3×16m预应力空心板简支板桥计算书(1)
- 格式:doc
- 大小:3.76 MB
- 文档页数:98
上构计算横向分布系数计算结果如下:梁号 1 2 3 4 5 6 7 8 横向分布系数0.342 0.287 0.281 0.264 0.264 0.282 0.288 0.343一、中梁计算:1、计算模式:本桥采用通用桥梁软件《桥梁博士》进行分析计算,全桥共划分为36个节点,35个单元,单元划分如下图所示:单元划分示意图模型三维图形2、结构内力图:结构计算弯矩包络图及剪力包络图如下图所示:弯矩包络图剪力包络图3、承载能力极限状态验算:(1)结构抗弯强度验算:结构外力产生的弯矩与结构抗力对比图如下图所示:由上图可知,结构所有单元结构抗力均大于外力产生的弯矩,故结构抗弯强度满足规范要求。
(2)抗剪承载力验算:由剪力包络图可知,端部截面剪力最大值为401KN,跨中截面剪力最大值为329KN,因此对端部截面和跨中截面抗剪承载能力分别进行验算,验算结果如下:端部截面:由上表可知,端部截面抗剪承载能力满足规范要求。
跨中截面由上表可知,跨中截面抗剪承载能力满足规范要求。
4、正常使用极限状态验算:(1)结构在正常使用状态短期组合下,上下缘应力包络图如下图所示:上缘应力包络图下缘应力包络图(2)长期效应组合下结构应力如下表所示:单元号节点号上缘最大上缘最小下缘最大下缘最小最大主压最大主拉1 1 0 0 0 0 0 -1.29E-161 2 2.65 2.45 4.86 4.54 4.86 -0.1642 2 2.65 2.45 4.86 4.54 4.86 -0.0122 3 2.46 2.18 5.15 4.61 5.15 -0.01523 3 2.46 2.18 5.15 4.61 5.15 -0.01523 4 2.24 1.88 5.49 4.76 5.49 -0.01744 4 2.24 1.88 5.49 4.76 5.49 -0.01744 5 3.32 2.84 6.78 5.84 6.78 -0.03485 5 3.32 2.84 6.78 5.84 6.78 -0.0348由上表可知,结构在长期作用组合下,均为出现拉应力,满足规范要求。
第Ⅰ部分上部结构I、设计资料一、设计标准及材料标准跨径:16m 计算跨径:15.56m桥面净宽: 9+2×0.5m 设计荷载:汽—20,挂—100 材料:预应力钢筋:Φ15.24(7Φ5.0)钢铰线,后张法施工。
非预应力钢筋:Ⅰ钢筋和Ⅱ级螺纹钢筋混凝土:空心板为R40号,空心板铰逢为R30号;桥面铺装为R 30号沥青砼;栏杆、人行道采用R30号砼;二、构造与尺寸50 900/2图1-1 桥梁横断面(尺寸单位:cm)三、设计依据与参考书《结构设计原理》叶见曙主编,人民交通出版社《桥梁计算示例集》(梁桥)易建国主编,人民交通出版社《桥梁工程》(1985)姚玲森主编,人民交通出版社《公路桥涵标准图》公路桥涵标准图编制组,人民交通出版社《公路桥涵设计规范(合订本)》(JTJ021-85)人民交通出版社《公路砖石及混凝土桥涵设计规范》(JTJ022-85)2II 、上部结构的设计过程一、毛截面面积计算(详见图1-2)A h =99×90-30×63-∏×31.52-(3×3+7×7+12×7) =4688.28cm 2 (一)毛截面重心位置全截面静距:对称部分抵消,除去下部3cm 后1/2板高静距 S=2[5×7/2(2/3×7+14.5+14)+3×8×(21+14.5+8/2)+2×8/2(14.5+21+8/3)]+99×3×(43.5+3/2) =3667.5+13365 =17032.5cm 3铰面积:A 铰=2×(1/2×7×5+1/2×2×8+3×8)=99cm 2 毛面积的重心及位置为:d h =17032.5/4688.28=3.63cm (向下)则重心距下边缘的距离为:14+18+14.5-3.63=42.87cm 距上边缘距离为:90-42.87=47.13cm 铰重心对除去下部3cm 后1/2板高的距离:d 铰=3667.5/99=37.05cm(二)毛截面对重心的惯距每个挖空半圆(图1-3)面积:A ′=1/2×∏×R 2=1/2×3.14×182=508.68cm2 重心:y=4R/(3×∏)=4×18/(3×3.14)=7.64cmO y O I I图1-3半圆对自身惯距:I=II-I-A′y2=3.14×184/8-508.68×7.642=41203.08-29691.45=11511.63cm4由此可得:Ih=99×903/12+99×90×3.632-2[36×293/12+36×29×3.632]-4×11511.63-2×508.68×[(7.64+29/2+3.63)2+(7.64+29/2―3.63)2]―2(1/12×83×3+1/36×2×83+1×5×73/36)-99×(37.05+3.63)2=.21cm4二、内力计算(一)、永久荷载(恒载)作用下1.桥面系安全带、栏杆:单侧为6.25kN/m桥面铺装:2×(0.06+0.15)/2×4.5×23=21.74 kN/mg1= (6.25×2+21.74)/10=3.43 kN/m2.铰和接缝:g2=(99+1×90)×10-4×24=0.45 kN/m3.行车道板:g3=4688.28×10-4×25=11.72 kN/m恒载总重力:g=g1+g2+g3=3.43+0.45+11.72=15.6kN/m恒载内力计算见表1-1。
