Ceria concentration effect on chemical mechanical polishing of optical glass
- 格式:pdf
- 大小:672.31 KB
- 文档页数:4
环球中医药2023年5月第16卷第5期 Global Traditional Chinese Medicine,May 2023,Vol.16,No.5867 ㊃中药研究㊃基金项目:陕西省科技计划项目(2020SF⁃325)作者单位:710003 西安,陕西省中医药研究院中药研究所(李凡㊁王卫锋㊁李莎莎㊁毛阿娟㊁李芳);西安国际医学中心有限公司药剂室(张景霞);陕西中医药大学药学院[李雅娟(硕士研究生)㊁陈曦(硕士研究生)]作者简介:李凡(1979-),硕士,助理研究员㊂研究方向:中药学㊂E⁃mail:15587646@通信作者:李芳(1973-),博士,主任药师,硕士生导师㊂研究方向:中药学㊂E⁃mail:527811472@陕产附子泡胆工艺的改进和优化研究李凡 张景霞 王卫锋 李莎莎 毛阿娟 李雅娟 陈曦 李芳【摘要】 目的 探讨氯化钙代替胆巴进行陕产附子泡胆的可能性和科学性,并对泡胆工艺参数进行优选㊂方法 以单/双酯型生物碱的含量为指标,进行胆巴溶液浸泡与氯化钙溶液浸泡陕产附子的泡胆工艺平行比较研究,然后以效/毒为评价指标,通过单因素试验结合Box⁃Behnken 响应面法,研究浸泡时间(分别浸泡6㊁12㊁18㊁24㊁30天,)㊁氯化钙浓度(分别加入浓度为10%㊁15%㊁20%㊁25%㊁30%的氯化钙溶液)㊁料液比(分别按料液比为1∶2㊁1∶3㊁1∶4㊁1∶5㊁1∶6加入25%的氯化钙溶液)对泡胆结果的影响,优选最佳泡胆工艺,并进行验证㊂结果 陕产附子分别经过较长时间的胆巴溶液㊁氯化钙溶液浸泡后生物碱总量均有所下降,且下降趋势一致㊂响应面最优工艺为:浸泡时间为19天㊁料液比为1∶4㊁氯化钙浓度为25%㊂验证试验中,平均效/毒为(0.069±0.012),在理论值0.071的误差范围内㊂结论 采用有药典标准的氯化钙代替胆巴作为附子防腐㊁加工和炮制的辅料㊂运用星点设计 效应面法,优选的陕产附子氯化钙泡胆工艺操作简便㊁稳定可靠,可为陕产附子的进一步炮制研究奠定基础㊂【关键词】 附子; 炮制; 胆巴; 氯化钙; 生物碱; Box⁃Behnken 响应面法【中图分类号】 R282.71 【文献标识码】 A doi:10.3969/j.issn.1674⁃1749.2023.05.008Research on the improvement and optimization of the brine soaking technology of Shaanxi ⁃produced crude aconiteLI Fan ,ZHANG Jingxia ,WANG Weifeng ,LI Shasha ,MAO Ajuan ,LI Yajuan ,CHEN Xi ,LI Fang Shaanxi Provincial Traditional Chinese Medicine Research Institute ,Xi ’an 710003,China Corresponding author :LI Fang ,E⁃mail :527811472@【Abstract 】 Objective Discuss the possibility and scientificity of calcium chloride instead of brineto soak Shaanxi ⁃produced crude aconite,and optimize the brine process parameters.Methods Taking thecontent of mono /diester alkaloids as the index,a parallel comparative study was carried out on the bilesoaking process of the aconite produced in Shaanxi province by soaking in bile solution and calcium chloride solution.Then using efficacy /toxicity as the evaluation index,the effects of soaking time(soakingfor 6,12,18,24,and 30days),calcium chloride concentration (adding 10%,15%,20%,25%,30%of calcium chloride),and material⁃to⁃liquid ratio (add 25%calcium chloride solution according to the material⁃to⁃liquid ratio of 1∶2,1∶3,1∶4,1∶5,1∶6respectively)on the soaking process were studied by the single factor test and Box⁃Behnken response surface methodology,and the soaking process was optimized and verified.Results The total amount of alkaloids of aconite produced in Shaanxi was decreased after being soaked in brine solution and calcium chloride solution for a long time,and the downward trend was consistent.The optimal soaking process was as follows:the soaking time was 19days,the material⁃to⁃liquid ratio was 1∶4,and the calcium chloride concentration was 25%.In the verification test,the average effect /toxicity was (0.069±0.012),which was within the error range of the theoreticalvalue of 0.071.Conclusion Calcium chloride with pharmacopoeia standards can be used instead of brine868 环球中医药2023年5月第16卷第5期 Global Traditional Chinese Medicine,May2023,Vol.16,No.5 as auxiliary materials for anti⁃corrosion and processing of crude ing the star⁃point design⁃response surface method,the optimized aconite calcium chloride soaking process is simple,stable andreliable,which can lay the foundation for the further research on aconite.【Key words】 Crude aconite; Processing technology; Brine; Calcium chloride; Alkaloids; Box⁃Behnken response surface methodology 附子为毛茛科植物乌头Aconitum carmichaelii Debx.