卤族元素
- 格式:doc
- 大小:150.50 KB
- 文档页数:5
卤族元素一、卤族元素包括:氟(F)、氯(Cl)、溴(Br)、碘(I)、砹(At)。
1、原子结构特征:最外层电子数相同,均为7个电子,从外界获得电子的能力依次减弱,单质的氧化性减弱。
2、卤素元素单质的物理性质:从F2 Cl2、Br2、到I2,颜色由浅到深(浅绿色、黄绿色、红棕色、紫色),状态由气到液到固,熔沸点和密度都逐渐增大,水溶性逐渐减小。
3、卤素单质化学性质比较相似性:均能与H2发生反应生成相应卤化氢,卤化氢均能溶于水,形成无氧酸。
H2+F2===2HF (黑暗中反应)H2+Cl22HCl (点燃或加热)H2+Br22HBr(加热)H2+I2(持续加热)均能与水反应生成相应的氢卤酸和次卤酸(氟除外)2F2+2H2O==4HF+O2X2+H2O======HX+HXO (X表示Cl Br I)4、萃取和分液的概念①在溴水中加入四氯碳振荡静置有何现象?(分层,下层橙红色上层无色)②在碘水中加入煤油振荡静置有何现象?(分层,上层紫红色,下层色)5、卤离子的鉴别:加入HNO3酸化的硝酸银溶液,Cl-:得白色沉淀Ag++ Cl-====AgCl↓Br-:得淡黄色沉淀Ag++ Br-====AgBr↓I-:得黄色沉淀Ag++ I-====Ag I↓6、卤素特性①F元素无正价,只有-1价,AgF可以溶于水,CaF2不溶于水。
②I2可以升华(常用于分离),且能使淀粉变蓝(常用于检验碘或淀粉)7、单质氧化性从F2到I2在减弱Cl2+2KBr=2KCl+Br2Br2+2KI=2KBr+I2Cl2+2KI=2KCl+I2二、拟卤素和卤素互化物拟卤素:⒈概念:拟卤素是指由二个或二个以上非金属元素原子组成的原子团,这些原子团在自由状态时,与卤素单质的性质相似。
有剧毒。
重要的拟卤素有氰(qíng)(CN)2、硫氰(SCN)2等。
⒉拟卤素的化学性质①与水发生歧化反应Cl2+ H2O = HCl + HClO(SCN)2+ H2O = HSCN + HSCNO①与碱反应Cl2+ 2NaOH = NaCl + NaClO + H2O(CN)2+2OH-=CN-+CNO-;Cl2+2OH-=Cl-+ClO-卤素互化物⒈概念:不同卤素原子之间可通过共用电子对形成物质叫卤素互化物。
卤族元素名称的由来
卤族元素是周期系ⅦA族元素。
包括氟(F)、氯(Cl)、溴(Br)、碘(I)、砹(At)、石田(Ts),简称卤素。
它们在自然界都以典型的盐类存在,是成盐元素。
卤族元素名称的由来,要追溯到18世纪末。
当时,人们开始研究氯气、氟气等化学元素的性质,发现这些元素与碱金属和碱土金属不同,它们与金属反应不生成盐,而是生成卤化物,且它们的氧化性非常强。
因此,将这些元素命名为“卤素”。
卤素在自然界中主要以盐的形式存在,其中最重要的是氯化钠和氯化钾等。
氯化钠广泛存在于海水和盐湖中,是维持生命所必需的物质之一。
氯化钾则可用于农业、工业和医药等领域。
此外,卤素还具有一些独特的性质和用途。
例如,氟气是已知最强的氧化剂之一,可用于制备氟化物、氟代烃等化合物;氯气则可用于消毒、漂白、合成有机化合物等领域。
溴和碘还具有特定的生理功能,如溴有助于调节神经系统的功能,碘则对甲状腺激素的合成至关重要。
总之,卤族元素是一类非常重要的化学元素,在自然界和人类生活中都有着广泛的应用。
了解卤族元素的性质和用途,有助于更好地认识和利用这些元素,为人类的生产和生活提供更多的便利和价值。
卤族元素的概念卤族元素是指周期表中第17族的元素,包括氟(Fl)、氯(Cl)、溴(Br)、碘(I)和砹(At)。
