2014年石景山区数学理高三统一测试一模
- 格式:doc
- 大小:359.12 KB
- 文档页数:4
2014年北京市各区高三一模试题汇编—解析几何(理科)1 (2014年东城一模理科)若双曲线()2222100x y a b a b -=>>,的渐近线与圆()2221x y -+=相切,则双曲线的离心率为( ).A .2 BCD答案:C2 (2014年西城一模理科)若抛物线2:2C y px =的焦点在直线240x y +-=上,则p =___8__;C 的准线方程为__4x =-___.3 (2014年西城一模理科) “8m <”是“方程221108x y m m -=--表示双曲线”的(A ) (A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件(D )既不充分也不必要条件4 (2014年海淀一模理科)已知(1,0)A ,点B 在曲线:G ln(1)y x =+上,若线段AB 与曲线:M 1y x=相交且交点恰为线段AB 的中点,则称B 为曲线G 关于曲线M 的一个关联点.记曲线G 关于曲线M 的关联点的个数为a ,则( B ).A .0a =B .1a =C .2a =D .2a >5 (2014年海淀一模理科)已知圆04122=-++mx y x 与抛物线24y x =的准线相切,则=m ____34___.6 (2014年朝阳一模理科) 直线y x m =+与圆2216x y +=交于不同的两点M ,N ,且MN ON ≥+uuu r r uuu r,其中O 是坐标原点,则实数m的取值范围是(D )A.(-UB.(⎡--⎣UC .[2,2]-D.[-7 (2014年朝阳一模理科)双曲线2221(0)y x b b-=>的一个焦点到其渐近线的距离是2,则b =2此双曲线的离心率为8 (2014年丰台一模理科)已知点F,B 分别为双曲线C:的焦点和虚22221(0,0)x y a b a b -=>>轴端点,若线段FB 的中点在双曲线C 上,则双曲线C 的离心率是___________.9 (2014年石景山一模理科)在平面直角坐标系xOy 中,抛物线22(0)x py p =>上纵坐标为1的点到焦点的距离为3,则焦点到准线的距离为(D ) A .2B .8C D .410 (2014年石景山一模理科) 已知动点()P x y ,在椭圆22:12516x y C +=上,F 为椭圆C 的右焦点,若点M 满足||1MF =且0MP MF ⋅=,则||PM 的最小值为(A )A B .3C .125D .111 (2014年顺义一模理科)已知抛物线()的焦点为,准线为,为抛物线上一点,,垂足为.如果是边长为的正三角形,则此抛物线的焦点坐标为____(1,0)_,点的横坐标__3_.12 (2014年延庆一模理科)设m 是常数,若点)5,0(F 是双曲线2219y x m -=的一个焦点,则m=___16___1. 13 (2014年东城一模理科) (本小题共13分)已知椭圆()2222:10x y G a b a b +=>>过点1,A ⎛ ⎝⎭和点()0,1B -. (1)求椭圆G 的方程;(2)设过点30,2P ⎛⎫ ⎪⎝⎭的直线l 与椭圆G 交于,M N 两点,且||||BM BN =,求直线l 的方程.解:(Ⅰ)因为椭圆()2222:10x y G a b a b +=>>过点1A ⎛ ⎝⎭和点()01B -,.所以1b =,由22111a ⎝⎭+=,得23a =. 所以椭圆G 的方程为2213x y +=.(Ⅱ)显然直线l 的斜率k 存在,且0k ≠.设直线l 的方程为32y kx =+.由22133.2x y y kx ⎧+=⎪⎪⎨⎪=+⎪⎩,消去y 并整理得22153034k x kx ⎛⎫+++= ⎪⎝⎭,由2219503k k ⎛⎫=-+> ⎪⎝⎭△,2512k >.设()11M x y ,,()22N x y ,,MN 中点为()22Q x y ,, 得12229262x x k x k +==-+,12623262y y y k +==+. 由BM BN =,知BQ MN ⊥,所以6611y x k +=-,即2231162962k k k k ++=--+. 化简得223k =,满足0>△.所以k = 因此直线l的方程为32y =+. 14 (2014年西城一模理科)(本小题满分14分)已知椭圆2212x W y +=:,直线l 与W 相交于,M N 两点,l 与x 轴、y 轴分别相交于C 、D 两点,O 为坐标原点. (Ⅰ)若直线l 的方程为210x y +-=,求OCD ∆外接圆的方程;(Ⅱ)判断是否存在直线l ,使得,C D 是线段MN 的两个三等分点,若存在,求出直线l 的方程;若不存在,说明理由.(本小题满分14分)(Ⅰ)证明:因为直线l 的方程为210x y +-=,所以与x 轴的交点(1,0)C ,与y 轴的交点1(0,)2D . …………… 1分则线段CD 的中点11(,)24,||CD ==, ………… 3分 即OCD ∆外接圆的圆心为11(,)24,半径为1||2CD =, 所以OCD ∆外接圆的方程为22115()()2416x y -+-=. …………… 5分(Ⅱ)解:结论:存在直线l ,使得,C D 是线段MN 的两个三等分点.理由如下:由题意,设直线l 的方程为(0)y kx m km =+≠,11(,)M x y ,22(,)N x y , 则 (,0)mC k-,(0,)D m , ……… 6分 由方程组2212y kx m x y =+⎧⎪⎨+=⎪⎩ 得222(12)4220k x kmx m +++-=, ………… 7分所以 2216880k m ∆=-+>, (*) …… 8分由韦达定理,得122412kmx x k -+=+, 21222212m x x k -=+. ………… 9分由,C D 是线段MN 的两个三等分点,得线段MN 的中点与线段CD 的中点重合. 所以 1224120km x x k m k-+==+-, …………10分解得2k =±. …………… 11分 由,C D 是线段MN 的两个三等分点,得||3||MN CD =.12|x x -= ………… 12分 即12||3||m x x k-==, 解得m =.……… 13分 验证知(*)成立.所以存在直线l ,使得,C D 是线段MN 的两个三等分点,此时直线l 的方程为y x =,或y x =. ……………… 14分 15 (2014年海淀一模理科)(本小题满分14分)已知,A B 是椭圆22:239C x y +=上两点,点M 的坐标为(1,0).(Ⅰ)当,A B 两点关于x 轴对称,且MAB ∆为等边三角形时,求AB 的长; (Ⅱ)当,A B 两点不关于x 轴对称时,证明:MAB ∆不可能为等边三角形. 解:(Ⅰ)设00(,)A x y ,00(,)-B x y ,————————————————1分因为∆ABM为等边三角形,所以00|||1|=-y x .————————2分 又点00(,)A x y 在椭圆上,所以002200||1|,239,y x x y ⎧=-⎪⎨⎪+=⎩消去0y ,———————————3分 得到2003280--=x x ,解得02=x 或043=-x ,—————————4分 当02=x时,||=AB 当043=-x时,||=AB .———————————————————5分 {说明:若少一种情况扣2分}(Ⅱ)法1:根据题意可知,直线AB 斜率存在.设直线AB :=+y kx m ,11(,)A x y ,22(,)B x y ,AB 中点为00(,)N x y ,联立22239,⎧+=⎨=+⎩x y y kx m消去y 得222(23)6390+++-=k x kmx m ,————6分由0∆>得到222960--<m k ①————————————7分 所以122623+=-+km x x k ,121224()223+=++=+my y k x x m k ,——————8分 所以2232(,)2323-++km mN k k,又(1,0)M 如果∆ABM 为等边三角形,则有⊥MN AB ,————————————9分所以1MN k k ⨯=-,即2222313123mk k km k+⨯=---+,—————————————10分 化简2320k km ++=,②—————————————11分由②得232k m k+=-,代入①得2222(32)23(32)0k k k +-+<,化简得2340+<k ,不成立,————————————————13分{此步化简成42291880k k k++<或4291880k k ++<或22(32)(34)0k k ++<都给分} 故∆ABM 不能为等边三角形.——————————14分法2:设11(,)A x y ,则2211239x y +=,且1[3,3]x ∈-,所以||MA ==———8分 设22(,)B x y,同理可得||MB =2[3,3]x ∈-———————9分 因为21(3)13y x =-+在[3,3]-上单调 所以,有12x x =⇔||||MA MB =,————————————11分 因为,A B 不关于x 轴对称,所以12x x ≠.所以||||MA MB ≠,————————————————13分所以∆ABM 不可能为等边三角形.———————————————14分16 (2014年朝阳一模理科)已知椭圆2222:1(0)x y C a b a b+=>>经过点. (Ⅰ)求椭圆C 的方程;(Ⅱ)直线(1)(0)y k x k =-≠与椭圆C 交于,A B 两点,点M 是椭圆C 的右顶点.直线AM 与直线BM 分别与y 轴交于点,P Q ,试问以线段PQ 为直径的圆是否过x 轴上的定点?若是,求出定点坐标;若不是,说明理由.解:(Ⅰ)由题意得221314c a a b ⎧⎪⎪⎨⎪+=⎪⎩,解得=2a ,1b =.所以椭圆C 的方程是2214x y +=.………………………… 4分(Ⅱ)以线段PQ 为直径的圆过x 轴上的定点.由22(1)14y k x x y =-⎧⎪⎨+=⎪⎩得2222(14)8440k x k x k +-+-=.设1122(,),(,)A x y B x y ,则有2122814k x x k +=+,21224414k x x k -=+.又因为点M 是椭圆C 的右顶点,所以点(2,0)M .由题意可知直线AM 的方程为11(2)2y y x x =--,故点112(0,)2y P x --. 直线BM 的方程为22(2)2y y x x =--,故点222(0,)2y Q x --. 若以线段PQ 为直径的圆过x 轴上的定点0(,0)N x ,则等价于0PN QN ⋅=u u u r u u u r恒成立. 又因为1012(,)2y PN x x =-uuu r ,2022(,)2y QN x x =-uuu r , 所以221212001212224022(2)(2)y y y y PN QN x x x x x x ⋅=+⋅=+=----uuu r uuu r 恒成立.又因为121212(2)(2)2()4x x x x x x --=-++2222448241414k k k k -=-+++22414k k =+, 212121212(1)(1)[()1]y y k x k x k x x x x =--=-++22222448(1)1414k k k k k -=-+++22314k k -=+, 所以222221200021212414304(2)(2)14k y y k x x x k x x k -++=+=-=--+.解得0x = 故以线段PQ 为直径的圆过x轴上的定点(.………………………… 14分 17 (2014年丰台一模理科) 已知椭圆E:的离心率为,过左焦点且斜率为的直线交椭圆E 于A,B 两点,线段AB的中点为M,直线:交椭圆E 于C,D 两点.(Ⅰ)求椭圆E 的方程;(Ⅱ)求证:点M 在直线上;(Ⅲ)是否存在实数k,使得三角形BDM 的面积是三角形ACM 的3倍?若存在,求出k 的值;若不存在,说明理由. 解:(Ⅰ)由题意可知,,于是. 所以,椭圆的标准方程为程.------ ---------3分(Ⅱ)设,,,22221(0)x y a b a b +=>>(F k l 40x ky +=l c e a ==c =2,1a b ==2214x y +=11(,)A x y 22(,)B x y 00(,)M xy即.所以,,,, 于是.,所以在直线上----8分(Ⅲ)由(Ⅱ)知点A 到直线CD 的距离与点B 到直线CD 的距离相等,若∆BDM 的面积是∆ACM 面积的3倍,则|DM|=3|CM|,因为|OD|=|OC|,于是M 为OC 中点,;设点C 的坐标为,则.因为,解得. 于是,解得,所以.----------------14分 18 (2014年石景山一模理科) 给定椭圆C :22221(0)x y a b ab+=>>,称圆心在原点O ,半C的“准圆”.若椭圆C 的一个焦点为0)F ,,其短轴上的一个端点到F(Ⅰ)求椭圆C 的方程和其“准圆”方程;(Ⅱ)点P 是椭圆C 的“准圆”上的动点,过点P 作椭圆的切线12l l ,交“准圆”于点M N ,. (ⅰ)当点P 为“准圆”与y 轴正半轴的交点时,求直线12l l ,的方程并证明12l l ⊥; (ⅱ)求证:线段MN 的长为定值. 解:(Ⅰ)21c a b ==∴=,,∴椭圆方程为2213x y +=,………………………………2分准圆方程为224x y +=.………………………………3分22(14y k x x y ⎧=+⎪⎨+=⎪⎩2222(41)1240k x x k +++-=12x x +=1202x x x +==00(y k x =+=M ∴40k +=M l 33(,)x y 302y y =22414x kyx y =-⎧⎪⎨+=⎪⎩3y =2|41k k =+218k =4k =±(Ⅱ)(ⅰ)因为准圆224x y +=与y 轴正半轴的交点为(02)P ,, 设过点(02)P ,且与椭圆相切的直线为2y kx =+, 所以由22213y kx x y =+⎧⎪⎨+=⎪⎩,,得22(13)1290k x kx +++=. 因为直线2y kx =+与椭圆相切,所以2214449(13)0k k ∆=-⨯+=,解得1k =±,………………………………6分所以12l l ,方程为22y x y x =+=-+,.………………………………7分 ,12l l ∴⊥.………………………………8分(ⅱ)①当直线12l l ,中有一条斜率不存在时,不妨设直线1l 斜率不存在, 则1l:x =1l:x =与准圆交于点1)1)-, 此时2l 为1y =(或1y =-),显然直线12l l ,垂直; 同理可证当1l:x =12l l ,垂直.………………………………10分 ②当12l l ,斜率存在时,设点00()P x y ,,其中22004x y +=. 设经过点00()P x y ,与椭圆相切的直线为00()y t x x y =-+, 所以由0022()13y t x x y x y =-+⎧⎪⎨+=⎪⎩,,得2220000(13)6()3()30t x t y tx x y tx ++-+--=. 由0∆=化简整理得2220000(3)210x t x y t y -++-=, 因为22004x y +=,所以有2220000(3)2(3)0x t x y t x -++-=.设12l l ,的斜率分别为12t t ,,因为12l l ,与椭圆相切, 所以12t t ,满足上述方程2220000(3)2(3)0x t x y t x -++-=, 所以121t t ⋅=-,即12l l ,垂直.………………………………12分 综合①②知:因为12l l ,经过点00(,)P x y ,又分别交其准圆于点M N ,,且12l l ,垂直. 121l l k k ⋅=-1l所以线段MN 为准圆224x y +=的直径,||4MN =, 所以线段MN 的长为定值.………………………………14分 19 (2014年顺义一模理科)已知椭圆的离心率,长轴的左右端点分别为,.(Ⅰ)求椭圆的方程;(Ⅱ)设动直线与曲线有且只有一个公共点,且与直线相交于点.问在轴上是否存在定点,使得以为直径的圆恒过定点,若存在,求出点坐标;若不存在,说明理由.解:(Ⅰ)由已知————2分,椭圆的方程为;————4分,即————10分,对满足恒成立,,故在轴上存在定点,使得以为直径的圆恒过定点.——14分20 (2014年延庆一模理科) 已知直线022=+-y x 经过椭圆)0(1:2222>>=+b a bya x C 的左顶点A 和上顶点D ,椭圆C 的右顶点为B ,点S 是椭圆上位于x 轴上方的动点,直线AS ,BS 与直线4:=x l 分别交于N M ,两点.(Ⅰ)求椭圆C 的方程;(Ⅱ)求线段MN 的长度的最小值.解:(Ⅰ).椭圆C 的方程为1422=+y x .………………3分(Ⅱ)直线AS 的斜率k 显然存在,且0>k ,故可设直线AS 的方程为)2(+=x k y ,………………4分 从而)6,4(k M ………………5分由⎪⎩⎪⎨⎧=++=14)2(22y x x k y 得041616)41(2222=-+++k x k x k ,………………7分 设),(11y x S ,则22141416)2(k k x +-=⨯-,得2214182k k x +-=,………………8分 从而21414k k y +=,即)414,4182(222kkk k S ++-,………………9分 又)0,2(B ,故直线BS 的方程为)2(41--=x ky ………………10分 由⎪⎩⎪⎨⎧=--=4)2(41x x k y 得⎪⎩⎪⎨⎧-==k y x 214∴)21,4(k N -,………………11分 故kk MN 216||+=,………………12分 又∵0>k ,∴322162216||=⨯≥+=kk k k MN ,………………13分 当且仅当k k 216=,即63=k 时等号成立, ∴63=k 时,线段MN 的长度取得最小值为32.……………………14分。