的子根的加工品,始载于‘神农本草经“,味辛,甘,性大热,有毒㊂具有回阳救逆㊁补火助阳㊁散寒止痛之功[1]㊂附子为临床常用中药之一,陕西汉中是附子的原产区和主产区之一,种植历史悠久,产量大,并于2009年获得国家地理标志产品保护㊂附子作为毒性药材的代表,其炮制研究引起了广泛关注㊂自1963年起,附子在每版药典均有收载,多以炮制品入药,现代附子饮片市场主流为黑顺片等,现代部颁及药典标准方中运用的也有黑顺片等规格㊂法定标准中虽然对附子的炮制方法进行了规定,以黑顺片为例,炮制过程需经过泡胆㊁煮㊁浸漂㊁染色㊁蒸㊁晒(烘干)等环节,但其炮制工艺仍停留在传统的经验控制水平,没有明确的工艺参数,不同的操作者甚至同一操作者不同批次的加工,都无法保障黑顺片炮制加工工艺的稳定性及均一性,从而影响饮片的质量[2⁃3]㊂泡胆是黑顺片产地加工炮制的关键环节之一,胆巴的主要目的是为了防止附子腐烂,利于贮存㊂胆巴称卤水,是制盐工业的副产物,是老胆水经蒸发浓缩而凝固成型,其主要成分以氯化钙㊁氯化镁为主,能凝固蛋白质而具有防腐作用,对胃㊁皮肤㊁食管也具有腐蚀作用,而镁离子被吸收后能抑制心血管和神经系统,对人具有毒性[4],且胆巴无法定标准㊂本团队前期曾去陕西汉中实地考察,当地农户和企业有用氯化钙进行泡胆的操作㊂课题组采集了产自汉中4个县(区)的15批泥附子样品,采用超高效液相色谱法同时对样品中6种酯型生物碱的含量进行测定[5]㊂故本文在前期研究基础上拟对有药典标准的氯化钙代替传统胆巴作为附子防腐㊁加工和炮制的辅料的可能性和科学性进行探讨,并在单因素的基础上,以效/毒为指标,以三因素(浸泡时间㊁氯化钙浓度㊁料液比)三水平,采用Box⁃Behnken响应面设计对陕产附子的浸泡工艺进行优化㊂1 材料与方法1.1 实验材料附子(采于陕西汉中),样品经陕西省中医药研究院王卫锋教授鉴定均为毛茛科植物乌头(Aconitum carmichaelii Debx.)的子根;胆巴(四川省蓬莱盐化有限公司生产),氯化钙(食品级,山东海化股份有限公司氯化钙厂)㊂1.2 实验试剂对照品:苯甲酰新乌头原碱,批号:CHB180310,质量分数≥98%;苯甲酰乌头原碱,批号: CHB180309,质量分数≥98%;苯甲酰次乌头原碱,批号:CHB180307质量分数≥98%;乌头碱,批号: CHB180408,质量分数≥98%;新乌头碱,批号: CHB180311质量分数≥98%;次乌头碱,批号: CHB180524质量分数≥98%,均购自克洛玛科技有限公司㊂试剂:乙腈为HPLC级试剂(美国赛默飞公司),色谱用水(娃哈哈纯净水);其它试剂均为分析纯(国药集团)㊂1.3 实验仪器Waters Acquity H⁃CLASS型超高效液相色谱仪(UPLC EmpowerTM3色谱工作站㊁PDA检测器)㊁ACQUITY UPLC BEH C18色谱柱(2.1mm×50mm, 1.7μm)㊁电子分析天平(型号:BP211D型,德国赛多利斯)㊁超声波清洗机(型号:KH⁃300DE,昆山禾创超声仪器有限公司)㊁红外快速干燥箱(型号: WS70⁃1,上海市吴淞五金厂制造)㊁旋转蒸发仪(型号:RE⁃52AA,上海亚荣生化仪器厂)㊁循环水式多用真空泵(型号:SHB⁃III,郑州长城科工贸)㊁台式离心机(型号:TGL⁃16G,上海安亭科学)㊁电子调温电热套(型号:98⁃1⁃B,天津泰斯特)1.4 附子生物碱类成分的含量测定1.4.1 色谱条件与系统适用性实验 色谱柱为Waters ACQYITYC18柱(50mm×2.1mm,1.7μm);乙腈为流动相A,0.04mol/L乙酸铵溶液(氨水调pH=10)为流动相B,(A∶B,V∶V)0~5分钟, 26%A;5~15分钟,26%~39%A;15~20分钟,环球中医药2023年5月第16卷第5期 Global Traditional Chinese Medicine,May2023,Vol.16,No.586939%~45%A;20~25分钟,45%~39%A;25~30分钟,39%-26%A;流速:0.3mL/分钟;柱温: 25℃;对照品进样量:2μL;供试品进样体积:1μL;检测波长为235nm[6]㊂1.4.2 溶液的制备 (1)对照品溶液的制备:取苯甲酰新乌头原碱㊁苯甲酰乌头原碱㊁苯甲酰次乌头原碱㊁新乌头碱㊁乌头碱㊁次乌头碱对照品适量,精密称量,加异丙醇 二氯甲烷(1∶1)混合溶液,各质量浓度为:苯甲酰新乌头原碱46.36μg/mL㊁苯甲酰乌头原碱16.77μg/mL㊁苯甲酰次乌头原碱32. 105mg/mL㊁新乌头碱138.23μg/mL㊁乌头碱92.4μg/mL和次乌头碱130.82μg/mL㊂(2)供试品溶液的制备:取各个泡胆炮制环节的附子样品,洗净㊁切片后干燥,粉碎制备成粉末㊂取取各样品粉末(过三号筛)约2g,精密称定,置于锥形瓶中,加入氨试液3mL,精密加入异丙醇-乙酸乙酯(1∶1)混合溶液50mL,称重,超声处理(功率300W,频率40HZ,水温在25℃以下)30分钟,放冷,再称重,用异丙醇-乙酸乙酯(1∶1)混合溶液补足重量,摇匀,滤过,精密量取滤液25mL,40℃以下减压回收溶剂至干,精密加入0.05%盐酸甲醇溶液3mL复溶解残渣,过0.22μm滤膜,取滤液,即得[7]㊂1.5 泡胆工艺的改进1.5.1 胆巴溶液的配制 取胆巴加水配制成浓度为20%的胆巴溶液[8]㊂1.5.2 氯化钙溶液的配制 取氯化钙加水配制成浓度为20%的氯化钙溶液㊂1.5.3 不同浸泡时间考察 取附子约4kg,除去须根,洗净㊂分别取2kg,以1∶4的料液比浸入配制好的胆巴水溶液和氯化钙溶液中㊂浸泡时间均设定为:0天㊁1天㊁3天㊁5天㊁7天㊁9天㊁11天㊁13天㊁15天㊁16天㊁17天㊁18天㊁19天㊁20天㊁22天㊁25天㊁30天,分别浸泡不同时间后取出,纵切成厚约0.2~0.5cm的切片,在60°C下烘干,测定不同浸泡时间附子生物碱含量差别㊂2 结果2.1 附子生物碱类成分的含量测定超高效液相色谱法(UPLC)分别测定胆巴浸泡与氯化钙浸泡后双酯型(以乌头碱㊁新乌头碱㊁次乌头碱总量计)与单酯型(以苯甲酰新乌头原碱㊁苯甲酰乌头原碱㊁苯甲酰次乌头碱计)生物碱总量,测定结果见表1㊂附子经不同时间胆巴溶液与氯化钙溶液浸泡,双酯型生物碱总含量呈下降趋势㊂单酯型生物碱总量在浸泡第7天左右总量升高,在浸泡20天左右单酯型生物碱总量下降,处于平稳㊂实验结果得出,附子经过胆巴溶液与氯化钙溶液浸泡生物碱含量变化大体一致,产地加工可用氯化钙溶液浸泡附子代替胆巴溶液浸泡㊂结果见图1~2㊂表1 不同浸泡时间测定附子中生物碱含量浸泡时间(天)双酯型生物碱总量(mg/g)单酯型生物碱总量(mg/g)胆巴浸泡氯化钙浸泡胆巴浸泡氯化钙浸泡0 1.9353 1.97950.15190.14431 1.8620 1.82850.11870.1275 3 1.8022 1.81710.10710.1065 5 1.4750 1.41010.10920.1667 7 1.4546 1.44210.09500.0805 9 1.2548 1.01320.12160.0926 11 1.0602 1.09090.10310.1118 13 1.1019 1.06130.12310.1042 15 1.1159 1.00800.10290.9791 160.95020.97130.07330.0713 17 1.00990.92120.09170.0998 180.86610.84610.09520.0957 190.70700.70660.04030.0896 200.73570.79830.07790.0707 220.55840.53240.07390.0706 250.57190.52820.08100.0710 300.53080.49180.07440.0642图1 不同浸泡时间附子中双酯型生物碱总量变化趋势图870 环球中医药2023年5月第16卷第5期 Global Traditional Chinese Medicine,May2023,Vol.16,No.5图2 不同浸泡时间附子中单酯型生物碱总量变化趋势图2.2 改进后的泡胆工艺参数的优选2.2.1 单因素试验对泡胆初加工的考察 参考文献[8⁃10],在单因素试验中以效/毒值(苯甲酰新乌头原碱含量/双酯型生物碱总含量)为指标,可较为全面的反映附子在氯化钙水溶液中的浸泡过程,选取浸泡时间㊁氯化钙浓度㊁料液比为因素进行试验㊂2.2.2 浸泡时间对效/毒的影响 取附子,除须根,洗净,称取5份,每份约150g,按1∶4的料液比加入25%的氯化钙溶液,分别浸泡6㊁12㊁18㊁24㊁30天,切片,60°C下烘干㊂按本章 2.2.2”项下制备供试品,考察不同浸泡时间对效/毒的影响㊂可知,效/毒随着浸泡时间的增加,在18天时含量出现微下降㊂故选择浸泡时间为18天,结果见表2㊂2.2.3 料液比对效/毒的影响 取附子,除须根,洗净,称取5份,每份约150g,分别按料液比为1∶2㊁1∶3㊁1∶4㊁1∶5㊁1∶6加入25%的氯化钙溶液,浸泡18天,切片,60°C烘干㊂按本章 2.2.2”项下制备供试品,考察料液比对效/毒的影响㊂可知,效/毒随料液比的增加趋势趋于平缓,故选择料液比为1∶4,结果见表3㊂2.2.4 氯化钙浓度对效/毒的影响 取附子,除须根,洗净,称取5份,每份约150g,按料液比1∶4分别加入浓度为10%㊁15%㊁20%㊁25%㊁30%的氯化钙溶液,浸泡18天,切片㊁60°C下烘干㊂按本章 