这些元素都具有相似的化学性质,因此被归类为同一族。
卤族元素在自然界中普遍存在,主要以盐的形式存在于海水、地下水和矿石中。
例如,氯以氯化物的形式存在于海水中,而溴以溴化物的形式存在于海水和地下水中。
这些卤化物在水中溶解时会形成阴离子,如氯离子(Cl-)和溴离子(Br-),并能与阳离子形成稳定的盐。
卤族元素的共同特征是具有七个电子在最外层的电子轨道上,即7s²5p⁵。
它们有着高电负性和强氧化性,能够吸引和获得电子。
这使得卤族元素容易形成阴离子,而不容易失去电子形成阳离子。
卤族元素的电子云拥挤,因此原子半径逐渐增大。
卤族元素的缺点是在常温下通常是二原子分子。
然而,由于它们之间的原子势吸引作用较弱,因此容易与其他元素形成化合物。
卤族元素与金属反应形成盐化物,如氯化钠(NaCl)和溴化钾(KBr)。
此外,卤族元素也能与氢形成氢卤酸,如盐酸(HCl)和溴酸(HBr)。
卤族元素的氧化态变化较大,范围从-1到+7。
在大多数化合物中,卤族元素的氧化态为-1。
但是,在强氧化剂的存在下,它们能够表现出更高的氧化态。
例如,氯在ClO⁻4盐中的氧化态为+7。
卤族元素在化学、生物和工业中都有广泛的应用。
最常见的应用是用作消毒剂和漂白剂。
氯化合物被广泛用于污水处理和消毒,而氯气则被用于漂白纸浆和织物。
此外,氯和溴也被用作生产医药和农药的重要原料。
卤族元素还具有重要的生物学功能。
例如,碘是甲状腺激素的组成部分,对身体的正常生长和代谢起着重要作用。
卤素化合物也被用作放射性治疗和影像学中的造影剂。
总的来说,卤族元素是周期表中一组具有相似化学性质的元素。
它们的共同特点包括高电负性和强氧化性,易于与其他元素形成化合物。
卤族元素在许多领域都有广泛应用,包括消毒剂、漂白剂、医药和农药等。
它们也在生物学中起着重要作用,例如参与身体的正常生长和代谢。
卤族元素卤族元素的代表:氯卤族元素指周期系ⅦA族元素。
包括氟(F)、氯(Cl)、溴(Br)、碘(I)、砹(At),简称卤素。
它们在自然界都以典型的盐类存在,是成盐元素。
卤族元素的单质都是双原子分子,它们的物理性质的改变都是很有规律的,随着分子量的增大,卤素分子间的色散力逐渐增强,颜色变深,它们的熔点、沸点、密度、原子体积也依次递增。
卤素都有氧化性,氟单质的氧化性最强。
卤族元素和金属元素构成大量无机盐,此外,在有机合成等领域也发挥着重要的作用。
编辑本段卤素的命名由于卤素可以和很多金属形成盐类,因此英文卤素(halogen)来源于希腊语halos(盐)和gennan (形成)两个词。
在中文里,卤的原意是盐碱地的意思。
Halogen卤素的化学性质都很相似,它们的最外电子层上都有7个电子,有取得一个电子形成稳定的八隅体结构的卤离子的倾向,因此卤素都有氧化性,原子半径越小,氧化性越强,因此氟是单质中氧化性最强者。
除F外,卤素的氧化态为+1.+3.+5.+7,与典型的金属形成离子化合物,其他卤化物则为共价化合物。
卤素与氢结合成卤化氢,溶于水生成氢卤酸。
卤素之间形成的化合物称为互卤化物,如ClF₃(三氟化氯).ICl(氯碘化合物)。
卤素还能形成多种价态的含氧酸,如HClO、HClO₂.HClO₃.HClO₄。
卤素单质都很稳定,除了I2以外,卤素分子在高温时都很难分解。
卤素及其化合物的用途非常广泛。
例如,我们每天都要食用的食盐,主要就是由氯元素与钠元素组成的氯化物,并且还含有有少量的MgCl2。
卤素单质的毒性,从F开始依次降低。
从F到At,其氢化物的酸性依次增强,但氢化物的稳定性呈递减趋势。
