12.将下图中的△ABC作下列运动,画出相应的图形,指出三个顶点的坐标所发生的变化.(1)将△ABC沿y轴正方向平移2个单位得到△A1B1C1,并写出各点的坐标;(2)作△A1B1C1关于x轴对称的△A2B2C2,并写出各点的坐标.解:(1)图略,△ABC的三个顶点的横坐标不变,纵坐标都加2,即A1(-4,10),B1(-6,2),C1(-2,2).(2)图略,△A1B1C1的三个顶点的横坐标不变,纵坐标变为其相反数,即A2(-4,-10),B2(-6,-2),C2(-2,-2).13.如图,已知点A(-4,-1),B(-5,-4),C(-1,-3),△ABC经过平移得到的△A′B′C′,△ABC中任意一点P(x1,y1)平移后的对应点为P′(x1+6,y1+4).(1)请在图中作出△A′B′C′;(2)写出点A′,B′,C′的坐标.解:(1)略.(2)A′(2,3),B′(1,0),C′(5,1).03综合题14.如图所示的直角坐标系中,△ABC的顶点坐标分别是A(0,0),B(7,1),C(4,5).(1)如果将△ABC向上平移1个单位,再向右平移2个单位,得到△A1B1C1,求A1,B1的坐标;(2)由△ABC得到△A1B1C1的过程中,线段BC扫过的面积为多少.解:(1)A1(2,1),B1(9,2).(2)线段BC扫过的面积为11.章末复习(四)图形与坐标01基础题知识点1确定物体的位置1.下列数据,不能确定物体位置的是(C)A.4号楼-2单位-601室B.新华路25号C.北偏东25°D.东经118°,北纬45°2.如图,点O、M、A、B、C在同一平面内,若规定点A的位置记为(50,20°),点B的位置记为(30,60°),那么图中点C的位置应记为(D)A.(60°,30)B.(110°,34)C.(34,4°)D.(34,110°)第2题图第3题图3.如图,有A,B,C三点,如果A点用(1,1)来表示,B点用(2,3)表示,则C点的坐标的位置可以表示为(C)A.(6,2)B.(5,3)C.(5,2)D.(2,5)知识点2平面直角坐标系及点的坐标4.(江山期末)已知点P的坐标为(3,-2),则点P到y轴的距离为(A)A.3 B.2 C.1 D.55.(金华金东区期末)如图,小手盖住的点的坐标可能为(D)A.(5,2)B.(-6,3)C.(-4,-6)D.(3,-4)6.点A的坐标(x,y)满足(x+3)2+|y+2|=0,则点A的位置在(C)A.第一象限B.第二象限C.第三象限D.第四象限7.如图是某战役缴获敌人防御工事坐标地图的碎片,依稀可见:一号暗堡A的坐标为(4,3),五号暗堡B的坐标为(-2,3).另有情报得知敌军指挥部的坐标为(-3,-2).请问你能找到敌军的指挥部吗?解:能.图略.知识点3 坐标平面内图形的轴对称和平移8.线段CD 是由线段AB 平移得到的,点A (-1,4)的对应点为C (4,7),则点B (-4,-1)的对应点D 的坐标为(C )A .(2,9)B .(5,3)C .(1,2)D .(-9,-4)9.已知点P (x ,3-x )关于x 轴对称的点在第三象限,则x 的取值范围是(A )A .x <0B .x <3C .x >3D .0<x <3 10.如图,△ABC 的顶点都在正方形网格格点上,点A 的坐标为(-1,4),将△ABC 沿y 轴翻折到第一象限,则点C 的对应点C′的坐标是(A )A .(3,1)B .(-3,-1)C .(1,-3)D .(3,-1)第10题图 第11题图 11.如图所示,在图形B 到图形A 的变化过程中,下列描述正确的是(B )A .向上平移2个单位,向左平移4个单位B .向上平移1个单位,向左平移4个单位C .向上平移2个单位,向左平移5个单位D .向上平移1个单位,向左平移5个单位02 中档题12.(江山期末)已知点P (3-a ,a -5)在第三象限,则整数a 的值是(A ) A .4 B .3,4C .4,5D .3,4,5 13.如图,已知A (3,2),B (5,0),E (4,1),则△AOE 的面积为(B )A .5B .2.5C .2D .314.在平面直角坐标系xOy 中,对于点P (a ,b )和点Q (a ,b ′),给出下列定义:若b′=⎩⎨⎧b (a ≥1),-b (a<1),则称点Q 为点P 的限变点,例如:点(2,3)的限变点的坐标是(2,3),点(-2,5)的限变点的坐标是(-2,-5),如果一个点的限变点的坐标是(3,-1),那么这个点的坐标是(C )A .(-1,3)B .(-3,-1)C .(3,-1)D .(3,1)15.(杭州六校12月月考)已知点A (4,y ),B (x ,-3),若AB ∥x 轴,且线段AB 的长为5,x =9或-1,y =-3.16.如图,平面直角坐标系中有四个点,它们的横、纵坐标均为整数,若在此平面直角坐标系内移动点A ,使得这四个点构成的四边形是轴对称图形,并且点A的横坐标仍是整数,则移动后点A的坐标为(-1,1)或_(-2,-2)或_(0,2)或(-2,-3).17.如图,已知单位长度为1的方格中有△ABC.(1)请画出△ABC向上平移3格再向右平移2格所得的△A′B′C′;(2)请以点A为坐标原点建立平面直角坐标系(在图中画出),然后写出点B、点B′的坐标:B(1,2)、B′(3,5).解:如图所示.03综合题18.阅读一段文字,再回答下列问题:已知在平面内两点的坐标为P1(x1,y1),P2(x2,y2),则该两点间距离公式为P1P2=(x1 -x2 )2+(y1 -y2 )2.同时,当两点在同一坐标轴上或所在直线平行于x轴、垂直于x轴时,两点间的距离公式可化简成|x2-x1|或|y2-y1|.(1)若已知两点A(3,3),B(-2,-1),试求A,B两点间的距离;(2)已知点M,N在平行于y轴的直线上,点M的纵坐标为7,点N的纵坐标为-2,试求M,N两点间的距离;(3)已知一个三角形各顶点的坐标为A(0,6),B(-3,2),C(3,2),你能判定此三角形的形状吗?试说明理由.解:(1)∵点A(3,3),B(-2,-1),∴AB=(-2-3)2+(-1-3)2=41,即A,B两点间的距离是41.(2)∵点M,N在平行于y轴的直线上,点M的纵坐标为7,点N的纵坐标为-2,∴MN=|-2-7|=9,即M,N两点间的距离是9.(3)该三角形为等腰三角形.理由:∵一个三角形各顶点的坐标为A(0,6),B(-3,2),C(3,2),∴AB=5,BC=6,AC=5.∴AB=AC.∴该三角形为等腰三角形.。
浙教版八年级上册数学第4章图形与坐标含答案一、单选题(共15题,共计45分)1、与点 A(-4,2)关于 y 轴成轴对称的点的坐标是()A.(4,2)B.(-4,-2)C.(-2,-4)D.(4,-2)2、已知点E(x0, yo),点F(x2.y2),点M(x1, y1)是线段EF的中点,则x1=,y1=.在平面直角坐标系中有三个点A(1,﹣1),B(﹣1,﹣1),C(0,1),点P(0,2)关于点A的对称点P1(即P,A,P1三点共线,且PA=P1A),P1关于点B的对称点P2, P2关于点C的对称点P3,…按此规律继续以A,B,C三点为对称点重复前面的操作.依次得到点P4, P5,P 6…,则点P2020的坐标是()A.(4,0)B.(﹣2,2)C.(2,﹣4)D.(﹣4,2)3、如图,在平面直角坐标系中,被墨水污染部分遮住的点的坐标可能是()A.(3,2)B.(﹣3,2)C.(﹣3,﹣2)D.(3,﹣2)4、如图,已知三个顶点的坐标分别为,,.将向右平移个单位,得到,点,,的对应点分别为,,,再将绕点顺时针旋转,得到,点,,的对应点分别为,,,则点的坐标为()A. B. C. D.5、点P(m+3,m+1)在直角坐标系的x轴上,则点P的坐标为( )A.(0,﹣2)B.(2,0)C.(4,0)D.(0,﹣4)6、下列各点中,在第三象限的是()A.(2,3)B.(2,﹣1)C.(﹣2,6)D.(﹣1,﹣5)7、平面直角坐标系中,点A(-3,2),,,若∥x轴,则线段的最小值及此时点的坐标分别为()A.6,B.2,C.2,D.3,8、如图,在平面直角坐标系中,△ABC位于第一象限,点A的坐标是(4,3),把△ABC向左平移6个单位长度,得到△A1B1C1,则点B1的坐标是()A.(﹣2,3)B.(3,﹣1)C.(﹣3,1)D.(﹣5,2)9、下列各点中位于第四象限的点是( )A.(-1,-2)B.(-1,2)C.(2,1)D.(2,-1)10、已知,点A(m-1,3)与点B(2,n-1)关于x轴对称,则(m+n)2020的值为()A.0B.1C.-1D.3 202011、如图,已知的顶点,,,若将先沿y轴进行第一次对称变换,所得图形沿x轴进行第二次对称变换,轴对称变换的对称轴遵循y轴、x轴、y轴、x轴…的规律进行,则经过第2018次变换后,顶点A坐标为()A. B. C. D.12、无论m为何值,点A(m-3,5-2m)不可能在( )A.第一象限B.第二象限C.第三象限D.第四象限13、下列各点中,位于第二象限的是()A.(8,﹣1)B.(8,0)C.(﹣,3)D.(0,﹣4)14、已知点P(2a+1,a-1)关于原点对称的点在第一象限,则a的取值范围是()A.a< 或a>1B.a<C. <a<1D.a>115、在平面直角坐标系中,将点(x,y)向左平移a个单位长度,再向下平移b个单位长度,则平移后点的坐标是()A.(x+a,y)B.(x+a,y﹣b)C.(x﹣a,y﹣b)D.(x+a,y+b)二、填空题(共10题,共计30分)16、如图,将正六边形ABCDEF放在直角坐标系中,中心与坐标原点重合,若点A的坐标为(﹣2,0),则AB=________,点C的坐标为________.17、如图1.在平面内取一定点O,引一条射线Ox,再取定一个长度单位,那么平面上任一点M的位置可由OM的长度m与∠xOM的度数α确定,有序数对(m,α)称为M点的极坐标,这样健的坐标系称为极坐标系,如图2,在极坐标系下,有一个等边三角形AOB,AB=4,则点B的极坐标为________.18、垂直于y轴的直线上有A和B两点,若A(2,),AB的长为,则点B的坐标为________.19、点P(3,﹣2)到y轴的距离为________个单位.20、已知点和点关于轴对称,则的值为________.21、点和点关于轴对称,则________.22、点P(1,﹣1)关于x轴对称的点的坐标为P′________.23、已知,,,,则________.24、平面直角坐标系中,点A(1,-2)在第________象限.25、如图,在平面直角坐标系中,有A(1,2),B(3,3)两点,现另取一点C(a,1),当a=________ 时,AC+BC的值最小.三、解答题(共5题,共计25分)26、已知点P(x+1,x−1)关于x轴对称的点在第一象限,试化简:|x+1|+|x−1|.27、连接AB,直线AB与x轴交于点C,与y轴交于点D,平面内有一点E(3,=kx+b,直线BE解析式1),直线BE与x轴交于点F.直线AB的解析式记作y1=mx+t.求:记作y2(1)直线AB的解析式△BCF的面积;(2)当x等于多少时,kx+b>mx+t;当x等于多少时,kx+b<mx+t;当x等于多少时,kx+b=mx+t;(3)在x轴上有一动点H,使得△OBH为等腰三角形,求H的坐标.28、如下图所示,A的位置为(2,6),小明从A出发,经(2,5)→(3,5)→(4,5)→(4,4)→(5,4)→(6,4),小刚也从A出发,经(3,6)→(4,6)→(4,7)→(5,7)→(6,7),则此时两人相距几个格?29、观察图形由(1)(2)(3)(4)的变化过程,写出每一步图形中各顶点的坐标是如何变化的,图形是如何变化的.30、如图,这是某市部分简图,已知医院的坐标为(﹣2,﹣2),请建立平面直角坐标系,分别写出其余各地的坐标.参考答案一、单选题(共15题,共计45分)2、B3、D4、D5、B6、D7、D8、C9、D10、B11、B12、A13、C14、B15、C二、填空题(共10题,共计30分)16、18、19、20、22、23、24、25、三、解答题(共5题,共计25分)26、29、。