2.2.2”项下制备供试品,考察氯化钙用量对效/毒的影响㊂可知,随着氯化钙浓度的增加,效/毒在25%时最高㊂因此,选用25%的氯化钙溶液,结果见表4㊂2.2.5 Box⁃Behnken响应面法优选初加工工艺条件 在单因素试验基础上,采用中心组合设计,设计响应面试验,根据中心组合实验设计原理,用浸泡时间(X1)㊁料液比(X2)㊁氯化钙浓度(X3)为因素,以效/毒为响应值,结果见表5㊂表2 浸泡时间对附子效/毒的影响浸泡时间(天)称样量(g)指标成分(%)苯甲酰新乌头原碱新乌头碱乌头碱次乌头碱效/毒6 2.00520.00880.12500.05870.01690.044012 1.99970.00530.05090.01770.01360.064418 2.00450.00550.04050.01180.00510.096224 2.02350.00200.01410.00630.00200.090630 2.00140.00160.01040.00640.00510.0728表3 料液比对附子效/毒的影响料液比称样量(g)指标成分(%)苯甲酰新乌头原碱新乌头碱乌头碱次乌头碱效/毒1∶2 2.01560.00340.03250.01490.00390.0661 1∶3 2.00480.00310.02700.01220.00430.0705 1∶4 2.00020.00330.03050.01240.00410.0705 1∶5 2.01300.00390.03680.01200.00460.0704 1∶6 2.01110.00380.03770.01270.00520.0692环球中医药2023年5月第16卷第5期 Global Traditional Chinese Medicine,May2023,Vol.16,No.5871表4 氯化钙浓度对附子效/毒的影响氯化钙浓度(%)称样量(g)指标成分(%)苯甲酰新乌头原碱新乌头碱乌头碱次乌头碱效/毒10 2.00200.00310.04960.04090.00600.032315 2.00530.00220.03300.02510.00520.034120 2.01730.00250.03430.01140.00310.050225 2.00390.00260.02160.01540.00340.063130 2.01560.00270.02930.01520.00370.0563表5 响应面优化试验因素水平表因素水平-101浸泡时间(X1)12天18天24天料液比(X2)1∶31∶41∶5氯化钙浓度(X3)20%25%30% 2.3 响应面实验设计与结果2.3.1 响应面分析实验 通过浸泡时间(X1)㊁料液比(X2)㊁氯化钙浓度(X3)进行综合响应面分析,考察效/毒,结果见表6㊂表6 响应面分析实验设计与结果实验号浸泡时间(X1)料液比(X2)氯化钙浓度(X3)效/毒10000.0766 20000.0766 31010.0701 40000.0860 50-110.0526 61100.0587 701-10.0664 80000.0665 9-1010.0392 101-100.0571 110-1-10.0710 12-1100.0444 13-1-100.0495 140000.0769 1510-10.0544 16-10-10.0593 170110.0719 2.3.2 二次响应面回归模型建立 利用Design⁃Expert10.0.4软件,设计出不同的炮制工艺进行实验,以综合评分Y为响应值,分析得到回归方程为: Y=0.077+5.975E-003X1+1.382E-003X2-2.156 -003X3+1.692E-003X1X2+8.962E-003X1X3+5.960E-003X2X3-0.017X12-7.192E-003X22 -3.846E-003X32,相关系数R2=0.9077㊂2.3.3 二次响应面回归模型方差分析 从表7可以看出,模型的F=7.65,P=0.0069<0.01,表明此模型具有显著性,构建有效㊂失拟项P=7.78> 0.05,是不显著的,即试验数据和模型预测值相符合,模型构建合理㊂在本实验模型中,数据R2= 0.9077,Adj R2=0.78915,并且自变量和响应值之间有相互的对应关系,说明回归方程能够真实的模拟响应曲面的情况,响应值的变化有78.9%的概率与本实验考察的三因素变化有关㊂R2-Adj R2= 0.2,说明实验中存在的误差对实验结果影响不大㊂Adeq precisior=8.349,说明实验中存在的误差对实验结果影响也很小,信噪比很大,同时根据图4可以看出,预测值与实际值较近,本实验构建的模型能够预测效/毒值,由实验P值可知,本实验三个因素对效/毒的影响大小不同,顺序为X1>X3>X2,交互影响大小顺序为X1X3>X2X3>X1X2㊂其中X1㊁X1X3㊁X12㊁X22对综合评分较大(P<0.05),X2㊁X3㊁X1X2㊁X2 X3㊁X32影响较小(P>0.05)㊂2.3.4 响应面曲面分析 响应面坡度越陡,表示两因素交互作用越明显㊂等高线的形状可反映出交互效应的强弱大小,越密集,效应越强㊂椭圆形表示两因素交互作用显著,而圆形则相反㊂由图5㊁6㊁7可看出,AC和BC的等高线形成的椭圆形长轴和短轴之比较大,说明AC和BC之间交互影响比AB 之间交互影响显著㊂由图8可知,随着浸泡时间的增加,效/毒值也在增加,曲面变得陡峭,而料液比曲面相对平缓,说明浸泡时间影响较大㊂由图9可知,随着浸泡时间的增加,效/毒值先升高再降低,872 环球中医药2023年5月第16卷第5期 Global Traditional Chinese Medicine,May 2023,Vol.16,No.5曲面坡度较陡,而氯化钙浓度的增加,效/毒值曲面较平坦,相比来说浸泡时间的影响较大㊂由图10可知,在氯化钙浓度和料液比的增加,曲面走向变的平缓,根据3D 曲面图,得出浸泡时间和料液比,浸泡时间和氯化钙浓度的交互作用大于料液比和氯化钙的交互作用㊂经软件数据分析,响应面最优工艺为:X 1浸泡时间为19.2天㊁X 2料液比为1∶4.15㊁X 3氯化钙浓度为25.37%㊂2.3.5 验证试验 通过对图形数据的分析,对回归方程取一阶偏导数等于零,优化得到最佳的提取工艺为浸泡19.2天㊁料液比1∶4.15㊁氯化钙浓度25.37%㊂考虑实际条件,将浸泡时间㊁料液比及氯化钙浓度分别调整为19天㊁1∶4㊁25%㊂取生附子分为3份,用以上条件进行浸泡,得到平均效/毒为(0.069±0.012),在理论值0.071的误差范围内,说明回归模型建立得准确可靠㊂表7 响应面方差分析来源总偏差平方和自由度平均偏差平方和F 值P 值显著性模型 2.403E-0039 2.670E-0047.650.0069*X 1 2.856E-0041 2.856E-0048.180.0243*X 2 1.528E-0051 1.528E-0050.440.5293X 3 3.718E-0051 3.718E-005 1.070.3363X 1X 2 1.145E-0051 1.145E-0050.330.5848X 1X 3 3.213E-0041 3.213E-0049.210.0190*X 2X 3 1.421E-0041 1.421E-004 4.070.0834X 12 1.200E-0031 1.200E-00334.400.0006*X 22 2.178E-0041 2.178E-004 6.240.0411*X 32 6.228E-0051 6.228E-005 1.780.2234误差项 2.443E-0047 3.490E-005失拟项 5.227E-0053 1.742E-0050.360.7843绝对误差 1.920E-0044 4.800E-005所有项2.647E-00316图4 二次响应面回归构建的模型预测效/毒值与实际效/毒值比较图5 浸泡时间与料液比对附子效/毒的交互作用影响3D 图环球中医药2023年5月第16卷第5期 Global Traditional Chinese Medicine,May 2023,Vol.16,No.5873图6 浸泡时间与氯化钙浓度对附子效/毒的交互作用影响3D图图7 料液比与氯化钙浓度对附子效/毒的交互作用影响3D图图8 浸泡时间与料液比对附子效/毒的交互作用影响3D图图9 浸泡时间与氯化钙浓度对附子效/毒的交互作用影响3D图图10 氯化钙浓度与料液比对附子效/毒的交互作用影响3D 图3摇讨论通过二极管阵列检测器对样品在190nm ~400nm 进行扫描,结果在235nm 