2014年北京市石景山区高考数学一模试卷(理科)一、选择题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项.1.(5分)已知全集U=R,集合A={x|x2﹣2x<0},B={x|x﹣1≥0},那么A∩∁U B=()A.{x|0<x<1}B.{x|x<0}C.{x|x>2}D.{x|1<x<2} 2.(5分)下列函数中,在(0,+∞)内单调递减,并且是偶函数的是()A.y=x2B.y=x+1C.y=﹣lg|x|D.y=2x3.(5分)在的展开式中,x的系数为()A.10B.﹣10C.20D.﹣204.(5分)已知Rt△ABC中,∠C=90°,AB=5,BC=4,以BC为直径的圆交AB于D,则BD的长为()A.4B.C.D.5.(5分)在平面直角坐标系xOy中,抛物线x2=2py(p>0)上纵坐标为1的点到焦点的距离为3,则焦点到准线的距离为()A.2B.8C.D.46.(5分)已知某个三棱锥的三视图如图所示,其中正视图是等边三角形,侧视图是直角三角形,俯视图是等腰直角三角形,则此三棱锥的体积等于()A.B.C.D.7.(5分)阅读如图的程序框图,运行相应的程序,输出的结果为()A.﹣2B.C.﹣1D.28.(5分)已知动点P(x,y)在椭圆C:=1上,F为椭圆C的右焦点,若点M满足||=1且=0,则||的最小值为()A.B.3C.D.1二、填空题共6小题,每小题5分,共30分.9.(5分)已知命题p:∃x∈R,e x<0,则¬p是.10.(5分)在等比数列{a n}中,a1=2,a4=16,则数列{a n}的通项公式a n=,设b n=log2a n,则数列{b n}的前n项和S n=.11.(5分)已知圆C的极坐标方程为ρ=2,以极点为原点,极轴为x轴的正半轴建立平面直角坐标系,则圆C的直角坐标方程为,若直线l:kx+y+3=0与圆C相切,则实数k的值为.12.(5分)已知变量x,y满足约束条件,则的取值范围是.13.(5分)各大学在高考录取时采取专业志愿优先的录取原则.一考生从某大学所给的7个专业中,选择3个作为自己的第一、二、三专业志愿,其中甲、乙两个专业不能同时兼报,则该考生有种不同的填报专业志愿的方法(用数字作答).14.(5分)若存在实常数k和b,使得函数f(x)和g(x)对其定义域上的任意实数x分别满足:f(x)≥kx+b和g(x)≤kx+b,则称直线l:y=kx+b为f(x)和g(x)的“隔离直线”.已知函数f(x)=x2﹣1和函数g(x)=2lnx,那么函数f(x)和函数g(x)的隔离直线方程为.三、解答题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.15.(13分)在△ABC中,角A,B,C的对边分别为a,b,c,且a<b<c,a=2b sin A.(Ⅰ)求角B的大小;(Ⅱ)若a=2,b=,求c边的长和△ABC的面积.16.(13分)经调查发现,人们长期食用含高浓度甲基汞的鱼类会引起汞中毒,其中罗非鱼体内汞含量比其它鱼偏高.现从一批数量很大的罗非鱼中随机地抽出15条作样本,经检测得各条鱼的汞含量的茎叶图(以小数点前的数字为茎,小数点后一位数字为叶)如图.《中华人民共和国环境保护法》规定食品的汞含量不得超过1.0ppm.(Ⅰ)检查人员从这15条鱼中,随机抽出3条,求3条中恰有1条汞含量超标的概率;(Ⅱ)若从这批数量很大的鱼中任选3条鱼,记ξ表示抽到的汞含量超标的鱼的条数.以此15条鱼的样本数据来估计这批数量很大的鱼的总体数据,求ξ的分布列及数学期望Eξ.17.(14分)如图,正三棱柱ABC﹣A1B1C1的底面边长是2,侧棱长是,D是AC的中点.(Ⅰ)求证:B1C∥平面A1BD;(Ⅱ)求二面角A1﹣BD﹣A的大小;(Ⅲ)在线段AA1上是否存在一点E,使得平面B1C1E⊥平面A1BD,若存在,求出AE的长;若不存在,说明理由.18.(13分)设函数f(x)=x2+ax﹣lnx(a∈R).(Ⅰ)若a=1,求函数f(x)的单调区间;(Ⅱ)若函数f(x)在区间(0,1]上是减函数,求实数a的取值范围;(Ⅲ)过坐标原点O作曲线y=f(x)的切线,证明:切点的横坐标为1.19.(14分)给定椭圆C:=1(a>b>0),称圆心在原点O,半径为的圆是椭圆C的“准圆”.若椭圆C的一个焦点为F(,0),其短轴上的一个端点到F的距离为.(Ⅰ)求椭圆C的方程和其“准圆”方程;(Ⅱ)点P是椭圆C的“准圆”上的动点,过点P作椭圆的切线l1,l2交“准圆”于点M,N.(ⅰ)当点P为“准圆”与y轴正半轴的交点时,求直线l1,l2的方程并证明l1⊥l2;(ⅱ)求证:线段MN的长为定值.20.(13分)对于数列{a n},把a1作为新数列{b n}的第一项,把a i或﹣a i(i=2,3,4,…,n)作为新数列{b n}的第i项,数列{b n}称为数列{a n}的一个生成数列.例如,数列1,2,3,4,5的一个生成数列是1,﹣2,﹣3,4,5.已知数列{b n}为数列{}(n∈N*)的生成数列,S n为数列{b n}的前n项和.(Ⅰ)写出S3的所有可能值;(Ⅱ)若生成数列{b n}满足S3n=(1﹣),求数列{b n}的通项公式;(Ⅲ)证明:对于给定的n∈N*,S n的所有可能值组成的集合为{x|x=,k∈N*,k≤2n﹣1}.2014年北京市石景山区高考数学一模试卷(理科)参考答案与试题解析一、选择题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项.1.(5分)已知全集U=R,集合A={x|x2﹣2x<0},B={x|x﹣1≥0},那么A∩∁U B=()A.{x|0<x<1}B.{x|x<0}C.{x|x>2}D.{x|1<x<2}【解答】解:由A中的不等式变形得:x(x﹣2)<0,解得:0<x<2,即A={x|0<x<2},由B中的不等式解得:x≥1,即B={x|x≥1},∵全集U=R,∴∁U B={x|x<1},则A∩(∁U B)={x|0<x<1}.故选:A.2.(5分)下列函数中,在(0,+∞)内单调递减,并且是偶函数的是()A.y=x2B.y=x+1C.y=﹣lg|x|D.y=2x【解答】解:A.y=x2在(0,+∞)内单调递增,是偶函数,不满足条件,故A 不选;B.y=x+1在(0,+∞)内单调递增,不是偶函数,不满足条件,故B不选;C.y=﹣lg|x|在(0,+∞)内单调递减,是偶函数,满足条件,故C选;D.y=2x在(0,+∞)内单调递增,不是偶函数,不满足条件,故D不选,故选:C.3.(5分)在的展开式中,x的系数为()A.10B.﹣10C.20D.﹣20【解答】解:的二项展开式的通项为T r+1=•=•(﹣1)r x10﹣3r,令10﹣3r=1,得r=3,故x项的系数为•(﹣1)3=﹣10,故选:B.4.(5分)已知Rt△ABC中,∠C=90°,AB=5,BC=4,以BC为直径的圆交AB于D,则BD的长为()A.4B.C.D.【解答】解:Rt△ABC中,∵∠C=90°,AB=5,BC=4,∴AC==3,∵以BC为直径的圆交AB于D,∴AC是圆的切线,∴AC2=AD•AB,∴AD==,∴BD=5﹣=.故选:D.5.(5分)在平面直角坐标系xOy中,抛物线x2=2py(p>0)上纵坐标为1的点到焦点的距离为3,则焦点到准线的距离为()A.2B.8C.D.4【解答】解:∵抛物线x2=2py(p>0)的准线方程为:y=﹣,∴由抛物线的定义得:1﹣(﹣)=3,解得:p=4.即焦点到准线的距离为4,故选:D.6.(5分)已知某个三棱锥的三视图如图所示,其中正视图是等边三角形,侧视图是直角三角形,俯视图是等腰直角三角形,则此三棱锥的体积等于()A.B.C.D.【解答】解:由三视图知几何体是一个侧面与底面垂直的三棱锥,底面是斜边上的高是1的直角三角形,则两条直角边是,斜边是2,∴底面的面积是=1,与底面垂直的侧面是一个边长为2的正三角形,∴三棱锥的高是,∴三棱锥的体积是故选:B.7.(5分)阅读如图的程序框图,运行相应的程序,输出的结果为()A.﹣2B.C.﹣1D.2【解答】解:根据题意,程序框图运行的程序为,i=0,A=2,i=1,A=1﹣=,i=2,A=1﹣2=﹣1;i=3,A=1﹣(﹣1)=2,i=4,A=1﹣=,…根据规律,总结得A值是2、、﹣1,并且以3为周期的关于i的函数∵i=2015,∴A=﹣1,i=2015>2014,输出A:﹣1;故选:C.8.(5分)已知动点P(x,y)在椭圆C:=1上,F为椭圆C的右焦点,若点M满足||=1且=0,则||的最小值为()A.B.3C.D.1【解答】解:依题意知,点M在以F(3,0)为圆心,1为半径的圆上,PM为圆的切线,∴|PM|2=|PF|2﹣|MF|2,而|MF|=1,∴当PF最小时,切线长PM 最小.由图知,当点P为右顶点(5,0)时,|PF|最小,最小值为:5﹣3=2.此时|PM|==.故选:A.二、填空题共6小题,每小题5分,共30分.9.(5分)已知命题p:∃x∈R,e x<0,则¬p是∀x∈R,e x≥0.【解答】解:∵命题p:∃x∈R,e x<0是特称命题,∴¬p:∀x∈R,e x≥0,故答案为:∀x∈R,e x≥010.(5分)在等比数列{a n}中,a1=2,a4=16,则数列{a n}的通项公式a n=2n,设b n=log2a n,则数列{b n}的前n项和S n=.【解答】解:设等比数列{a n}的公比q,则q3===8,解得q=2,∴a n=a1q n﹣1=2×2n﹣1=2n,∴b n=log2a n=log22n=n,∴b1=1,∵b n=n是首项为1,公差为1的等差数列,∴S n==故答案为:2n;11.(5分)已知圆C的极坐标方程为ρ=2,以极点为原点,极轴为x轴的正半轴建立平面直角坐标系,则圆C的直角坐标方程为x2+y2=4,若直线l:kx+y+3=0与圆C相切,则实数k的值为.【解答】解:以极点为原点,极轴为x轴的正半轴建立平面直角坐标系,根据ρ2=x2+y2,则圆C的直角坐标方程为x2+y2=4.又因为直线l:kx+y+3=0与圆C相切,则圆心(0,0)到直线kx+y+3=0的距离d==2=r,解得:.故应填:x2+y2=4;.12.(5分)已知变量x,y满足约束条件,则的取值范围是.【解答】解:满足约束条件的可行域,如下图所示:又∵表示的是可行域内一点与原点连线的斜率当x=,y=时,有最小值;当x=1,y=6时,有最大值6故答案为:13.(5分)各大学在高考录取时采取专业志愿优先的录取原则.一考生从某大学所给的7个专业中,选择3个作为自己的第一、二、三专业志愿,其中甲、乙两个专业不能同时兼报,则该考生有180种不同的填报专业志愿的方法(用数字作答).【解答】解:甲、乙都不选时,有=60种;甲、乙两个专业选1个时,有=120种,根据分类计数原理,可得共有60+120=180种不同的填报专业志愿的方法.故答案为:180.14.(5分)若存在实常数k和b,使得函数f(x)和g(x)对其定义域上的任意实数x分别满足:f(x)≥kx+b和g(x)≤kx+b,则称直线l:y=kx+b为f(x)和g(x)的“隔离直线”.已知函数f(x)=x2﹣1和函数g(x)=2lnx,那么函数f(x)和函数g(x)的隔离直线方程为y=2x﹣2.【解答】解:作出函数f(x)=x2﹣1和函数g(x)=2lnx的图象,由图象可知,两个函数的交点坐标为(1,0),要使f(x)≥kx+b和g(x)≤kx+b,则y=kx+b,必须是两个函数在(1,0)处的公共切线,即k+b=0,解得b=﹣k,函数f′(x)=2x,即k=f′(1)=2,∴b=﹣2,即隔离直线方程为y=2x﹣2,故答案为:y=2x﹣2三、解答题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.15.(13分)在△ABC中,角A,B,C的对边分别为a,b,c,且a<b<c,a=2b sin A.(Ⅰ)求角B的大小;(Ⅱ)若a=2,b=,求c边的长和△ABC的面积.【解答】解:(Ⅰ)∵a=2b sin A,∴sin A=2sin A sin B,∵0<A<π,∴sin A≠0,∴sin B=,∵0<B<π,且a<b<c,∴B=60°;(Ⅱ)∵a=2,b=,cos B=,∴由余弦定理得:()2=22+c2﹣2×2×c×,即c2﹣2c﹣3=0,解得:c=3或c=﹣1(舍),∴c=3,=ac sin B=×2×3×=.则S△ABC16.(13分)经调查发现,人们长期食用含高浓度甲基汞的鱼类会引起汞中毒,其中罗非鱼体内汞含量比其它鱼偏高.现从一批数量很大的罗非鱼中随机地抽出15条作样本,经检测得各条鱼的汞含量的茎叶图(以小数点前的数字为茎,小数点后一位数字为叶)如图.《中华人民共和国环境保护法》规定食品的汞含量不得超过1.0ppm.(Ⅰ)检查人员从这15条鱼中,随机抽出3条,求3条中恰有1条汞含量超标的概率;(Ⅱ)若从这批数量很大的鱼中任选3条鱼,记ξ表示抽到的汞含量超标的鱼的条数.以此15条鱼的样本数据来估计这批数量很大的鱼的总体数据,求ξ的分布列及数学期望Eξ.【解答】(本小题满分13分)解:(Ⅰ)记“15条鱼中任选3条恰好有1条鱼汞含量超标”为事件A,则,∴15条鱼中任选3条恰好有1条鱼汞含量超标的概率为.…(4分)(Ⅱ)依题意可知,这批罗非鱼中汞含量超标的鱼的概率,…(5分)ξ可能取0,1,2,3.…(6分)则,,,.…(10分)∴ξ的分布列如下:…(12分)∴.…(13分)17.(14分)如图,正三棱柱ABC﹣A1B1C1的底面边长是2,侧棱长是,D是AC的中点.(Ⅰ)求证:B1C∥平面A1BD;(Ⅱ)求二面角A1﹣BD﹣A的大小;(Ⅲ)在线段AA1上是否存在一点E,使得平面B1C1E⊥平面A1BD,若存在,求出AE的长;若不存在,说明理由.【解答】(本小题满分14分)(Ⅰ)证明:连结AB1交A1B于M,连结B1C,DM,因为三棱柱ABC﹣A1B1C1是正三棱柱,所以四边形AA1B1B是矩形,所以M为A1B的中点.因为D是AC的中点,所以MD是三角形AB1C的中位线,…(2分)所以MD∥B1C.…(3分)因为MD⊂平面A1BD,B1C⊄平面A1BD,所以B1C∥平面A1BD.…(4分)(Ⅱ)解:作CO⊥AB于O,所以CO⊥平面ABB1A1,所以在正三棱柱ABC﹣A1B1C1中,如图建立空间直角坐标系O﹣xyz.因为AB=2,,D是AC的中点.所以A(1,0,0),B(﹣1,0,0),,,…(5分)所以,,.