浙教版八年级数学上册第4章测试题及答案4.1 探索确定位置的方法一、选择题1.北京时间2013年4月20日08时02分在四川省雅安市芦山县发生7.0级地震,震源深度13千米,能够准确表示这个地点位置的是( )A .北纬30.0°B .东经103.0°C .四川省雅安市芦山县D .北纬30.3°,东经103.0°2.做课间操时,袁露、李婷、张茜的位置如图,李婷对袁露说:“如果我们三人的位置相对于我而言,我的位置用(0,0)表示,张茜的位置用(5,8)表示.”则袁露的位置可表示为( ) A .(4,3) B .(3,4) C .(2,3) D .(3,2)(第2题图) 3.小明看小丽的方向为北偏东30°,那么小丽看小明的方向是( ) A .东偏北30° B .南偏西30° C .东偏北60° D .南偏西60°4.如图,小明在操场上从点A 出发,先沿南偏东30°方向走到点B ,再沿南偏东60°方向走到点C ,这时,∠ABC 的度数是( )A .120°B .135°C .150°D .160°(第4题图)5.定义:平面内的直线1l 与2l 相交于点O ,对于该平面内任意一点M ,点M 到直线1l ,2l 的距离分别为a ,b ,则称有序非负实数对(a ,b)是点M 的“距离坐标”.根据上述定义,距离坐标为(2,3)的点的个数是( ) A .2个 B .1个 C .4个 D .3个 二、填空题6.如图,用有序数对的方法来表示图中各点的位置. A______;B______;C______;D_______.(第6题图)(第7题图)7.如图,用有序数对的方法来表示图中各点的位置.若点A,B表示为A(0,1),B(2,1),则其余各点表示为:C_______,D______,E_______.8.小明在小丽的南偏西60°方向上,那么小丽相对小明的方向是_______.9.在图中标出下列各点:(1)北偏东45°方向距离点O 4 km的点A;(2)东偏南30°方向距离点O 2.5km的点B.(第9题图)(第10题图)10.如图,以灯塔A为观测点,小岛B在灯塔A•的北偏东45•°方向上,•距灯塔A 20km处,则以B为观测点,灯塔A在小岛B的______方向上,距小岛B km处.三、解答题11.如图是某地街道分布示意图,点A表示1巷与2马路的十字路口,•点B表示3巷与3马路的十字路口.如果用(1,2)→(2,2)→(2,3)→(3,3)表示由A到B的一条路径.那么你能用同样的方式写出由A到B的其它几条路吗?(要求与已知路线不同)(第11题图)12.如图是某次海战中敌我双方舰艇对峙图,对我方舰队来说:(1)北偏东60°的方向有哪些目标?要想确定敌舰B的位置还需要什么数据?(2)距我方舰队的图上距离为1cm的敌舰有哪些?(第12题图)13.B港在离点A的正北10海里处,一搜船从B港出发向正东方向匀速航行,第二次测得该船在点A的北偏东30°的M处,半小时后,又测得该船在A地的北偏东60°的N处,•先画出图形,再求该船的速度.14.将自然数按如图的规律排列.14这个数位于第4行第3列记作(4,3),那么127这个数应记作________.(第14题图)15.将自然数按图中的规律排列,每个自然数都对应一个坐标.1对应坐标(0,0),2对应坐标(1,0),3对应坐标(1,1),你能分别说出16,36,9,25,49•对应的坐标吗?请问2 025对应的坐标是多少?1993对应的坐标又是多少?(第15题图)参考答案一、1.D 2.C 3.B 4.C 5.C二、6.A(1,3),B(2,2),C(4,2),D(3,0)7.C(3,-1),D(4,3),E(0,3) 8.北偏东60°或东偏北30° 9.略10.南偏西45°,20三、11.略 12.(1)敌舰B,小岛.B•到我方舰队的距离(2)A,C敌舰13.图略,40海里/时14.(6,12)15.坐标:16(-1,2),36(-2,•3),9(1,-1),25(2,-2),49(3,-3);2025坐标为(22,-22);1993坐标为(-10,-22)4.2 平面直角坐标系一、选择题1.在平面直角坐标系中,若点A(a,﹣b)在第一象限内,则点B(a,b)所在的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限2.如图为A,B,C三点在坐标平面上的位置如图.若A,B,C的x坐标的数字总和为a,y坐标的数字总和为b,则a﹣b之值为何?()A.5 B.3 C.﹣3 D.﹣5(第2题图)(第3题图)3.观察图中正方形四个顶点所标的数字规律,可知,数2016应标在()A.第504个正方形的左下角 B.第504个正方形的右下角C.第505个正方形的左上角 D.第505个正方形的右下角4.若点M(x,y)满足(x+y)2=x2+y2﹣2,则点M所在象限是()A.第一、三象限 B.第二、四象限 C.第一、二象限 D.不能确定5.若点A(﹣3,n)在x轴上,则点B(n﹣1,n+1)在()A.第一象限 B.第二象限 C.第三象限 D.第四象限6.若点P是第二象限内的点,且点P到x轴的距离是4,到y轴的距离是3,则点P的坐标是() A.(﹣4,3) B.(4,﹣3) C.(﹣3,4) D.(3,﹣4)7.如图,动点P 从(0,3)出发,沿所示方向运动,每当碰到矩形的边时反弹,反弹时反射角等于入射角,当点P 第2014次碰到矩形的边时,点P 的坐标为( ) A .(1,4) B .(5,0) C .(6,4) D .(8,3)(第7题图) (第8题图)8.如图,动点P 在平面直角坐标系中按图中箭头方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),…,按这样的运动规律,经过第2011次运动后,动点P 的坐标是( ) A .(2011,0)B .(2011,1)C .(2011,2)D .(2010,0)9.如图,在平面直角坐标系中,半径均为1个单位长度的半圆O 1,O 2,O 3,2l …组成一条平滑的曲线,点P 从原点O 出发,沿这条曲线向右运动,速度为每秒2个单位长度,则第2017秒时,点P 的坐标是( )(第9题图)A .(2016,0)B .(2017,1)C .(2017,﹣1)D .(2018,0)10.定义:平面内的直线1l 与2l 相交于点O ,对于该平面内任意一点M ,点M 到直线1l ,2l 的距离分别为a ,b ,则称有序非负实数对(a ,b )是点M 的“距离坐标”,根据上述定义,距离坐标为(2,1)的点的个数有( )A .2个B .3个C .4个D .5个 二、填空题11.已知平面直角坐标系中的点P (a ﹣1,a+2)在第二象限,则a 的取值范围是 .12.如图,一个机器人从点O 出发,向正东方向走3m 到达点A 1,再向正北方向走6m 到达点A 2,再向正西方向走9m 到达点A 3,再向正南方向走12m 到达点A 4,再向正东方向走15m 到达点A 5.按如此规律下去,当机器人走到点A 6时,离点O 的距离是 m .(第12题图)13.在平面直角坐标系中,对于平面内任一点(a,b),若规定以下三种变换:①f(a,b)=(﹣a,b).如:f(1,3)=(﹣1,3);②g(a,b)=(b,a).如:g(1,3)=(3,1);③h(a,b)=(﹣a,﹣b).如:h(1,3)=(﹣1,﹣3).按照以上变换有:f(g(2,﹣3))=f(﹣3,2)=(3,2),则f(h(5,﹣3))的值为;g(f(5,﹣3))的值为.14.下面四种说法:①如果一个点的横、纵坐标都为0,则这个点是原点;②若一个点在x轴上,那它一定不属于任何象限;③纵轴上的点的横坐标均相等,且都等于0;④纵坐标相同的点,分布在平行于y轴的某条直线上.其中你认为正确的有.(填序号)15.如图,在平面直角坐标系中,一动点从原点O出发,沿着箭头0方向,每次移动1个单位,依次得到点P1(0,1),P2(1,1),P3(1,0),P4(1,﹣1),P5(2,﹣1),P6(2,0),…,则点P60的坐标是.(第15题图)(第16题图)16.如图,在平面直角坐标系中,A(﹣1,2),B(3,﹣2),则△AOB的面积为.17.已知点P的坐标为(2﹣a,3a+6),且点P到两坐标轴的距离相等,则a= .三、解答题18.已知点P(﹣2x,3x+1)是平面直角坐标系中第二象限内的点,且点P到两轴的距离之和为11,求P 的坐标.19.若x,y为实数,且满足|x﹣0.010+>.(1)如果实数x,y对应为平面直角坐标系上的点A(x,y),则点A在第几象限?(2)求(xy)2015的值?20.已知点P(2m+4,m﹣1).试分别根据下列条件,求出点P的坐标.(1)点P在y轴上;(2)点P在x轴上;(3)点P的纵坐标比横坐标大3;(4)点P在过点A(2,﹣3),且与x轴平行的直线上.21.在平面直角坐标系中,点A,B的位置如图,(1)写出A,B两点的坐标:.(2)若C(﹣3,﹣4),D(3,﹣3),请在图示坐标系中标出C,D两点.(3)写出A,B,C,D四点到x轴和y轴的距离:A 到x轴的距离为,到y轴的距离为.B 到x轴的距离为,到y轴的距离为.C(﹣3,﹣4)到x轴的距离为,到y轴的距离为.D(3,﹣3 )到x轴的距离为,到y轴的距离为.