氧化性:F₂> Cl₂> Br₂> I₂> At₂(一些单质是否有氧化性要看具体化学反应)其对应的卤离子还原性依次增强。
另外,卤素的化学性质都较活泼,因此卤素只以化合态存在于自然界中。
卤族元素颜色及状态的记忆歌谣:氟气(F)淡黄绿色,氯气(Cl2)黄绿色。
卤素的5种卤元素
卤素是指周期表中第17族元素,也称为卤族元素。
它们包括氟(F)、氯(Cl)、溴(Br)、碘(I)和石碳(At)五种元素。
这些元素在化学性质上有很多共同点,但又有一些不同之处。
首先,卤素的原子半径逐渐增加。
氟的原子半径最小,石碳的原子半径最大。
这是因为原子序数增加,电子层数增加,电子云半径也随之增加。
其次,卤素的电负性逐渐降低。
氟的电负性最高,石碳的电负性最低。
这是因为电负性是元素吸引电子的能力,原子序数增加,电子层数增加,外层电子与原子核的距离增加,电负性也随之降低。
再次,卤素的物理状态随着原子序数的增加而逐渐改变。
氟和氯是气体,溴是液体,碘和石碳是固体。
这是因为原子序数增加,分子量增加,分子间的相互作用力增强,物理状态也随之改变。
最后,卤素在化学反应中常常表现出强烈的活性。
它们容易与金属发生反应,形成盐类化合物。
此外,卤素还能与非金属元素发生反应,形成卤素化合物。
总之,卤素是一类具有相似化学性质的元素。
它们包括氟、氯、溴、碘和石碳五种元素,具有原子半径逐渐增加、电负性逐渐降低、物理状态随着原子序数的增加而逐渐改变等特点。
在化学反应中,卤素表现出强烈的活性,容易与金属和非金属元素发生反应。
卤族元素及其化合物的特殊性卤族元素是指周期表中第17族元素,包括氟(F)、氯(Cl)、溴(Br)、碘(I)和翩(At)。
这些元素在自然界中以化合物的形式存在,常见的化合物有氯化钠(NaCl)、氟化钙(CaF2)等。
卤族元素及其化合物具有一些特殊性质,下面将详细介绍。
1.氟(F)是卤族元素中最具活性的元素,它具有强氧化性和高反应活性。
氟化物通常是不溶于水的固体,但与许多金属形成可溶的氟化物,如氟化钠(NaF)。
氟化过程通常是剧烈的,甚至爆炸性的。
2.氯(Cl)是卤族元素中最常见的元素,在常温下是一种有刺激性气味的黄绿色气体。
氯气具有强烈的漂白作用,常用于漂白剂和消毒剂的制备。
氯气也与许多元素和化合物反应,如与氢气反应生成氯化氢(HCl)。
3.溴(Br)是一种深红色液体,在常温下呈现出挥发性和有刺激性的臭味。
溴是一种重要的消毒剂和阻燃剂,常用于制备药物和染料。
溴的反应活性较氟和氯要低,但它仍然与一些金属和非金属反应生成溴化物。
4.碘(I)是一种具有紫黑色的固体,在室温下为挥发性的晶体。
碘通常具有较低的反应活性,但也能与一些金属反应生成碘化物。
碘还具有强烈的染色性,在医学和化学实验中广泛用作染色剂。
5.翩(At)是一种放射性元素,目前仅在实验室中通过人工合成的方式进行研究。
由于其放射性和不稳定性,翩的性质仍然相对不明确。
1.都是强氧化剂:卤族元素能够接受一个或多个电子,从而形成负离子,具有强氧化性质。
这使得它们在许多化学反应中能够作为氧化剂参与,从而引发许多重要的化学反应。
2.都具有较高的电负性:卤族元素在周期表中处于第17组,具有较高的电负性。
这使得它们能够与金属形成离子化合物,如氯化钠和溴化钠等。
这种离子化合物通常具有较高的溶解度和电导率。
3.都是强酸的氢卤酸:氟、氯、溴、碘和翩与氢反应生成氢卤酸,即氢氟酸(HF)、氢氯酸(HCl)、氢溴酸(HBr)和氢碘酸(HI)。
这些酸都是强酸,能够与金属反应生成相应的盐。
卤族元素知识点总结卤族元素是周期表中第七族的元素,包括氟(F)、氯(Cl)、溴(Br)、碘(I)和砹(At)。