波长处,各色谱峰分离度较好,故选择235nm 作为检测波长㊂本实验通过查阅文献,分别考察了流动相系统:乙腈-0.04mol /L 乙酸铵㊁乙腈-0.1%甲酸水及乙腈-0.04mol /L 乙酸铵(调0.04mol /L 乙酸铵溶液的PH =10),结果以采用0.04mol /L 乙酸铵(PH =10)为流动相A,乙腈为流动相B 时各色谱峰能实现良好分离且基线平稳;考察了柱温对混合对照品分离效果的影响,结果得知在25℃㊁30℃㊁35℃的柱温下均比较稳定,对色谱峰的分离效果影响不明显,但考虑高柱温过高会对仪器和柱子可能造成损耗,最后将柱温设为25℃;最后考察了制样方法,首先考察了在制样过程中超声提取时加入氨试液对色谱峰的影响,其次考874 环球中医药2023年5月第16卷第5期 Global Traditional Chinese Medicine,May2023,Vol.16,No.5察了0.05%盐酸甲醇和异丙醇-二氯甲烷(1∶1复溶样品),最终确定的制样是需要加入氨试液,创造碱性环境,减压浓缩的残渣用0.05%盐酸甲醇复溶㊂本实验将附子分别在胆巴溶液和氯化钙溶液中浸泡20天时,与生附子相比,单酯和双酯型生物碱在胆巴中的降低率分别达到62%和51%;在氯化钙溶液中的降低率分别为60%和48%,之后两种溶液中含量趋于平缓,说明一定程度上氯化钙溶液浸泡附子可代替食用胆巴溶液浸泡,也证明了附子用胆腌足二十日”的记载[14]具有一定的合理性与科学性㊂有研究表明附子在胆巴溶液(以氯化钙计)中浸泡,在第9天到第25天时氯化钙含量逐渐增加,达到26%是到饱和状态,有防腐作用[15],与本实验优化的用25%的氯化钙溶液进行浸泡结果相符㊂本研究运用星点设计效应面法对改进后的陕产附子泡胆工艺进行了优选,为后期陕产附子的进一步炮制研究及质量控制研究等奠定了基础㊂参考文献[1] 国家药典委员会.中华人民共和国药典(一部)[M].北京:中国医药科技出版社,2020.[2] 杨洋,梅全喜,黄冉,等.中药附子炮制方法探讨[J].中国医院用药评价与分析,2021,21(4):505⁃507,512.[3] 凡若楠,张依欣,于武华,等.附子炮制的研究进展[J].江西中医药,2019,50(10):66⁃70.[4] 石万银.无胆附片加工工艺及其质量控制研究[D].成都:成都中医药大学,2012.[5] 李凡,田浩,马杰,等.陕西汉中不同产区泥附子中酯型生物碱类成分的测定[J].西北药学杂志,2022,37(2):6⁃10.[6] 汪云伟.基于化学成分及气味的附子(黑顺片)产地加工炮制过程研究[D].成都:成都中医药大学,2015. [7] 四川省食品药品监督管理局.四川省中药饮片炮制规范[M].成都:四川科学技术出版社,2015.[8] 杨千千.生附子等级标准与泡胆初加工工艺研究[D].杭州:浙江理工大学,2018.[9] 张定堃,韩雪,李瑞煜,等.UPLC⁃Q⁃TOF⁃MS分析不同产地附子化学成分的差异[J].中国中药杂志,2016,41(3):463⁃469.[10] 陈彦琳,杜杰,梁焕,等.道地药材附子炮制加工规范化探讨[J].中国现代中药,2009,11(7):42⁃44. [11] 丁璞,宋新,李先宽,等.星点及正交试验优化五味子藤茎提取工艺研究[J].中成药,2013,35(11):2534⁃2537. [12] 孙丽娜,杨源涛,王雪怡,等.响应面优化法在药学领域的应用[J].科技创新与应用,2017,(23):36⁃37. [13] 彭晓霞,路莎莎.响应面优化法在中药研究中的应用和发展[J].中国实验方剂学杂志,2011,17(19):296⁃299. [14] 董思含,孟江,吴孟华,等.附子历史沿革考辨[J].中国中药杂志,2020,45(22):5567⁃5575.[15] 周林,李飞,任玉珍,等.附子中胆巴含量随浸泡时间的变化趋势研究[J].中华中医药学刊,2013,31(11):2406⁃2408.(收稿日期:2022⁃05⁃10)(本文编辑:李梅)。
B cell B细胞B cell antigen receptor B细胞抗原受体B cell differentiation factor B细胞分化因⼦B cell growth factor B细胞⽣长因⼦B cell proliferation B细胞增殖B cell receptor B细胞受体B cell transformation B细胞转化B chromosome B染⾊体[许多⽣物(如⽟⽶)所具有的异染质染⾊体]B to Z transition B-Z转换[B型DNA向Z型DNA转换]Bacillariophyta 硅藻门Bacillus 芽胞杆菌属Bacillus anthracis 炭疽杆菌属Bacillus subtillis 枯草芽胞杆菌bacitracin 杆菌肽back donation 反馈作⽤back flushing 反吹,反冲洗back mutation 回复突变[突变基因⼜突变为原由状态]backbone 主链;⾻架backbone hydrogen bond 主链氢键backbone wire model 主链⾦属丝模型[主要反应主链⾛向的实体模型] backcross 回交backflushing chromatography 反吹层析,反冲层析background 背景,本底background absorption 背景吸收background absorption correction 背景吸收校正background correction 背景校正background gactor 背景因⼦background genotype 背景基因型[与所研究的表型直接相关的基因以外的全部基因] background hybridization 背景杂交background radiation 背景辐射,本底辐射backmixing 反向混合backside attack 背⾯进攻backward reaction 逆向反应backwashing 反洗bacmid 杆粒[带有杆状病毒基因组的质粒,可在细菌和昆⾍细胞之间穿梭] bacteremia 菌⾎症bacteria (复)细菌bacteria rhodopsin 细菌视紫红质bacterial adhesion 细菌粘附bacterial alkaline phosphatase 细菌碱性磷酸酶bacterial artificial chromosome 细菌⼈⼯染⾊体bacterial colony (细菌)菌落bacterial colony counter 菌落计数器bacterial conjugation 细菌接合bacterial filter 滤菌器bacterial invasion 细菌浸染bacterial motility 细菌运动性bacterial rgodopsin 细菌视紫红质,细菌紫膜质bacterial vaccine 菌苗bacterial virulence 细菌毒⼒bactericidal reaction 杀(细)菌反应bactericide 杀(细)菌剂bactericidin 杀(细)菌素bactericin 杀(细)菌素bacteriochlorophyll 细菌叶绿素bacteriochlorophyll protein 细菌叶绿素蛋⽩bacteriocide 杀(细)菌剂bacteriocin 细菌素bacteriocin typing 细菌素分型[利⽤细菌素对细胞进⾏分型]bacterioerythrin 菌红素bacteriofluorescein 细菌荧光素bacteriology 细菌学bacteriolysin 溶菌素bacteriolysis 溶菌(作⽤)bacteriolytic reaction 溶菌反应bacteriophaeophytin 细菌叶褐素bacteriophage 噬菌体bacteriophage arm 噬菌体臂bacteriophage conversion 噬菌体转变bacteriophage head 噬菌体头部bacteriophage surface expression system 噬菌体表⾯表达系统bacteriophage tail 噬菌体尾部bacteriophage typing 噬菌体分型bacteriophagology 噬菌体学bacteriopurpurin 菌紫素bacteriorhodopsin 细菌视紫红质bacteriosome 细菌⼩体[昆⾍体内⼀种含有细菌的结构]bacteriostasis 抑菌(作⽤)bacteriostat 抑菌剂bacteriotoxin 