(4)分析(3)中点的坐标与该点到坐标轴的距离的关系,利用你所发现的结论写出点P(x,y)到x轴的距离为,到y轴的距离为.(第21题图)22.如图,A(﹣1,0),C(1,4),点B在x轴上,且AB=3.(1)求点B的坐标;(2)求△ABC的面积;(3)在y轴上是否存在点P,使以A,B,P三点为顶点的三角形的面积为10?若存在,请直接写出点P 的坐标;若不存在,请说明理由.(第22题图)23.小明在学习了平面直角坐标系后,突发奇想,画出了这样的图形(如图),他把图形与x轴正半轴的交点依次记作A1(1,0),A2(5,0),…A n,图形与y轴正半轴的交点依次记作B1(0,2),B2(0,6),…B n,图形与x轴负半轴的交点依次记作C1(﹣3,0),C2(﹣7,0),…C n,图形与y轴负半轴的交点依次记作D1(0,﹣4),D2(0,﹣8),…D n,发现其中包含了一定的数学规律.请根据你发现的规律完成下列题目:(1)请分别写出下列点的坐标:A3,B3,C3,D3;(2)请分别写出下列点的坐标:A n,B n,C n,D n;(3)请求出四边形A5B5C5D5的面积.(第23题图)24.如图,在平面直角坐标系xOy中,我们把横、纵坐标都是整数的点叫做整点.已知点A(0,4),点B 是x轴正半轴上的整点,记△AOP内部(不包括边界)的整点个数为m.(1)当m=3时,求点B坐标的所有可能值;(2)当点B的横坐标为4n(n为正整数)时,用含n的代数式表示m.(第24题图)25.根据要求解答下列问题:设M(a,b)为平面直角坐标系中的点.(1)当a>0,b<0时,点M位于第几象限?(2)当ab>0时,点M位于第几象限?(3)当a为任意实数,且b<0时,点M位于何处?26.根据点的坐标特征回答下列问题.(1)已知点A(a﹣4,3a+6)在y轴上,则a= .(2)点C (|m|+12,)可能在坐标轴上吗?请说明理由. (3)已知点B (b 2﹣4,1﹣b )在坐标轴上,求b 的值.参考答案一、 1.D 2.A 3.D 4.B 5.B 6. C 7.B 8.C 9.B 10.C 二、 11.﹣2<a <1 12.12 13.(5,3),(﹣3,﹣5) 14.①②③ 15.(20,0) 16.2 17.﹣1或﹣4.三、18.解:∵点P (﹣2x ,3x+1)在第二象限,且到两轴的距离之和为11, ∴2x+3x+1=11,解得x=2, 所以﹣2x=﹣2×2=﹣4, 3x+1=3×2+1=7,所以点P 的坐标为(﹣4,7).19.解:(1)∵|x+3|≥00,且|x ﹣,∴x ﹣3=0,y+3=0,∴x=3,y=﹣3,∴A (3,﹣3), ∴点A 在第四象限.(2)由(1),得x=3,y=﹣3, ∴x y =﹣1,∴(x y)2015=﹣1. 20.解:(1)令2m+4=0,解得m=﹣2,所以P 点的坐标为(0,﹣3); (2)令m ﹣1=0,解得m=1,所以P 点的坐标为(6,0);(3)令m ﹣1=(2m+4)+3,解得m=﹣8,所以P 点的坐标为(﹣12,﹣9); (4)令m ﹣1=﹣3,解得m=﹣2.所以P 点的坐标为(0,﹣3). 21.解:(1)如图可得A (1,2),B (﹣3,2); (2)如图;(3)到x 轴的距离等于该点纵坐标的绝对值;到y 轴的距离等于该点横坐标的绝对值, (1,2);2;1;(﹣3,2);2;3;4;3;3;3; (4)|y|,|x|;(第21题答图)22.解:(1)点B 在点A 的右边时,﹣1+3=2, 点B 在点A 的左边时,﹣1﹣3=﹣4, 所以,B 的坐标为(2,0)或(﹣4,0); (2)△ABC 的面积=12×3×4=6; (3)设点P 到x 轴的距离为h , 则12×3h=10,解得h=203,点P 在y 轴正半轴时,P (0,203), 点P 在y 轴负半轴时,P (0,﹣203), 综上所述,点P 的坐标为(0,203)或(0,﹣203).(第22题答图)23.解:(1)A 3(9,0),B 3(0,10),C 3(﹣11,0),D 3(0,﹣12). (2)A n (4n ﹣3,0),B n (0,4n ﹣2),C n (﹣4n+1,0),D n (0,﹣4n ). (3)∵A 5(17,0),B 5(0,18),C 5(﹣19,0),D 5(0,﹣20). ∴四边形A 5B 5C 5D 5的面积=55A OB S +55B OC S+55C OD S+55D OA S=12×17×18+12×18×19+12×19×20+12×20×17=684.24.解:(1)当B 点的横坐标为3或者4时,即B (3,0)或(4,0)如答图,只有3个整点,坐标分别为(1,1),(1,2),(2,1);(第24题答图)(2)当n=1时,即B 点的横坐标为4,如答图1,此时有3个整点; 当n=2时,即B 点的横坐标为8,如答图2,此时有9个整点; 当n=3时,即B 点的横坐标为12,如图2,此时有15个整点; 根据上面的规律,即可得出3,9,15…, ∴整数点m=6n ﹣3.理由如下:当点B 的横坐标为4n (n 为正整数)时,∵以OB 为长OA 为宽的矩形内(不包括边界)的整点个数为(4n ﹣1)×3=12n ﹣3,对角线AB 上的整点个数总为3,∴△AOB 内部(不包括边界)的整点个数m=(12n ﹣3﹣3)÷2=6n ﹣3.(第24题答图)25.解:∵M (a ,b )为平面直角坐标系中的点. (1)当a >0,b <0时,点M 位于第四象限;(2)当ab >0时,即a ,b 同号,故点M 位于第一、三象限;(3)当a 为任意实数,且b <0时,点M 位于第三、四象限和纵轴的负半轴. 26. 解:(1)4.(2)∵|m|≥0,0,∴|m|+12>00.010>.∴点C 在第一象限. ∴点B 不可能在坐标轴上.(3)当点B 在x 坐标轴上时,1﹣b=0, ∴b=1.当点B 在x 坐标轴y 上时,b 2﹣4=0, 解得b=±2.4.3 坐标平面内图形的轴对称和平移一、选择题1. 如果点P(m+3,m+1)在x轴上,则点P的坐标为( )A. (0,2)B. (2,0)C. (4,0)D. (0,−4)2. 若点P(a,b)在第四象限,则点Q(b,−a)所在的象限为( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限3. 在平面直角坐标系中,点(3,−2)关于原点的对称点的坐标是( )A. (3,2)B. (3,−2)C. (−3,−2)D. (−3,2)4. 如果m是任意实数,则点P(m−4,m+1)一定不在( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限5. 定义:平面内的直线l1与l2相交于点O,对于该平面内任意一点M,点M到直线l1,l2的距离分别为a,b,则称有序非负实数对(a,b)是点M的“距离坐标”,根据上述定义,距离坐标为(2,3)的点的个数是( )A. 2B. 1C. 4D. 36. 在平面直角坐标系中,任意两点A(x1,y1),B(x2,y2)规定运算:① A⊕B=(x1+x2,y1+y2);②A⊗B=x1x2+y1y2;③当x1=x2且y1=y2时A=B,有下列四个命题:(1)若A(1,2),B(2,−1),则A⊕B=(3,1),A⊗B=0;(2)若A⊕B=B⊕C,则A=C;(3)若A⊗B=B⊗C,则A=C;(4)对任意点A,B,C,均有(A⊕B)⊕C=A⊕(B⊕C)成立.其中正确命题的个数为( )A. 1 个B. 2 个C. 3 个D. 4 个+1)关于原点对称的点在第四象限,则a的取值范围在数轴上表示正确的7. 已知点P(a+1,−a2是( )A. B.C. D.8. 如图,在平面直角坐标系中,以点O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点MN的长为半径画弧,两弧在第二象限交于点P.若点P的N,再分别以点M,N为圆心,大于12坐标为(2a,b+1),则a与b的数量关系为( )A. a=bB. 2a+b=−1C. 2a−b=1D. 2a+b=1(第8题图) (第9题图)9. 如图,动点P从(0,3)出发,沿所示方向运动,每当碰到矩形的边时反弹,反弹时反射角等于入射角,当点P第2015次碰到矩形的边时,点P的坐标为( )A. (3,0)B. (7,4)C. (8,1)D. (1,4)10. 如图,在平面直角坐标系中,已知点A(1,1),B(−1,1),C(−1,−2),D(1,−2),动点P从点A出发,以每秒个单位的速度按逆时针方向沿四边形ABCD的边做环绕运动;另一动点Q从点C 出发,以每秒个单位的速度按顺时针方向沿四边形CBAD的边做环绕运动,则第2014次相遇点的坐标是( )(第10题图)A. (−1,−1)B. (−1,1)C. (−2,2)D. (1,2)二、填空题x的图象上,则点Q(a,3a−5)位11. 在平面直角坐标系xOy中,设点P(2,a)在正比例函数y=12于第象限.12. 将点P(−3,y)向上平移 3 个单位,向左平移 2 个单位后得到点Q(x,−1),则xy=.13. 已知点P(a+3b,3)与点Q(−5,a+2b)关于y轴对称,则a=,b=.14. 在平面直角坐标系中,如果一个点的横、纵坐标均为整数,那么我们称该点是格点.若格点P(2m−1,m+2)在第二象限,则m的值为.15. 如图,在平面直角坐标系中,将△ABO绕点A顺时针旋转到△AB1C1的位置,点B,O分别落在点B1,C1处,点B1在x轴上,再将△AB1C1绕点B1顺时针旋转到△A1B1C2的位置,点C2在x轴上,将△A1B1C2绕点C2顺时针旋转到△A2B2C2的位置,点A2在x轴上,依,0),B(0,2),则点B2016的坐标为.次进行下去.若点A(32(第15题图) (第16题图)16. 如图,坐标平面内一点A(2,−1),O为原点,P是x轴上的一个动点,如果以点P,O,A为顶点的三角形是等腰三角形,那么符合条件的动点P共有个.三、解答题17. 如图,在平面直角坐标系中画出四个点A,B,C,D.Ⅰ. 请你写出这四个点的坐标;Ⅱ. 哪些点的纵坐标相同;Ⅲ. 线段AB,CD有何关系?(第17题图)18. 如图,在平面直角坐标系xOy中,矩形ABCD各边都平行于坐标轴,且A(−2,2),C(3,−2).对矩形ABCD及其内部的点进行如下操作:把每个点的横坐标乘a,纵坐标乘b,将得到的点再向右平移k(k>0)个单位,得到矩形AʹBʹCʹDʹ及其内部的点(AʹBʹCʹDʹ分别与ABCD对应),E(2,1)经过上述操作后的对应点记为Eʹ.Ⅰ. 