这些元素在化学性质上有一些共同的特点,同时也存在一些差异。
下面我们来总结一下卤族元素的一些重要知识点。
首先,卤族元素的原子结构特点。
卤族元素的原子结构都具有七个价电子,因此它们在化合物中通常以单负离子的形式存在。
这也使得卤族元素在化学反应中具有一定的活性,特别是氟元素,由于其电子云的吸引力较大,因此具有很强的化学活性。
其次,卤族元素的化合价和化合物特点。
卤族元素的化合价一般为-1,但在一些化合物中也可以表现出其他化合价,如氯元素在氧化亚氯中的化合价为+1。
卤族元素与金属的化合物通常为离子化合物,而与非金属的化合物则为共价化合物。
此外,卤族元素的化合物在溶液中常呈现出颜色,如氯离子溶液呈现黄绿色,溴离子溶液呈现橙黄色,碘离子溶液呈现紫色。
再者,卤族元素的化学反应特点。
卤族元素在化学反应中常表现出活泼的性质,如氯元素能与氢气发生剧烈的反应,生成氯化氢气体。
此外,卤族元素还能与氢氧化物反应生成卤化物,如氯元素与氢氧化钠反应生成氯化钠和水。
卤族元素还能与氧气反应生成卤氧化物,如氯元素与氧气反应生成氯氧化物。
最后,卤族元素的应用。
卤族元素在生活和工业中有着广泛的应用,如氯元素被广泛用于消毒,制取氯化铝等化工产品。
氟元素被用于制取氟化氢和氟化铝等化工原料。
此外,卤族元素还被用于医药、农业等领域。
综上所述,卤族元素在化学性质上有着一些共同的特点,但也存在一些差异。
通过对卤族元素的了解,可以更好地理解它们在化学反应和应用中的特点,为我们的生活和工业生产提供更多的可能性。
卤族元素冷知识卤族元素是元素周期表中的第17族元素,包括氟(F)、氯(Cl)、溴(Br)、碘(I)和砹(At)。
这些元素在化学和生物学中具有一些冷知识,下面将介绍一些有趣的冷知识关于卤族元素。
1. 氟(F)氟是自然界中最活泼的元素之一,它的活泼性主要体现在与其他元素的反应中。
氟可以与几乎所有元素反应,甚至与金属反应形成离子化合物。
氟的活泼性也使得它成为许多化学反应的催化剂。
此外,氟还是一种重要的生物学元素,它在牙齿保健中起着重要的作用,氟化物可以防止牙齿腐蚀。
2. 氯(Cl)氯是一种常见的消毒剂,常用于水处理和游泳池消毒。
氯充当氧化剂,可以杀死细菌和病毒,有效地清除水中的有害物质。
此外,氯也是许多工业化学品的重要原料,如氯乙烯用于生产塑料。
3. 溴(Br)溴是一种有毒的红棕色液体,在自然界中主要以溴化物的形式存在。
溴是一种重要的溶剂,在有机合成中广泛应用。
它还被用作火灾控制剂,溴化物可以抑制火焰的燃烧,减少火灾的危害。
4. 碘(I)碘是一种重要的营养元素,人体需要适量的碘来维持甲状腺功能正常。
碘可以通过食物摄入,主要存在于海产品和含碘盐中。
碘的不足会导致甲状腺功能减退,引发甲状腺相关疾病。
5. 砹(At)砹是一种放射性元素,它的同位素具有较短的半衰期。
砹的放射性可以用于医学诊断和治疗,特别是用于甲状腺癌的治疗。
砹化合物可以在靶细胞中释放出放射性粒子,直接杀死癌细胞。
6. 卤素的共性卤族元素具有相似的化学性质,它们都是非金属元素,具有较高的电负性。
这使得它们在反应中倾向于接受电子,形成负离子。
卤素还有一个共同的特点是它们的化合物常常呈盐状晶体,如氯化钠和碘化钾等。
7. 卤素与生命的关系卤族元素在生物体中起到重要的作用。
除了碘在甲状腺功能中的作用外,氯和溴也在生物体中发挥重要的功能。
氯离子在细胞内外的平衡调节中起到关键作用,而溴则在海洋生物中发挥重要的生物学功能。
8. 卤素的应用卤族元素在许多领域都有广泛的应用。
卤族元素化学方程式总结卤族元素是指周期表中第17族元素,包括氟(F)、氯(Cl)、溴(Br)、碘(I)和石碱金属气体气体(At)。
