第十一章 吸声材料与吸声结构
- 格式:ppt
- 大小:940.50 KB
- 文档页数:37
【导语】为了⽅便考⽣及时有效的备考,今天为您精⼼整理了2020年⼀级注册建筑师《建筑物理》考点:吸声材料与吸声结构,希望⼤家进⾏针对性的复习。
如想获取更多注册建筑师考试的模拟题及备考资料,请关注的更新。
2020年⼀级注册建筑师《建筑物理》考点:吸声材料与吸声结构 ⼀、多孔吸声材料 (⼀)材料 玻璃棉,超细玻璃棉,岩棉,矿棉(散状、毡⽚),泡沫塑料,多孔吸声砖等。
海绵、加⽓混凝⼟、聚苯板内部⽓泡是单个闭合的,互不连通,其吸声系数⽐多孔吸声材料⼩得多,是很好的保温材料,但不是多孔吸声材料;拉⽑⽔泥墙⾯表⾯粗糙不平,但没有空隙,吸声很差,不是吸声材料。
其起伏不平的尺度和声波波长相⽐较⼩,不能起扩散反射的作⽤,所以它不是⼀种声学处理,只是⼀种饰⾯做法。
(⼆)吸收频率 中频,⾼频,背后有空⽓层能吸收低频。
(三)影响因素 1.空⽓流阻。
材料两边静压差和空⽓流动速度之⽐称为单位⾯积流阻。
2.孔隙率。
70%~80%。
通常测出材料的厚度,表观密度。
超细玻璃棉表观密度为20~25kg/m3,矿棉120kg/m3。
3.厚度。
厚度增加,中、低频范围吸声系数增加。
⼀般超细玻璃棉厚5~15cm,矿渣棉厚5~10cm。
4.背后条件。
后边留空⽓层与填充同样材料效果近似,使中低频(尤其是对低频)吸声系数增加。
背后空⽓层厚度⼀般为10~20cm。
5.吸收频率。
⼀般⽤5cm厚,吸收中、⾼频。
材料吸声系数可以⽤驻波管法测声波垂直⼊射时的吸声系数,⽤混响室法测⽆规⼊射时的吸声系数。
(四)罩⾯材料 ⾦属、窗纱、纺织品、厚度<0.05mm的塑料薄膜、穿孔率>20%的穿孔板。
⼆、空腔共振吸声结构 (⼀)材料 赫(亥)姆霍兹共振器和穿孔的胶合板,⽯棉⽔泥板,⽯膏板,硬质纤维板,⾦属板。
(⼆)共振频率 (三)穿孔板共振频率 (四)吸收频率 中频,板后放多孔吸声材料能吸收中⾼频,其共振频率向低频转移。
板后有⼤空腔(如吊顶)能增加低频吸收。
第三讲 吸声材料和吸声结构第一节 吸声材料和吸声结构概述一.定义:吸声材料和吸声结构,广泛地应用于音质设计和噪声控制中。
对建筑师来说,把材料和结构的声学特性和其他建筑特性如力学性能、耐火性、吸湿性、外观等结合起来综合考虑,是非常重要的。
通常把材料和结构分成吸声的、或隔声的、或反射的,一方面是按材料分别具有较大的吸声、或较小的透射、或较大的反射,另一方面是按照使用时主要考虑的功能是吸声、或隔声、或反射。
但三种材料和结构没有严格的界限和定义。
吸声材料:材料本身具有吸声特性。
如玻璃棉、岩棉等纤维或多孔材料。
吸声结构:材料本身可以不具有吸声特性,但材料经打孔、开缝等简单的机械加工和表面处理,制成某种结构而产生吸声。
如穿孔FC 板、穿孔铝板吊顶等。
在建筑声环境的设计中,需要综合考虑材料的使用,包括吸声性能以及装饰性、强度、防火、吸湿、加工等多方面,根据具体的使用条件和环境综合分析比较。
二.作用吸声材料最早应用于对听闻音乐和语言有较高要求的建筑物中,如音乐厅,剧院,播音室等,随着人们对居住建筑和工作的声环境质量的要求的提高,吸声材料在一般建筑中也得到了广泛的应用。
三.分类:吸声材料和吸声结构的的种类很多,根据材料的不同,可以分为以下几类吸声材料(结构)多孔吸声材料共振吸声结构特殊吸声结构纤维状吸声材料颗粒状吸声材料泡沫状吸声材料薄板共振结构亥姆霍兹共振吸声器穿孔吸声结构薄膜共振结构吸声尖劈空间吸声体第二节多孔吸声材料一.吸声原理多孔吸声材料中有许多连通的间隙或气泡,声波入射时,声波产生的振动引起小孔或间隙的空气运动,由于与孔壁或纤维表面摩擦和空气的粘滞阻力,一部分声能转变为热能,使声波衰减;其次,小孔中空气与孔壁之间还不断发生热交换,也使声能衰减。
二.吸声特性主要吸收中、高频声三.多孔性吸声材料必须具备以下几个条件:(1)材料内部应有大量的微孔或间隙,而且孔隙应尽量细小且分布均匀;(2)材料内部的微孔必须是向外敞开的,也就是说必须通过材料的表面,使得声波能够从材料表面容易地进入到材料的内部;(3)材料内部的微孔一般是相互连通的,而不是封闭的。