若a=2,b=−3,k=2,则点D的坐标为,点Dʹ的坐标为;Ⅱ .若Aʹ(1,4),Cʹ(6,−4),求点Eʹ的坐标.(第18题图)19. 已知,△ABC的三个顶点A,B,C的坐标分别为A(4,0),B(0,−3),C(2,−4).Ⅰ. 在如图的平面直角坐标系中画出△ABC,并分别写出点A,B,C关于x轴的对称点Aʹ,Bʹ,Cʹ的坐标;Ⅱ. 将△ABC向左平移 5 个单位,请画出平移后的△AʹBʹCʹ,并写出△AʹBʹCʹ各个顶点的坐标.Ⅲ .求出(2)中的△ABC在平移过程中所扫过的面积.(第19题图)20. 如图是边长为 4 的正三角形ABC,建立适当的直角坐标系,写出各个顶点的坐标.(第20题图)21. 如图①,在6×6的方格纸中,给出如下三种变换:P变换,Q变换,R变换.将图形F沿x轴向右平移 1 格得到图形F1,称为作 1 次P变换;将图形F沿y轴翻折得到图形F2,称为作 1 次Q变换;将图形F绕坐标原点顺时针旋转90∘得到图形F3,称为作 1 次R变换.规定:PQ 变换表示先作 1 次Q变换,再作1 次P变换;QP变换表示先作 1 次P变换,再作 1 次Q 变换;R n变换表示作n次R变换.解答下列问题:Ⅰ. 作R4变换相当于至少作次Q变换.Ⅱ. 请在图②中画出图形F作R2015变换后得到的图形F4 .Ⅲ. PQ变换与QP变换是否是相同的变换?请在图③中画出PQ变换后得到的图形F5,在图④中画出QP变换后得到的图形F6 .(第21题图)参考答案一、1. B 2. C 3. D 4. D 5. C 6. C 7. C 8. B 9. D 10. A 二、11. 四 12. 20 13. −1;2 14. −1 或 0 15. (6048,2) 16. 4 三、17.(1) A (−3,−2),B (2,−2),C (−2,1),D (3,1) (2)点 A 与点 B ,点 D 与点 C 的纵坐标分别相同. (3)AB ∥CD ,AB =CD . 18.(1) (3,2);(8,−6) (2) 依题可列 {−2a +k =1,3a +k =6.则{a =1,k =3,2b =4,b =2,点 E (2,1), ∴E ʹ(5,2).19. (1) △ABC 即为所求作的三角形,如答图①. A ʹ(4,0),B ʹ(0,3),C ʹ(2,4).(2) △A ʹB ʹC ʹ即为所求作的三角形,如答图②. A ʹ(−1,0),B ʹ(−5,−3),C ʹ(−3,−4).(3) △ABC 在平移过程中所扫过的面积 =5×4+(4×4−12×4×3−12×1×2−12×2×4)=20+(16−6−1−4)=20+5=25.① ② (第19题答图)20. 如答图,以 BC 所在的直线为 x 轴,以 BC 边上的高所在的直线为 y 轴,建立平面直角坐标系. 正三角形 ABC 的边长为4, ∴BO =CO =2,点 B ,C 的坐标分别为 B (−2,0),C (2,0), ∵AO =√AB 2−BO 2=√42−22=2√3, 点 A 的坐标为 (0,2√3).(第20题答图)21. (1)2.(2)由于2015=4×503+3,故R2015变换即为R3变换,其图象如答图①. (3)PQ变换与QP变换不是相同的变换.正确画出图形F5,F6,如答图②.①②(第21题答图)。
2017-2018学年度第一学期期末教学质量检测八年级数学试题(时间:120分钟)友情提示:亲爱的同学,你好!今天是你展示才能的时候,只要你仔细审题,认真答题,你就会有出色的表现!1.考生务必将姓名、班级、座号、准考证号填写在答题卡规定的位置上。
2.本试题分第Ⅰ卷和第Ⅱ卷,共25道小题。
3.第Ⅰ卷是选择题,共8道小题,每小题选出的答案后,用2B铅笔把答题卡上对应的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其它答案标号,答案不能答在试卷上。
4.第Ⅱ卷是填空题和解答题,共17小题,答案必须用0.5毫米黑色签字笔写在答题卡题目指定区域内相应的位置,不能写在试题上;如需改动,先划掉原来的答案,然后再写上新的答案。
不按以上要求作答的答案无效。
5.考试结束只上交答题卡。
第Ⅰ卷一、选择题:下列每小题都给出标号为A、B、C、D的四个结论,其中只有一个是正确的,请将所选答案的字母标号涂在答题卡的相应位置。
1.3的相反数是()A、3B、-3C、3D、-32.在平面直角坐标系中,点P(-2,3)关于x轴的对称点坐标为()A、(-2,3)B、(2,-3)C、(-2,-3)D、(3,-2)3.下列语句:①三角形的内角和是180°;②作为一个角等于一个已知角;③两条直线被第三条直线所截,同位角相等;④延长线段AB到C,使BC=AB,其中是命题的有()A、①②B、②③C、①④D、①③4.方程组的解是()A、 B、 C、 D 、5.若一次函数y=kx+b,(k,b为常熟,且k≠0)的图像经过点(1,2)且y随x的增大而减小,则这个函数的表达式可能是()A、y=2x+4B、y=3x-1C、y=-3x-1D、y=-2x+46.如图,∠AOB的边OA为平面反光镜,一束光线从OB上的C点射出,经OA上的D点反射后,反射光线DE恰好与OB平行,若∠AOB=40°,则∠BCD的度数是()A、60°B、80°C、100°D、120°x +|y-2|=0,则(x+y)2017的值为()7.若3A、-1B、1C、±1D、08.若一组数据10,9.a,12,9的平均数是10,则这组数的方差是()A、0.9B、1C、1.2D、1.4第Ⅱ卷二、填空题:请把正确答案填写在答题卡的相应位置9.实数7的整数部分是_______10.命题“对顶角相等”的条件是_______________ ,结论是___________ 。
2017-2018学年度第一学期期中质量检测八年级数学试卷10小题,每小题3分,共30分).在平面直角坐标系中,点(﹣1,-2)在()A.第一象限 B.第二象限C.第三象限D.第四象限.在如图所示的象棋盘上,若“帅”和“相”所在的坐标分别是(1,﹣2)和(3,﹣2))A. (﹣2,1) B.(﹣2,2)C.(﹣1,1) D.(﹣1,2).直线y=x﹣2与y=﹣x﹣4的交点坐标为()A.(﹣2,3)B.(2,﹣3) C.(-1,-3)D.(1,3).在平面直角坐标系中,直线y=-kx+b(k<0,b>0)不经过哪一象限()A.第一象限 B.第二象限C.第三象限D.第四象限.一次函数y=ax﹣a(a≠0)的大致图象是()A. B.C. D..现有3 cm,4 cm,7 cm,9 cm长的四根木棒,任取其中三根组成一个三角形,那么可( )A.1个 B.2个 C.3个 D.4个如图,A,B,C,D,E,F是平面上的6个点,则∠A+∠B+∠C+∠D+∠E 的度数是()A. 180°B.270°C.360°D.540°8.直线l1:y=ax+b与直线l2:y=mx+n在同一平面直角坐标系中的图象如图所示,则关于x的不等式ax+b<mx+n的解集为()A.x>﹣2 B.x<﹣2 C.x>1 D.x<19.下列判断:①有两个内角分别为55°和25°的三角形一定是钝角三角形;②直角三角形中两锐角之和为90°;③三角形的三个内角中至少有两个锐角;④三条高不相交的三角形一定是钝角三角形,其中正确的有( )个A.1 B.2 C.3 D.410.某人骑自行车沿直线旅行,先前进了a km, 又原路返回b km(b<a),休息了一段时间,再推车步行c km,此人离起点的距离y与时间x之间关系示意图象应为()二.填空题(本大题共5小题,每小题4分,共20分)11.若点(n,n+3)在一次函数2)1(12+-=+mxmy的图象上,则n= .12.若函数y=kx-3的图象与两坐标轴围成的三角形面积为6,那么k= .13.已知直线y=kx+b经过点(﹣2,3),并且与直线y=-2x+1平行,那么b= .14.如图,把一副常用的三角板如图所示拼在一起,那么图中∠ABF= .15.在一次自行车越野赛中,出发mh后,小明骑行了25km,小刚骑行了18km,此后两人分别以a km/h,b km/h匀速骑行,他们骑行的时间t(单位:h)与骑行的路程s(单位:km)之间的函数关系如图所示,观察图象,可得小刚追上小明时离起点 km;答题卷一、选择题(每题3分,共30分)二、填空题(每题4分,共20分)11. . 12. .13. .14. 15. 三、解答题:(共40分,每题10分)16.如图,ABC ∆的三个顶点坐标分别为A(-1,1),B(-2,3),C(-6,2),平面直角坐标系中画出ABC ∆,并求ABC ∆的面积.17.已知y ﹣3与3x+1成正比例,且x=2时,y=6.5. (1)求y 与x 之间的函数关系式,并指出它是什么函数; (2)若点(a ,2)在这个函数的图象上,求a .18、已知,直线l 在平面直角坐标系中与y 轴交于点A ,点B (﹣3,3)也在直线l 上,将点B 先向右平移1个单位长度,再向下平移2个单位长度得到点C ,点C 也在直线l 上. 求点A 的坐标和直线l 的解析式;19.如图,∠MAN=100°,点B 、C 是射线AM 、AN 上的动点,∠ACB 的平分线和∠MBC 的平分线所在直线相交于点D ,求∠BDC 的大小四.综合与实践:(10分)20.已知某种鞋子的型号“鞋码”和鞋子的长度“cm ”之间存在一种换算关系如下:(1)通过画图、观察,猜想上表“鞋码”与鞋长之间的关系符合你学过的哪种函数?简单说明你猜想的过程。