设是平面A 1BD的法向量,所以即令,则y=2,z=3,所以是平面A 1BD的一个法向量.…(6分)由题意可知是平面ABD的一个法向量,…(7分)所以.…(8分)所以二面角A1﹣BD﹣A的大小为.…(9分)(Ⅲ)解:设E(1,x,0),则,设平面B1C1E的法向量,所以即令,则x 1=3,,,…(12分)又,即,解得,所以存在点E,使得平面B1C1E⊥平面A1BD且.…(14分)18.(13分)设函数f(x)=x2+ax﹣lnx(a∈R).(Ⅰ)若a=1,求函数f(x)的单调区间;(Ⅱ)若函数f(x)在区间(0,1]上是减函数,求实数a的取值范围;(Ⅲ)过坐标原点O作曲线y=f(x)的切线,证明:切点的横坐标为1.【解答】解:(Ⅰ)当a=1时,f(x)=x2+x﹣lnx(x>0),∴,当,∴f(x)的单调递减区间为,单调递增区间.(Ⅱ),∵f(x)在区间(0,1]上是减函数,∴f'(x)≤0对任意x∈(0,1]恒成立,即对任意x∈(0,1]恒成立,∴对任意x∈(0,1]恒成立,令,∴a≤g(x)min,易知g(x)在(0,1]单调递减,∴g(x)min=g(1)=﹣1.∴a≤﹣1.(Ⅲ)设切点为M(t,f(t)),,切线的斜率,又切线过原点,,即:t2+at﹣lnt=2t2+at﹣1,∴t2﹣1+lnt=0,令g(t)=t2﹣1+lnt,,∴g(t)在(0,+∞)上单调递增,又g(1)=0,所以方程t2﹣1+lnt=0有唯一解t=1.综上,切点的横坐标为1.19.(14分)给定椭圆C:=1(a>b>0),称圆心在原点O,半径为的圆是椭圆C的“准圆”.若椭圆C的一个焦点为F(,0),其短轴上的一个端点到F的距离为.(Ⅰ)求椭圆C的方程和其“准圆”方程;(Ⅱ)点P是椭圆C的“准圆”上的动点,过点P作椭圆的切线l1,l2交“准圆”于点M,N.(ⅰ)当点P为“准圆”与y轴正半轴的交点时,求直线l1,l2的方程并证明l1⊥l2;(ⅱ)求证:线段MN的长为定值.【解答】(Ⅰ)解:∵椭圆C的一个焦点为F(,0),其短轴上的一个端点到F的距离为.∴,,∴=1,∴椭圆方程为,∴准圆方程为x2+y2=4.(Ⅱ)证明:(ⅰ)∵准圆x2+y2=4与y轴正半轴的交点为P(0,2),设过点P(0,2)且与椭圆相切的直线为y=kx+2,联立得(1+3k2)x2+12kx+9=0.∵直线y=kx+2与椭圆相切,∴△=144k2﹣4×9(1+3k2)=0,解得k=±1,∴l1,l2方程为y=x+2,y=﹣x+2.∵,∴l1⊥l2.(ⅱ)①当直线l1,l2中有一条斜率不存在时,不妨设直线l1斜率不存在,则l1:,当l1:时,l1与准圆交于点,此时l2为y=1(或y=﹣1),显然直线l1,l2垂直;同理可证当l1:时,直线l1,l2垂直.②当l1,l2斜率存在时,设点P(x0,y0),其中.设经过点P(x0,y0)与椭圆相切的直线为y=t(x﹣x0)+y0,∴由得.由△=0化简整理得,∵,∴有.设l1,l2的斜率分别为t1,t2,∵l1,l2与椭圆相切,∴t1,t2满足上述方程,∴t1•t2=﹣1,即l1,l2垂直.综合①②知:∵l1,l2经过点P(x0,y0),又分别交其准圆于点M,N,且l1,l2垂直.∴线段MN为准圆x2+y2=4的直径,|MN|=4,∴线段MN的长为定值.20.(13分)对于数列{a n},把a1作为新数列{b n}的第一项,把a i或﹣a i(i=2,3,4,…,n)作为新数列{b n}的第i项,数列{b n}称为数列{a n}的一个生成数列.例如,数列1,2,3,4,5的一个生成数列是1,﹣2,﹣3,4,5.已知数列{b n}为数列{}(n∈N*)的生成数列,S n为数列{b n}的前n项和.(Ⅰ)写出S3的所有可能值;(Ⅱ)若生成数列{b n}满足S3n=(1﹣),求数列{b n}的通项公式;(Ⅲ)证明:对于给定的n∈N*,S n的所有可能值组成的集合为{x|x=,k∈N*,k≤2n﹣1}.【解答】解:(Ⅰ)由已知,,,∴,由于,∴S3可能值为.…(3分)(Ⅱ)∵,当n=1时,,当n≥2时,,∴,n∈N*,…(5分)∵{b n}是的生成数列,∴;;;∴,在以上各种组合中,当且仅当时,才成立.∴.…(8分)(Ⅲ)证明:共有2n﹣1种情形.,即,又,分子必是奇数,满足条件的奇数x共有2n﹣1个.…(10分)设数列{a n}与数列{b n}为两个生成数列,数列{a n}的前n项和为S n,数列{b n}的前n项和为T n,从第二项开始比较两个数列,设第一个不相等的项为第k项.由于,不妨设a k>0,b k<0,则=,所以,只有当数列{a n}与数列{b n}的前n项完全相同时,才有S n=T n.…(12分)∴共有2n﹣1种情形,其值各不相同.∴S n可能值必恰为,共2n﹣1个.即S n所有可能值集合为.…(13分)。
2014年北京市各区高三一模试题分类汇编03立体几何(理科)1 (2014年东城一模理科)2 (2014年西城一模理科)如图,设P 为正四面体A BCD -表面(含棱)上与顶点不重合的一点,由点P 到四个顶点的距离组成的集合记为M ,如果集合M 中有且只有2个元素,那么符合条件的点P 有( C )(A ) 4个(B )6个(C )10个(D )14个3 (2014年西城一模理科)已知一个正三棱柱的所有棱长均等于2,它的俯视图是一个边长为2的正三角形,那么它的侧(左)视图面积的最小值是__4 (2014一个空间几何体的三视图如图所示,该几何体的体积为__96__.5 (2014某三棱锥的三视图如图所示,则这个三棱锥的体积为______,表面积为______)6 (2014年朝阳一模理科)如图,在四棱锥S ABCD -中,SB ⊥底面ABCD .底面ABCD 为梯形,AB AD ⊥,AB ∥CD ,1,3AB AD ==,2CD =.若点E 是线段AD 上的动点,则满足90SEC ∠=︒的点E 的个数是__2_7 (2014年丰台一模理科)棱长为2的正方体被一平面截成两个几何体,其中一个几何体的三视图如图所示,那么该几何体的体积是(B ) (A )143(B )4 (C )103 (D )38 (2014年石景山一模理科)右图是某个三棱锥的三视图,其中主视图是等边三角形,左视图是直角三角形,俯视图是等腰直角三角形,则该三棱锥的体积是(B ) A .12 B .3 C .4 D .69 (2014年顺义一模理科)一个几何体的三视图如图所示,则这个几何体的体积是_________1 正视图 侧视图 俯视图111 侧视图俯视图主视图1主视图左视图俯视图BADC. P俯视图主视图侧视图10 (2014年延庆一模理科)右图是一个几何体的三视图,则该几何体的体积是(A)A .3B .34C .1D .3211 (2014年东城一模理科)12 (2014年西城一模理科)如图,在四棱柱1111ABCD A BC D -中,底面ABCD 和侧面11BCC B 都是矩形,E 是CD 的中点,1D E CD ⊥,22AB BC ==(Ⅰ)求证:1⊥BC D E ; (Ⅱ)求证:1B C // 平面1BED ;(Ⅲ)若平面11BCC B 与平面1BED 所成的锐二面角的大小为π3,求线段1D E 的长度. 13 (2014年海淀一模理科) 如图1,在Rt △ABC 中,∠ACB =30°,∠ABC =90°,D 为AC 中点,AE BD ⊥于E ,延长AE 交BC 于F ,将∆ABD 沿BD 折起,使平面ABD ⊥平面BCD ,如图2所示.(Ⅰ)求证:AE ⊥平面BCD ;(Ⅱ)求二面角A –DC –B 的余弦值.(Ⅲ)在线段AF 上是否存在点M 使得//EM 平面ADC ?若存在,请指明点M 的位置;若不存在,请说明理由.14 (2014年朝阳一模理科)如图,四棱锥P ABCD -的底面为正方形,侧面PAD ⊥底面A B C D .PAD △为等腰直角三角形,且PA AD ⊥.E ,F 分别为底边AB 和侧棱PC 的中点.(Ⅰ)求证:EF ∥平面PAD ;(Ⅱ)求证:EF ⊥平面PCD ;(Ⅲ)求二面角E PD C --的余弦值.15 (2014年丰台一模理科)如图,在棱长为1的正方体ABCD-A1B1C1D1中,点E 是棱AB 上的动点.(Ⅰ)求证:DA1⊥ED1 ;(Ⅱ)若直线DA1与平面CED1成角为45o ,求AEAB的值; (Ⅲ)写出点E 到直线D1C 距离的最大值及此时点E 的 位置(结论不要求证明).主视图侧(左)视图俯视图34主视图左视图俯视图1E BCAD FA E BCDPF16 (2014年石景山一模理科)如图,正三棱柱111ABC A B C -的底面边长是2,D 是AC 的中点.(Ⅰ)求证:1B C ∥平面1A BD ;(Ⅱ)求二面角1A BD A --的大小;(Ⅲ)在线段1AA 上是否存在一点E , 使得平面11B C E ⊥平面1A BD ,若存在, 求出AE 的长;若不存在,说明理由.17 (2014年顺义一模理科) 如图在四棱锥P ABCD -中,底面ABCD 是菱形,060BAD ∠=, 平面PAD ⊥平面ABCD ,2PA PD AD ===,Q 为AD 的中点,M 是棱PC 上一点,且13PM PC =. (Ⅰ)求证:PQ ⊥平面ABCD ; (Ⅱ)证明:PA ∥平面BMQ (Ⅲ)求二面角M BQ C --的度数.18 (2014年延庆一模理科) 在四棱锥ABCD P -中,⊥PA 平面ABCD , 底面ABCD 是正方形,且2==AD PA ,F E ,分别是棱PC AD ,的中点. (Ⅰ)求证://EF 平面PAB ; (Ⅱ)求证:⊥EF 平面PBC ; (Ⅲ)求二面角D PC E --的大小.2014年北京市各区高三一模试题汇编--立体几何(理科)答案1. ;2.C ;3.;4.96 ;5.13,;6.2 ;7.B ;8. B ;9. ;10.A ;11.吧A1A1B1CCDBFA BEPDPM Q ABCD12(Ⅰ)证明:因为底面ABCD 和侧面11BCC B 是矩形, 所以 BC CD ⊥,1BC CC ⊥,又因为 1=CDCC C ,所以 BC ⊥平面11DCC D , ………………2分 因为 1D E ⊂平面11DCC D , 所以1BC D E ⊥. …………4分(Ⅱ)证明:因为 1111//, BB DD BB DD =,所以四边形11D DBB 是平行四边形. 连接1DB 交1D B 于点F ,连接EF ,则F 为1DB 的中点. 在1∆B CD 中,因为DE CE =,1DF B F =,所以 1//EF B C .……………6分 又因为 1⊄B C 平面1BED ,⊂EF 平面1BED ,所以 1//BC 平面1BED . ………8分 (Ⅲ)解:由(Ⅰ)可知1BC D E ⊥, 又因为 1D E CD ⊥,BCCD C =,所以 1D E ⊥平面ABCD . ………………9分设G 为AB 的中点,以E 为原点,EG ,EC ,1ED如图建立空间直角坐标系, 设1D E a =,则1(0,0,0), (1,1,0), (0,0,), E B D a C 设平面1BED 法向量为(,,)x y z =n ,因为1(1,1,0), (0,0,)EB ED a ==,由10,0,EB ED ⎧⋅=⎪⎨⋅=⎪⎩n n 得0,0.x y z +=⎧⎨=⎩ 令1x =,得(1,1,0)=-n . …………11分 设平面11BCC B 法向量为111(,,)x y z =m ,因为1(1,0,0), (1,1,)CB CB a ==,由10,0,CB CB ⎧⋅=⎪⎨⋅=⎪⎩m m得11110,0.x x y az =⎧⎨++=⎩令11z =,得(0,,1)a =-m .…………12分由平面11BCC B 与平面1BED 所成的锐二面角的大小为π3, 得 ||π|cos ,|cos 3⋅<>===m n m n m n , ……………13分 解得1a =. ………………14分13(Ⅰ)因为平面ABD ⊥平面BCD ,交线为BD ,又在ABD ∆中,AE BD ⊥于E ,AE ⊂平面ABD所以AE ⊥平面BCD .————————————————3分 (Ⅱ)由(Ⅰ)结论AE ⊥平面BCD 可得AE EF ⊥. 由题意可知EF BD ⊥,又AE ⊥BD .如图,以E 为坐标原点,分别以,,EF ED EA 所在直线为x 轴,y 轴,z 轴,建立空间直角坐标系E xyz -——4分 不妨设2AB BD DC AD ====,则1BE ED ==. 由图1条件计算得,AE =BC =BF =则(0,0,0),(0,1,0),(0,1,0),(3E D B AF C -———————5分(3,1,0),(0,1,DC AD ==.由AE ⊥平面BCD 可知平面DCB 的法向量为EA .———————6分设平面ADC 的法向量为(,,)x y z =n ,则0,0.DC AD ⎧⋅=⎪⎨⋅=⎪⎩n n 即0,0.y y +==⎪⎩ 令1z =,则1y x ==,所以(11)=-n .——————————8分平面DCB 的法向量为EA 所以cos ,||||EA EA EA ⋅<>==⋅n n n ,所以二面角A DC B --—————————————9分 (Ⅲ)设AM AF λ=,其中[0,1]λ∈.由于3(AF =, 所以(AM AF λλ==,其中[0,1]λ∈————————————10分所以3,0,(13EM EA AM λ⎛=+=-⎝————————————11分由0EM ⋅=n ,即03λ=-(1-———12分 解得3=(0,1)4λ∈.————13分 所以在线段AF 上存在点M 使EM ADC ∥平面,且34AM AF =.————————14分 14(Ⅰ)证明:取PD 的中点G ,连接FG ,AG .因为F ,G 分别是PC ,PD 的中点,所以FG 是△PCD 的中位线. 所以FG ∥CD ,且12FG CD =.又因为E 是AB 的中点,且底面ABCD 为正方形,所以1122AE AB CD ==,且AE ∥CD .所以AE ∥FG ,且AE FG =.所以四边形AEFG 是平行四边形.所以EF ∥AG .又EF ⊄平面PAD ,AG ⊂平面PAD ,所以EF 平面PAD .…………………4分 (Ⅱ)证明:因为平面PAD ⊥平面A B C D ,PA AD ⊥,且平面PAD I 平面ABCD AD =,所以PA ⊥平面ABCD .所以PA AB ⊥,PA AD ⊥.又因为ABCD 为正方形,所以AB AD ⊥,所以,,AB AD AP 两两垂直.以点A 为原点,分别以, , AB AD AP 为, , x y z 轴,建立空间直角坐标系(如图).由题意易知AB AD AP ==,设2AB AD AP ===,则(0,0,0)A ,(2,0,0)B ,(2,2,0)C ,(0,2,0)D ,(0,0,2)P ,(1,0,0)E ,(1,1,1)F .因为(0,11)EF =uu u r ,,(022)PD =-u u u r ,,,(200)CD =-uu u r ,,,且(0,11)(0,2,2)0EF PD ⋅=⋅-=u u u r u u u r,, (0,11)(2,00)0EF CD ⋅=⋅-=u u u r u u u r,,所以EF PD ⊥,EF CD ⊥.又因为PD ,CD 相交于D ,所以EF ⊥平面PCD .…………… 9分(Ⅲ)易得(102)EP =-uu r ,,,(0,22)PD =-u u u r,.设平面EPD 的法向量为(, , )x y z =n ,则0,0.EP PD ⎧⋅=⎪⎨⋅=⎪⎩uuruu u r n n 所以20,220. x z y z -+=⎧⎨-=⎩即2,. x z y z =⎧⎨=⎩ 令1z =,则(2,1,1)=n .由(Ⅱ)可知平面PCD 的法向量是(0,11)EF =uu u r,, 所以cos ,EFEF EF⋅〈〉===⋅uu u r uu u r uu u r n n n E PD C --的大小为锐角,所以二面角E PD C --.…………14分 15.