细菌毒素bacteriotropin 亲菌素bacterium 细菌bacteroid 类菌体baculovirus 杆状病毒bag sealer 封边机baking soda ⼩苏打BAL 31 nuclease BAL 31核酸酶balance 天平balanced heterokaryon 平衡异核体balanced lethal 平衡致死balanced lethal gene 平衡致死基因balanced linkage 平衡连锁balanced pathogenicity 平衡致病性balanced polymorphism 平衡多态性balanced salt solution 平衡盐溶液balanced solution 平衡溶液balanced translocation 平衡易位balbaini ring 巴尔⽐亚尼环[由于RNA⼤量合成⽽显⽰特别膨⼤的胀泡,在多线染⾊体中形成独特的环] Balbiani chromosome 巴尔⽐亚尼染⾊体[具有染⾊带的多线染⾊体,1881年⾸先发现于双翅⽬摇蚊幼⾍] ball mill 球磨ball mill pulverizer 球磨粉碎机ball milling 球磨研磨balloon catheter ⽓囊导管[可⽤于基因送递,如将DNA导⼊⾎管壁]banana bond ⾹蕉键band 条带,带[见于电泳、离⼼等]band broadening 条带加宽band sharpening 条带变细,条带锐化band width 带宽banding pattern 带型banding technique 显带技术,分带技术barbiturate 巴⽐妥酸盐barium 钡barly strip mosaic virus ⼤麦条纹花叶病毒barly yellow dwarf virus ⼤麦黄矮病毒barnase 芽胞杆菌RNA酶[见于解淀粉芽胞杆菌]barophilic baceria 嗜压菌baroreceptor 压⼒感受器barotaxis 趋压性barotropism 向压性barr body 巴⽒⼩体barrel 桶,圆筒[可⽤于描述蛋⽩质⽴体结构,如beta折叠桶]barrier 屏障,垒barstar 芽胞杆菌RNA酶抑制剂[见于解淀粉芽胞杆菌]basal 基础的,基本的basal body 基粒basal body temperature 基础体温basal component 基本成分,基本组分basal expression 基础表达,基态表达basal granule 基粒basal heat producing rate 基础产热率basal lamina 基膜,基板basal level 基础⽔平,基态⽔平basal medium 基本培养基,基础培养基basal medium Eagle Eagle基本培养基basal metabolic rate 基础代谢率basal metabolism 基础代谢basal promoter element 启动⼦基本元件basal transcription 基础转录,基态转录basal transcription factor 基础转录因⼦base 碱基;碱base analog 碱基类似物,类碱基base catalysis 碱基催化base composition 碱基组成base pairing 碱基配对base pairing rules 碱基配对法则,碱基配对规则base peak 基峰base pire 碱基对base ratio 碱基⽐base stacking 碱基堆积base substitution 碱基置换baseline 基线baseline drift 基线漂移baseline noise 基线噪声basement membrane 基底膜basement membrane link protein 基底膜连接蛋⽩basic amino acid 碱性氨基酸basic fibroblast growth factor 碱性成纤维细胞⽣长因⼦basic fuchsin 碱性品红basic medium 基础培养基basic number of chromosome 染⾊体基数basic protein 碱性蛋⽩质basic solvent 碱性溶剂basic taste sensation 基本味觉basidiocarp 担⼦果basidiomycetes 担⼦菌basidium 担⼦basipetal translocation 向基运输basket centrifuge (吊)篮式离⼼机basket drier 篮式⼲燥机basket type evaporator 篮式蒸发器basonuclin 碱(性)核蛋⽩[见于⾓质形成细胞,含有多对锌指结构] basophil 嗜碱性细胞basophil degranulation 嗜碱性细胞脱粒basophilia 嗜碱性batch 分批;批,⼀批batch cultivation 分批培养batch culture 分批培养物batch digestor 分批消化器batch extraction 分批抽提,分批提取batch fermentation 分批发酵,(罐)批发酵batch filtration 分批过滤batch operation 分批操作batch process 分批⼯艺,分批法batch reactor 间歇反应器,分批反应器batch recycle cultivation 分批再循环培养batch recycle culture 分批再循环培养(物)bathochrome 向红基bathochromic shift 红移bathorhodopsin 红光视紫红质,前光视紫红质batrachotoxin 树蛙毒素[固醇类⽣物碱,作⽤于钠通道]baytex 倍硫磷BCG vaccine 卡介苗bead mill 玻珠研磨机bead mill homogenizer 玻珠研磨匀浆机bean sprouts medium ⾖芽汁培养基beauvericin ⽩僵菌素becquerel 贝可(勒尔)bed volume (柱)床体积bee venom 蜂毒beef broth ⽜⾁汁beef extract ⽜⾁膏,⽜⾁提取物beet yellows virus 甜菜黄化病毒Beggiatoa 贝⽇阿托菌属[属于硫细菌]behavior ⾏为;性质,性能behavioral control ⾏为控制behavioral isolation ⾏为隔离behavioral thermoregulation ⾏为性体温调节behenic acid ⼭yu酸,⼆⼗⼆(烷)酸belt desmosome 带状桥粒belt press 压带机belt press filter 压带(式)滤器bench scale 桌⾯规模,⼩试规模benchtop bioprocessing 桌⾯⽣物⼯艺[⼩试规模]benchtop microcentrifuge 台式微量离⼼机bend 弯曲;弯管;转折bending 弯曲;转折,回折beneficial element 有益元素bent bond 弯键bent DNA 弯曲DNA,转折DNAbenzene 苯benzhydrylamine resin ⼆苯甲基胺树脂benzidine 联苯胺benzilate 三苯⼄醇酸(或盐或酯)benzimidazole 苯并咪唑benzodiazine 苯并⼆嗪,酞嗪benzoin 苯偶姻,安息⾹benzophenanthrene 苯并菲benzopyrene 苯并芘benzoyl 苯甲酰基benzoylglycine 苯甲酰⽢氨酸benzyl 苄基benzyladenine 苄基腺嘌呤benzylaminopurine 苄基氨基嘌呤benzylisoquinoline 苄基异喹啉benzylisoquinoline alkaloid 苄基异喹啉(类)⽣物碱benzylpenicillin 苄基青霉素berberine ⼩檗碱Bertrand rule 贝特朗法则bestatin 苯丁抑制素[可抑制亮氨酸氨肽酶的⼀种亮氨酸类似物]bias 偏倚,偏性biaxial crystal 双轴晶体biaxial orientation 双轴取向bicarbonate 碳酸氢盐bicistronic mRNA 双顺反⼦mRNAbicrystals 双晶bicyclomycin 双环霉素bidirectional deletion 双向缺失[从DNA分⼦两端同时除去⼀些核苷酸]biofouling ⽣物淤积biofuel ⽣物燃料biofuel cell ⽣物燃料电池biogas 