2017-2018学年第一学期八年级 数学(上) 参考答案及评分标准一、选择题(本大题共16个小题,每小题2分,共32分.在每小题给出的四个选项中,只有一项是符合题目要求的)二、填空题(本大题共4个小题,每小题3分,共12分,把答案写在题中横线上)17.> 18.3 19.2 20.8三、解答题(本大题共6个小题,共56分.解答应写出相应的文字说明或解题步骤)21.(1)解:原式=yx 2- ……………(4分) 21.(2)解:原式=2)1()1()111(a a a a a a +-∙++-+ ……………(2分) =2)1()1(11a a a +-∙+- =21-a ……………(4分) 21.(3)解:据题意得:x ﹣2=22=4,∴ x =6, ……………(1分)2y ﹣11=(﹣3)3=﹣27,∴ y =﹣8, ……………(2分)则x 2+y 2=62+(﹣8)2=36+64=100, ………………(3分)∴ x 2+y 2的平方根为±10. …………………(4分)22.解:(1)二, …………………(2分)a-24; …………………(4分) (2)由题意得,aa a -++222=2, 即a-24=2, …………………(5分) 解得:a =0, …………………(7分)经检验,a =0是原方程的解,∴ 当a =0时,原代数式的值等于2. …………………(8分)23.如图1,作出∠B =∠β得3分;作出边BC =a 得2分;作出边AC =b 和A ′C =b 共得3分,少一种情况扣1分.24.(1)命题一,命题二; …………………(4分) (2)命题一: 条件是①AB=AC ,②AD=AE ,③∠1=∠2,结论是④BD=CE .证明:∵∠1=∠2∴∠BAD=∠CAE ,又AB=AC ,AD=AE ,∴△ABD ≌△ACE (SAS ) …………………(8分)∴BD=CE .…………………(9分)或:命题二:条件是①AB=AC ,②AD=AE ,④BD=CE ,结论是③∠1=∠2.证明:∵AB=AC ,AD=AE ,BD=CE ,∴△ABD ≌△ACE (SSS ),…………………(8分)∴∠BAD=∠CAE ,∴∠1=∠2.…………………(9分)25.解:(1)设第一次购进衬衫x 件. 根据题意得:48000217600=-xx .…………………(4分) 解得:x =200.…………………(6分)经检验:x =200是原方程的解.答:该服装店第一次购进衬衫一共200件.…………………(7分)(2)盈利;…………………(8分)盈利=58×(200+400)﹣(17600+8000)=9200(元)…………………(9分) 答:该服装店这笔生意一共盈利9200元.26.(1)△ABE ≌△ACE ,△ADF ≌△CDB ………………(2分)(2)CEAF =2 …………………(3分) 证明:如图2,∵AE 平分∠DAC ,图2 A′ β b图1 A C B ba∴∠CAE =∠BAE ,∵AE ⊥CE ,∴∠AEC =∠AEB =90°,在△AEC 和△AEB 中,⎪⎩⎪⎨⎧∠=∠=∠=∠BAECAE AE AE AEBAEC∴△AEC ≌△AEB (ASA ),∴CE =BE ,即CB =2CE ,…………………(5分)∵∠ADC =90°,∴∠ADF=∠CDB =90°,∴∠B +∠DCB =90°,∵∠B +∠DAF =90°,∴∠DAF =∠DCB ,在△ADF 和△CDB 中,⎪⎩⎪⎨⎧∠=∠=∠︒=∠=∠DCBDAF CD AD CDB ADF 90,∴△ADF ≌△CDB (ASA ),∴AF =CB =2CE ,即CE AF=2. …………………(7分)(3)等于; ……………(8分)辅助线如图3, …………………(9分)作法:过点P 作PG ⊥DC 交CE 的延长线于点G ,交DC 于点B . ………………(10分) 或:过点P 作PG ∥AD 交CE 的延长线于点G ,交DC 于点B . 或:延长CE 到点G ,使CE =GE ,连接PG 交DC 于点B . (说明:其它作法正确均给分)D CE 图3 G。
2017-2018学年八年级(上)第4周周练数学试卷一、选择题1.下面有4个汽车标志图案,其中是轴对称图形的是()A.②③④B.①③④C.①②④D.①②③2.要测量河两岸相对的两点A,B的距离,先在AB的垂线BF上取两点C,D,使CD=BC,再定出BF的垂线DE,使A,C,E在一条直线上(如图所示),可以说明△EDC≌△ABC,得ED=AB,因此测得ED的长就是AB的长,判定△EDC≌△ABC最恰当的理由是()A.边角边B.角边角C.边边边D.边边角3.如图所示,两个全等的等边三角形的边长为1m,一个微型机器人由A点开始按ABCDBEA 的顺序沿等边三角形的边循环运动,行走2012m停下,则这个微型机器人停在()A.点A处B.点B处C.点C处D.点E处4.如图,已知AB∥CD,AD∥BC,AC与BD交于点O,AE⊥BD于点E,CF⊥BD于点F,那么图中全等的三角形有()A.5对B.6对C.7对D.8对5.下列命题中正确的是()A.全等三角形的高相等B.全等三角形的中线相等C.全等三角形的角平分线相等D.全等三角形的对应角平分线相等6.如图,点B、C、E在同一条直线上,△ABC与△CDE都是等边三角形,则下列结论不一定成立的是()A.△ACE≌△BCD B.△BGC≌△AFC C.△DCG≌△ECF D.△ADB≌△CEA 7.如图,a、b、c分别表示△ABC的三边长,则下面与△ABC一定全等的三角形是()A.B.C.D.8.已知:如图所示,B、C、D三点在同一条直线上,AC=CD,∠B=∠E=90°,AC⊥CD,则不正确的结论是()A.∠A与∠D互为余角B.∠A=∠2C.△ABC≌△CED D.∠1=∠29.如图,两条笔直的公路l1、l2相交于点O,村庄C的村民在公路的旁边建三个加工厂A、B、D.已知AB=BC=CD=DA=5公里,村庄C到公路l1的距离为4公里,则村庄C到公路l2的距离是()A.3km B.4km C.5km D.6km10.如图,在△ABC中,AB=AC,∠ABC、∠ACB的平分线BD,CE相交于O点,且BD 交AC于点D,CE交AB于点E.某同学分析图形后得出以下结论:①△BCD≌△CBE;②△BAD≌△BCD;③△BDA≌△CEA;④△BOE≌△COD;⑤△ACE≌△BCE;上述结论一定正确的是()A.①②③B.②③④C.①③⑤D.①③④二、填空题11.一棵小树被风刮歪了,小明用三根木棒撑住这棵小树,他运用数学知识是三角形具有性.12.在Rt△ABC中,∠ACB=90°,BC=2cm,CD⊥AB,在AC上取一点E,使EC=BC,过点E作EF⊥AC交CD的延长线于点F,若EF=5cm,则AE=cm.13.如图,在△ABC中,点D是BC的中点,作射线AD,在线段AD及其延长线上分别取点E、F,连接CE、BF.添加一个条件,使得△BDF≌△CDE,你添加的条件是.(不添加辅助线)14.如图,已知△ABC和△BDE均为等边三角形,连接AD、CE,若∠BAD=39°,那么∠BCE=度.15.如图所示,AB=AC,AD=AE,∠BAC=∠DAE,∠1=25°,∠2=30°,则∠3=.16.如图,在△ABC中,∠C=90°,AD平分∠CAB,BC=8cm,BD=5cm,那么点D到线段AB的距离是cm.17.如图,已知△ABC的周长是21,OB,OC分别平分∠ABC和∠ACB,OD⊥BC于D,且OD=3,△ABC的面积是.18.如图,在△ABC中,AB=AC,AD是△ABC的平分线,DE⊥AB,DF⊥AC,垂足分别是E,F.则下面结论中①DA平分∠EDF;②AE=AF,DE=DF;③AD上的点到B、C两点距离相等;④图中共有3对全等三角形,正确的有:.三、解答题(共46分)19.如图所示,分别以AB为对称轴,画出已知图形的对称图形.20.如图,四边形ABCD的对角线AC、BD相交于点O,△ABC≌△BA D.求证:(1)OA=OB;(2)AB∥C D.21.如图所示,已知AE⊥AB,AF⊥AC,AE=AB,AF=A C.求证:(1)EC=BF;(2)EC⊥BF.22.如图,在△ABC中,AB=AC,BD⊥AC于D,CE⊥AB于E,BD、CE相交于F.求证:AF平分∠BA C.23.已知:如图,AB=AE,∠1=∠2,∠B=∠E.求证:BC=E D.24.数学作业本发下来了,徐波想“我应该又是满分吧”,翻开作业本,一个大红的错号映入眼帘,徐波不解了,“我哪里做错了呢”下面就是徐波的解法,亲爱的同学,你知道他哪儿错了吗?你能帮他进行正确的说明吗?如图所示,∠BAC是钝角,AB=AC,D,E分别在AB,AC上,且CD=BE.试说明∠ADC=∠AE B.徐波的解法:在△ACD和△ABE中,,所以△ABE≌△ACD,所以∠ADC=∠AE B.25.CD经过∠BCA顶点C的一条直线,CA=C B.E,F分别是直线CD上两点,且∠BEC=∠CFA=∠α.(1)若直线CD经过∠BCA的内部,且E,F在射线CD上,请解决下面两个问题:①如图1,若∠BCA=90°,∠α=90°,则BE CF;EF|BE﹣AF|(填“>”,“<”或“=”);②如图2,若0°<∠BCA<180°,请添加一个关于∠α与∠BCA关系的条件,使①中的两个结论仍然成立,并证明两个结论成立.(2)如图3,若直线CD经过∠BCA的外部,∠α=∠BCA,请提出EF,BE,AF三条线段数量关系的合理猜想(不要求证明).参考答案与试题解析一、选择题1.下面有4个汽车标志图案,其中是轴对称图形的是()A.②③④B.①③④C.①②④D.①②③【考点】轴对称图形.【分析】利用轴对称图形性质,关于某条直线对称的图形叫轴对称图形得出即可.【解答】解:只有第4个不是轴对称图形,其它3个都是轴对称图形.故选:D.【点评】此题主要考查了轴对称图形的性质,轴对称的关键是寻找对称轴,两边图象折叠后可重合.2.要测量河两岸相对的两点A,B的距离,先在AB的垂线BF上取两点C,D,使CD=BC,再定出BF的垂线DE,使A,C,E在一条直线上(如图所示),可以说明△EDC≌△ABC,得ED=AB,因此测得ED的长就是AB的长,判定△EDC≌△ABC最恰当的理由是()A.边角边B.角边角C.边边边D.边边角【考点】全等三角形的应用.【分析】由已知可以得到∠ABC=∠BDE,又CD=BC,∠ACB=∠DCE,由此根据角边角即可判定△EDC≌△AB C.【解答】解:∵BF⊥AB,DE⊥BD∴∠ABC=∠BDE又∵CD=BC,∠ACB=∠DCE∴△EDC≌△ABC(ASA)故选B.【点评】本题考查了全等三角形的判定方法;需注意根据垂直定义得到的条件,以及隐含的对顶角相等,观察图形,找着隐含条件是十分重要的.3.如图所示,两个全等的等边三角形的边长为1m,一个微型机器人由A点开始按ABCDBEA 的顺序沿等边三角形的边循环运动,行走2012m停下,则这个微型机器人停在()A.点A处B.点B处C.点C处D.点E处【考点】规律型:图形的变化类.【分析】根据等边三角形和全等三角形的性质,可以推出,每行走一圈一共走了6个1m,2012÷6=335…2,行走了335圈又两米,即落到C点.【解答】解:∵两个全等的等边三角形的边长为1m,∴机器人由A点开始按ABCDBEA的顺序沿等边三角形的边循环运动一圈,即为6m,∵2012÷6=335…2,即正好行走了335圈又两米,回到第三个点,∴行走2012m停下,则这个微型机器人停在C点.故选:C.【点评】本题主要考查全等三角形的性质、等边三角形的性质,解题的关键在于求出2012为6的倍数余数是几.4.如图,已知AB∥CD,AD∥BC,AC与BD交于点O,AE⊥BD于点E,CF⊥BD于点F,那么图中全等的三角形有()A.5对B.6对C.7对D.8对【考点】全等三角形的判定.【分析】根据平行四边形的性质,以及全等三角形的判定即可求出答案.