球类运动问题 拱桥问题
解(1)根据题意,得抛物线的顶点坐标为(0,0.5)对称轴为
y轴,设抛物线对应的函数表达式为y=ax2+0.5.
(0,0.5)
抛物线经过点(450,81.5),代入上式,得81.5 = a·4502+0.5
-450
O
-450
解方程,得
81
1
a 4502 2500
答:所求抛物线对应的函数表达式为
y
y
y
o
x
y
o
x
o
x
y
o
x
某工厂大门是一抛物线形的水泥建筑物,大门底部宽AB=4m,
顶部C离地面的高度为4.4m,现有载满货物的汽车欲通过大门,
货物顶部距地面2.7m,装货宽度为2.4m.这辆汽车明;若不能,请简要说明理由. 解:如图,以AB所在的直线为x轴,以AB的垂直平分线
二次函数的顶点式:y a(x h)2 k(a 0)
顶点在x轴上: y a(x h)2 (a 0)
顶点在y轴上: y ax2 k(a 0) 顶点为原点: y ax2 (a 0)
二次函数的交点式:
y a(x x1)( x x2 )(a 0)
根据图象所给信息假设出抛物线的解析式:
∴可设这条抛物线解析式为:y=ax2+2 当拱桥离水面2m时,水面宽4m 即:抛物线过点(2,0)
当水面上升1m时,水面的纵坐标为y=1,这时有:
方法三:以水平面为x轴,以抛物线和水面的 一个交点为原点,建立平面直角坐标系。
问题:此时图中的抛物线解析式是多少?
y
y
O
Ox
你认为以上几种方法中哪 种最简单,为什么?我们 在建立平面直角坐标系时