它们属于同一族元素,具有相似的化学性质。
在化学方程式中,卤族元素的化合物可以分为离子化合物和共价化合物两类。
下面是对卤族元素化学方程式的总结。
1.卤素的离子化合物:卤族元素可以与金属形成离子化合物,通常是在反应中失去电子,转变成阴离子,与阳离子形成晶体结构的化合物。
其中,氯化钠(NaCl)是最常见的例子。
例如:Na+Cl2→2NaCl2.卤素的氧化性:卤族元素具有较高的氧化性,可以与其他元素形成氧化物。
氯氧化物(Cl2O)、氯酸(HClO)、次氯酸(HClO2)和高氯酸(HClO4)是氯的氧化产物。
例如:Cl2+O2→2Cl2OCl2+H2O→HClO+HClCl2+3H2O→HClO3+2HClCl2+4H2O→HClO4+4HCl3.卤素的还原性:卤族元素也具有较强的还原性,可以将其他元素的氧化态减小,从而被氧化。
其中最典型的例子是氯气(Cl2)与其他物质发生反应,如还原金属离子生成金属。
例如:2Na+Cl2→2NaCl4.卤素的消毒作用:卤素具有很强的消毒能力,可以杀死细菌和病毒。
一种常见的消毒剂是氯气或含氯化合物。
例如,漂白剂(含有次氯酸盐)可以通过与有机物发生反应,使其失去颜色。
例如:2NaClO+C12H22O11→NaCl+NaClO3+11H2O5.共价化合物:卤族元素也可以形成共价键,与非金属形成共价化合物。
其中最常见的例子是六氟化硫(SF6)和三碘甲烷(CHI3)。
例如:S+3F2→SF64I2+CCl4→4ICl+C2I6总结:卤族元素具有较高的氧化性和还原性,可以与金属形成离子化合物,与其他元素形成共价化合物。
它们在化学方程式中参与各种反应,包括氧化、还原、水解、消毒等。
了解这些化学方程式有助于深入理解卤族元素的化学性质以及其在实际应用中的重要性。
卤族元素:特性、应用及其对环境的影响一、引言卤族元素是一组在周期表中占据特殊位置的元素,它们包括氟(F)、氯(Cl)、溴(Br)、碘(I)和砹(At)。
这些元素具有一系列相似的化学和物理性质,使它们在许多领域都有广泛的应用。
然而,卤族元素的使用也带来了一些环境问题。
本文将详细讨论卤族元素的特性、应用及其对环境和人类生活的影响。
二、卤族元素的特性卤族元素具有一些共同的化学和物理性质,这些性质使得它们在周期表中独树一帜。
以下是一些主要的特性:1. 高电负性:卤族元素具有高电负性,意味着它们具有很强的吸引电子的能力。
这使得卤族元素在与其他元素形成化学键时,通常作为电子接受体。
2. 氧化性:由于卤族元素的高电负性,它们具有强烈的氧化性。
例如,氟是已知的最强的氧化剂之一。
3. 颜色:卤族元素的颜色随着原子序数的增加而变深。
氟是无色的,而氯、溴、碘和砹分别呈现为黄绿色、红棕色、紫黑色和黑色。
4. 状态:卤族元素在常温下的状态从气态(氟和氯)逐渐过渡到液态(溴)和固态(碘和砹)。
5. 溶解性:卤族元素在水中的溶解度随着原子序数的增加而降低。
氟在水中几乎完全溶解,而碘在水中的溶解度则较低。
三、卤族元素的应用卤族元素在许多领域都有广泛的应用,以下是一些主要的例子:1. 制冷剂:氟利昂等卤代烃被广泛用作制冷剂,但它们的使用也导致了臭氧层破坏等环境问题。
2. 消毒剂和漂白剂:氯气和水生成的次氯酸被广泛用作消毒剂和漂白剂,例如在游泳池和自来水处理中。
3. 医药:许多药物含有卤族元素,例如用于治疗甲状腺疾病的碘化合物和用于制造镇静剂、麻醉剂的溴化合物。
4. 农业:卤族元素也被用于农业生产,例如添加碘到动物饲料中以预防甲状腺肿大,或者使用含氯的农药来防治农作物病虫害。