【解答】解:由平行四边形的性质可知:△ABD≌△CDB,△ABO≌△CDO,△ADE≌△CBF,△AOE≌△CFO,△AOD≌△COB,△ABC≌△CDA故选(B)【点评】本题考查全等三角形的判定,涉及全等三角形的性质,平行四边形的性质.5.下列命题中正确的是()A.全等三角形的高相等B.全等三角形的中线相等C.全等三角形的角平分线相等D.全等三角形的对应角平分线相等【考点】全等三角形的性质.【分析】认真读题,只要甄别,其中A、B、C选项中都没有“对应”二字,都是错误的,只有D是正确的.【解答】解:∵A、B、C项没有“对应”∴错误,而D有“对应”,D是正确的.故选D.【点评】本题考查了全等三角形的性质;注意全等三角形的性质中指的是各对应边上高,中线,角平分线相等.对性质中对应的真正理解是解答本题的关键.6.如图,点B、C、E在同一条直线上,△ABC与△CDE都是等边三角形,则下列结论不一定成立的是()A.△ACE≌△BCD B.△BGC≌△AFC C.△DCG≌△ECF D.△ADB≌△CEA 【考点】全等三角形的判定;等边三角形的性质.【分析】首先根据角间的位置及大小关系证明∠BCD=∠ACE,再根据边角边定理,证明△BCE≌△ACD;由△BCE≌△ACD可得到∠DBC=∠CAE,再加上条件AC=BC,∠ACB=∠ACD=60°,可证出△BGC≌△AFC,再根据△BCD≌△ACE,可得∠CDB=∠CEA,再加上条件CE=CD,∠ACD=∠DCE=60°,又可证出△DCG≌△ECF,利用排除法可得到答案.【解答】解:∵△ABC和△CDE都是等边三角形,∴BC=AC,CE=CD,∠BCA=∠ECD=60°,∴∠BCA+∠ACD=∠ECD+∠ACD,即∠BCD=∠ACE,∴在△BCD和△ACE中,∴△BCD≌△ACE(SAS),故A成立,∴∠DBC=∠CAE,∵∠BCA=∠ECD=60°,∴∠ACD=60°,在△BGC和△AFC中,∴△BGC≌△AFC,故B成立,∵△BCD≌△ACE,∴∠CDB=∠CEA,在△DCG和△ECF中,∴△DCG≌△ECF,故C成立,故选:D.【点评】此题主要考查了三角形全等的判定以及等边三角形的性质,解决问题的关键是根据已知条件找到可证三角形全等的条件.7.如图,a、b、c分别表示△ABC的三边长,则下面与△ABC一定全等的三角形是()A.B.C.D.【考点】全等三角形的判定.【分析】根据全等三角形的判定方法进行逐个验证,做题时要找准对应边,对应角.【解答】解:A、与三角形ABC有两边相等,而夹角不一定相等,二者不一定全等;B、选项B与三角形ABC有两边及其夹边相等,二者全等;C、与三角形ABC有两边相等,但角不是夹角,二者不全等;D、与三角形ABC有两角相等,但边不对应相等,二者不全等.故选B.【点评】本题重点考查了三角形全等的判定定理,普通两个三角形全等共有四个定理,即AAS、ASA、SAS、SSS,直角三角形可用HL定理,但AAA、SSA,无法证明三角形全等,本题是一道较为简单的题目.8.已知:如图所示,B、C、D三点在同一条直线上,AC=CD,∠B=∠E=90°,AC⊥CD,则不正确的结论是()A.∠A与∠D互为余角B.∠A=∠2C.△ABC≌△CED D.∠1=∠2【考点】全等三角形的判定与性质.【分析】利用同角的余角相等求出∠A=∠2,再利用“角角边”证明△ABC和△CDE全等,根据全等三角形对应边相等,对应角相等,即可解答.【解答】解:∵∠B=∠E=90°,∴∠A+∠1=90°,∠D+∠2=90°,∵AC⊥CD,∴∠1+∠2=90°,故D错误;∴∠A=∠2,故B正确;∴∠A+∠D=90°,故A正确;在△ABC和△CED中,,∴△ABC≌△CED(AAS),故C正确;故选:D.【点评】本题考查了全等三角形的判定与性质,等角的余角相等的性质,熟练掌握三角形全等的判定方法并确定出全等的条件∠A=∠2是解题的关键.9.如图,两条笔直的公路l1、l2相交于点O,村庄C的村民在公路的旁边建三个加工厂A、B、D.已知AB=BC=CD=DA=5公里,村庄C到公路l1的距离为4公里,则村庄C到公路l2的距离是()A.3km B.4km C.5km D.6km【考点】菱形的性质;角平分线的性质.【分析】首先连接AC,过点C作CE⊥l2于E,作CF⊥l1于F,由AB=BC=CD=DA,即可判定四边形ABCD是菱形,由菱形的性质,可得AC平分∠BAD,然后根据角平分线的性质,即可求得答案.【解答】解:连接AC,过点C作CE⊥l2于E,作CF⊥l1于F,∵村庄C到公路l1的距离为4千米,∴CF=4千米,∵AB=BC=CD=DA,∴四边形ABCD是菱形,∴AC平分∠BAD,∴CE=CF=4千米,即C到公路l2的距离是4千米.故选B.【点评】此题考查了菱形的判定与性质以及角平分线的性质.解题的关键是正确作出辅助线,得到C到公路l2的距离.10.如图,在△ABC中,AB=AC,∠ABC、∠ACB的平分线BD,CE相交于O点,且BD 交AC于点D,CE交AB于点E.某同学分析图形后得出以下结论:①△BCD≌△CBE;②△BAD≌△BCD;③△BDA≌△CEA;④△BOE≌△COD;⑤△ACE≌△BCE;上述结论一定正确的是()A.①②③B.②③④C.①③⑤D.①③④【考点】全等三角形的判定;等腰三角形的性质.【分析】根据等腰三角形的性质及角平分线定义可得有关角之间的相等关系.运用三角形全等的判定方法AAS或ASA判定全等的三角形.【解答】解:∵AB=AC,∴∠ABC=∠AC B.∵BD平分∠ABC,CE平分∠ACB,∴∠ABD=∠CBD=∠ACE=∠BCE.∴①△BCD≌△CBE(ASA);③△BDA≌△CEA(ASA);④△BOE≌△COD(AAS或ASA).故选D.【点评】此题考查等腰三角形的性质和全等三角形的判定,难度不大.二、填空题11.一棵小树被风刮歪了,小明用三根木棒撑住这棵小树,他运用数学知识是三角形具有稳定性.【考点】三角形的稳定性.【分析】当一棵小树被风刮歪了,用两根木棒撑住这棵小树,即是组成三角形,故可用三角形的稳定性解释.【解答】解:一棵小树被风刮歪了,小明用两根木棒撑住这棵小树,他运的数学知识是三角形的稳定性.故答案为:稳定.【点评】本题考查三角形稳定性的实际应用.三角形的稳定性在实际生活中有着广泛的应用,如钢架桥、房屋架梁等,因此要使一些图形具有稳定的结构,往往通过连接辅助线转化为三角形而获得.12.在Rt△ABC中,∠ACB=90°,BC=2cm,CD⊥AB,在AC上取一点E,使EC=BC,过点E作EF⊥AC交CD的延长线于点F,若EF=5cm,则AE=3cm.【考点】全等三角形的判定与性质.【分析】根据直角三角形的两锐角互余的性质求出∠ECF=∠B,然后利用“角边角”证明△ABC和△FCE全等,根据全等三角形对应边相等可得AC=EF,再根据AE=AC﹣CE,代入数据计算即可得解.【解答】解:∵∠ACB=90°,∴∠ECF+∠BCD=90°,∵CD⊥AB,∴∠BCD+∠B=90°,∴∠ECF=∠B(等角的余角相等),在△FCE和△ABC中,,∴△ABC≌△FEC(ASA),∴AC=EF,∵AE=AC﹣CE,BC=2cm,EF=5cm,∴AE=5﹣2=3cm.故答案为:3.【点评】本题考查了全等三角形的判定与性质,根据直角三角形的性质证明得到∠ECF=∠B 是解题的关键.13.如图,在△ABC中,点D是BC的中点,作射线AD,在线段AD及其延长线上分别取点E、F,连接CE、BF.添加一个条件,使得△BDF≌△CDE,你添加的条件是DF=DE.(不添加辅助线)【考点】全等三角形的判定.【分析】由已知可证BD=CD,又∠EDC﹦∠FDB,因为三角形全等条件中必须是三个元素.故添加的条件是:DE=DF(或CE∥BF或∠ECD=∠DBF或∠DEC=∠DFB等);【解答】解:添加的条件是:DF=DE(或CE∥BF或∠ECD=∠DBF或∠DEC=∠DFB等).理由如下:∵点D是BC的中点,∴BD=C D.在△BDF和△CDE中,∵,∴△BDF≌△CDE(SAS).故答案可以是:DF=DE.【点评】考查了三角形全等的判定.三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.14.如图,已知△ABC和△BDE均为等边三角形,连接AD、CE,若∠BAD=39°,那么∠BCE= 39度.【考点】全等三角形的判定与性质;等边三角形的性质.【分析】因为△ABC和△BDE均为等边三角形,由等边三角形的性质得到AB=BC,∠ABC=∠EBD,BE=B D.再利用角与角之间的关系求得∠ABD=∠EBC,则△ABD≌△EBC,故∠BCE可求.【解答】解:∵△ABC和△BDE均为等边三角形,∴AB=BC,∠ABC=∠EBD=60°,BE=BD,∵∠ABD=∠ABC+∠DBC,∠EBC=∠EBD+∠DBC,∴∠ABD=∠EBC,∴△ABD≌△EBC,∴∠BAD=∠BCE=39°.故答案为39.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.15.如图所示,AB=AC,AD=AE,∠BAC=∠DAE,∠1=25°,∠2=30°,则∠3=55°.【考点】全等三角形的判定与性质.【分析】求出∠BAD=∠EAC,证△BAD≌△EAC,推出∠2=∠ABD=30°,根据三角形的外角性质求出即可.【解答】解:∵∠BAC=∠DAE,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,∴∠1=∠EAC,在△BAD和△EAC中,∴△BAD≌△EAC(SAS),∴∠2=∠ABD=30°,∵∠1=25°,∴∠3=∠1+∠ABD=25°+30°=55°,故答案为:55°.【点评】本题考查了全等三角形的性质和判定,三角形的外角性质的应用,解此题的关键是推出△BAD≌△EA C.16.如图,在△ABC中,∠C=90°,AD平分∠CAB,BC=8cm,BD=5cm,那么点D到线段AB的距离是3cm.【考点】角平分线的性质.【分析】求D点到线段AB的距离,由于D在∠BAC的平分线上,只要求出D到AC的距离CD即可,由已知可用BC减去BD可得答案.【解答】解:CD=BC﹣BD,=8cm﹣5cm=3cm,∵∠C=90°,∴D到AC的距离为CD=3cm,∵AD平分∠CAB,∴D点到线段AB的距离为3cm.故答案为:3.【点评】本题考查了角平分线的性质;知道并利用CD是D点到线段AB的距离是正确解答本题的关键.17.如图,已知△ABC的周长是21,OB,OC分别平分∠ABC和∠ACB,OD⊥BC于D,且OD=3,△ABC的面积是31.5.【考点】角平分线的性质.