沼⽓biogenesis ⽣源论,⽣源说biogeography ⽣物地理学biohazard bag ⽣物(学)危害品袋biohazard glove 防⽣物(学)危害⼿套bioholography ⽣物全息术bioinformatics ⽣物信息学bioinformation ⽣物信息bioinorganic chemistry ⽣物⽆机化学bioleaching ⽣物浸矿biological ⽣物制品;⽣物的biological activity ⽣物(学)活性biological amplification ⽣物放⼤(效应)biological assay ⽣物测定,⽣物学鉴定(法)biological buffer ⽣物学缓冲液biological cabinet ⽣物学⼯作橱biological catalysis ⽣物催化biological catalyst ⽣物催化剂biological clock ⽣物钟biological constraints ⽣物约束(因素)biological containment ⽣物防范(作⽤)biological control ⽣物防治biological effect ⽣物学效应biological fidelity ⽣物(学)保真性biological function ⽣物学功能biological information ⽣物信息biological information theory ⽣物信息论biological nitrogen fixation ⽣物固氮biological order ⽣物有序biological oxidation ⽣物氧化biological oxygen demand ⽣物需氧量biological pest control ⾍害⽣物防治biological products ⽣物制品biological respinse ⽣物反应biological respinse modifier ⽣物反应调节物biological rhythm ⽣物节律biological safety cabinet ⽣物学安全⼯作橱biological weapon ⽣物武器biologics ⽣物制品bioluminescence ⽣物发光bioluminescence assay ⽣物发光测定(法)bioluminescent immunoassay ⽣物发光免疫测定(法)bioluminescent probe ⽣物发光探针,⽣物发光探剂biomacromolecule ⽣物⼤分⼦biomagnetic effect ⽣物磁效应biomagnetism ⽣物磁学biomass ⽣物量[泛指某⼀系统中⼀切⽣物物质的总量];⽣物质[泛指某⼀系统中特定的⽣物物质] biomass concentration ⽣物量浓度biomass energy ⽣物质能量biomass fouling ⽣物质淤积biomaterial ⽣物材料biome ⽣物群系biomechanics ⽣物⼒学biomembrane ⽣物膜biomethanation ⽣物产甲烷(作⽤)biomimetic chemistry 仿⽣化学biomimetic synthesis 仿⽣合成biomimics 仿⽣学biomineral ⽣物矿物biomineralization ⽣物矿化biomolecular structure ⽣物分⼦结构biomolecule ⽣物分⼦bionics 仿⽣学bioorganic chemistry ⽣物有机化学biopesticide ⽣物杀⾍剂biophotolysis ⽣物光解biophoton ⽣物光⼦biophysical chemistry ⽣物物理化学biophysics ⽣物物理学BioPilot system [商]Bio-Pilot系统,中试规模层析系统[Pharmacia公司商标] biopolymer ⽣物聚合物,⽣物⾼分⼦bioprobe ⽣物探头BioProcess system [商]Bio-Process系统,⽣产规模层析系统[Pharmacia公司商标] bioprocess technology ⽣物⼯艺bioprocessing ⽣物⼯艺biopsy 活(组织)检(查)bioreactor ⽣物反应器bioreediation ⽣物除污[如污⽔处理]biorepressor ⽣物素阻抑蛋⽩BioRex resin [商]BioRex树脂[Bio-Rad公司商品,可⽤于离⼦交换层析] biorheology ⽣物流变学biorhythm ⽣物节律bioscience ⽣物科学bioscrubbing ⽣物清除,⽣物除污[利⽤⽣物材料去除⽓流或液流中的有毒或污染物质] bioselective chromatography ⽣物选择(性)层析biosensor ⽣物传感器bioseparation ⽣物分离(技术)bioseparation technology ⽣物分离技术biosonar ⽣物声纳biosorption ⽣物吸附biosphere ⽣物圈Biostat fermentor [商]biostat发酵罐[德国B.Braun公司商标]biostereometrical technique 三维测体技术biosurfactant ⽣物表⾯活性剂biosynthesis ⽣物合成biotechnique ⽣物技术biotechnology ⽣物技术,⽣物⼯程(学)biotechware ⽣物技术器具biotelemetry ⽣物遥测术biotelescanner ⽣物遥测扫描器biotherapeutics ⽣物治疗药物biotherapy ⽣物治疗biothermodynamics ⽣物热⼒学biotin ⽣物素biotin carboxylase ⽣物素羧化酶biotin enzyme ⽣物素酶(类)biotin phosphoramidite ⽣物素亚磷酰胺biotinylated ⽣物素(酰)化的biotinylated nucleotide ⽣物素酰核苷酸,⽣物素化核苷酸biotinylated phosphoramidite ⽣物素酰亚磷酰胺,⽣物素化亚磷酰胺biotinylation ⽣物素(酰)化biotoxin ⽣物毒素biotransformation ⽣物转化biotype ⽣物型biovar ⽣物变型bioviscolelasticity ⽣物粘弹性biparamid 双锥体bipartite ⼆分的,⼆重的bipartite genome ⼆分基因组,⼆重基因组[如见于植物病毒]bipartite structure ⼆分结构[如指染⾊体核⼼颗粒]biphasic cultivation 双相培养biphasic system 两相系统biphenyl 联苯birefringence 双折射birnavirus 双RNA病毒[科名⽤Birnavirus] bisacrylamide 双丙烯酰胺bisecting conformation 等分构象bisepoxy lignan 双环氧型⽊脂体bisexual flower 两性花bisexual paedogenesis 幼体两性⽣殖bisexual reproduction 两性⽣殖bisexualism 雌雄异体bisexuality 两性现象bisindole alkaloid 双吲哚(类)⽣物碱bispecific antibody 双特异性抗体bisphenols 双酚类bisphosphate ⼆磷酸bisulfate 硫酸氢盐bisulfite 亚硫酸氢盐bitter principle 苦味素biuret reaction 双缩脲反应bivalent ⼆价的;⼆价体black box ⿊匣⼦,⿊箱black lipid membrane ⿊脂膜Blackman reaction 布莱克曼反应blade homogenizer 浆式匀浆器blank 空⽩对照blast burner 喷灯blast cell 母细胞blastema (再⽣)芽胞blasticidin 杀稻瘟素blastocoel 囊胚腔blastocyst (囊)胚泡[见于哺乳动物着床前的胚囊] blastoderm 胚层;胚盘blastogenesis 芽基发育[见于⽆脊椎动物] blastogenic factor 母细胞形成因⼦blastomere (卵)裂球blastopore 胚孔blastospore 芽⽣孢⼦blastula 囊胚bleaching 漂⽩bleaching agent 漂⽩剂bleaching powder 漂⽩粉bleeding 