解:以D 为坐标原点,建立如图所示的坐标系,则D(0,0,0),A (1,0,0), B(1,1,0),C(0,1,0),D1(0,1,2),A1(1,0,1),设E(1,m,0)(0≤m≤1)(Ⅰ)证明:1(1,0,1)DA =,1(1,,1)ED m =-- 111(1)0()110DA ED m ⋅=⨯-+⨯-+⨯=所以DA1⊥ED1. ----4分 (Ⅱ)设平面CED1的一个法向量为(,,)v x y z =,则100v C D v C E ⎧⋅=⎪⎨⋅=⎪⎩,而1(0,1,1)CD =-,(1,1,0)CE m =-所以0,(1)0,y z x m y -+=⎧⎨+-=⎩取z=1,得y=1,x=1-m , 得(1,1,1)v m =-.因为直线DA1与平面CED1成角为45o ,所以1sin45|cos ,|DA v ︒=<> 所以11||2||||DA v DA v ⋅=⋅2=,解得m=12.-----11分 (Ⅲ)点E 到直线D1C E 在A 点处.------14分 16(Ⅰ)证明:连结1AB 交1A B 于M ,连结1B C DM ,, 因为三棱柱111ABC A B C -是正三棱柱, 所以四边形11AA B B 是矩形,所以M 为1A B 的中点.因为D 是AC 的中点,M1B1CBCD所以MD 是三角形1AB C 的中位线,…………………………2分 所以MD ∥1B C .…………………………3分因为MD ⊂平面1A BD ,1B C ⊄平面1A BD ,所以1B C ∥平面1A BD .……………4分 (Ⅱ)解:作CO AB ⊥于O ,所以CO ⊥平面11ABB A ,所以在正三棱柱111ABC A B C -中如图建立空间直角坐标系O xyz -. 因为2AB =,1AA D 是AC 的中点. 所以(100)A ,,,(100)B -,,,(00C,1(10)A …………5分所以1(02D,3(02BD =,,1(20)BA =.设()n x y z =,,是平面1A BD所以100n BD n BA ⎧⋅=⎪⎨⋅=⎪⎩,,即30220x z x ⎧+=⎪⎨⎪=⎩,,令x =2y =,3z =,所以(323)n =-,,是平面1A BD 的一个法向量.……………6分 由题意可知1(00)AA =是平面ABD 的一个法向量,………7分 所以121cos 2n AA <>==,.………………8分 所以二面角1A BD A --的大小为3π.…………………………9分 (Ⅲ)设(10)E x ,,,则1(1C E x =-,11(10C B ,=-设平面11B C E 的法向量1111()n x y z ,,=,所以111100n C E n C B ,,⎧⋅=⎪⎨⋅=⎪⎩ 即11111)00x x y x ,,⎧-++=⎪⎨-=⎪⎩ 令1z =13x =,1y =,1(3n =,…………………12分 又10n n ⋅=,即0--=,解得x =, 所以存在点E ,使得平面11B C E ⊥平面1A BD 且AE =.…………………………14分结BD ,Q 底面ABCD 是菱形,且060BAD ∠=,∴BAD 是等边三角形,∴BQ AD ⊥由(Ⅰ)PQ ⊥平面ABCD . ∴PQ AD ⊥.以Q 为坐标原点,,,QA QB QP 分别为x 轴y 轴z 轴建立空间直角坐标系 则(0,0,0),(1,0,0),Q A B P .————10分设平面BMQ 的法向量为(,,)m x y z =,∴0m QB m MN ⎧⋅=⎪⎨⋅=⎪⎩,注意到MN ∥PAx∴0m QB m PA ⎧⋅=⎪⎨⋅=⎪⎩,解得(3,0,1)m =是平面BMQ 的一个法向量——12分 (Ⅰ)证明:设G 是PB 的中点,连接GF AG , ∵F E ,分别是PC AD ,的中点,∴BC GF 21//,BC AE 21// ∴AE GF //,∴AEFG 是平行四边形,∴AG EF //………………2分 ∵⊄EF 平面PAB ⊂AG 平面PAB ,∴//EF 平面PAB ………………3分 (Ⅱ)∵AB PA =,∴PB AG ⊥,………………4分∵ABCD PA ⊥,∴BC PA ⊥,又∵AB BC ⊥,∴⊥BC 平面PAB , ∴AG BC ⊥,………………6分∵PB 与BC 相交,∴⊥AG 平面PBC , ∴⊥EF 平面PBC .………………7分(Ⅲ)以AP AD AB ,,分别为x 轴、y 轴、z 轴,建立空间直角坐标系xyz A -,…8分 ∵2==AD PA ,∴)0,1,0(E ,)0,2,2(C ,)2,0,0(P ,)1,1,1(F 设H 是PD 的中点,连接AH ∵⊥AG 平面PBC ,∴同理可证⊥AH 平面PCD ,∴是平面PCD 的法向量,)1,1,0(=………………9分)0,1,2(=,)2,1,0(-=设平面PEC 的法向量),,(z y x m =,则0,0=⋅=⋅m∴02,02=+-=+z y y x 令2=y ,则1,1=-=z x ∴)1,2,1(-=m…………12分∴23263||||,cos =⋅=>=<AH m m.………………13分∴二面角D PC E --的大小为︒30………………14分。
石景山区2014—2015学年第一学期期末考试试卷高三数学(理)本试卷共6页,150分.考试时长120分钟.请务必将答案答在答题卡上,在试卷上作答无效.考试结束后上交答题卡.第一部分(选择题共40分)一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知集合,,则( )A. B. C. D.2.下列函数中,在上单调递减的是()A. B. C. D.3.点与圆的位置关系是()A.点在圆内B.点在圆外C.点在圆上D.与的值有关4. 某程序框图如右图所示,该程序运行输出的值是()A.4B.5C.6D.75.以为公比的等比数列中,,则“”是“”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件6.如果实数满足不等式组30,230,1.x yx yx+-≤⎧⎪--≤⎨⎪≥⎩目标函数的最大值为6,最小值为0,则实数的值为()A.1B.2C.3D.47.如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的各条棱中,最长的棱的长度为()A. B.C. D.8. 函数的定义域为,图象如图1所示;函数的定义域为,图象如图2所示,方程有个实数根,方程有个实数根,则( )A.6B. 8C. 10D. 12第二部分(非选择题 共110分)二、填空题共6小题,每小题5分,共30分. 9.若复数, ,则 .10.为等差数列,,公差,、、成等比数列,则 .11.如图,在边长为2的菱形中,为中点,则 .12.若抛物线的焦点与双曲线的焦点重合,则的值为 . 13. A , B 两地街道如图所示,某人要从A 地前往B 地, 则路程最短的走法有 种(用数字作答).14. 设为非空实数集,若,都有,则称为封闭集.①集合{}2,1,0,1,2--=A 为封闭集; ②集合{}Z k k n n A ∈==,2|为封闭集; ③若集合为封闭集,则为封闭集;④若为封闭集,则一定有.其中正确结论的序号是____________.三、解答题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 15.(本小题共13分)如图所示,在四边形中,,,;为边上一点,,,. (Ⅰ)求sin ∠CED 的值; (Ⅱ)求BE 的长.16.(本小题共13分)某次数学考试共有8道选择题,每道选择题有4个选项,其中有且只有一个选项是正确的.某考生有4道题已选对正确答案,还有两道题能准确排除每题中的2个错误选项,其余两道题完全不会只好随机猜答.(Ⅰ)求该考生8道题全答对的概率;(Ⅱ)若评分标准规定:“每题只选一个选项,选对得5分,不选或选错得0分”,求该考生所得分数的分布列.17.(本小题共14分)如图,在四面体中,平面,22,2,==⊥BD AD CD BC .是的中点,是的中点. (Ⅰ)求证:平面平面; (Ⅱ)若点在线段上,且满足,求证:平面; (Ⅲ)若,求二面角的大小.18.(本小题共13分)已知函数)0(ln )(22≠∈-+=a R a x a ax x x f 且. (Ⅰ)若是函数的极值点,求的值; (Ⅱ)求函数的单调区间.19.(本小题共14分)已知椭圆)0(12222>>=+b a by a x 的离心率为,且过点.(Ⅰ)求椭圆的标准方程;D A CB E(Ⅱ)直线交椭圆于P 、Q 两点,若点B 始终在以PQ 为直径的圆内,求实数的取值范围.20.(本小题共13分)对于数集}1{21n x x x X ,,,, -=,其中,,定义向量集},),,(|{X t X s t s a a Y ∈∈==,若对任意,存在,使得,则称具有性质. (Ⅰ)判断是否具有性质; (Ⅱ)若,且具有性质,求的值; (Ⅲ)若具有性质,求证:,且当时,.石景山区2014—2015学年第一学期期末考试高三数学(理科)参考答案一、选择题共8小题,每小题5分,共40分.二、填空题共6小题,每小题5分,共30分. 【12题只答一种情况得3分】三、解答题共6小题,共80分. 15.(本小题共13分)(Ⅰ)设.在中,由余弦定理,得2222cos CE CDDE CD DE CDE =+-⨯⨯∠ …………………2分得CD 2+CD -6=0,解得CD =2(CD =-3舍去). …………………4分 在中,由正弦定理,得 …………………6分 (Ⅱ)由题设知,所以 …………………8分 而,所以222cos cos =cos cos sin sin 333AEB πππααα∠=-+() 11=cos 227αα-+=-+=………………11分 在中,2cos BE AEB==∠…………………13分16.(本小题共13分)(Ⅰ)该考生8道题全答对为事件,依题意有 11111()224464P A =⨯⨯⨯=. …………………3分 (Ⅱ)该考生所得分数为,则的所有可能取值为. ……4分 , ……6分1212221131333(25)C ()(1)()C ()(1)()2242448P X ==⨯-⨯+⨯-⨯=, ……8分 221122221311311111(30)+C ()(1)C ()()()=2422442432P X ==⨯⨯-⨯⨯⨯+⨯()()()……10分1212221111331(35)C ()(1)()C ()(1)()=2242448P X ==⨯-⨯+⨯-⨯……12分 分布列为:……………………13分17.(本小题共14分)(Ⅰ), ………………2分 且………………4分(Ⅱ)证明:如图所示,取BD 中点O ,且P 是BM 中点, 所以且;取CD 的四等分点H ,使DH =3CH , 且AQ =3QC , 所以,且,所以,四边形为平行四边形, 所以,且,所以PQ //面BDC . ……………………9分 (III)如图建系,则, , , ……………………10分 设面的法向量 ,ABCDPQMOH⎪⎩⎪⎨⎧=⋅=⋅00CM n ,即⎪⎩⎪⎨⎧=+=0206z x y 令,则设面的法向量 ……………………11分⎪⎩⎪⎨⎧=⋅=⋅00BD m 即⎩⎨⎧==-0062z y x 令, 则 ……………………12分所以二面角的大小为 …………………14分(Ⅰ)函数的定义域为. ………………1分21'()2f x a a x x=+-. ………………3分 因为是函数的极值点,所以2'(1)120f a a =+-=.…………5分 解得或.经检验,或时,是函数的极值点. ……………6分(Ⅱ)由(Ⅰ)知:21'()2f x a a x x=+-. 由,令(21)(1)'()0ax ax f x x+-+==,解得.……9分 当时,的变化情况如下表∴函数的单调递增区间是,单调递减区间是;…………11分 当时,的变化情况如下表∴函数的单调递增区间是,单调递减区间是.…13分(Ⅰ)由题意知⎪⎪⎩⎪⎪⎨⎧+====222231c b a a c e b ,解得⎪⎩⎪⎨⎧===312c b a , 椭圆的标准方程为:. ………………4分(Ⅱ)设联立⎪⎩⎪⎨⎧=++=14)2(22y x x k y ,消去,得:).(0)416(16)41(2222*=-+++k x k x k ……6分 依题意:直线恒过点,此点为椭圆的左顶点, 所以, ----① ,由(*)式, -------②,可得k x x k x k x k y y 4)()2()2(212121++=+++=+---- ③ , ………………8分 由①②③,, ………………10分 由点B 在以PQ 为直径的圆内,得为钝角或平角,即.),(),,(11222-=--=y x BQ BP 01222<+--=⋅y x . …12分 即0141441164222>-+++-k k k k ,整理得. 解得:. ………………14分20.(本小题共13分)(Ⅰ)具有性质. ……2分(Ⅱ)选取,Y中与垂直的元素必有形式.所以,从而……5分(III)证明:取.设满足.由得,所以、异号.因为是X中唯一的负数,所以、中之一为,另一为,故.……8分假设,其中,则.选取,并设满足,即,则,异号,从而,之中恰有一个为. ……10分若,则,显然矛盾;若,则,矛盾.所以.……13分【注:若有其它解法,请酌情给分.】。
2014北京市石景山区高三(一模)数学(理)一、选择题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项.1.(5分)已知全集U=R,集合A={x|x2﹣2x<0},B={x|x﹣1≥0},那么A∩∁U B=()A.{x|0<x<1} B.{x|x<0} C.{x|x>2} D.{x|1<x<2}2.(5分)下列函数中,在(0,+∞)内单调递减,并且是偶函数的是()A.y=x2B.y=x+1 C.y=﹣lg|x| D.y=2x3.(5分)在的展开式中,x的系数为()A.10 B.﹣10 C.20 D.﹣204.(5分)已知Rt△ABC中,∠C=90°,AB=5,BC=4,以BC为直径的圆交AB于D,则BD的长为()A.4 B.C.D.5.(5分)在平面直角坐标系xOy中,抛物线x2=2py(p>0)上纵坐标为1的点到焦点的距离为3,则焦点到准线的距离为()A.2 B.8 C.D.46.(5分)已知某个三棱锥的三视图如图所示,其中正视图是等边三角形,侧视图是直角三角形,俯视图是等腰直角三角形,则此三棱锥的体积等于()A.B.C.D.7.(5分)阅读如图的程序框图,运行相应的程序,输出的结果为()A.﹣2 B.C.﹣1 D.28.(5分)已知动点P(x,y)在椭圆C:=1上,F为椭圆C的右焦点,若点M满足||=1且=0,则||的最小值为()A.B.3 C.D.1二、填空题共6小题,每小题5分,共30分.9.(5分)已知命题p:∃x∈R,e x<0,则¬p是.10.(5分)在等比数列{a n}中,a1=2,a4=16,则数列{a n}的通项公式a n= ,设b n=log2a n,则数列{b n}的前n项和S n= .11.(5分)已知圆C的极坐标方程为ρ=2,以极点为原点,极轴为x轴的正半轴建立平面直角坐标系,则圆C的直角坐标方程为,若直线l:kx+y+3=0与圆C相切,则实数k的值为.12.(5分)已知变量x,y满足约束条件,则的取值范围是.13.(5分)各大学在高考录取时采取专业志愿优先的录取原则.一考生从某大学所给的7个专业中,选择3个作为自己的第一、二、三专业志愿,其中甲、乙两个专业不能同时兼报,则该考生有种不同的填报专业志愿的方法(用数字作答).14.(5分)若存在实常数k和b,使得函数f(x)和g(x)对其定义域上的任意实数x分别满足:f(x)≥kx+b 和g(x)≤kx+b,则称直线l:y=kx+b为f(x)和g(x)的“隔离直线”.已知函数f(x)=x2﹣1和函数g(x)=2lnx,那么函数f(x)和函数g(x)的隔离直线方程为.三、解答题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.15.(13分)在△ABC中,角A,B,C的对边分别为a,b,c,且a<b<c,a=2bsinA.(Ⅰ)求角B的大小;(Ⅱ)若a=2,b=,求c边的长和△ABC的面积.16.(13分)经调查发现,人们长期食用含高浓度甲基汞的鱼类会引起汞中毒,其中罗非鱼体内汞含量比其它鱼偏高.现从一批数量很大的罗非鱼中随机地抽出15条作样本,经检测得各条鱼的汞含量的茎叶图(以小数点前的数字为茎,小数点后一位数字为叶)如图.《中华人民共和国环境保护法》规定食品的汞含量不得超过1.0ppm.