【分析】连接OA,作OE⊥AC,OF⊥AB,垂足分别为E、F,将△ABC的面积分为:S△ABC=S△OBC+S△OAC+S△OAB,而三个小三角形的高OD=OE=OF,它们的底边和就是△ABC 的周长,可计算△ABC的面积.【解答】解:作OE⊥AC,OF⊥AB,垂足分别为E、F,连接OA,∵OB,OC分别平分∠ABC和∠ACB,OD⊥BC,∴OD=OE=OF,∴S△ABC=S△OBC+S△OAC+S△OAB=×OD×BC+×OE×AC+×OF×AB=×OD×(BC+AC+AB)=×3×21=31.5.故填31.5.【点评】此题主要考查角平分线的性质;利用三角形的三条角平分线交于一点,将三角形面积分为三个小三角形面积求和,发现并利用三个小三角形等高是正确解答本题的关键.18.如图,在△ABC中,AB=AC,AD是△ABC的平分线,DE⊥AB,DF⊥AC,垂足分别是E,F.则下面结论中①DA平分∠EDF;②AE=AF,DE=DF;③AD上的点到B、C两点距离相等;④图中共有3对全等三角形,正确的有:①②③④.【考点】全等三角形的判定与性质.【分析】在△ABC中,AB=AC,AD是△ABC的平分线,可知直线AD为△ABC的对称轴,再根据图形的对称性,逐一判断.【解答】解:∵在△ABC中,AB=AC,AD是△ABC的平分线,根据等腰三角形底边上的“三线合一”可知,AD垂直平分BC,①正确;由①的结论,已知DE⊥AB,DF⊥AC,可证△ADE≌△ADF(AAS)故有AE=AF,DE=DF,②正确;AD是△ABC的平分线,根据角平分线性质可知,AD上的点到B、C两点距离相等,③正确;根据图形的对称性可知,图中共有3对全等三角形,④正确.故填①②③④.【点评】本题考查了等腰三角形的判定和性质;利用三角形全等是正确解答本题的关键.三、解答题(共46分)19.如图所示,分别以AB为对称轴,画出已知图形的对称图形.【考点】作图﹣轴对称变换.【分析】作出点C、D、E关于直线AB的对称点C′、D′、E′,然后顺次连接即可.【解答】解:如图所示.【点评】本题考查了利用轴对称变换作图,准确确定出对称点的位置是解题的关键.20.如图,四边形ABCD的对角线AC、BD相交于点O,△ABC≌△BA D.求证:(1)OA=OB;(2)AB∥C D.【考点】全等三角形的性质;平行线的判定.【分析】(1)要证OA=OB,由等角对等边需证∠CAB=∠DBA,由已知△ABC≌△BAD即可证.(2)要证AB∥CD,根据平行线的性质需证∠CAB=∠ACD,由已知和(1)可证∠OCD=∠ODC,又因为∠AOB=∠COD,所以可证∠CAB=∠ACD,即AB∥CD获证.【解答】证明:(1)∵△ABC≌△BAD,∴∠CAB=∠DBA,∴OA=O B.(2)∵△ABC≌△BAD,∴AC=BD,又∵OA=OB,∴AC﹣OA=BD﹣OB,即:OC=OD,∴∠OCD=∠ODC,∵∠AOB=∠COD,∠CAB=,∠ACD=,∴∠CAB=∠ACD,∴AB∥C D.【点评】本题考查了全等三角形的性质和等腰三角形的性质及平行线的性质.解答时,除必备的知识外,还应将条件和所求联系起来,即将所求的角与已知角通过全等及内角之间的关系联系起来.21.如图所示,已知AE⊥AB,AF⊥AC,AE=AB,AF=A C.求证:(1)EC=BF;(2)EC⊥BF.【考点】全等三角形的判定与性质.【分析】(1)先求出∠EAC=∠BAF,然后利用“边角边”证明△ABF和△AEC全等,根据全等三角形对应边相等即可证明;(2)根据全等三角形对应角相等可得∠AEC=∠ABF,设AB、CE相交于点D,根据∠AEC+∠ADE=90°可得∠ABF+∠ADM=90°,再根据三角形内角和定理推出∠BMD=90°,从而得证.【解答】证明:(1)∵AE⊥AB,AF⊥AC,∴∠BAE=∠CAF=90°,∴∠BAE+∠BAC=∠CAF+∠BAC,即∠EAC=∠BAF,在△ABF和△AEC中,∵,∴△ABF≌△AEC(SAS),∴EC=BF;(2)如图,根据(1),△ABF≌△AEC,∴∠AEC=∠ABF,∵AE⊥AB,∴∠BAE=90°,∴∠AEC+∠ADE=90°,∵∠ADE=∠BDM(对顶角相等),∴∠ABF+∠BDM=90°,在△BDM中,∠BMD=180°﹣∠ABF﹣∠BDM=180°﹣90°=90°,所以EC⊥BF.【点评】本题考查了全等三角形的判定与性质,根据条件找出两组对应边的夹角∠EAC=∠BAF是证明的关键,也是解答本题的难点.22.如图,在△ABC中,AB=AC,BD⊥AC于D,CE⊥AB于E,BD、CE相交于F.求证:AF平分∠BA C.【考点】等腰三角形的性质;全等三角形的判定与性质;角平分线的性质.【分析】先根据AB=AC,可得∠ABC=∠ACB,再由垂直,可得90°的角,在△BCE和△BCD 中,利用内角和为180°,可分别求∠BCE和∠DBC,利用等量减等量差相等,可得FB=FC,再易证△ABF≌△ACF,从而证出AF平分∠BA C.【解答】证明:∵AB=AC(已知),∴∠ABC=∠ACB(等边对等角).∵BD、CE分别是高,∴BD⊥AC,CE⊥AB(高的定义).∴∠CEB=∠BDC=90°.∴∠ECB=90°﹣∠ABC,∠DBC=90°﹣∠AC B.∴∠ECB=∠DBC(等量代换).∴FB=FC(等角对等边),在△ABF和△ACF中,,∴△ABF≌△ACF(SSS),∴∠BAF=∠CAF(全等三角形对应角相等),∴AF平分∠BA C.【点评】本题考查了等腰三角形的性质及三角形的内角和定理;等量减等量差相等的利用是解答本题的关键.23.已知:如图,AB=AE,∠1=∠2,∠B=∠E.求证:BC=E D.【考点】全等三角形的判定与性质.【分析】由∠1=∠2可得:∠EAD=∠BAC,再有条件AB=AE,∠B=∠E可利用ASA证明△ABC≌△AED,再根据全等三角形对应边相等可得BC=E D.【解答】证明:∵∠1=∠2,∴∠1+∠BAD=∠2+∠BAD,即:∠EAD=∠BAC,在△EAD和△BAC中,∴△ABC≌△AED(ASA),∴BC=E D.【点评】此题主要考查了全等三角形的判定与性质,关键是掌握全等三角形的判定方法:SSS、SAS、ASA、AAS、HL.全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.24.数学作业本发下来了,徐波想“我应该又是满分吧”,翻开作业本,一个大红的错号映入眼帘,徐波不解了,“我哪里做错了呢”下面就是徐波的解法,亲爱的同学,你知道他哪儿错了吗?你能帮他进行正确的说明吗?如图所示,∠BAC是钝角,AB=AC,D,E分别在AB,AC上,且CD=BE.试说明∠ADC=∠AE B.徐波的解法:在△ACD和△ABE中,,所以△ABE≌△ACD,所以∠ADC=∠AE B.【考点】全等三角形的判定与性质.【分析】证明三角形全等,不能用SSA,而徐波正是犯了这个错误,要解决本题,首先证明△ABF≌△ACG(AAS),再证明Rt△BEF≌Rt△CDG(HL),即可推出∠ADC=∠AE B.【解答】解:错在不能用“SSA”说明三角形全等.正确的解法如下:如图所示,因为∠BAC是钝角,故过B、C两点分别作CA、BA的垂线,垂足分别为F,G,在△ABF与△ACG中,∴△ABF≌△ACG(AAS),∴BF=CG,在Rt△BEF和Rt△CDG中,∴Rt△BEF≌Rt△CDG(HL),∴∠ADC=∠AE B.【点评】本题考查了全等三角形的判定和性质;三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.本题要特别注意SSA 不能作为全等三角形一种证明方法使用.25.CD经过∠BCA顶点C的一条直线,CA=C B.E,F分别是直线CD上两点,且∠BEC=∠CFA=∠α.(1)若直线CD经过∠BCA的内部,且E,F在射线CD上,请解决下面两个问题:①如图1,若∠BCA=90°,∠α=90°,则BE=CF;EF=|BE﹣AF|(填“>”,“<”或“=”);②如图2,若0°<∠BCA<180°,请添加一个关于∠α与∠BCA关系的条件∠α+∠BCA=180°,使①中的两个结论仍然成立,并证明两个结论成立.(2)如图3,若直线CD经过∠BCA的外部,∠α=∠BCA,请提出EF,BE,AF三条线段数量关系的合理猜想(不要求证明).【考点】直角三角形全等的判定;三角形内角和定理.【分析】由题意推出∠CBE=∠ACF,再由AAS定理证△BCE≌△CAF,继而得答案.【解答】解:(1)①∵∠BCA=90°,∠α=90°,∴∠BCE+∠CBE=90°,∠BCE+∠ACF=90°,∴∠CBE=∠ACF,∵CA=CB,∠BEC=∠CFA;∴△BCE≌△CAF,∴BE=CF;EF=|CF﹣CE|=|BE﹣AF|.②所填的条件是:∠α+∠BCA=180°.证明:在△BCE中,∠CBE+∠BCE=180°﹣∠BEC=180°﹣∠α.∵∠BCA=180°﹣∠α,∴∠CBE+∠BCE=∠BC A.又∵∠ACF+∠BCE=∠BCA,∴∠CBE=∠ACF,又∵BC=CA,∠BEC=∠CFA,∴△BCE≌△CAF(AAS)∴BE=CF,CE=AF,又∵EF=CF﹣CE,∴EF=|BE﹣AF|.(2)猜想:EF=BE+AF.证明过程:∵∠BEC=∠CFA=∠α,∠α=∠BCA,∠BCA+∠BCE+∠ACF=180°,∠CFA+∠CAF+∠ACF=180°,∴∠BCE=∠CAF,又∵BC=CA,∴△BCE≌△CAF(AAS).∴BE=CF,EC=FA,∴EF=EC+CF=BE+AF.【点评】本题综合考查全等三角形、等边三角形和四边形的有关知识.注意对三角形全等,相似的综合应用.。