5. 工业:在工业领域,卤族元素被广泛用于制造各种化学品,如聚四氟乙烯(Teflon)、聚氯乙烯(PVC)等。
四、卤族元素对环境的影响虽然卤族元素在许多方面都有广泛的应用,但它们的使用也带来了一些环境问题。
卤族元素卤族元素包括氟(F )、氯(Cl )、溴(Br )、碘(I )、砹(At )等,它们最外层电子数都是7个电子,是元素周期表中的第ⅦA 元素。
1、氯(1)物理性质:氯气是一种黄绿色有刺激性气味的气味,常温下能溶于水(1︰2),比空气重,易液化,有剧毒。
常温下,氯气为黄绿色气体加压或降温后液化为液氯,进一步加压或降温则变成固态氯.注意:①氯气使人中毒的症状是:吸入少量氯气会使鼻和喉头的黏膜受到刺激,引起胸部疼痛和咳嗽,吸入大量的氯气会中毒死亡。
②在实验室里闻氯气气味时,必须十分小心,采用正确的闻气味方法,即用于在瓶口轻轻扇动,仅使极少量的氯气飘进鼻孔。
在实验室中闻其他气体的气味时,也应采用这种方法。
(2)化学性质:氯气(Cl 2)是双原子分子,原子的最外层有七个电子,是典型的非金属元素,单质是强氧化剂。
①与金属反应(与变价金属反应,均是金属氧化成高价态) 2Na + Cl 2 === 2NaCl (反应剧烈,产生大量白烟)2Fe + 3Cl 2======2FeCl 3(反应剧烈,产生大量棕褐色烟,溶于水成黄色溶液) Cu + Cl 2 ====CuCl 2(反应剧烈,产生大量棕色的烟,溶于水成黄色,蓝色或绿色溶液)氯气能与绝大数金属都能发生反应,表明氯气是一种活泼的非金属单质。
注:常温下干燥的氯气或液氯不与铁反应,所以液氯通常储存在钢瓶中。
②与非金属的反应H 2 +Cl 2 ===== 2HCl (纯净的氢气在氯气中安静的燃烧,苍白色火焰,在瓶口处有白雾产生) H 2 + Cl 2 =====2HCl (发生爆炸)——不可用于工业制盐酸 2P + 3Cl 2=====2PCl 3(液态; 氯气不足;产生白雾)2P +5Cl 2 ===2PCl 5(固态; 氯气充足;产生白烟) 氯气能有很多非金属单质反应,如S 、C 、Si 等。
③与碱反应Cl 2 + 2NaOH === NaCl +NaClO + H 2O (用于除去多余的氯气)2Cl 2 + 2Ca(OH)2 === CaCl 2 + Ca(ClO)2 +2H 2O (用于制漂粉精)将氯气通入Ca(OH)2溶液中制备漂白粉,漂白粉的主要成份是CaCl 2、 Ca(ClO)2,其有效成份是Ca(ClO)2。
工作原理:Ca(ClO)2 + H 2O +CO 2 ===CaCO 3 ↓+ 2HClO ④与某些还原性物质反应:Cl 2 + 2FeCl 2===2FeCl 3 Cl 2 +SO 2 + 2H 2O==2HCl +H 2SO 42KI +Cl 2 = 2KCl + I 2(使湿润的淀粉-KI 试纸变蓝色,用于氯气的检验)⑤有机反应CH 4 + Cl 2 → CH 3Cl + HCl CH 3Cl + Cl 2 →CH 2Cl 2 + HCl CH 2Cl 2+ Cl 2 →CHCl 3 + HCl CHCl 3 + Cl 2 →CCl 4 + HCl 氯气与甲烷的取代反应,如有1mol Cl 2与4mol CH 4反应,产物有哪些物质?何种物质含量最多? Cl 2 + CH 2=CH 2 → CH 2Cl-CH 2Cl (加成反应)△ △ 点燃 光照 点燃取代反应是两种物质反应生成两种物质而加成反应是两种物质反应生成一种物质。
上述两反应的鉴别方法可加入硝酸酸化的硝酸银溶液。
如是取代反应则有白色沉淀生成。