1.吸声材料和吸声结构的分类?①多孔材料,板状材料,穿孔板,成型顶棚吸声板,膜状材料,柔性材料吸声结构:共振吸声结构,包括1。
空腔共振吸声结构,2。
薄膜,薄板共振吸声结构。
其他吸声结构:空间吸声体,强吸声结构,帘幕,洞口,人和家具,空气吸收(空气热传导性,空气的黏滞性和分子的弛豫现象,前两种比第三种的吸收要小得多)。
吸声与隔声有什么区别?吸声量与隔声量如何定义?它们与那些因素有关?答:吸声指声波在传播途径中,声能被传播介质吸收转化为热能的现象。
隔声指防止声波从构件一侧传向另一侧。
吸声量:指材料的吸声面积与其吸声系数的乘积,单位为m2。
隔声量:指建筑构件的传声损失,,单位为(dB)。
它们主要与构件的透射系数有关,和构件的反射系数和吸声系数有关。
2. 衍射的定义:当声波在传播过程中遇到障碍物的起伏尺寸与波长大小接近或更小时,将不会形成定向反射,而是声能散播在空间中,这种现象称为散射,或衍射。
影响因素:障碍物的尺寸或缝孔的宽度与波长接近或更小时,才能观察到明显的衍射现象,不是决定衍射能否发生的条件,仅是使衍射现象明显表现的条件,波长越大,越容易发生衍射现象。
3.解释“波阵面”的概念,在建筑声学中引入“声线”有什么作用?答:声波从声源发出,在某一介质内向某一方向传播,在同一时刻,声波到达空间各点的包迹面称为“波阵面”,或“波前”。
“声线”主要是可以较方便地表示出声音的传播方向;利用作图法确定反射板位置和尺寸。
波阵面为平面的称为“平面波”,波阵面为球面的称为“球面波”。
4.什么是等响线?从等响线图说明人耳对声音的感受特性。
答:等响线是指响度相同的点所组成的频谱特征曲线,从等响线图可知:1.人耳在高声压级下,对声音频率的响应较一致;2.在低声压级下,人耳对于低于1000Hz的声音和高于4000Hz的声音较不敏感,而对1000Hz~ 4000Hz的声音感受最为敏锐;3.在同一频率下,声压级提高10dB,相对响度提高一倍。
常用的吸声材料和吸声结构一、吸声材料和吸声结构在没有进行声学处理的房间里,人们听到的声音,除了由声源直接通过空气传来的直达声之外,还有由房间的墙面、顶棚、地面以及其它设备经多次反射而来的反射声,即混响声(reverberant sound)。
由于混响声的叠加作用,往往能使声音强度提高10多分贝。
如在房间的内壁及空间装设吸声结构,则当声波投射到这些结构表面后,部分声能即被吸收,这样就能使反射声减少,总的声音强度也就降低。
这种利用吸声材料和吸声结构来降低室内噪声的降噪技术,称为吸声(sound absorption)。
1.吸声材料材料的吸声性能常用吸声系数(absorption coefficient)来表示。
声波入射到材料表面时,被材料吸收的声能与入射声能之比称为吸声系数,用α表示。
一般材料的吸声系数在0.01~1.00之间。
其值愈大,表明材料的吸声效果愈好。
材料的吸声系数大小与材料的物理性质、声波频率及声波入射角度等有关。
通常把吸声系数α>0.2的材料,称为吸声材料(absorptive material)。
吸声材料不仅是吸声减噪必用的材料,而且也是制造隔声罩、阻性消声器或阻抗复合式消声器所不可缺少的。
多孔吸声材料的吸声效果较好,是应用最普遍的吸声材料。
它分纤维型、泡沫型和颗粒型三种类型。
纤维型多孔吸声材料有玻璃纤维、矿渣棉、毛毡、苷蔗纤维、木丝板等。
泡沫型吸声材料有聚氨基甲醋酸泡沫塑料等。
颗粒型吸声材料有膨胀珍珠岩和微孔吸声砖等。
表10-2如前所述,多孔吸声材料对于高频声有较好的吸声能力,但对低频声的吸声能力较差。
为了解决低频声的吸收问题,在实践中人们利用共振原理制成了一些吸声结构(absorptive structure)。
常用的吸声结构有薄板共振吸声结构、穿孔板共振吸声结构和微穿孔板吸声结构。
(1)薄板共振吸声结构。