16m 预应力混凝土空心板计算书1 计算依据与基础资料1.1 标准及规范1.1.1 标准∙跨径:桥梁标准跨径16m ;计算跨径(斜交25°、简支)15.30m ;预制板长15.96m∙设计荷载:城-A 级,人群荷载3.5kN/m 2∙桥面宽度:全宽50.5m桥梁半幅宽度:3.75m (人行道)+5.0m (非机动车道)+3.5m (行车道)+12m (机动车道)+1m (中央分隔带)=25.25m 。
∙桥梁安全等级为二级,环境条件Ⅱ类1.1.2 规范∙《公路工程技术标准》JTG B01-2003∙《公路桥梁设计通用规范》JTG D60-2004(简称《通规》)∙《公路钢筋混凝土及预应力混凝土桥涵设计规范》JTG D62-2004(简称《预规》)1.1.3 参考资料∙《公路桥涵设计手册》桥梁上册(人民交通出版社2004.3)1.2 主要材料1) 混凝土:预制板及铰缝为C50,10cm C50防水混凝土铺装层,9cm 沥青混凝土。
2) 预应力钢绞线:采用钢绞线15.2s φ,1860pk f Mpa =,51.9510p E Mpa =⨯3)普通钢筋:采用HRB335,335sk f Mpa =,52.0104S E Mpa =⨯1.3 设计要点1)本桥按后张法部分预应力混凝土A 类构件设计,桥面10cm C50防水混凝土铺装层和9cm 沥青混凝土不考虑参与截面组合作用;2)预应力张拉控制应力值0.75con pk f σ=,混凝土强度达到90%时才允许张拉预应力钢筋;3)按《预规》计算混凝土收缩、徐变效应;4)计算混凝土收缩、徐变引起的预应力损失时传力锚固龄期为10d;5)环境平均相对湿度RH=75%;6)存梁时间为90d 。
2 横断面布置2.1 横断面布置图(半幅桥面 单位:cm )2.2 预制板截面尺寸 (未含10cm C50防水混凝土铺装层)单位:mm3 汽车荷载横向分布系数、冲击系数的计算3.1 汽车荷载、人群荷载横向分布系数计算3.1.1 跨中横向分布系数本桥基本结构是横向铰接受力,因此,汽车荷载横向分布系数按横断面空心板铰接计算。
1.工程概况明华东港桥位于六灶镇明华东港上,全长16m,上部结构采用16m先张法预应力空心板梁。
桥面宽12.6m,设计荷载为公路Ⅱ级。
图1 桥梁横断面图(单位:cm)2.设计依据和内容2.1设计依据2.1.12.1.22.2设计验算内容2.2.1 上部结构正常使用状态正截面抗裂验算2.2.2 上部结构结构刚度验算2.2.3 上部结构承载能力极限状态正截面强度验算2.2.4 下部结构桥台桩基验算3.技术标准3.1技术标准3.1.1道路等级:3.1.2桥梁宽度:全桥总宽12.6m,包括0.3m栏杆+12.0m机动车道+0.3m栏杆。
3.1.3行车道数:3车道;3.1.6荷载标准:公路Ⅱ级,冲击系数取0.33.2设计规范3.2.1《公路工程技术标准》3.2.2《公路桥涵设计通用规范》(JTG D60-2004)3.2.3《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTG D62-2004)3.2.4《公路桥涵施工技术规范》(JTJ 041-2000)4.设计参数4.1主要材料及其设计参数4.1.1 混凝土各项力学指标见表1表1 混凝土材料力学性质表4.1.2普通钢筋采用Ⅰ、Ⅱ级钢筋,直径:8~32mm弹性模量:Ⅰ级210000 Mp/Ⅱ级200000 Mp标准强度:Ⅰ级240 Mpa/Ⅱ级340 Mpa热膨胀系数:0.0000124.1.3预应力钢筋其主要力学性能指标列表如下表2~3。
表2预应力钢筋力学性能指标表表3预应力钢筋计算参数表4.2设计荷载取值4.2.1恒载4.2.1.1一期恒载一期恒载:主梁重量按设计尺寸计,混凝土容重取25KN/m3。
4.2.1.2二期恒载二期恒载为桥面防撞护栏、分隔带护栏等及桥面铺装。
其中:桥面铺装为9㎝钢筋混凝土+4cm沥青混凝土,混凝土容重按25KN/m3计,沥青混凝土按2325KN/m3计表2 二期恒载计算表4.2.2活载计算荷载:公路Ⅱ级,三车道加载,横向分布系数采用铰接板法计算,计算结果见下表表3 横向分布系数I计算附:抗扭惯矩T参照《桥梁工程》,略去中间肋板,把截面简化成下图计算空心板的抗扭刚度:T I ==-⨯+-⨯-⨯-⨯=+08.0)1.099.0(21.0)08.082.0(2)08.082.0()1.099.0(4224222122t b t h h b 0.04683M45. 上部结构计算概述 5.1计算方法设计计算采用采用《桥梁博士》计算。