(Ⅰ)检查人员从这15条鱼中,随机抽出3条,求3条中恰有1条汞含量超标的概率;(Ⅱ)若从这批数量很大的鱼中任选3条鱼,记ξ表示抽到的汞含量超标的鱼的条数.以此15条鱼的样本数据来估计这批数量很大的鱼的总体数据,求ξ的分布列及数学期望Eξ.17.(14分)如图,正三棱柱ABC﹣A1B1C1的底面边长是2,侧棱长是,D是AC的中点.(Ⅰ)求证:B1C∥平面A1BD;(Ⅱ)求二面角A1﹣BD﹣A的大小;(Ⅲ)在线段AA1上是否存在一点E,使得平面B1C1E⊥平面A1BD,若存在,求出AE的长;若不存在,说明理由.18.(13分)设函数f(x)=x2+ax﹣lnx(a∈R).(Ⅰ)若a=1,求函数f(x)的单调区间;(Ⅱ)若函数f(x)在区间(0,1]上是减函数,求实数a的取值范围;(Ⅲ)过坐标原点O作曲线y=f(x)的切线,证明:切点的横坐标为1.19.(14分)给定椭圆C:=1(a>b>0),称圆心在原点O,半径为的圆是椭圆C的“准圆”.若椭圆C的一个焦点为F(,0),其短轴上的一个端点到F的距离为.(Ⅰ)求椭圆C的方程和其“准圆”方程;(Ⅱ)点P是椭圆C的“准圆”上的动点,过点P作椭圆的切线l1,l2交“准圆”于点M,N.(ⅰ)当点P为“准圆”与y轴正半轴的交点时,求直线l1,l2的方程并证明l1⊥l2;(ⅱ)求证:线段MN的长为定值.20.(13分)对于数列{a n},把a1作为新数列{b n}的第一项,把a i或﹣a i(i=2,3,4,…,n)作为新数列{b n}的第i项,数列{b n}称为数列{a n}的一个生成数列.例如,数列1,2,3,4,5的一个生成数列是1,﹣2,﹣3,4,5.已知数列{b n}为数列{}(n∈N*)的生成数列,S n为数列{b n}的前n项和.(Ⅰ)写出S3的所有可能值;(Ⅱ)若生成数列{b n}满足S3n=(1﹣),求数列{b n}的通项公式;(Ⅲ)证明:对于给定的n∈N*,S n的所有可能值组成的集合为{x|x=,k∈N*,k≤2n﹣1}.数学试题答案一、选择题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项.1.【解答】由A中的不等式变形得:x(x﹣2)<0,解得:0<x<2,即A={x|0<x<2},由B中的不等式解得:x≥1,即B={x|x≥1},∵全集U=R,∴∁U B={x|x<1},则A∩(∁U B)={x|0<x<1}.故选:A.2.【解答】A.y=x2在(0,+∞)内单调递增,是偶函数,不满足条件,故A不选;B.y=x+1在(0,+∞)内单调递增,不是偶函数,不满足条件,故B不选;C.y=﹣lg|x|在(0,+∞)内单调递减,是偶函数,满足条件,故C选;D.y=2x在(0,+∞)内单调递增,不是偶函数,不满足条件,故D不选,故选:C.3.【解答】的二项展开式的通项为T r+1=•=•(﹣1)r x10﹣3r,令10﹣3r=1,得r=3,故x项的系数为•(﹣1)3=﹣10,故选:B.4.【解答】Rt△ABC中,∵∠C=90°,AB=5,BC=4,∴AC==3,∵以BC为直径的圆交AB于D,∴AC是圆的切线,∴AC2=AD•AB,∴AD==,∴BD=5﹣=.故选:D.5.【解答】∵抛物线x2=2py(p>0)的准线方程为:y=﹣,∴由抛物线的定义得:1﹣(﹣)=3,解得:p=4.即焦点到准线的距离为4,故选:D.6.【解答】由三视图知几何体是一个侧面与底面垂直的三棱锥,底面是斜边上的高是1的直角三角形,则两条直角边是,斜边是2,∴底面的面积是=1,与底面垂直的侧面是一个边长为2的正三角形,∴三棱锥的高是,∴三棱锥的体积是故选B.7.【解答】根据题意,程序框图运行的程序为,i=0,A=2,i=1,A=1﹣=,i=2,A=1﹣2=﹣1;i=3,A=1﹣(﹣1)=2,i=4,A=1﹣=,…根据规律,总结得A值是2、、﹣1,并且以3为周期的关于i的函数∵i=2015,∴A=﹣1,i=2015>2014,输出A:﹣1;故选:C.8.【解答】依题意知,点M在以F(3,0)为圆心,1为半径的圆上,PM为圆的切线,∴|PM|2=|PF|2﹣|MF|2,而|MF|=1,∴当PF最小时,切线长PM最小.由图知,当点P为右顶点(5,0)时,|PF|最小,最小值为:5﹣3=2.此时|PM|==.故选:A.二、填空题共6小题,每小题5分,共30分.9.【解答】∵命题p:∃x∈R,e x<0是特称命题,∴¬p:∀x∈R,e x≥0,故答案为:∀x∈R,e x≥010.【解答】设等比数列{a n}的公比q,则q3===8,解得q=2,∴a n=a1q n﹣1=2×2n﹣1=2n,∴b n=log2a n=log22n=n,∴b1=1,∵b n=n是首项为1,公差为1的等差数列,∴S n==故答案为:2n;11.【解答】以极点为原点,极轴为x轴的正半轴建立平面直角坐标系,根据ρ2=x2+y2,则圆C的直角坐标方程为x2+y2=4.又因为直线l:kx+y+3=0与圆C相切,则圆心(0,0)到直线kx+y+3=0的距离d==2=r,解得:.故应填:x2+y2=4;.12.【解答】满足约束条件的可行域,如下图所示:又∵表示的是可行域内一点与原点连线的斜率当x=,y=时,有最小值;当x=1,y=6时,有最大值6故答案为:13.【解答】甲、乙都不选时,有=60种;甲、乙两个专业选1个时,有=120种,根据分类计数原理,可得共有60+120=180种不同的填报专业志愿的方法.故答案为:180.14.【解答】作出函数f(x)=x2﹣1和函数g(x)=2lnx的图象,由图象可知,两个函数的交点坐标为(1,0),要使f(x)≥kx+b和g(x)≤kx+b,则y=kx+b,必须是两个函数在(1,0)处的公共切线,即k+b=0,解得b=﹣k,函数f′(x)=2x,即k=f′(1)=2,∴b=﹣2,即隔离直线方程为y=2x﹣2,故答案为:y=2x﹣2三、解答题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.15.【解答】(Ⅰ)∵a=2bsinA,∴sinA=2sinAsinB,∵0<A<π,∴sinA≠0,∴sinB=,∵0<B<π,且a<b<c,∴B=60°;(Ⅱ)∵a=2,b=,cosB=,∴由余弦定理得:()2=22+c2﹣2×2×c×,即c2﹣2c﹣3=0,解得:c=3或c=﹣1(舍),∴c=3,则S△ABC=acsinB=×2×3×=.16.【解答】(Ⅰ)记“15条鱼中任选3条恰好有1条鱼汞含量超标”为事件A,则,∴15条鱼中任选3条恰好有1条鱼汞含量超标的概率为.…(4分)(Ⅱ)依题意可知,这批罗非鱼中汞含量超标的鱼的概率,…(5分)ξ可能取0,1,2,3.…(6分)则,,,.…(10分)∴ξ的分布列如下:ξ0 1 2 3P…(12分)∴.…(13分)17.【解答】(Ⅰ)证明:连结AB1交A1B于M,连结B1C,DM,因为三棱柱ABC﹣A1B1C1是正三棱柱,所以四边形AA1B1B是矩形,所以M为A1B的中点.因为D是AC的中点,所以MD是三角形AB1C的中位线,…(2分)所以MD∥B1C.…(3分)因为MD⊂平面A1BD,B1C⊄平面A1BD,所以B1C∥平面A1BD.…(4分)(Ⅱ)解:作CO⊥AB于O,所以CO⊥平面ABB1A1,所以在正三棱柱ABC﹣A1B1C1中,如图建立空间直角坐标系O﹣xyz.因为AB=2,,D是AC的中点.所以A(1,0,0),B(﹣1,0,0),,,…(5分)所以,,.设是平面A1BD的法向量,所以即令,则y=2,z=3,所以是平面A1BD的一个法向量.…(6分)由题意可知是平面ABD的一个法向量,…(7分)所以.…(8分)所以二面角A1﹣BD﹣A的大小为.…(9分)(Ⅲ)解:设E(1,x,0),则,设平面B1C1E的法向量,所以即令,则x 1=3,,,…(12分)又,即,解得,所以存在点E,使得平面B1C1E⊥平面A1BD且.…(14分)18.【解答】(Ⅰ)当a=1时,f(x)=x2+x﹣lnx(x>0),∴,当,∴f(x)的单调递减区间为,单调递增区间.(Ⅱ),∵f(x)在区间(0,1]上是减函数,∴f'(x)≤0对任意x∈(0,1]恒成立,即对任意x∈(0,1]恒成立,∴对任意x∈(0,1]恒成立,令,∴a≤g(x)min,易知g(x)在(0,1]单调递减,∴g(x)min=g(1)=﹣1.∴a≤﹣1.(Ⅲ)设切点为M(t,f(t)),,切线的斜率,又切线过原点,,即:t2+at﹣lnt=2t2+at﹣1,∴t2﹣1+lnt=0,令g(t)=t2﹣1+lnt,,∴g(t)在(0,+∞)上单调递增,又g(1)=0,所以方程t2﹣1+lnt=0有唯一解t=1.综上,切点的横坐标为1.19.【解答】(Ⅰ)解:∵椭圆C的一个焦点为F(,0),其短轴上的一个端点到F的距离为.∴,,∴=1,∴椭圆方程为,∴准圆方程为x2+y2=4.(Ⅱ)证明:(ⅰ)∵准圆x2+y2=4与y轴正半轴的交点为P(0,2),设过点P(0,2)且与椭圆相切的直线为y=kx+2,联立得(1+3k2)x2+12kx+9=0.∵直线y=kx+2与椭圆相切,∴△=144k2﹣4×9(1+3k2)=0,解得k=±1,∴l1,l2方程为y=x+2,y=﹣x+2.∵,∴l1⊥l2.(ⅱ)①当直线l1,l2中有一条斜率不存在时,不妨设直线l1斜率不存在,则l1:,当l1:时,l1与准圆交于点,此时l2为y=1(或y=﹣1),显然直线l1,l2垂直;同理可证当l1:时,直线l1,l2垂直.②当l1,l2斜率存在时,设点P(x0,y0),其中.设经过点P(x0,y0)与椭圆相切的直线为y=t(x﹣x0)+y0,∴由得.由△=0化简整理得,∵,∴有.设l1,l2的斜率分别为t1,t2,∵l1,l2与椭圆相切,∴t1,t2满足上述方程,∴t1•t2=﹣1,即l1,l2垂直.综合①②知:∵l1,l2经过点P(x0,y0),又分别交其准圆于点M,N,且l1,l2垂直.∴线段MN为准圆x2+y2=4的直径,|MN|=4,∴线段MN的长为定值.20.【解答】(Ⅰ)由已知,,,∴,由于,∴S3可能值为.…(3分)(Ⅱ)∵,当n=1时,,当n≥2时,,∴,n∈N*,…(5分)∵{b n}是的生成数列,∴;;;∴,在以上各种组合中,当且仅当时,才成立.∴.…(8分)(Ⅲ)证明:共有2n﹣1种情形.,即,又,分子必是奇数,满足条件的奇数x共有2n﹣1个.…(10分)设数列{a n}与数列{b n}为两个生成数列,数列{a n}的前n项和为S n,数列{b n}的前n项和为T n,从第二项开始比较两个数列,设第一个不相等的项为第k项.由于,不妨设a k>0,b k<0,则=,所以,只有当数列{a n}与数列{b n}的前n项完全相同时,才有S n=T n.…(12分)∴共有2n﹣1种情形,其值各不相同.∴S n可能值必恰为,共2n﹣1个.即S n所有可能值集合为.…(13分)。
北京市石景山区2013 — 2014学年度第一学期期末试卷高三数学(理科)一、选择题(共8小题;共40分)1. 已知集合M=x∈R x2+2x−3≤0,N=x∈R x+1<0,那么M∩N= ______A. −1,0,1B. −3,−2,−1C. x −1≤x≤1D. x −3≤x<−12. 复数i1−i= ______A. 12+i2B. 12−i2C. −12+i2D. −12−i23. 已知向量a=x,1,b=4,x,则“ x=2”是“ a∥b”的______A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件4. 已知数列a n为等差数列,a4=2,a7=−4,那么数列a n的通项公式为 ______A. a n=−2n+10B. a n=−2n+5C. a n=−12n+10 D. a n=−12n+55. 执行如图所示的程序框图,若输入的x的值为2,则输出的x的值为______A. 3B. 126C. 127D. 1286. 在边长为1的正方形OABC中任取一点P,则点P恰好落在正方形与曲线y=x围成的区域内(阴影部分)的概率为______A. 12B. 23C. 34D. 457. 用0到9这10个数字,可以组成没有重复数字的三位偶数的个数为______A. 324B. 328C. 360D. 6488. 已知函数f x满足f x+1=1f x+1,当x∈0,1时,f x=x,若在区间−1,1上,g x=f x−mx−m有两个不同的实根,则实数m的取值范围是______A. 0,12B. 12,+∞ C. 0,13D. 0,12二、填空题(共4小题;共20分)9. 已知圆C的参数方程为x=1+2cosθ,y=2sinθ,(θ为参数)则圆C的直角坐标方程为______,圆心C到直线l:x+y+1=0的距离为______.10. 在△ABC中,角A,B,C的对边分别为a,b,c,若a=6,c=4,cos B=13,则b= ______.11. 若x,y满足约束条件x≤1,y≥0,x−y+2≥0,则z=x+y的最大值为______.12. 如图,已知在△ABC中,∠B=90∘,O是AB上一点,以O为圆心,OB为半径的圆与AB交于点E,与AC切于点D,AD=2,AE=1,则AB的长为______,CD的长为______.三、解答题(共6小题;共78分)13. 已知函数f x=23sin x cos x+cos2x+1.(1)求函数的单调递增区间;(2)求函数在上的最小值,并写出取最小值时相应的值.14. 北京市各级各类中小学每年都要进行“学生体质健康测试”,测试总成绩满分为100分,规定测试成绩在85,100之间为体质优秀;在75,85之间为体质良好;在60,75之间为体质合格;在0,60之间为体质不合格.现从某校高三年级的300名学生中随机抽取30名学生体质健康测试成绩,其茎叶图如下:91356801122333445667797056679645856(1)试估计该校高三年级体质为优秀的学生人数;(2)根据以上30名学生体质健康测试成绩,现采用分层抽样的方法,从体质为优秀和良好的学生中抽取5名学生,再从这5名学生中选出3人.(ⅰ)求在选出的3名学生中至少有1名体质为优秀的概率;(ⅱ)记X为在选出的3名学生中体质为良好的人数,求X的分布列及数学期望.15. 如图,在四棱锥 P −ABCD 中,PA ⊥平面ABCD ,底面 ABCD 是直角梯形,∠ABC =90∘,AD ∥BC ,且 PA =AD =2,AB =BC =1,E 为 PD 的中点.(1)求证:CD ⊥平面PAC ;(2)求二面角 E −AC −D 的余弦值;(3)在线段 AB 上是否存在一点 F (不与 A ,B 两点重合),使得 AE ∥平面PCF ?若存在,求出 AF 的长;若不存在,请说明理由.16. 已知函数 f x =e x −ax (e 为自然对数的底数).(1)当 a =2 时,求曲线 f x 在点 0,f 0 处的切线方程; (2)求函数 f x 的单调区间;(3)已知函数 f x 在 x =0 处取得极小值,不等式 f x <mx 的解集为 P ,若 M =x 12≤x ≤2 ,且 M ∩P ≠∅,求实数m 的取值范围.17. 已知椭圆:x 2a 2+y 2b 2=1 a >b >0 过点 2,0 ,且椭圆的离心率为 12.(1)求椭圆的方程;(2)若动点在直线上,过作直线交椭圆于两点,且 MP =PN ,再过作直线.证明:直线恒过定点,并求出该定点的坐标.18. 已知集合 A = −1,0,1 ,对于数列 a n 中,a i ∈A i =1,2,3,⋯,n .(1)若 50 项数列 a n 满足 a i 50i =1=−9, a i −1 250i =1=107,则数列 a n 中有多少项取值为零?( a i n i =1=a 1+a 2+⋯+a n ,n ∈N ∗)(2)若各项非零数列 a n 和新数列 b n 满足 b i −b i−1=a i−1 i =2,3⋯,n . (ⅰ)若首项 b 1=0,末项 b n =n −1,求证数列 b n 是等差数列;(ⅱ)若首项 b 1=0,末项 b n =0,记数列 b n 的前 n 项和为 S n ,求 S n 的最大值和最小值.答案第一部分 1. D 2. C 3. A 4. A 5. C6. B7. B8. D第二部分9. x −1 2+y 2=4; 2 10. 6 11. 4 12. 