⑥与水反应Cl 2 + H 2O HCl +HClO (HClO 为一元弱酸,弱电解质HClO H + +ClO —)Cl 2溶于水形成氯水,那么氯水与液氯是同一种物质吗?新制得的氯水中又会含有哪些微粒?分子:H 2O 、Cl 2、HClO 离子:H +、Cl —、OH —、ClO —2、次氯酸的性质(HClO )仅存在溶液中,浓溶液呈黄色,稀溶液无色,有非常刺鼻的气味。
①酸性:次氯酸是弱酸,弱电解质。
具有酸的通性。
A 、显色反应;B 、与活泼金属反应置换出氢气;C 、与碱反应生成盐和水;D 、与部分金属氧化物的反应,生成盐与水;E 、与某些盐的反应。
②氧化性Ca(ClO)2 + 4HCl(浓)===CaCl 2 + Cl 2↑+ 2H 2O ③漂白性因为次氯酸具有强的氧化性,能氧化有色物质生成无色物质,所以次氯酸具有漂白性。
如:将干燥的氯气通过干燥的有色布条,布条并没有褪色;而过湿润的有色布条时,布条褪色。
说明真正起到漂白作用的是次氯酸。
几种漂白剂的比较④不稳定性新制的氯水与久置的氯水有区别:(1)颜色变浅至无色 (2)酸性变大 次氯酸极不稳定,很容易就发生分解,且存大多种分解形式。
如:2HClO=====2HCl + O 2↑ 3HClO===2HCl + HClO 3 为什么漂白粉久置空气中易失效? 3、氯气的的制备实验室氯气的制备:在实验室里,氯气可用浓盐酸与某些氧化剂反应来制取。
① 反应原理: 4HCl(浓) + MnO 2 === MnCl 2 + 2H 2O +Cl 2↑ 2KMnO 4+16HCl(浓)==2KCl + 2MnCl 2+5Cl 2+8H 2O②仪器的选取:一般来有四套装置,一是发生装置;二是除杂装置;三是收集装置;四是尾气处理装置。
③除杂气体:制得的氯气中有氯化氢杂质,常用饱和食盐水洗气。
有时要制得干燥的氯气,可以用浓硫酸洗气来除去水蒸气。
④收集方法:氯气可以用向上排空气法或排饱和食盐水法收集。
光照 △△工业上氯气的制备:在工业上用电解饱和食盐水的方法来制取氯气(氯碱工业)。
2NaCl + 2H 2O =====2NaOH + Cl 2↑+ H 2↑氯气的检验:使用润湿的淀粉KI 试纸;氯气能使润湿的淀粉KI 试纸变蓝。
4、用途:氯气除用于消毒,制造盐酸和漂白粉外,还用于制造多种农药,化工原料,生产许多无机试剂、有机试剂。
总之在生产生活有着重要的用途。
卤族元素的性质1、卤族元素的物理性质随卤素核电荷数增加,电了层数依次递增,原子半径渐增大,其原子结构的递变性而使卤素单质2、卤族元素的化学性质由于最外层均为7个电子,极易得一个电子,因此卤素都是强氧化剂,在自然界均只以化合态存在。
但随着电子层数递增,原子半径渐增大,核对外层电子的引力渐减弱,得电子能力逐渐减弱,其氧化性逐渐减弱。
如何比较其得电子能力?氟:是最活泼的非金属,单质的氧化性最强,氟离子(F )很难被氧化。
氟元素在化合物中化合价只有-1,无正价,常温下氟气与水剧烈反应且不同于其他卤素(产物不同,原理不同),不能从其他卤化物的水溶液中置换出其他卤素(先与水发生置换反应),能与稀有气体反应(常见的产物均为白色)。
溴:在常温下为红棕色色液体(唯一液态非金属单质),极易挥发产生红棕色且有毒的溴蒸气。
实验室通常将溴密闭保存在阴冷处处,且在试剂瓶中加水进行液封,不能用橡皮塞。
碘:是紫黑色固体,具有金属光泽,易升华(常用于分离提纯碘)、易吸潮(遇铁在水催化下易反应,故盛碘的瓶子不能用铁盖),使淀粉变蓝色(常用来检验碘的存在),碘的氧化性较其他卤素弱,与变价金属铁反应生成FeI 2而不是FeI 3。
①比较元素的单质与氢气化合的难易程度以及气态氢化物的稳定性。