引言概述:正文内容:一、预应力空心板的材料特性1.钢材特性a.钢材的强度和弹性模量b.钢材的弯曲能力和抗剪能力c.钢材的腹板厚度和孔洞布局2.预应力混凝土特性a.混凝土的强度和弹性模量b.预应力混凝土的预应力水平和应力分布c.预应力混凝土的收缩和膨胀性能二、预应力空心板的设计原理1.预应力设计原理a.确定预应力水平和预应力布置b.预应力产生的应变和应力分布c.预应力的优点和限制2.空心板设计原理a.空心板的横截面形状和尺寸b.空心板的受力分析和力学性能c.空心板的弹性和塑性设计三、预应力空心板的计算方法1.荷载计算方法a.自重荷载和活载荷载计算b.温度荷载和振动荷载计算c.预应力荷载和腹板压力计算2.弯曲计算方法a.弯曲截面的确定和计算b.弯曲应力和变形的计算c.弯曲极限状态和耐久性设计3.剪力计算方法a.剪力分布和计算模型b.剪力传递和抗剪设计c.剪切极限状态和抗震性能四、预应力空心板的验算步骤1.自重和活载验算a.自重和活载荷载的验算b.腹板和翼缘板的弯曲验算c.底板和侧板的剪力验算2.温度和振动验算a.温度荷载和线膨胀的验算b.振动荷载和自激振动的验算c.预应力荷载和局部效应的验算3.抗剪验算a.抗剪承载力和剪应力的验算b.抗剪裂缝和剪切滑移的验算c.抗剪极限状态和验算要求五、总结预应力空心板计算书是确保工程结构强度和稳定性的重要文件,在本文中,我们详细介绍了预应力空心板的材料特性、设计原理、计算方法和验算步骤。
通过合理的设计和计算,能够保证预应力空心板在使用过程中的安全性和可靠性。
同时,我们还强调了预应力空心板设计的注意事项和局限性,以便工程师在实际应用中进行合理选择。
通过本文的解析,读者将了解到预应力空心板计算过程中需要考虑的关键因素,并获得在实际工程中进行预应力空心板设计的指导。
对于工程领域相关从业人员和学生来说,这将是一份非常实用和有益的参考文献。
(1300字)引言概述:预应力空心板是一种常用的混凝土结构构件,具有轻质、高强、刚性好等特点,广泛应用于建筑工程中。
毕业设计(论文)-3-16m装配式预应力混凝土简支空心板桥目录 第一章 概述 .....................................................................................................................................................................................1 第二章 方案比较 (1)2.1方案一:预应力混凝土空心板桥 (1)2.2方案二:预应力混凝土连续箱型梁桥 (2)第一部分 上部结构 (2)第三章 桥梁设计 (3)3.1桥梁设计资料 (3)3.1.1设计基本资料 (3)3.2桥面总体布置 (4)3.3构造型式及尺寸选定 (4)3.3.1构造形式及尺寸 (4)3.3.2截面抗弯惯性矩计算 (6)第四章 作用效应计算 (7)4.1永久作用效应计算 ............................................................ 7 4.1.1空心板自重:m kN A g h /525.142510581041=⨯⨯=⋅=-γ(边板重15.343KN/m )。
............................................ 7 4.1.2桥面铺装、栏杆及铰接缝重力计算 .......................... 7 4.1.3恒载内力计算 .. (8)4.2基本可变作用效应计算 (9)4.2.1基本可变作用横向分布系数 (9)4.2.2杠杆法计算梁端横向分布系数 (12)4.2.3活载内力计算 (13)4.3.1按承载能力极限状态组合(汽1自重4.12.1S S S mi ud +=∑=) ...... 17 4.3.2正常使用状态长期效应组合(()不计冲击力汽1自重4.0S S S m i sd +=∑=) 174.3.3正常使用状态短期效应组合 (()不计冲击力汽1自重7.0S S S m i sd +=∑=) 17 4.3.4弹性阶段截面应力计算标准值效应组合(汽1自重S S S m i sd +=∑=) 18第五章 预应力钢筋设计 (18)5.1预应力钢筋数量的估算 (18)5.2预应力钢筋的布置 (20)5.3普通钢筋数量的估算及布置 (20)5.4换算截面几何特性计算 (23)5.4.1换算截面面积A 0 (23)5.4.2换算截面重心位置 (24)5.4.3换算截面惯性矩0I (24)5.4.4换算截面弹性抵抗矩 (24)5.5承载能力极限状态计算 (25)5.5.1跨中截面正截面抗弯承载力计算 (25)5.6斜截面抗剪承载力计算 (26)5.6.1截面抗剪强度上、下限复核 (26)5.6.2斜截面抗剪承载力计算 (28)第六章 预应力损失计算 (30)6.1锚具变形、回缩引起的应力损失2l σ (30)6.2加热养护引起的温度损失3l σ (30)6.3混凝土弹性压缩引起的预应力损失4l σ (30)6.4钢筋松弛引起的应力损失5l σ (31)6.5混凝土收缩、徐变引起的预应力损失6l σ (32)6.6预应力损失组合 (35)第七章 验算 (35)7.1正常使用极限状态计算 (35)7.1.1正截面抗裂性验算 (35)7.1.2斜截面抗裂性验算 (37)7.2变形计算 (40)7.2.1正常使用阶段的挠度计算 (40)7.2.2预加力引起的反拱度计算及预拱度的设置 (41)7.3持久状态应力验算 (43)7.4短暂状态应力验算 (45)第八章 最小配筋率复核 (51)第九章 铰缝的抗剪强度验算 (52)9.1铰缝剪力影响线 (52)9.2作用在铰缝上的荷载计算 (54)9.2.1铰缝剪力计算 (54)9.2.2铰缝抗剪强度计算 (55)第十章、支座计算 (55)10.1选定支座的平面尺寸 (56)10.2确定支座的厚度 (56)10.3 验算支座的偏转 (57)10.4 验算支座的稳定性 (58)10.5支座的选配 (59)第二部分 下部结构 (59)第十一章 设计资料 (59)第十二章 盖梁计算 (60)12.1构造型式 (60)12.2荷载计算 (60)12.2.1上部结构永久荷载见表4-1 (60)12.2.2盖梁自重及作用效应计算(计算结果见表2-2) (61)12.2.3可变荷载计算 (62)12.2.4双柱反力G计算 (68)12.3内力计算 (69)12.3.1弯矩计算 (69)12.3.2相应与最大弯矩时的剪力计算 (69)12.3.3盖梁内力汇总 (70)第十三章桥梁墩柱计算 (70)13.1荷载计算 (71)13.1.1恒载计算 (71)13.1.2汽车荷载计算 (71)13.1.3双柱反力横向分布计算 (71)13.1.4荷载组合 (72)第十四章钻孔桩计算 (73)14.1荷载计算 (73)14.2桩长计算: (74)3-16m装配式预应力混凝土简支空心板桥第一章概述50年来,新中国桥梁建设取得了突飞猛进的发展,公路铁路两用桥向着大跨度、重荷载、高时速方向发展。
16m后张法预应力混凝土空心板计算书16m简支装配式后张法预应力混凝土空心板配束计算1.设计依据及相关资料1.1计算项目采用的标准和规范1.《公路工程技术标准》(JTG B01-2003)2.《公路桥涵设计通用规范》(JTG D60-2004)3.《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTG D62-2004)1.2参与计算的材料及其强度指标1.3 荷载等级汽车荷载计冲击力,组合值还应乘的结构重要性系数1.1(2)正常使用极限状态作用短期效应组合:永久作用+0.7×汽车荷载+0.8×温度梯度+1.0×均匀温度作用作用长期效应组合:永久作用+0.4×汽车+0.8×温度梯度+1.0×均匀温度作用1.5 计算模式、重要性系数按简支结构计算,结构重要性系数为1.1。
1.5 总体项目组、专家组指导意见1.在计算收缩徐变时,考虑存梁期为90天。
2.采用预应力A类构件,考虑现浇层厚度的一半混凝土参与结构受力。
2.计算2.1 计算模式图、所采用软件1预应力混凝土公路桥梁通用图设计成套技术16m简支装配式后张法预应力混凝土空心板计算书采用桥梁博士V3.1.0计算,计算共分5个阶段,即4个施工阶段和1个使用阶段,各阶段情况见表2.1,各施工阶段计算简图见图2.1 图2.1 施工阶段计算简图2.2 计算结果及结果分析2.2.1中板计算结果及结果分析1.持久状况承载能力极限状态验算(1)正截面抗弯承载能力极限计算正截面抗弯承载能力极限计算见图2.2:2预应力混凝土公路桥梁通用图设计成套技术16m简支装配式后张法预应力混凝土空心板计算书4.43.4由图2.2可以看出,构件承载力设计值大于作用效应的组合设计值,正截面承载能力2.42.42.32.32.02.23.174.93.1154.962.01.71234344.34.44.22.253.75.64.65.66.43.881.74.27.67.47.4图2.2 7.1正截面承载能力极限计算结果7.16.4 4.391.13.84.6100.74.7110.64.6120.84.3131.13.85.63.8141.74.24.6164.34.2173.75.6181920213.75.2极限状态满足《公路钢筋混凝土及预应力混凝土桥涵设计规范》中5.1.5款。