4;3 第三部分13. (1) f x = 3sin2x +cos2x +1=2sin 2x +π6 +1, 2kπ−π2≤2x +π6≤2kπ+π2,k ∈Z ,kπ−π3≤x ≤kπ+π6,k ∈Z ,所以函数 f x 的单调递增区间为 kπ−π3,kπ+π6 k ∈Z . (2) 因为 −π4≤x ≤π4,−π3≤2x +π6≤2π3,−32≤sin 2x +π6 ≤1,− 3+1≤2sin 2x +π6 +1≤3,所以当 2x +π6=−π3,即 x =−π4时,函数 f x 取得最小值 − 3+1.14. (1) 根据抽样,估计该校高三学生中体质为优秀的学生人数有 1030×300=100 人. (2) 依题意,体质为良好和优秀的学生人数之比为 15:10=3:2.所以,从体质为良好的学生中抽取的人数为 35×5=3,从体质为优秀的学生中抽取的人数为 25×5=2.(ⅰ)设“在选出的 3 名学生中至少有名体质为优秀”为事件 A , 则 P A =1−C 33C 53=910.故在选出的 3 名学生中至少有名体质为优秀的概率为 910. (ⅱ)随机变量 X 的所有取值为 1,2,3. P X =1 =C 31⋅C 22C 53=310, P X =2 =C 32⋅C 21C 53=610,P X =3 =C 33C 53=110.所以,随机变量 X 的分布列为:X 123P310610110EX =1×310+2×610+3×110=95.15. (1) PA ⊥平面ABCD ,CD ⊂平面ABCD , 所以 PA ⊥CD .取AD的中点G,连接GC,因为底面ABCD为直角梯形,AD∥BC,∠ABC=90∘,且AB=BC=1,所以四边形ABCG为正方形,所以CG⊥AD,且CG=12AD,所以∠ACD=90∘,即AC⊥CD.又PA∩AC=A,所以CD⊥平面PAC.(2)如图,以A为坐标原点,AB,AD,AP所在直线分别为x,y,z轴建立空间直角坐标系A−xyz.A0,0,0,C1,0,0,E0,0,1,P0,0,2,所以AP=0,0,2,AC=1,0,0,AE=0,1,1.因为PA⊥平面ABCD,所以AP=0,0,2为平面ACD的一个法向量.设平面EAC的法向量为n1=x,y,z,由n1⋅AC=0,n1⋅AE=0得x+y=0, y+z=0,令x=1,则y=−1,z=1.所以n1=1,−1,1是平面EAC的一个法向量.所以cos n1,AP=222=33.因为二面角E−AC−D为锐角,所以二面角E−AC−D的余弦值为33.(3)假设在线段AB上存在点F(不与A,B两点重合),使得AE∥平面PCF.F a,0,0,则CF=a−1,−1,0,CP=−1,−1,2.设平面PCF的法向量为n2=x,y,z,由n2⋅CF=0,n2⋅CP=0得a−1x−y=0,−x−y+2z=0,令x=1,则y=a−1,z=a2,所以n2=1,−1,a2是平面PCF的一个法向量.因为AE∥平面PCF,所以AE⋅n2=0,即a−1+a2=0,解得a=23,所以在线段AB上存在一点F(不与A,B两点重合),使得AE∥平面PCF,且AF=23.16. (1)当a=2时,f x=e x−2x,f0=1,fʹx=e x−2,得fʹ0=−1,所以曲线y=−x+1在点y=−x+1处的切线方程为y=−x+1.(2)fʹx=e x−a.当a≤0时,fʹx>0恒成立,此时f x的单调递增区间为−∞,+∞,无单调递减区间;当a>0时,x∈−∞,ln a时,fʹx<0,x∈ln a,+∞时,fʹx>0,此时f x的单调递增区间为ln a,+∞,单调递减区间为−∞,ln a.(3)由题意知fʹ0=0得a=1,经检验此时f x在x=0处取得极小值.因为M∩P≠∅,所以f x<mx在12,2上有解,即∃x∈12,2使f x<mx成立,即∃x∈12,2使m>e x−xx成立,所以m>e x−xx min.令g x=e xx −1,gʹx=x−1e xx,所以g x在12,1上单调递减,在1,2上单调递增,则g x min=g1=e−1,所以m∈e−1,+∞.17. (1)因为点2,0在椭圆C上,所以4a +0b=1,所以a2=4,因为椭圆C的离心率为12,所以ca=12,即a2−b2a=14,解得b2=3,所以椭圆C的方程为x 24+y23=1.(2)设P−1,y0,y0∈ −32,32,①当直线MN的斜率存在时,设直线MN的方程为y−y0=k x+1,M x1,y1,N x2,y2,由3x2+4y2=12,y−y0=k x+1,得3+4k2x2+8ky0+8k2x+4y2+8ky0+4k2−12=0,所以x1+x2=−8ky0+8k23+4k,因为MP=PN,即P为MN中点,所以x1+x22=−1,即−8ky0+8k23+4k2=−2.所以k MN=34y0y0≠0,因为直线l⊥MN,所以k l=−4y03,所以直线l的方程为y−y0=−4y03x+1,即y=−4y03 x+14,显然直线l恒过定点 −14,0.②当直线MN的斜率不存在时,直线MN的方程为x=−1,此时直线l为x轴,也过点 −14,0.综上所述直线l恒过定点 −14,0.18. (1)设数列a n中项为1,−1,0分别有x,y,z项.由题意知x+y+z=50, x−y=−9,z+4y=107,解得z=11.所以数列a n中有11项取值为零.(2)(ⅰ)a i∈−1,1且b i−b i−1=a i−1,得到b i=a1+a2+⋯+a i−1i=2,3,⋯,n,若a i=1i=1,2,⋯,n−1,则满足b n=n−1.此时b i−b i−1=1,数列b n是等差数列;若a1,a2,⋯,a n−1中有p p>0,p∈N∗个−1,则b n=n−1−2p≠n−1不满足题意;所以数列b n是等差数列.(ⅱ)因为数列b n满足b i−b i−1=a i−1,所以b i=a1+a2+⋯+a i−1i=2,3,⋯,n,根据题意有末项b n=0,所以a1+a2+⋯+a n−1=0.而a i∈−1,1,于是n为正奇数,且a1a2⋯a n−1中有n−12个1和n−12个−1.S n=b1+b2+⋯+b n=a1+a1+a2+⋯+a1+a2+⋯+a n−1=n−1a1+n−2a2+⋯+ a n−1.要求S n的最大值,则只需a1a2⋯a n−1前n−12项取1,后n−12项取−1,所以S n max=n−2+n−4+⋯+1=n−124(n为正奇数).要求S n的最小值,则只需a1,a2,⋯,a n−1前n−12项取−1,后n−12项取1,则S n min=−n−2−n−4−⋯−1=−n−124(n为正奇数).。
2014年石景山区高三统一测试数学(理科)一、选择题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项.1.已知全集U =R ,集合{}2|20A x x x =-<,{}|10B x x =-≥,那么U A B = ð( )A .{}|01x x <<B .{}|0x x <C .{}|2x x >D .{}|12x x <<2.下列函数中,在(0)+∞,内单调递减,并且是偶函数的是( ) A .2y x =B .1y x =+C .lg ||y x =-D .2x y =3.在251()x x-的展开式中,x 的系数为( )A .10B .10-C .20D .20-4.已知Rt △ABC 中,o 9054C AB BC ∠===,,,以BC 为直径的圆交AB 于,则BD 的长为( )5.在平面直角坐标系xOy 中,抛物线22(0)x py p =>上纵坐标为1的点到焦点的距离为3,则焦点到准线的距离为( ) A .2B .8C .3D .46.右图是某个三棱锥的三视图,其中主视图是等边三角形,左视图是直角三角形,俯视图是等腰直角三角形,则该三棱锥的体积是( )7.阅读右面的程序框图,运行相应的程序,输出的结果为( )A .4B .95 C .125D .165A .612 B .33 C .64D .36ACDB开始1主视图左视图俯视图A .2-B .12 C .1- D .28.已知动点()P x y ,在椭圆22:12516x y C +=上, F 为椭圆C 的右焦点,若点M 满足||1MF = 且0MP MF ⋅=,则||PM的最小值为( )A .3B .3C .125D .1第Ⅱ卷(非选择题 共110分)二、填空题共6小题,每小题5分,共30分.9.已知命题p :0x x e ∃∈<R ,,则p ⌝是____________________.10.在等比数列}{n a 中,14=2=16a a ,,则数列}{n a 的通项公式=n a _____________,设2log n n b a =,则数列}{n b 的前n 项和=n S _____________.11.已知圆C 的极坐标方程为=2ρ,以极点为原点,极轴为x 轴的正半轴建立平面直角坐标系,则圆C 的直角坐标方程为_______________,若直线:30l k xy ++=与圆C 相切,则实数k 的值为_____________.12.已知变量x y ,满足约束条件20170x y x x y -+≤⎧⎪≥⎨⎪+-≤⎩,,,则x y 的取值范围是_________.13.各大学在高考录取时采取专业志愿优先的录取原则.一考生从某大学所给的7个专业中,选择3个作为自己的第一、二、三专业志愿,其中甲、乙两个专业不能同时兼报,则该考生有_____________种不同的填报专业志愿的方法(用数字作答).14.若存在实常数k 和b ,使得函数()f x 和()g x 对其定义域上的任意实数x 分别满足:()f x kx b ≥+和()g x kx b ≤+,则称直线:l y kx b =+为()f x 和()g x 的“隔离直线”.已知函数2()1f x x =-和函数()2ln g x x =,那么函数()f x 和函数()g x 的隔离直线方程为_________.三、解答题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 15.(本小题满分13分)在△ABC 中,角A B C ,,的对边分别为a b c ,,,且a b c <<,32sin a b A =. (Ⅰ)求角B 的大小;(Ⅱ)若2a =,7b =,求c 边的长和△ABC 的面积.16.(本小题满分13分)经调查发现,人们长期食用含高浓度甲基汞的鱼类会引起汞中毒,其中罗非鱼体内汞含量比其它鱼偏高.现从一批数量很大的罗非鱼中随机地抽出15条作样本,经检测得各条鱼的汞含量的茎叶图(以小数点前的数字为茎,小数点后一位数字为叶)如下:《中华人民共和国环境保护法》规定食品的汞含量不得超过1.0ppm .(Ⅰ)检查人员从这15条鱼中,随机抽出3条,求3条中恰有1条汞含量超标的概率;(Ⅱ)若从这批数量很大的鱼........中任选3条鱼,记ξ表示抽到的汞含量超标的鱼的条数.以此15条鱼的样本数据来估计...这批数量很大的鱼的总体数据,求ξ的分布列及数学期望E ξ.17.(本小题满分14分)1235567889 1 35567 罗非鱼的汞含量(ppm )如图,正三棱柱111ABC A B C -的底面边长是2,侧棱长是3,D 是AC 的中点. (Ⅰ)求证:1B C ∥平面1A BD ; (Ⅱ)求二面角1A BD A --的大小;(Ⅲ)在线段1AA 上是否存在一点E ,使得平面11B C E ⊥平面1A BD ,若存在,求出AE 的长;若不存在,说明理由. 18.(本小题满分13分)设函数2()ln ()f x x ax x a =+-∈R . (Ⅰ)若1a =,求函数()f x 的单调区间;(Ⅱ)若函数()f x 在区间(01],上是减函数,求实数a 的取值范围; (Ⅲ)过坐标原点O 作曲线)(x f y =的切线,证明:切点的横坐标为1.A1A1B1CCDB19.(本小题满分14分)给定椭圆C :22221(0)x y a b a b+=>>,称圆心在原点O ,半径为22a b +的圆是椭圆C 的“准圆”.若椭圆C 的一个焦点为(20)F ,,其短轴上的一个端点到F 的距离为3. (Ⅰ)求椭圆C 的方程和其“准圆”方程;(Ⅱ)点P 是椭圆C 的“准圆”上的动点,过点P 作椭圆的切线12l l ,交“准圆”于点M N ,. (ⅰ)当点P 为“准圆”与y 轴正半轴的交点时,求直线12l l ,的方程并证明12l l ⊥; (ⅱ)求证:线段MN 的长为定值.20.(本小题满分13分)对于数列{}n a ,把1a 作为新数列{}n b 的第一项,把i a 或i a -(234i n = ,,,,)作为新数列{}n b 的第i 项,数列{}n b 称为数列{}n a 的一个生成数列.例如,数列12345,,,,的一个生成数列是12345--,,,,.已知数列{}n b 为数列1{}()2n n *∈N 的生成数列,n S 为数列{}n b 的前n 项和. (Ⅰ)写出3S 的所有可能值; (Ⅱ)若生成数列{}n b 满足311(1)78n n S =-,求数列{}n b 的通项公式; (Ⅲ)证明:对于给定的n *∈N ,n S 的所有可能值组成的集合为121{|2}2n n k x x k k *--=∈≤N ,,. xOyP1l2lMN2014年石景山区高三统一测试 高三数学(理科)参考答案一、选择题:本大题共8个小题,每小题5分,共40分.题号1 2 3 4 5 6 7 8 答案ACBDDBCA二、填空题:本大题共6个小题,每小题5分,共30分.两空的题目,第一空2分,第二空3分.三、解答题:本大题共6个小题,共80分.应写出文字说明,证明过程或演算步骤. 15.(本小题满分13分) 解:(Ⅰ)因为32sin a b A =,所以3sin 2sin sin A B A =, …………………………2分因为0A π<<,所以sin 0A ≠,所以3sin 2B =, ………………………… 4分 因为0B π<<,且a b c <<,所以60B = . …………………………6分(Ⅱ)因为2a =,7b =,所以由余弦定理得2221(7)2222c c =+-⨯⨯⨯,即2230c c --=, 解得3c =或1c =-(舍),所以c 边的长为3. …………………………10分11333=sin 232222ABC S ac B ∆=⨯⨯⨯=. …………………………13分 16.(本小题满分13分)解:(Ⅰ)记“15条鱼中任选3条恰好有1条鱼汞含量超标”为事件A ,则1251031545()91C C P A C ==,∴15条鱼中任选3条恰好有1条鱼汞含量超标的概率为4591. …………………………4分 (Ⅱ)依题意可知,这批罗非鱼中汞含量超标的鱼的概率51()153P B ==, ………………5分 ξ可能取0,1,2,3. …………………………6分题号9 10 11 12 13 14 答案 0x x e ∀∈≥R , 2n;(1)2n n + 22+=4x y ;52k =± [59,6] 18022y x =-则30318(0)1327P C ξ⎛⎫==-= ⎪⎝⎭ ,213114(1)1339P C ξ⎛⎫==⨯⨯-= ⎪⎝⎭,223112(2)1339P C ξ⎛⎫⎛⎫==⨯-= ⎪⎪⎝⎭⎝⎭,33311(3)327P C ξ⎛⎫=== ⎪⎝⎭.……………………10分 其分布列如下:ξ0 1 2 3P827 49 29 127…………………………12分所以842101231279927E ξ=⨯+⨯+⨯+⨯=. …………………………13分 17.(本小题满分14分)(Ⅰ)证明:连结1AB 交1A B 于M ,连结1B C DM ,, 因为三棱柱111ABC A B C -是正三棱柱, 所以四边形11AA B B 是矩形, 所以M 为1A B 的中点. 因为D 是AC 的中点,所以MD 是三角形1AB C 的中位线, …………………………2分 所以MD ∥1B C . …………………………3分因为MD ⊂平面1A BD ,1B C ⊄平面1A BD ,所以1B C ∥平面1A BD . …………………………4分 (Ⅱ)解:作CO AB ⊥于O ,所以CO ⊥平面11ABB A ,所以在正三棱柱111ABC A B C -中如图建立空间直角坐标系O xyz -.因为2AB =,13AA =,D 是AC 的中点. 