伤流blender 搅拌机,捣碎机blending inheritance 混合遗传blendor 搅切机,捣碎机bleomycin 博来霉素blind passage 盲传blind test 盲试block 块;部件;模序,[序列]模块;嵌段;封阻,封闭block copolymer 嵌段共聚物blocker 封阻剂,阻断剂blocking 封闭,封阻,阻断blocking agent 封闭剂,封阻剂blocking antibody 封闭抗体,阻断抗体blood cell counter ⾎细胞计数器blood circulation ⾎(液)循环blood clot ⾎块blood clot retraction ⾎块收缩blood clotting ⾎液凝固,凝⾎blood coagulation ⾎液凝固,凝⾎blood coagulation cascade 凝⾎级联系统blood coagulation factor 凝⾎因⼦[依发现的先后分别编成凝⾎因⼦I-—XIII] blood corpuscle ⾎细胞blood flow ⾎量blood group ⾎型blood group antigen ⾎型抗原blood group substance ⾎型物质blood group system ⾎型系统blood laminar flow ⾎液层流blood matching 配⾎(试验)blood plasma ⾎浆blood pressure ⾎压blood pressure transducer ⾎压传感器blood screening ⾎液筛查blood serum ⾎清blood substitute ⾎液代⽤品blood transfusion 输⾎blood type ⾎型blood vascular system ⾎管系统blood vessel ⾎管blood viscosity ⾎(液)粘度bloom ⽔华blot transfer apparatus 印迹转移装置blotter 印迹装置blotting 印迹blotting membrane 印迹膜blttle neck effect 瓶颈效应blue shift 蓝移blue tongue virus 蓝⾆(病)病毒bluensomycin 步鲁霉素Bluescript vetor [商]Bluescript 载体[Stratagene公司出售的⼀种噬菌粒载体] blunt end 平端,钝端;平头blunt end ligation 平端连接blunt terminus 平端Blymphocyte B淋巴细胞boat ⾈⽫boat conformation 船型构象body fluid 体液body fluid equilibrium 体液平衡body temperature rhythm 体温节律Bohr effect 波尔效应Bohr model of atom 波尔原⼦模型Bohr radius 波尔半径boiling lysis 煮沸裂解(法)boiling method 煮沸法,煮沸(裂解)法boiling point 沸点boiling point elevation 沸点升⾼Boltzmann constant 波尔兹曼常数Boltzmann distribution 波尔兹曼分布Boltzmann distribution law 波尔兹曼分布定律bombardment 轰击bombesin 铃蟾肽bombinin 铃蟾抗菌肽Bombyx mori 家蚕Bombyx mori nuclear polyhydrosis virus 家蚕核型多⾓体病毒Bombyx mori single nuclear polyhydrosis virus 家蚕单(核壳体)核型多⾓体病毒bombyxin 家蚕素bond 键bond angle 键⾓bond energy 键能bond length 键长bond moment 键距bond order 键级bond strength 键强度bond valence 键价bonded phase 键合相bonded silica 键合硅bonded stationary phase 键合固定相bonding orbital 成键轨道bonding region 键(合)区bone ⾻,⾻骼bone marrow ⾻髓bone marrow cell ⾻髓细胞bone marrow stem cell ⾻髓⼲细胞bone marrow transplantation ⾻髓移植bone morphogenetic protein ⾻形态发⽣蛋⽩,⾻形成蛋⽩booster immunization 加强免疫borax 硼砂Bordetella 包特菌属Bordetella pertussis 百⽇咳杆菌boron 硼borrelidin 疏螺体素botany 植物学bottle neck 瓶颈bottom fermentation 下⾯发酵bottom phase 下相bottom yeast 下⾯酵母botulinus toxin ⾁毒杆菌毒素bound auxin 束缚⽣长素bound water 结合⽔,束缚⽔boundary 边界;界⾯boundary element 边界元件boundary layer 边界层boundary lipid 界⾯脂boundary zone 界⾯区bouquet stage 花束期bovine ⽜bovine leukemia virus ⽜⽩⾎病病毒bovine pancreatic ribonuclease ⽜胰RNA酶bovine pancreatic trypsin inhibitor ⽜胰胰蛋⽩酶抑制剂bovine papilloma virus ⽜*瘤病毒bovine serum albumin ⽜⾎清⽩蛋⽩bovine spleen phosphodiesterase ⽜脾磷酸⼆酯酶bovine viral diarrhea virus ⽜病毒性腹泻病毒[归于黄病毒科瘟病毒属] box 箱;匣,盒;框brachionectin 臂粘连蛋⽩bradykinin 缓激肽bradykinin potentiating peptide 缓激肽增强肽Bragg angle 布拉。
Applied Catalysis B:Environmental 198(2016)162–170Contents lists available at ScienceDirectApplied Catalysis B:Environmentalj o u r n a l h o m e p a g e :w w w.e l s e v i e r.c o m /l o c a t e /a p c a tbCeria supported rhodium nanoparticles:Superb catalytic activity in hydrogen generation from the hydrolysis of ammonia boraneSerdar Akbayrak a ,Yalc ¸ın Tonbul a ,b ,Saim Özkar a ,∗a Department of Chemistry,Middle East Technical University,06800Ankara,Turkey bZiya Gökalp Faculty of Education,Dicle University,21280Diyarbakır,Turkeya r t i c l ei n f oArticle history:Received 12April 2016Received in revised form 21May 2016Accepted 24May 2016Available online 24May 2016Keywords:CeriaRhodium nanoparticles Ammonia borane Hydrogen generation Catalytic hydrolysisa b s t r a c tWe investigated the effect of various oxide supports on the catalytic activity of rhodium nanoparticles in hydrogen generation from the hydrolysis of ammonia borane.Among the oxide supports (CeO 2,SiO 2,Al 2O 3,TiO 2,ZrO 2,HfO 