台商投资区奥特莱斯大道工程后法16m空心板梁预应力拉方案及计算书中铁二局奥特莱斯大道项目部2014-6-18目录一、拉条件 (1)二、拉方法 (1)三、拉程序 (1)四、锚具、钢绞线 (1)五、钢绞线的穿束 (1)六、千斤顶、油表 (1)七、拉操作 (2)八、实际伸长量的计算和测量 (2)九、伸长率的计算 (2)十、预应力钢束的封头 (2)十一、施加预应力的注意事项 (2)十二、根据标定报告计算出压力表读数和拉力对照表 (2)十三、钢绞线伸长量计算 (5)十四、孔道压浆 (7)十五、安全措施 (7)十六、预应力施工人员和机具统计表 (8)后法16m 空心板梁预应力拉方案及计算书一、拉条件砼强度达到设计强度100%以上,并且混凝土龄期不小于14d ,方可拉。
二、拉方法所有钢绞线均采用两端对称拉,拉采用以拉力控制为主,以伸长量做校验,实际伸长量与理论伸长量的误差控制在6%以。
如发现伸长量异常应停止拉,查明原因。
三、拉程序0→初应力(10%)→20%应力→1.0应力(持荷2min )后锚固,拉顺序为: 16.0m(h=0.8m)简支梁拉顺序为:左N1→右 N2→右N1→左N2, 钢束应对称交错逐步加载拉;四、锚具、钢绞线本工程采用YM15系列锚具。
钢绞线采用15.2mm 钢绞线。
锚具和钢绞线均由厂家出具产品检验书,并送有关检测单位进行效验。
五、钢绞线的穿束钢绞线采用人工编束后,由人工进行穿入,钢绞线采用切断机切断。
预应力钢束明细表,如下:六、千斤顶、油表均经有关检测单位标定,千斤顶的工作架由钢管焊接而成,升降采用倒链进行抬升。
七、拉操作千斤顶拉进油升压必须缓慢、均匀、平稳,回油降压时应缓慢松开油阀,并使油缸回程到底。
梁端拉工每拉到整数时举手示意保持两端千斤顶力争同步工作。
八、实际伸长量的计算和测量初应力数值到达后,应在预应力钢束的两端精确的标以记号,预应力钢束的伸长量从记号起量,拉力和伸长量的读数应在拉过程中分阶段读出。
16m预应力混凝土空心板计算书1 计算依据与基础资料1.1 标准及规范1.1.1 标准•跨径:桥梁标准跨径16m;计算跨径(斜交25°、简支)15.30m;预制板长15.96m•设计荷载:城-A级,人群荷载3.5kN/m2•桥面宽度:全宽50.5m桥梁半幅宽度:3.75m(人行道)+5.0m(非机动车道)+3.5m (行车道)+12m(机动车道)+1m(中央分隔带)=25.25m。
•桥梁安全等级为二级,环境条件Ⅱ类1.1.2 规范•《公路工程技术标准》JTG B01-2003•《公路桥梁设计通用规范》JTG D60-2004(简称《通规》)•《公路钢筋混凝土及预应力混凝土桥涵设计规范》JTG D62-2004(简称《预规》)1.1.3 参考资料•《公路桥涵设计手册》桥梁上册(人民交通出版社2004.3)1.2 主要材料1)混凝土:预制板及铰缝为C50,10cm C50防水混凝土铺装层,9cm沥青混凝土。
2) 预应力钢绞线:采用钢绞线15.2s φ,1860pk f Mpa =,51.9510p E Mpa =⨯3)普通钢筋:采用HRB335,335sk f Mpa =,52.0104S E Mpa =⨯1.3 设计要点1)本桥按后张法部分预应力混凝土A 类构件设计,桥面10cm C50防水混凝土铺装层和9cm 沥青混凝土不考虑参与截面组合作用;2)预应力张拉控制应力值0.75con pk f σ=,混凝土强度达到90%时才允许张拉预应力钢筋;3)按《预规》计算混凝土收缩、徐变效应;4)计算混凝土收缩、徐变引起的预应力损失时传力锚固龄期为10d;5)环境平均相对湿度RH=75%;6)存梁时间为90d 。
2 横断面布置2.1 横断面布置图(半幅桥面 单位:cm )2.2 预制板截面尺寸(未含10cm C50防水混凝土铺装层)单位:mm边、中板毛截面几何特性(不含12cm C40防水混凝土铺装层)表2-1板号中板边板几何特性面积()2mA抗弯惯矩()4m I抗弯惯矩()4m I面积()2mA抗弯惯矩()4m I抗弯惯矩()4m I3 汽车荷载横向分布系数、冲击系数的计算3.1 汽车荷载、人群荷载横向分布系数计算3.1.1 跨中横向分布系数本桥基本结构是横向铰接受力,因此,汽车荷载横向分布系数按横断面空心板铰接计算。
16m预应力空心板先张钢绞线控制力及伸长值计算书一、设计要求:全桥共计16m空心板75块,对预应力钢绞线均为如下要求:1、预应力钢绞线(1)预应力钢绞线采用高强度低松弛,公称直径¢=15.2mm的钢绞线。
(2)预应力钢绞线标准F PK=1860Mpa.(3) 张拉控制应力采用0.75f pk=1395Mpa,如果板的反拱过大或板的反拱速度发展较快超过极限30mm,张拉控制应力可适当减少,但不得小于F PK=0.72 F PK=0.72×1860=1339.2 Mpa.2、工具锚设计没有明确要求3预应力钢绞线放张预应力钢绞线放张,本着对称均匀、分次完成,不得骤然放松,放张时梁体砼强度必须达到设计强度的100%,即C40级砼强度。