所以(100)A ,,,(100)B -,,,(003)C ,,,1(130)A ,,, …………………………5分 所以13(0)22D ,,,33(0)22BD = ,,,1(230)BA =,,.yz OBD1B1CCMA1A1B1CBCD设()n x y z =,,是平面1A BD 的法向量,所以100n BD n BA ⎧⋅=⎪⎨⋅=⎪⎩ ,,即33022230x z x y ⎧+=⎪⎨⎪+=⎩,,令3x =-,则2y =,3z =,所以(323)n =-,,是平面1A BD 的一个法向量. …………………………6分由题意可知1(030)AA = ,,是平面ABD 的一个法向量, …………………………7分 所以1231cos 243n AA <>==,. …………………………8分 所以二面角1A BD A --的大小为3π. …………………………9分 (Ⅲ)设(10)E x ,,,则1(133)C E x =-- ,,,11(103)C B,,=--设平面11B C E 的法向量1111()n x y z,,=,所以111100n C E n C B,,⎧⋅=⎪⎨⋅=⎪⎩即11111(3)3030x x y z x z ,,⎧-+-+=⎪⎨--=⎪⎩ 令13z =-,则13x =,163y x=-, 16(33)3n x,,=--, …………………………12分又10n n ⋅=,即1233+3303x --=-,解得33x =, 所以存在点E ,使得平面11B C E ⊥平面1A BD 且33AE =. …………………………14分 18.(本小题满分13分)解: (Ⅰ)1a =时, 2()ln (0)f x x ax xx =+->,1(21)(1)()21x x f x x x x-+'∴=+-= , …………………………1分11(0)()0()()022x f x x f x ''∈<∈+∞>,,,,,,()f x 的减区间为1(0)2,,增区间1()2+∞,. …………………………3分(Ⅱ)1()2f x x a x'=+-()f x 在区间(01],上是减函数,()0f x '∴≤对任意(01]x ∈,恒成立,即120x a x+-≤对任意(01]x ∈,恒成立, …………………………5分 12a x x ∴≤-对任意(01]x ∈,恒成立, 令1()2g x x x=-,min ()a g x ∴≤, …………………………7分易知()g x 在(01],单调递减,min ()(1)1g x g ∴==-. 1a ∴≤-. …………………………8分(Ⅲ)设切点为(())M t f t ,,1()2f x x a x'=+-, 切线的斜率12k t a t=+-,又切线过原点()f t k t=, ()22212ln 211ln 0f t t a t at t t at t t t t=+-+-=+-∴-+=,即:, 存在性:1t =满足方程21ln 0t t -+=,所以,1t =是方程21ln 0t t -+=的根. …………………………11分 再证唯一性:设()21ln t t t ϕ=-+,()1'20t t tϕ=+>,()t ϕ在(0,)+∞单调递增,且()1=0ϕ,所以方程21ln 0t t -+=有唯一解.综上,切点的横坐标为1. …………………………13分19.(本小题满分14分) 解:(Ⅰ)231c a b ==∴= ,,,∴椭圆方程为2213x y +=, ………………………………2分准圆方程为224x y +=. ………………………………3分(Ⅱ)(ⅰ)因为准圆224x y +=与y 轴正半轴的交点为(02)P ,, 设过点(02)P ,且与椭圆相切的直线为2y kx =+, 所以由22213y kx x y =+⎧⎪⎨+=⎪⎩,,得22(13)1290k x kx +++=. 因为直线2y kx =+与椭圆相切,所以2214449(13)0k k ∆=-⨯+=,解得1k =±, ………………………………6分所以12l l ,方程为22y x y x =+=-+,. ………………………………7分 121l l k k ⋅=- ,12l l ∴⊥. ………………………………8分(ⅱ)①当直线12l l ,中有一条斜率不存在时,不妨设直线1l 斜率不存在, 则1l :3x =±, 当1l :3x =时,1l 与准圆交于点(31)(31)-,,,, 此时2l 为1y =(或1y =-),显然直线12l l ,垂直; 同理可证当1l :3x =-时,直线12l l ,垂直. ………………………………10分 ②当12l l ,斜率存在时,设点00()P x y ,,其中22004x y +=. 设经过点00()P x y ,与椭圆相切的直线为00()y t x x y =-+, 所以由0022()13y t x x y x y =-+⎧⎪⎨+=⎪⎩,, 得 2220000(13)6()3()30t x t y tx x y tx ++-+--=.由0∆=化简整理得 2220000(3)210x t x y t y -++-=, 因为22004x y +=,所以有2220000(3)2(3)0x t x y t x -++-=.设12l l ,的斜率分别为12t t ,,因为12l l ,与椭圆相切, 所以12t t ,满足上述方程2220000(3)2(3)0x t x y t x -++-=, 所以121t t ⋅=-,即12l l ,垂直. ………………………………12分综合①②知:因为12l l ,经过点00(,)P x y ,又分别交其准圆于点M N ,,且12l l , 垂直. 所以线段MN 为准圆224x y +=的直径, ||4MN =,所以线段MN 的长为定值. ………………………………14分 20.(本小题满分13分)解:(Ⅰ)由已知,112b =,1||(,2)2n n b n n *=∈≥N , ∴231148b b =±=±,, 由于1117111511131111,2488248824882488++=+-=-+=--=,,, ∴3S 可能值为13578888,,,. …………………………3分 (Ⅱ)∵311(1)78n n S =-, 当1n =时,1233111(1)788a a a S ++==-=, 当2n ≥时,32313333111111(1)(1)78788n n n n n n n n a a a S S ----++=-=---=, 3231318n n n n a a a --∴++=,*n ∈N , …………………………5分 ∵{}n b 是1()2n n *⎧⎫∈⎨⎬⎩⎭N 的生成数列, ∴323212n n b --=±;313112n n b --=±;3312n nb =±; ∴323133231311111(421)()22288n n n n n n n n b b b n *----++=±±±=±±±=∈N , 在以上各种组合中, 当且仅当32313421()888n n n n n n b b b n *--==-=-∈N ,,时,才成立. ∴132213 2.2n n nn k b k n k *⎧=-⎪⎪=∈⎨⎪-≠-⎪⎩N ,,(),. …………………………8分 (Ⅲ)2311112222n n S =±±±± 共有12n -种情形. 23231111111122222222n n n S ----≤≤++++ ,即12122n n n n S -≤≤, 又12322212n n n n n S ---±±±±= ,分子必是奇数, 满足条件121222n n n n x -≤≤的奇数x 共有12n -个. …………………………10分 设数列{}n a 与数列{}n b 为两个生成数列,数列{}n a 的前n 项和为n S ,数列{}n b 的前n 项和为n T ,从第二项开始比较两个数列,设第一个不相等的项为第k 项. 由于1||||2k k k a b ==,不妨设00k k a b ><,, 则11()()n n k k n k k n S T a a a b b b ++-=+++-+++ 12111122()2222k k k n++≤⨯-⨯+++1111122()02222k k n n -=⨯-⨯-=>, 所以,只有当数列{}n a 与数列{}n b 的前n 项完全相同时,才有n n S T =.……12分 ∴2311112222n n S =±±±± 共有12n -种情形,其值各不相同. ∴n S 可能值必恰为135212222n n n n n - ,,,,,共12n -个. 即n S 所有可能值集合为121{|2}2n n k x x k k *--=∈≤N ,,. …………………………13分 【注:若有其它解法,请酌情给分】。
石景山区2007—2008学年第一学期期末考试试卷高三数学(理科)一、选择题:本大题共8个小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的,把所选项前的字母填在题后括号内. 1.设集合{}|12A x x =-≤≤,{}|04B x x =≤≤,则AB =( )A .]2,0[B .]2,1[C .]4,0[ D .]4,1[2.已知等差数列{}n a 的前n 项和为n S ,若5418a a =-,则8S 等于( )A .144B .72C .54D .363.现有3名男生和2名女生站成一排,要求其中2名女生恰好站在两端的不同的排法种数为( )A . 120B .24C .12D .484.已知53)2sin(=-απ,则)2cos(απ-=( ) A .257 B .2524 C .257-D .2524-5.若|a |=2,|b |=2,且a b a ⊥-)(,则a 与b 的夹角是( )A .6π B .4π C .3π D .125π 6.nxx )1(+的展开式中常数项等于20,则n 等于( ) A .4B .6C .8D .107.关于直线m ,n 与平面α,β,有以下四个命题: ①若//,//m n αβ且//αβ,则//m n ; ②若,m n αβ⊥⊥且αβ⊥,则m n ⊥; ③若,//m n αβ⊥且//αβ,则m n ⊥; ④若//,m n αβ⊥且αβ⊥,则//m n .其中真命题的序号是( ) A .①②B .③④C .①④D .②③8.如图,点P 在边长为1的正方形的边上运动,设M 是CD 的中点,则当P 沿着路径--B A M C -运动时,点P 经过的路程x 与△APM 的面积y 的函数)(x f y =的图象的形状大致是图中的( )二、填空题:本大题共6个小题,每小题5分,共30分.把答案填在题中横线上. 9.计算:=+-∞→3423limn n n .10.复数ii+-12(i 是虚数单位)的实部为 . 11.不等式01|25|>--x 的解集是_______________________. 12.函数)2(log 221x x y -=的单调递减区间是__________________.13.某校对文明班的评选设计了e d c b a ,,,,五个方面的多元评价指标,并通过经验公式ed c b a S 1++=来计算各班的综合得分,S 的值越高则评价效果越好.若某班在自测过程中各项指标显示出a b e d c <<<<<0,则下阶段要把其中一个指标的值增加1个单位,而使得S 的值增加最多,那么该指标应为 .(填入e d c b a ,,,,中的某个字母) 14.一种计算装置,有一个数据入口A 和一个运算出口B ,执行某种运算程序. (1)当从A 口输入自然数1时,从B 口得到实数31,记为=)1(f 31; (2)当从A 口输入自然数)2(≥n n 时,在B 口得到的结果)(n f 是前一结果3)1(21)1(2)1(+----n n n f 的倍.当从A 口输入3时,从B 口得到 ;要想从B 口得到23031, 则应从A 口输入自然数 .三、解答题:本大题共6个小题,共80分.解答题应写出文字说明,证明过程或演算步骤. 15.(本题满分14分)已知:02<<-x π,51cos sin =+x x . (Ⅰ)求x 2sin 和x x sin cos -的值;(Ⅱ)求xxx tan 1sin 22sin 2-+的值.16.(本题满分12分)在某电视节目的一次有奖竞猜活动中,主持人准备了A 、B 两个相互独立的问题,并且宣布:幸运观众答对问题A 可获奖金1000元,答对问题B 可获奖金2000元,先答哪个题由观众自由选择,但只有第一个问题答对,才能再答第二题,否则终止答题.若你被选为幸运观众,且假设你答对问题A 、B 的概率分别为12、14. (Ⅰ)记先回答问题A 获得的奖金数为随机变量ξ,则ξ的取值分别是多少? (Ⅱ)你觉得应先回答哪个问题才能使你获得更多的奖金?请说明理由.17.(本题满分14分)正项数列{a n }的前n 项和为n S ,且12+=n n a S . (Ⅰ)求数列{a n }的通项公式;(Ⅱ)设11+⋅=n n n a a b ,数列{n b }的前n 项和为n T ,求证:21<n T .18.(本题满分14分)已知:如图,在四棱锥ABCD P -中,底面ABCD 是矩形,⊥PA 平面ABCD ,1==AB PA ,2=BC .(Ⅰ)求证:平面PDC ⊥平面PAD ;(Ⅱ)若E 是PD 的中点,求异面直线AE 与PC 所成角的余弦值;(Ⅲ)在BC 边上是否存在一点G ,使得D 点到平面PAG 的距离为1?若存在,求出BG 的值;若不存在,请说明理由.19.(本题满分14分) 已知:在函数x mx x f -=3)(的图象上,以),1(n N 为切点的切线的倾斜角为4π.(Ⅰ)求m ,n 的值;(Ⅱ)是否存在最小的正整数k ,使得不等式1993)(-≤k x f 对于]3,1[-∈x 恒成立?如果存在,PA BCDE请求出最小的正整数k ;如果不存在,请说明理由;(Ⅲ)求证:)21(2|)(cos )(sin |tt f x f x f +≤+(R x ∈,0>t ). 20.(本题满分12分)对于定义域为D 的函数)(x f y =,若同时满足:①)(x f 在D 内单调递增或单调递减;②存在区间[b a ,]D ⊆,使)(x f 在],[b a 上的值域为],[b a ;那么把函数)(x f y =(D x ∈)叫做闭函数. (Ⅰ)求闭函数3x y -=符合条件②的区间],[b a ; (Ⅱ)判断函数)0(143)(>+=x xx x f 是否为闭函数?并说明理由; (Ⅲ)若2++=x k y 是闭函数,求实数k 的取值范围.石景山区2007—2008学年第一学期期末考试试卷高三数学(理科)参考答案一、选择题:本大题共8个小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符二、填空题:本大题共6个小题,每小题5分,共30分.把答案填在题中横线上.注:第14题第1个空3分,第2个空2分.三、解答题:本大题共6个小题,共80分.解答题应写出文字说明,证明过程或演算步骤. 15.(本题满分14分) 解:(Ⅰ)∵ 51cos sin =+x x ,∴ 251)cos (sin 2=+x x . ∴ 2524cos sin 2-=x x ,即25242sin -=x . ………………………………4分∵ 02<<-x π,∴ x x sin cos >. ………………………………5分∴ 5725241cos sin 21)sin (cos sin cos 2=+=-=-=-x x x x x x . ………………………………8分(Ⅱ)xx x x x x x x x x x x x x cos sin cos )sin (cos sin 2cos sin 1sin 2cos sin 2tan 1sin 22sin 22-+=-+=-+x x x x x x x x x x x sin cos )cos (sin 2sin sin cos )sin (cos cos sin 2-+=-+=…………………12分=⨯-=5751)2524(17524-. ………………………………14分16.(本题满分12分)解:(Ⅰ)随机变量ξ的可能取值为0,1000,3000. …………………………3分 (Ⅱ)设先答问题A 获得的奖金为ξ元,先答问题B 获得的奖金为η元.