把不穿孔的薄板(如金属板、胶合板、塑料板等)周边固定在框架上,背后留有一定厚度的空气层,这就构成了薄板共振吸声结构。
吸声材料及其原理吸声机理吸声材料按吸声机理分为:①靠从表面至内部许多细小的敞开孔道使声波衰减的多孔材料,以吸收中高频声波为主,有纤维状聚集组织的各种有机或无机纤维及其制品以及多孔结构的开孔型泡沫塑料和膨胀珍珠岩制品。
②靠共振作用吸声的柔性材料(如闭孔型泡沫塑料,吸收中频)、膜状材料(如塑料膜或布、帆布、漆布和人造革,吸收低中频)、板状材料(如胶合板、硬质纤维板、石棉水泥板和石膏板,吸收低频)和穿孔板(各种板状材料或金属板上打孔而制得,吸收中频)。
以上材料复合使用,可扩大吸声范围,提高吸声系数。
用装饰吸声板贴壁或吊顶,多孔材料和穿孔板或膜状材料组合装于墙面,甚至采用浮云式悬挂,都可改善室内音质,控制噪声。
多孔材料除吸收空气声外,还能减弱固体声和空室气声所引起的振动。
将多孔材料填入各种板状材料组成的复合结构内,可提高隔声能力并减轻结构重量。
对入射声能有吸收作用的材料。
吸声材料主要用于控制和调整室内的混响时间,消除回声,以改善室内的听闻条件;用于降低喧闹场所的噪声,以改善生活环境和劳动条件;还广泛用于降低通风空调管道的噪声。
吸声材料按其物理性能和吸声方式可分为多孔性吸声材料和共振吸声结构两大类。
后者包括单个共振器、穿孔板共振吸声结构、薄板吸声结构和柔顺材料等。
材料选用选用吸声材料,首先应从吸声特性方面来确定合乎要求的材料,同时还要结合防火、防潮、防蛀、强度、外观、建筑内部装修等要求,综合考虑进行选择。
吸声原理声音源于物体的振动,它引起邻近空气的振动而形成声波,并在空气介质中向四周传播。
当声音传入构件材料表面时,声能一部分被反射,一部分穿透材料,还有一部由于构件材料的振动或声音在其中传播时与周围介质摩擦,由声能转化成热能,声能被损耗,即通常所说声音被材料吸收。
吸声系数材料的吸声性能常用吸声系数妶表示。
入射到材料表面的声波,一部分被反射,一部分透入材料内部而被吸收。
被材料吸收的声能与入射声能的比值,称为吸声系数。
五大类吸声材料及吸声结构简介五大类吸声材料及吸声结构简介1、多孔吸声材料(1)多孔吸声材料的类型包括:有机纤维材料、麻棉毛毡、无机纤维材料、玻璃棉、岩棉、矿棉,脲醛泡沫塑料,氨基甲酸脂泡沫塑料等。
聚氯乙烯和聚苯乙烯泡沫塑料不属于多孔材料,用于防震,隔热材料较适宜。
(2)构造特征:材料内部应有大量的微孔和间隙,而且这些微孔应尽可能细小并在材料内部是均匀分布的。
材料内部的微孔应该是互相贯通的,而不是密闭的,单独的气泡和密闭间隙不起吸声作用。
微孔向外敞开,使声波易于进入微孔内。
(3)吸声特性主要是高频,影响吸声性能的因素主要是材料的流阻,孔隙,结构因素、厚度、容重、背后条件的影响。
a.材料厚度的影响任何一种多孔材料的吸声系数,一般随着厚度的增加而提高其低频的吸声效果,而对高频影响不大。
但材料厚度增加到一定程度后,吸声效果的提高就不明显了,所以为了提高材料的吸声性能而无限制地增加厚度是不适宜的。
常用的多孔材料的厚度为: 玻璃棉,矿棉50—150mm毛毡4---5mm泡沫塑料25—50mmb.材料容重的影响改变材料的容重可以间接控制材料内部微空尺寸。
一般来讲,多孔材料容重的适当增加,意味着微孔的减少,能使低频吸声效果有所提高,但高频吸声性能却可能下降。
合理选择吸声材料的容重对求得最佳的吸声效果是十分重要的,容重过大或过小都会对多孔材料的吸声性能产生不利的影响。
c.背后空气层的影响多空材料背后有无空气层,对于吸声特性有重要影响。
大部分纤维板状多孔材料都是周边固定在龙骨上,离墙50—150mm距离安装。
材料空气层的作用相当于增加了材料的厚度,所以它的吸声特性随着空气层厚度增加而提高,当材料离墙面安装的距离(既空气层的厚度)等于1/4波长的奇数倍时,可获得最大的吸声系数;当空气层的厚度等于1/2波长的整数倍时,吸声系数最小。
d.材料表面装饰处理的影响大多数吸声材料在使用时常常需要进行表面装饰处理.常见的方法有:表面钻孔开槽,粉刷油漆,利用织布,穿孔板和塑料薄膜等。