二、实际进场预应力钢绞线技术指标1、预应力钢绞线为天津同鑫晟工贸有限公司生产,公称直径¢=15.2mm2、预应力钢绞线标准强度F PK=1860Mpa.(见钢绞线力学性能试验报告)3、预应力钢绞线公称直径¢=15.2mm,弹性模量取检测报告中的平均值Ep=(193+191+191)÷3=191.6Gpa(注施工规范Ep=195±10 Gpa)三、16m预应力钢绞线作业长度1、1#张拉台钢绞线作业长度(1)张拉台座长度88m (2)钢梁厚度0.35×2=0.7(3)锚具高度0.045×2=0.09 (4)千斤顶高度0.48作业长度1—4项之和88+0.7+0.09+0.48=89.272#张拉台钢绞线作业长度89.27m3#张拉台钢绞线作业长度89.27m4#张拉台钢绞线作业长度89.27m四、单根钢绞线在控制力下的伸长值1、基本计算公式《公路桥涵施工技术规范》JTJ041—2000 △L=P P L/A P E P2、基本计算参数控制应力δK=1395Mpa,弹性模量EP=191.6Gpa张拉台钢绞线工作长度分别为:L1=89.27米L2=89.27米L3=89.27米L4=89.27米3、控制应力下钢绞线相应伸长值(1)1#张拉台伸长值△L=P P L/A P E P=1395×89.27/191.6×10³=650mm(2)2#张拉台伸长值△L=P P L/A P E P=1395×89.27/191.6×10³=650mm(3)3#张拉台伸长值△L=P P L/A P E P=1395×89.27/191.6×10³=650mm(4)4#张拉台伸长值△L=P P L/A P E P=1395×89.27/191.6×10³=650mm五、单根钢绞线初始张拉控制力1、初应力初应力取张拉控制应力的15%,δ初=0.15Δk=0.15×1395=209.25 Mpa2、初应力下的初始控制力:P初=APδ初=209.25×139=29.086KN六、单根钢绞线在初应力下的伸长值1、基本公式△L= P P L/A P E P=δ初•L/E P2、δ初=0.15Δk=0.15×1395=209.25 Mpaδ初=0.15×1395=209.25 Mpa E P=191.6Gpa 张拉台钢绞线工作长度L1=89.27m L2=89.27m L3=89.27m L4=89.27m3、在初应力作用下钢绞线相应伸长值(1)1#张拉台伸长值△L1=δ初L1/E P=209.25×89.27/191.6=97.49mm(2)2#张拉台伸长值△L1=δ初L1/E P=209.25×89.72/191.6=97.49mm(3)3#张拉台伸长值△L1=δ初L1/E P=209.25×89.72/191.6=97.49mm(4)4#张拉台伸长值△L1=δ初L1/E P=209.25×89.72/191.6=97.49mm七、单根钢绞线实测伸长值计算1、0至初应力时的伸长值4个张拉台中在初应力δK•15%=209.25作用下,钢绞线最大伸长值为97.49mm2、初应力至控制应力的伸长值4座张拉台均为:650-97.49=552.51mm八、单根钢绞线φ15.2张拉结论:1、张拉控制力:P控=δkA P=1395×139=193.905KN2、初应力至最大控制应力伸长值4座张拉台均为:650-97.49=552.51mm3、0至初应力作用下单根钢绞线伸长值:4座张拉台均为:97.49mm九、附表:1、YDE26-200千斤顶与油压表2、预应力钢绞线质量证明书3、钢绞线检测报告十、张拉伸长值测量1、具体施工张拉时,钢绞线从0至初应力时从张拉横梁前做标记,记入拉伸552.51mm3、本次张拉采用双向控制,首先根据上述配套的张拉设备,张拉至压力表理论计算数值,然后根据理论伸长值与实际伸长值相比较,如果理论伸长值与实际伸长值在差值6%以内为合理。
第一章绪论设该桥所在地区为新建工程中的一座3跨桥梁,在经过桥型方案比选后,选用预应力空心板简支梁桥,每跨16米,共3跨。
由于横向尺寸较整,故设计的空心板截面尺寸采用常见的结构形式。
计算书分为上部结构与下部结构两个部分。
上部结构部分包括尺寸拟定、应力分析、横向分布系数的计算、荷载的分布与组合、内力计算、特殊截面的剪力与弯矩的求得、预应力混凝土的配筋、钢筋束的分布、预应力损失的计算与组合、各截面的验算。
下部结构由于学校课程里接触的不多,自己探索着并结合与指导老师的探讨完成。
包括支座的尺寸与计算、支座下盖梁的尺寸拟定,支座反力与弯矩的计算组合、荷载的布置、其配筋与验算、桩的计算与地基承载力的计算。
虽然平时也有过桥梁的课程设计,但我通过做毕业设计中学到了许多书本上学不到的东西。
结合所学专业知识与实际考虑的情况,我完成了这份计算书。
第二章方案设计比选桥梁设计条件:装配式混凝土简支板桥,采用整体现浇或预制施工,预应力采用先张法施工。
本课题拟设计为多跨简支桥梁,方案比选以经济指标为主。
设计荷载:公路-Ⅱ级。
桥面宽度:双向两车道。
通航要求:无通航要求。