则有21211)0(=-==ξP ,83)411(21)1000(=-⨯==ξP ,814121)3000(=⨯==ξP ,∴ 75086000813000831000210==⨯+⨯+⨯=ξE . ………………………7分同理:43)0(==ηP ,81)2000(==ηP ,81)3000(==ηP ,∴ 62585000813000812000430==⨯+⨯+⨯=ηE . ……………………11分故知先答问题A ,所获得的奖金期望较多. ………………………………12分17.(本题满分14分)解:(Ⅰ)∵ 1211+=a S ,∴ 11=a . ………………………………2分 ∵ 0>n a ,12+=n n a S ,∴ 2)1(4+=n n a S . ① ∴ 211)1(4+=--n n a S (2≥n ). ② ①-②,得 1212224----+=n n n n n a a a a a ,即0)2)((11=--+--n n n na a a a ,而0>n a ,∴)2(21≥=--n a a n n . ………………………………6分故数列}{n a 是首项为1,公差为2的等差数列.∴ 12-=n a n . ………………………………8分 (Ⅱ))121121(21)12)(12(1+--=+-=n n n n b n . ………………………………10分n n b b b T +++= 21)121121(21)5131(21)311(21+--++-+-=n n 21)1211(21<+-=n . ………………………………14分18.(本题满分14分)解法一:(Ⅰ)证明: ∵ ⊥PA 平面ABCD , ∴ CD PA ⊥. …………1分∵ 四边形ABCD 是矩形,∴ CD AD ⊥. 又 A AD PA =⋂ ∴⊥CD 平面PAD . …………3分又 ∵ ⊂CD 平面PDC ,∴ 平面⊥PDC 平面PAD . ……5分(Ⅱ)解:设CD 的中点为F ,连结EF 、AF .∵ E 是PD 中点, ∴ EF ∥PC .∴ AEF ∠是异面直线AE 与PC 所成角或其补角. ……………………7分 由1==AB PA ,2=BC ,计算得G D2521==PD AE ,2621==PC EF ,217=AF , 10302625241746452cos 222-=⋅⋅-+=⋅-+=∠EF AE AF EF AE AEF ,…………………9分 ∴ 异面直线AE 与PC 所成角的余弦值为1030. ……………………10分 (Ⅲ)解:假设在BC 边上存在点G ,使得点D 到平面PAG 的距离为1. 设x BG =,过点D 作AG DM ⊥于M .∵ ⊥PA 平面ABCD ,∴ DM PA ⊥,A AG PA =⋂. ∴ ⊥DM 平面PAG .∴ 线段DM 的长是点D 到平面PAG 的距离,即1=DM . ……………12分 又1121212=+=⋅=∆x DM AG S AGD , 解得 23<=x .所以,存在点G 且当3=BG 时,使得点D 到平面PAG 的距离为1. ……………………14分解法二:以A 为原点,AB 所在直线为x 轴,AD 所在直线为y 轴,AP 所在直线为z 轴建立空间直角坐标系,则A (0,0,0),B (1,0,0),C (1,2,0),D (0,2,0),E (0,1,12),P (0,0,1).∴ =(-1,0,0),=(0,2,0),=(0,0,1), =(0,1,12),=(1,2,-1). …………2分(Ⅰ)∵ 0=⋅, ∴ AD CD ⊥.∵ 0=⋅,∴ AP CD ⊥.又 A AD AP = ,∴ ⊥CD 平面PAD . …………………………5分∵ ⊂CD 平面PAD ,∴ 平面PDC ⊥平面PAD . ……………………7分(Ⅱ)∵ ||||,cos PC AE ⋅>=<10306411212=⋅+-=,yx…………………………9分 ∴ 异面直线AE 与PC 所成角的余弦值为1030. ………………10分(Ⅲ)假设BC 边上存在一点G 满足题设条件,令x BG =,则)0,,1(x G .作AG DQ ⊥于Q ,∵ ⊥PA 平面ABCD ,∴ DQ PA ⊥.又 A AG PA =⋂,∴ ⊥DQ 面PAG .∴ 线段DQ 的长是点D 到平面PAG 的距离,即1=DQ . …………12分 ∵ ADG S ∆2=S矩形ABCD,∴ 2||||||||=⋅=⋅AD AB DQ AG . ∴ 2||=AG . 又 12+=x AG ,∴ 23<=x .故存在点G ,当BG =3时,使点D 到平面PAG 的距离为1. …………14分 19.(本题满分14分)解:(Ⅰ)13)(2-='mx x f ,依题意,得=')1(f 4tanπ,即113=-m ,32=m . ………………………………2分 ∵ n f =)1(, ∴ 31-=n . ………………………………3分 (Ⅱ)令012)(2=-='x x f ,得22±=x . ………………………………4分当221-<<-x 时,012)(2>-='x x f ;当2222<<-x 时,012)(2<-='x x f ; 当322<<x 时,012)(2>-='x x f .又31)1(=-f ,32)22(=-f ,32)22(-=f ,15)3(=f . 因此,当]3,1[-∈x 时,15)(32≤≤-x f . ………………………………7分 要使得不等式1993)(-≤k x f 对于]3,1[-∈x 恒成立,则2008199315=+≥k . 所以,存在最小的正整数2008=k ,使得不等式1993)(-≤k x f 对于 ]3,1[-∈x 恒成立. ………………………………9分 (Ⅲ)方法一:|)(cos )(sin |x f x f +|)cos cos 32()sin sin 32(|33x x x x -+-= |)cos (sin )cos (sin 32|33x x x x +-+= |]1)cos cos sin (sin 32)[cos (sin |22-+-+=x x x x x x|31cos sin 32||cos sin |--⋅+=x x x x3|cos sin |31x x +=3|)4sin(2|31π+=x 322≤. …………………11分 又∵ 0>t ,∴ 221≥+t t ,14122≥+tt .∴ )21(2t t f +)]21()21(32[23tt t t +-+=]31)41(32)[21(222-++=t t t t 322)3132(22=-≥. …………………13分 综上可得,)21(2|)(cos )(sin |tt f x f x f +≤+(R x ∈,0>t ). …………………………14分方法二:由(Ⅱ)知,函数)(x f 在 [-1,22-]上是增函数;在[22-,22]上是减函数;在[22,1]上是增函数. 又31)1(=-f ,32)22(=-f ,32)22(-=f ,31)1(-=f .所以,当x ∈[-1,1]时,32)(32≤≤-x f ,即32|)(|≤x f . ∵ x sin ,x cos ∈[-1,1],∴ 32|)(sin |≤x f ,32|)(cos |≤x f .∴ 3223232|)(cos ||)(sin ||)(cos )(sin |=+≤+≤+x f x f x f x f . ………………………………11分 又∵0>t ,∴ 1221>≥+tt ,且函数)(x f 在),1[+∞上是增函数. ∴ 322]2)2(32[2)2(2)21(23=-=≥+f t t f . …………………13分 综上可得,)21(2|)(cos )(sin |t t f x f x f +≤+(R x ∈,0>t ).……………14分20.(本题满分12分)解:(Ⅰ)由题意,3x y -=在[b a ,]上递减,则⎪⎩⎪⎨⎧>-=-=a b b a a b 33,解得⎩⎨⎧=-=11b a . 所以,所求的区间为[-1,1] . ………………………3分 (Ⅱ)取11=x ,102=x ,则)(107647)(21x f x f =<=, 即)(x f 不是),0(+∞上的减函数. 取,1001,10121==x x )(100400310403)(21x f x f =+<+=, 即)(x f 不是),0(+∞上的增函数.所以,函数在定义域内既不单调递增也不单调递减,从而该函数不是闭函数.………………………6分 (Ⅲ)若2++=x k y 是闭函数,则存在区间[b a ,],在区间[b a ,]上,函数)(x f y =的值域为[b a ,].容易证明函数2++=x k y 在定义域内单调递增,∴ ⎪⎩⎪⎨⎧++=++=22b k b a k a . ∴ b a ,为方程2++=x k x 的两个实数根. 即方程22(21)20(2,)x k x k x x k -++-=≥-≥有两个不相等的实根.………………………8分当2-≤k 时,有⎪⎪⎩⎪⎪⎨⎧->+≥->∆22120)2(0k f ,解得249-≤<-k .当2->k 时,有⎪⎪⎩⎪⎪⎨⎧>+≥>∆kk k f 2120)(0,无解.综上所述,]2,49(--∈k .………………………12分注:若有其它解法,请酌情给分.。
1
主视图
左视图
俯视图
2014年石景山区高三统一测试
数学(理科)
本试卷共6页,满分为150分,考试时间为120分钟.请务必将答案答在答题卡上,在试卷上作答无效,考试结束后上交答题卡. 第Ⅰ卷(选择题 共40分)
一、选择题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项. 1.已知全集R U =,集合{
}
{}
01,022
≥-=<-=x x B x x x A ,那么B C A U =( )
A .
{}|01x x << B .
{}|0x x < C .
{}|2x x >
D .
{}|12x x <<
2.下列函数中,在),0(+∞内单调递减,并且是偶函数的是( )
A .2
y x =
B .1y x =+
C .lg ||y x =-
D .2x
y =
3.在5
2
)1
(x
x -的展开式中,x 的系数为( )
A .10
B .10-
C .20
D .20-
4.已知ABC Rt ∆中,,4,5,90===BC AB C
以BC 为直径的圆交AB 于D ,则BD 的长为( )
5. 在平面直角坐标系xoy 中,抛物线)0(22
>=p py x 上纵坐标为1的点到焦点的距离 为3,则焦点到准线的距离为( )
A .2
B .8
C .3
D .4
6.右图是某个三棱锥的三视图,其中主视图是等边三角形,左视图是直角三角形,俯视图是等腰直角三角形,则该三棱锥的体积是( )
A .4
B .95
C .125
D .165
A .612
B .33
C .64
D .36
A
C
D
B
7.阅读右面的程序框图,运行相应的程序, 输出的结果为( )
A .2-
B .1
2
C .1-
D .2
8.已知动点),(y x P 在椭圆11625:
2
2=+y x C 上,F 为椭圆C 的右焦点,若点M 满足1=MF 且0=⋅MF MP ,则PM 的最小值为( )
A .3
B .3
C .125
D .1
第Ⅱ卷(非选择题 共110分)
二、填空题共6小题,每小题5分,共30分.
9.已知命题,0,:<∈∃x
e R x p 则p ⌝是 .
10.在等比数列{}n a 中,,16,241==a a 则数列{}n a 的通项公式=n a _____________,设n n a b 2l og =,则数列{}n b 的前n 项和n S _____________.
11.已知圆C 的极坐标方程为2=ρ,以极点为原点,极轴为x 轴的正半轴建立平面直角坐标系,则圆C 的直角坐标方程为 ,若直线03:=++y kx l 与圆C 相切,则实数k 的值为_____________.
12.已知变量y x ,满足约束条件⎪⎩
⎪
⎨⎧≤-+≥≤+-0
710
2y x x y x ,则x y 的取值范围是_________.
13.各大学在高考录取时采取专业志愿优先的录取原则.一考生从某大学所给的7个专业中,选择3个作为自己的第一、二、三专业志愿,其中甲、乙两个专业不能同时兼报,则该考生有_____________种不同的填报专业志愿的方法(用数字作答).
14.若存在实常数k 和b ,使得函数)(x f 和)(x g 对其定义域上的任意实数x 分别满足:b kx x f +≥)(和
b kx x g +≤)(,则称直线b kx y l +=:为)(x f 和)(x g 的“隔离直线”.已知函数1)(2-=x x f 和函数x x g ln 2)(=,那么函数)(x f 和函数)(x g 函数的隔离直线方程为 .
否
开
1i i =+
11A A
=-
2014
i > 是 输出 结
02
i A ==,
三、解答题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 15.(本小题满分13分)
在ABC ∆中,角C B A ,,的对边分别为c b a ,,,且c b a <<,A b a sin 23=. (Ⅰ)求角B 的大小;
(Ⅱ)若7,2==b a ,求边的长c 和ABC ∆的面积.
16.(本小题满分13分) 经调查发现,人们长期食用含高浓度甲基汞的鱼类会引起汞中毒,其中罗非鱼体内汞含量比其它鱼偏高.现从一批数量很大的罗非鱼中随机地抽出15条作样本,经检测得各条鱼的汞含量的茎叶图(以小数点前的数字为茎,小数点后一位数字为叶)如下:
《中华人民共和国环境保护法》规定食品的汞含量不得超过1.0ppm .
(Ⅰ)检查人员从这15条鱼中,随机抽出3条,求3条中恰有1条汞含量超标的概率;
(Ⅱ)若从这批数量很大的鱼中任选3条鱼,记ξ表示抽到的汞含量超标的鱼的条数.以此15条鱼的样本数据来估计这批数量很大的鱼的总体数据,求ξ的分布列及数学期望ξE .
17.(本小题满分14分)
如图,正三棱柱111C B A ABC -的底面边长是2,侧棱长是3,D 是AC 的中点. (Ⅰ)求证:BD A C B 11//平面; (Ⅱ)求二面角A BD A --1的大小;
(Ⅲ)在线段1AA 上是否存在一点E ,使得BD A E C B 111平面平面⊥,若存在, 求出AE 的长;若不存在,说明理由.
18.(本小题满分13分)
设函数
2
()ln ()f x x ax x a =+-∈R . (Ⅰ)若1a =,求函数
()
f x 的单调区间;
(Ⅱ)若函数()f x 在区间(01],
上是减函数,求实数a 的取值范围; (Ⅲ)过坐标原点O 作曲线)(x f y =的切线,证明:切点的横坐标为1. 0 1235567889 1
35567 A 1
A
1
B
1C
C
D B 罗非鱼的汞含量(ppm )
19.(本小题满分14分)
给定椭圆C :22
2
21(0)x y a b a b +=>>,称圆心在原点O ,半径为22a b +的圆是椭圆C 的“准圆”.若
椭圆C 的一个焦点为(20)F ,
,其短轴上的一个端点到F 的距离为3. (Ⅰ)求椭圆C 的方程和其“准圆”方程;
(Ⅱ)点P 是椭圆C 的“准圆”上的动点,过点P 作椭圆的切线12
l l ,交“准圆”于点M N ,.
(ⅰ)当点P 为“准圆”与y 轴正半轴的交点时,求直线12
l l ,的方程并证明
12
l l ⊥;
(ⅱ)求证:线段MN 的长为定值.
20.(本小题满分13分) 对于数列
{}
n a ,把
1
a 作为新数列
{}
n b 的第一项,把
i
a 或
i
a -(234i n = ,,
,,)作为新数列{}
n b 的第
i 项,数列{}n b 称为数列{}n a 的一个生成数列.例如,数列12345,,,,的一个生成数列是12345--,,,,.
已知数列{}n b 为数列1{}()2n n *
∈N 的生成数列,n S 为数列{}
n b 的前n 项和.
(Ⅰ)写出
3
S 的所有可能值;
(Ⅱ)若生成数列{}n b 满足
311
(1)78n n S =-,求数列{}n b 的通项公式; (Ⅲ)证明:对于给定的n *
∈N ,
n
S 的所有可能值组成的集合为
121
{|2}2n n k x x k k *--=
∈≤N ,,.
x
O
y
P
1
l
2
l
M
N。