一般来说,反应越容易进行,生成的气态氢化物越稳定,元素原子得电子的能力越强。
发生装置 除杂装置 收集装置 尾气处理电解光照F 2 + H 2===2HF (相遇即发生爆炸) H 2 + Cl 2 ==== 2HCl (爆炸)Br 2 + H 2 === 2HBr (需加热且反应缓慢) I 2 + H 22HI (可逆反应,缓慢进行) 且气态氢化物的稳定性:HF >HCl >HBr >HI②比较元素最高价氧化物对应水化物的酸性。
一般说来,酸性越强,元素原子得电子的能力越强。
HClO 4>HBrO 4>HIO 4③置换反应:若非金属X 能把非金属Y 从它的盐溶液中置换出来,则金属得电子能力比Y 强,即X 的非金属性比Y 强。
Cl 2 + 2NaBr===2NaCl + Br 2 Cl 2 + 2KI ===2KCl + I 2 Br 2 + 2KI== 2KBr + I 2 通过以上论证可以表明:得电子能力是 F >Cl >Br >I特性:碘易升华,能使淀粉变蓝色。
溴—唯一的常温呈液态的非金属,易挥发,保存时加水密封。
氟—最强氧化剂,不能用氧化剂将F —氧化为F 2。
F 元素无正价。
CaX 2—只有CaF 2不溶于水。
卤离子的检验:使用硝酸酸化的硝酸银溶液。
AgCl 为白色沉淀、AgBr 为淡黄色沉淀(感光材料)、AgI 为黄色沉淀(人工降雨)、AgF 可溶。
3、卤化氢性质的比较 (1)相似性①均是无色有刺激性气味的气体。
②均极易溶于水,其水溶液是氢卤酸。
③氢卤酸均易挥发,在空气中冒白雾。
④氢卤酸具有酸类的通性、氧化性和还原性。
(2)递变性①按HF 、HCl 、HBr 、HI 的顺序,稳定性逐渐减弱,还原性逐渐增强。
②氢卤酸的酸性:HF <HCl <HBr <HI ,氢氟酸是弱酸,氢氯酸、氢溴酸和氢碘酸均是强酸。
氢氟会腐蚀玻璃,只能用塑料瓶保存。
卤素互化物与拟卤素1. 与卤素单质的性质相似,其原子团是化合物中的阴离子,也有与卤素阴离子相似的性质。
如:氰(CN)2 ,硫氰(SCN)2等物质,称为拟卤素。
可以和碱反应:(CN)2+2NaOH NaCN+NaCNO+2H 2O 与氧化剂反应:(CN)2+MnO 2 Mn(CN) 2+(CN) 2↑+2H 2O2. 不同的卤素之间可以互相化合,形成一系列化合物,如IBr 等,这类化合物称为卤素互化物,与卤素单质的性质相似。
与水反应:IBr +H 2O HBr +HIO 2NaOH [例]卤素互化物是指不同卤素原子之间以共价键结合形成的化合物,XX’型卤素互化物与卤素单质结构相似、性质相近。
试回答下列问题:(1)卤素互化物BrCl 能发生下列反应H 2O +BrCl =HBrO +HCl KBr +BrCl =KCl +Br 2 ①写出KI 与IBr 反应的化学方程式______________。
②写出苯与(C 6H 6)与ICl 发生取代反应生成一卤代物的化学方程式_____________。
(2)右图是部分卤素单质和XX’型卤素互化物的沸点与其相对分△子质量的关系图。
它们的沸点随着相对分子质量的增大而升高,其原因是____________。
(3)试推测ICl的沸点所处的最小范围______________。
氯碱工业氯碱工业:通过电解饱和食盐水来生产烧碱、氯气和氢气,并以它们为原料生产一系列化工产品。
电解2NaCl + 2H2O =====2NaOH + Cl2↑+ H2↑阳极2Cl—→Cl2↑+ 2e—(氧化反应)阴极2H+ + 2e—→H2↑(还原反应)饱和食盐水的来源广泛,主要来源于晒盐场的母液。