2.1 方案一:预应力空心板简支梁桥(3⨯16m)本桥整个桥型方案选定为3⨯16m的预应力空心板简支梁桥,采用3跨等截面等跨布置。
图2-1 方案一总体布置图(单位:cm)设计特点分析:优点:截面形式采用空心板梁,可减轻自重;中小跨径的预应力桥梁通常采用此种形式。
截面采取挖去两个椭圆的方式,挖空体积较大,适用性也较好;与其他类型的桥梁相比,可以降低桥头引道路堤高度和缩短引道的长度,做成装配式板桥的预制构件时,重量不大,架设方便。
另外,属静定结构,且相邻桥孔各自单独受力,故最易设计成各种标准跨径的装配式构件;各跨的构造和尺寸统一,从而能简化施工管理工作,降低施工费用。
缺点:仅使用于跨径较小的桥梁,跨径较大时,板的自重也会增大;在较长桥梁中,只能采用多跨形式,降低桥梁美观性。
2.2 方案二:预应力混凝土T形梁桥(3⨯16m)本桥整个桥型方案选定为(3⨯16m)的预应力混凝土T形梁桥;采用三跨等跨布置。
图2-2 方案二总体布置图(单位:cm)设计特点分析:优点:较空心板能适用于更大跨径的桥梁设计,制造简单,肋内配筋可做成刚劲的钢筋骨架,主梁之间借助间距为4~6m的横隔梁来连接,整体性好,接头也较方便;减少了结构自重,充分利用了扩展的混凝土桥面板的抗压能力,又有效地发挥了集中布置在梁肋下部的受力钢筋的抗拉作用,从而使结构构造与受力性能达到理想的配合。
缺点:桥面板跨径的增大,悬臂翼缘板端部挠度较大,引起桥面接缝处纵向裂缝的可能性也大。
构件重量的增大与截面形状不稳定使运输和架设工作复杂。
2.3 方案三:预应力混凝土连续箱梁桥(3×16m)本桥整个桥型方案选定为(3×16m)的三跨连续梁桥。
图2-3 方案三总体布置图(单位:cm)设计特点分析:优点:箱型截面的整体性较强,能适应各种使用条件,它不但能提供足够的钢筋混凝土受压面积,而且由于截面的闭合特性,抗扭刚度大。
在偏心的活载作用下,各梁肋的受力比较均匀,并且在一定的截面面积下能获得较大的抗弯性能;由于控制弯矩的减小,恒载减小,使桥梁自重更轻,连续梁桥无伸缩缝,行车条件良好。
缺点:连续梁桥,支点处弯矩大,需要箱梁底板适当加厚,以提高必要的受压面积,同时跨中正弯矩较大,应该避免该区段底板过厚而增加恒载弯矩,因此,就有底板厚度按中薄边厚设置的一般规律;对桥基要求也较高,否则任一墩台基础发生不均匀沉陷时,桥跨结构内会产生附加内力。
设计方案的评价和比较要全面考虑上述各项指标,综合分析每一方案的优缺点,最后选择一个符合当前条件的最佳推荐方案,现将三方案的特点列于下表进行对比:表2-1 方案比选对比表综合上述三套方案,并对桥梁设计四大原则进行比较后,选用方案1作为最终设计方案。
第三章预应力空心板上部结构计算3.1 设计资料1、跨径:标准跨径16.00=;k l m计算跨径15.60=。
l m2、桥面净空:m+。
7⨯20.13、设计荷载:汽车荷载:公路-Ⅱ级;人群荷载:20.3mkN。
/4、材料:预应力钢筋71⨯股钢绞线,直径15.2mm;非预应力钢筋采用HRB335钢筋,R235钢筋;空心板块混凝土采用C50;铰缝为C30细集料混凝土;桥面铺装采用10cm C50混凝土+SBS改性沥青涂膜防水层+10cm沥青混凝土。
3.2 构造形式及尺寸选定本桥桥面净空为净m7⨯+,采用9块C50的预制预应力混凝土空心20.1板,每块空心板宽99cm,高70cm,空心板全长15.96m。
采用先张法施工工艺,预应力钢绞线采用1×7股钢绞线,直径15.2mm,截面面积98.72mm。
预应力钢绞线沿板跨长直线布置。
全桥空心板横断面布置如图3-1,每块空心板截面及构造尺寸见图3-2。
图3-1 桥梁横断面(尺寸单位:cm)图3-2 空心板截面构造及尺寸(尺寸单位:cm )3.3 空心板毛截面几何特性计算(一)毛截面面积A22(2.55)775997023816219223359.4()22A cm π+⨯⨯=⨯-⨯⨯-⨯-⨯-⨯= (二)毛截面重心位置全截面对21板高处的静矩: 1231211157721277287728232322531s⎡⎤⨯⨯⨯⨯⨯+⨯⨯⨯⨯+⨯⨯⨯+⎢⎥⎣⎦=板高=2()+()+2()(cm ).5.5.7 铰缝的面积(如右图所示):2=112( 2.55757)87.5()22A cm ⨯⨯+⨯+⨯⨯=铰()则毛截面重心离21板高的距离为:122531.70.754()0.757.5()()3359.4S d cm cm mm A ===≈=板高向下移 铰缝重心对21板高处的距离为:2531.728.9()87.5d cm ==铰(三)空心板毛截面对其重心轴的惯矩I如图3-3,设每个挖空的半圆面积为'A :2211' 3.1438567.188A dπ==⨯⨯=2()cm半圆重心轴:44388.0666 3.14dyπ⨯===⨯()80.6()cm mm=半圆对其自身重心轴O-O的惯矩为I':'440.006860.006863814304I