浙教版八年级上册数学第4章图形与坐标含答案一、单选题(共15题,共计45分)1、已知点P(3 ,+2)在x轴上,则P点的坐标是()A.(3,2)B.(6,0)C.(-6,0)D.(6,2)2、如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),…,按这样的运动规律,经过第2020次运动后,动点P的坐标是()A.(2020,0)B.(2020,1)C.(2020,2)D.(2020,505)3、已知A(1,﹣3),B(2,﹣2),现将线段AB平移至A1B1,如果A1(a,1),B1(5,b),那么a b的值是()A.32B.16C.5D.44、将△ABC各顶点的横坐标都乘以﹣1,纵坐标不变,顺次连接这三个点,得到另一个三角形,下列选项正确是()A. B. C. D.5、如图,在平面直角坐标系中,将四边形ABCD先向下平移,再向右平移得到四边形A1B1C1D1,已知A(-3,5),B(-4,3),A1(3,3),则点B1坐标为()A.(1,2)B.(2,1)C.(1,4)D.(4,1)6、点A(3,4)关于x轴对称的点的坐标为()A.(-3,4)B.(4,3)C.(-3,-4)D.(3,-4)7、如下图所示,一方队正沿箭头所指的方向前进,A的位置为三列四行,表示为(3,4),那么B的位置是()A.(4,5)B.(5,4)C.(4,2)D.(4,3)8、将点P(2m+3,m﹣2)向上平移1个单位得到P′,且P′在x轴上,那么点P的坐标是()A.(9,1)B.(5,﹣1)C.(7,0)D.(1,﹣3)9、在平面直角坐标系中,点(﹣3,﹣2)在()A.第一象限B.第二象限C.第三象限D.第四象限10、无论m为何值,点A(m,5﹣2m)不可能在()A.第一象限B.第二象限C.第三象限D.第四象限11、如图,在直角坐标系中,已知菱形的顶点,.作菱形关于轴的对称图形,再作图形关于点的中心对称图形,则点的对应点的坐标是()A. B. C. D.12、已知点P(a,a-1)在平面直角坐标系的第一象限内,则a的取值范围在数轴上可表示为()A. B. C.D.13、如下图所示,一方队正沿箭头所指的方向前进,A的位置为三列四行,表示为(3,4),那么B的位置是()A.(4,5)B.(5,4)C.(4,2)D.(4,3)14、如图,点A1(1,1),点A1向上平移1个单位,再向右平移2个单位,得到点A2;点A2向上平移2个单位,再向右平移4个单位,得到点A3;点A3向上平移4个单位,再向右平移8个单位,得到点A4,……,按这个规律平移得到点An ,则点An的横坐标为()A.2 nB.2 n-1C.2n-1D.2n+115、已知直角坐标系内有一点M(a,b),且ab=0,则点M的位置一定在()A.原点上B. x轴上C. y轴上D.坐标轴上二、填空题(共10题,共计30分)16、如图,若在象棋盘上建立平面直角坐标系,使“帅”的坐标为,“马”的坐标为,则“兵”的坐标为________.17、已知点P(,1)关于y轴的对称点Q的坐标是(a,1﹣b),则a b的值为________.18、如图,在平面直角坐标系xOy中,四边形OABC是正方形,点C(0,4),D是OA中点,将△CDO以C为旋转中心逆时针旋转90°后,再将得到的三角形平移,使点C与点O重合,写出此时点D的对应点的坐标:________.19、与点关于轴对称的点的横坐标是________.20、已知点M(1-a,2)在第二象限,则a的取值范围是________21、我们规定:关于x的函数y=ax2+bx与y=bx2+ax(其中a≠b)叫做互为交换函数,如y=3x2+4x与y=4x2+3x是互为交换函数,若函数y=2x2+bx与它的交换函数图像顶点关于x轴对称,则b=________ 。
第4章检测题
(时间:120分钟满分:120分)
一、选择题(每小题3分,共30分)
1.根据下列表述,能确定位置的是(D)
A.国际影城3排B.A市南京路口C.北偏东60°D.东经100°,北纬30°
2.如图,把“QQ”笑脸放在直角坐标系中,已知右眼A的坐标是(-2,3),嘴唇C点的坐标为(-1,1),则此“QQ”笑脸左眼B的坐标是(A)
A.(0,3) B.(0,1) C.(-1,2) D.(-1,3)
,(第2题图)),(第4题图))
,(第8题图))
3.(南浔区期末)点A(-3,-5)向右平移2个单位,再向下平移3个单位到点B,则点B的坐标为(C)
A.(-5,-8) B.(-5,-2) C.(-1,-8) D.(-1,-2)
4.已知△ABC在直角坐标系中的位置如图所示,如果△A′B′C′与△ABC关于y轴对称,那么点A的对应点A′的坐标为(A)
A.(4,4) B.(-4,4) C.(4,-4) D.(-4,-4)
5.若点M(1-m,2+m)在第四象限内,则m的取值范围是(C)
A.m<1 B.m>-2 C.m<-2 D.-2<m<1
6.已知点M(a,2),B(3,b)关于y轴对称,则(a+b)2 017=(B)
A.-3 B.-1 C.1 D.3
7.无论m为何值,点A(m,5-2m)不可能在(C)
A.第一象限B.第二象限C.第三象限D.第四象限
8.(越城区月考)如图,在平面直角坐标系中,设点P到原点O的距离为ρ,OP与x轴正方向的交角为α,则用[ρ,α]表示点P的极坐标,例如:点P的坐标为(1,1),则其极坐标为[2,45°],若点Q的极坐标为[4,120°],则点Q的平面坐标为(A) A.(-2,12) B.(2,-12) C.(-12,-2) D.(-4,-12)
9.如图,△ABC的顶点坐标分别为A(4,4),B(2,1),C(5,2),沿某一直线作△ABC 的对称图形,得到△A′B′C′,若点A的对应点A′的坐标是(3,5),那么点B的对应点B′的坐标是(A)
A.(0,3) B.(1,2) C.(0,2) D.(4,1)
10.如图,在平面直角坐标系中,A(1,1),B(-1,1),C(-1,-2),D(1,-2),把一条长为2 016个单位且没有弹性的细线(线的粗细忽略不计)的一端固定在点A处,并按A→B→C→D→A…的规律绕在四边形ABCD的边上,则细线另一端所在位置的点的坐标是
(D)
A.(-1,0) B.(1,-2) C.(1,1) D.(0,-2)
,(第9题图)),(第10题图))
,(第11题图)),(第15题图))
二、填空题(每小题4分,共24分)
11.如图是游乐园的一角,如果用(3,2)表示跳跳床的位置,那么跷跷板用数对__(2,4)__表示,碰碰车用数对__(5,1)__表示,摩天轮用数对__(5,4)__表示.
12.已知点P(a-3,a+4),若点P在x轴上,则点P的坐标为__(-7,0)__;若点P 到x轴的距离为2,则点P坐标为__(-5,2)或(-9,-2)__.
13.在平面直角坐标系中,将点A(-1,2)向右平移3个单位得到点B,则点B关于x 轴的对称点C的坐标是__(2,-2)__.
14.已知线段MN平行于x轴,且MN的长度为5.若点M(2,-2),则点N的坐标是__(7,-2)或(-3,-2)__.
15.如图,OA=OB,A点坐标是(-2,0),OB与x轴正方向夹角为45°,则B点坐标是__(1,1)__;AB与y轴交于点C,若以OC为轴,将△OBC沿OC翻折,B点落在第二象限内B′处,则BB′的长度为__2__.
16.在平面直角坐标系中,将一个等腰直角三角尺ABC放在坐标平面内,直角边AC 斜靠在两坐标轴上.若点A(0,2),C(-1,0),则点B的坐标是__(-3,1)或(-2,3)或(2,
1)或(1,-1)__.
三、解答题(共66分)
17.(6分)已知一个长方形ABCD,长为6,宽为4.
(1)如图①建立直角坐标系,求A,B,C,D四点的坐标;
(2)如图②建立直角坐标系,试说明图①中的长方形ABCD经过怎样的坐标变换可得到图②.
解:(1)A(6,4),B(0,4),C(0,0),D(6,0).(2)图①中的长方形先向左平移3个单位,再向下平移2个单位可得图②.
18.(6分)如图,在平面直角坐标系中,平行四边形OABC 的顶点A 在x 轴上,∠COA =60°,若点A 的坐标为(8,0),OC =6,求点B 的坐标.
解:B (11,27).
19.(6分)如图,已知四边形ABCD.(网格中每个小正方形的边长均为1) (1)写出点A ,B ,C ,D 的坐标; (2)试求四边形ABCD 的面积.
解:(1)A (-2,1),B (-3,-2),C (3,-2),D (1,2).(2)S 四边形ABCD =3×3+2×1
2×1×3
+1
2
×2×4=16.
20.(7分)某校八年级的同学从学校O 点出发,要到某地P 处进行探险活动,他们先向正西方向走8千米到A 处,又往正南方向走4千米到B 处,又折向正东方向走6千米到C 处,再折向正北方向走8千米到D 处,最后又往正东方向走2千米才到探险处P ,以点O 为原点,取O 点的正东方向为x 轴的正方向,取O 点的正北方向为y 轴的正方向,建立如图所示的直角坐标系(每个小方格边长的长度表示2千米).
(1)在直角坐标系中画出探险路线图; (2)分别写出A ,B ,C ,D ,P 点的坐标.
解:(1)图略.(2)A ,B ,C ,D ,P 点的坐标分别是(-8,0),(-8,-4),(-2,-4),(-2,4),(0,4).
21.(9分)已知点P(3m -6,m +1),试分别根据下列条件,求出点P 的坐标. (1)点P 的横坐标比纵坐标大1;
(2)点P 在过点A(3,-2),且与x 轴平行的直线上;
(3)点P 到y 轴的距离是到x 轴距离的2倍.
解:(1)由P (3m -6,m +1)的横坐标比纵坐标大1,得3m -6-1=m +1,解得m =4,即P (6,5).(2)由P 在过点A (3,-2),且与x 轴平行的直线上,得m +1=-2.解得m =-3,即P (-15,-2).(3)由题意得|3m -6|=2|m +1|,解得m =8或4
5.∴P 点坐标为(18,9)或
(-185,95
).
22.(9分)如图,已知点A(-4,-1),B(-5,-4),C(-1,-3),△ABC 经过平移得到的△A′B′C′,△ABC 中任意一点P(x 1,y 1)平移后的对应点为P′(x 1+6,y 1+4).
(1)请在图中作出△A′B′C′;
(2)写出点A′,B′,C′的坐标.
解:(1)图略.(2)A′(2,3),B′(1,0),C′(5,1).
23.(11分)如图,在平面直角坐标系中,A(4,3),B(3,1),C(1,2).
(1)分别作出△ABC关于x轴,y轴的对称图形△A1B1C1和△A2B2C2;
(2)写出△A1B1C1和△A2B2C2的各顶点坐标;
(3)△A1B1C1和△A2B2C2对应顶点的坐标有怎样的关系?
解:(1)图略.(2)A1(4,-3),B1(3,-1),C1(1,-2);A2(-4,3),B2(-3,1),C2(-1,2).(3)横、纵坐标分别互为相反数.
24.(12分)如图,在平面直角坐标系中,已知三点A(0,a),B(b,0),C(b,c),其中a,b,c满足关系式|a-2|+(b-3)2+|c-b-1|=0.
(1)求a,b,c的值;
(2)如果在第二象限内有一点P(m,1
2),请用含m的式子表示四边形ABOP的面积;
(3)若由第(2)问中的四边形ABOP的面积与△ABC的面积相等,请求出点P的坐标.
解:(1)a =2,b =3,c =4.(2)S
四边形ABOP
=3-m.(3)∵S △ABC =1
2
×4×3=6,又∵S
四边形
ABOP =S △ABC .∴3-m =6,m =-3.∴点
P 的坐标为(-3,1
2
).。