d==⨯=4()cm则空心板毛截面对其重心轴的惯矩I为:332222241049970381699700.752[38160.75]414304 12122567.1[(8.0640.75)(8.0640.75)]87.5(28.930.75) 2341527.588() 2.341510()Icm mm⨯⨯=+⨯⨯-⨯+⨯⨯-⨯-⨯⨯++++--⨯+==⨯(忽略了铰缝对自身重心轴的惯矩)图3-3 挖空半圆构造(尺寸单位:cm)空心板截面的抗扭刚度可简化为下图的单箱截面来近似计算:图3-4 计算抗扭刚度的空心板截面简化图(尺寸单位:cm)2222641041244(998)(908) 3.32910() 3.32910()222(908)2(998)88T b h I cm mm h b t t ⨯-⨯-===⨯=⨯⨯-⨯-++3.4 作用效应计算 3.4.1 永久作用效应计算1.预制板的自重(第一期恒载)1g中板:413359.410258.399(/)g A kN m γ-=⋅=⨯⨯= 边板:413403.1510258.508(/)g A kN m γ-=⋅=⨯⨯= 2.栏杆、人行道、桥面铺装(第三期恒载)2g人行道及栏杆重力参照其他桥梁设计资料,单侧按12.0kN/m 计算。
桥面铺装采用等厚10cm 的沥青混凝土,则全桥宽铺装每延米重力为:)/(1.162371.0m KN =⨯⨯上述自重效应是在各空心板形成整体以后,再加至板桥上的,精确的说由于桥梁横向弯曲变形。
各板分配到的自重效应应是不同的,本桥为计算方便近似按各板平均分担来考虑,则每块空心板分摊到的每延米桥面系重力为:中板: )/(122.391.16262m KN g =+⨯=3.铰缝自重(第二期恒载)3g中板:4225(87.5170)100.378(/)g kN m -=⨯+⨯⨯=边板:210.3780.189(/)2g kN m =⨯=表3-1 空心板每延米总重力g由此可计算出简支空心板永久作用(自重)效应,计算结果见表3-2。
表3-2 永久作用效应汇总表3.4.2 可变作用效应计算桥汽车荷载采用公路-Ⅱ级荷载,它由车道荷载和车辆荷载组成。
《桥规》规定桥梁结构整体计算采用车道荷载。
公路-Ⅱ级的车道荷载由0.7510.57.875(/)k q kN m =⨯=的均布荷载,和(360180)180(15.65)0.75166.8()(505)k P kN ⎡⎤-=+-⨯=⎢⎥-⎣⎦的集中荷载两部分组成。
而在计算剪力效应时,集中荷载标准值k P 应乘以1.2的系数,即计算剪力时' 1.2200.16()k k P P kN ==。
按《桥规》车道荷载的均布荷载应满布于使结构产生最不利效应的同号影响线上,集中荷载标准值只作用于相应影响线中一个最大影响线峰值处。
多车道桥梁上还应考虑多车道折减,车道折减系数 1.0ξ=。
1.汽车荷载横向分布系数计算空心板跨中和l/4处的荷载横向分布系数按铰接板法计算,支点处按杠杆原理法计算。
支点至l/4点之间的荷载横向分布系数按直线内插求得。
(1)跨中及l/4处的荷载横向分布系数计算 首先计算空心板的刚度参数γ:222)(8.5)(4lb I I l bGI EI T T ≈=πγ 由前面计算: 1042.341510()I mm =⨯1043.32910()T I mm =⨯100()1000()b cm mm == 15.6()15600()l m mm ==将以上数据带入,得:6262.34151010005.8()0.01683.3291015600γ⨯=⨯⨯=⨯求得刚度参数后,即可按其查《公路桥涵设计手册—桥梁(上册)》第一篇附录(二)中的3块板的铰接板桥荷载横向分布影响线表,由01.0=γ及0.02γ=内插得到0.0168γ=时1号板至3号板在车道荷载作用下的荷载横向分布影响线值,计算结果列于表3-3中。
由表3-3画出各板的横向分布影响线,并按横向最不利位置布载,求得两车道情况下的各板横向分布系数。
各板横向分布影响线及横向最不利布载见图。
由于桥梁横断面结构对称,所以只需计算1号板至3号板的横向分布影响线坐标值。
表3-3 各板荷载横向分布影响线坐标值表在坐标纸上画出各板的横向分布影响线并按要求布置汽车,然后计算出各板的荷载横向分布系数。
计算如下:1号板:∑=+++==233.0)062.0089.0128.0184.0(2121汽i cq m η人群:∑=+==265.02146.00507.0人i cr m η2号板: ∑=+++==254.0)075.0107.0144.0182.0(2121汽i cq m η人群:∑=+==240.01833.00565.0人i cr m η3号板: ∑=+++==254.0)085.0121.0149.0151.0(2121汽i cq m η人群:∑=+==265.0145.0064.0人i cr m η各板横向分布系数计算结果中数据可以看出:两行汽车荷载作用时,2号板的横向分布系数最不利。