2)ceria provides the highest catalytic activity for the rhodium(0)nanoparticles in the hydrolysis of ammonia borane.Rhodium(0)nanoparticles supported on nanoceria (Rh 0/CeO 2)were prepared by the impregnation of rhodium(III)ions on the surface of ceria followed by their reduction with sodium borohydride in aqueous solution at room temperature.They were isolated from the reaction solution by centrifugation and characterized by a combination of advanced analytical techniques.The catalytic activity of Rh 0/CeO 2samples with various rhodium loading in the range of 0.1–4.0%wt.Rh was also tested in hydrogen generation from the hydrolysis of ammonia borane at room temperature.The highest catalytic activity was achieved by using 0.1%wt.rhodium loaded nanoceria.The resulting Rh 0/CeO 2with a metal loading of 0.1%wt.Rh show superb catalytic activity in hydrogen generation from the hydrolysis of ammonia borane with a record turnover frequency value (TOF)of 2010min −1at 25.0±0.1◦C.The superb catalytic activity of Rh 0/CeO 2is ascribed to the reducible nature of ceria.The reduction of cerium(IV)to cerium(III)leads to a build-up of negative charge on the oxide surface which favors the bonding of rhodium(0)nanoparticles on the surface and,thus,their catalytic activity.Rh 0/CeO 2are also reusable catalysts preserving 67%of their initial catalytic activity even after the fifth use in hydrogen generation from the hydrolysis of ammonia borane at room temperature (TOF =1350min −1.The work reported here also includes the kinetic studies depending on the temperature to determine the activation energy (E a =43±2kJ/mol)and the effect of catalyst concentration on the rate of hydrolysis of ammonia borane.©2016Elsevier B.V.All rights reserved.1.IntroductionAmmonia borane (NH 3BH 3,AB)is one of the most promising solid hydrogen storage materials for on-board hydrogen appli-cations due to its high hydrogen storage capacity (19.6%wt.),non-toxicity,and high stability under ambient conditions [1–6].Ammonia borane can release 3equivalent H 2upon hydrolysis in the presence of suitable catalysts even at ambient temperature according to Eq.(1).H 3NBH 3(aq )+2H 2O(l )catalyst→NH +4(aq )+BO −2(aq )+3H 2(g )Although a large variety of catalysts including noble [7–10]and non-noble [11–14]metal nanoparticles have been tested in∗Corresponding author.E-mail address:sozkar@.tr (S.Özkar).hydrogen generation from the hydrolysis of ammonia borane,the development of efficient and stable catalysts is still an impor-tant challenge in using ammonia borane as solid hydrogen storage materials for the fuel cell applications under moderate conditions [15].So far rhodium(0)nanoparticles supported on carbon nano-tubes have been reported to be the highest activity catalyst with a turnover frequency of 706min −1in hydrogen generation from the hydrolysis of ammonia borane at room temperature [16].Therefore it is quite plausible to give effort for further improving the catalytic activity of rhodium nanoparticles in this industrially important reaction.The catalytic performance of metal nanoparticles depends on the particle size and dispersion of the active sites while the reusability and catalytic lifetime of nanoparticles are affected by their stability against agglomeration [17].Stable metal nanoparti-cles catalysts can be obtained by using suitable stabilizer ligands or supporting materials with large surface area [18–20].Recent stud-ies have shown that metal nanoparticles supported on reducible/10.1016/j.apcatb.2016.05.0610926-3373/©2016Elsevier B.V.All rights reserved.S.Akbayrak et al./Applied Catalysis B:Environmental198(2016)162–170163parison of TOF(turnover frequency in mol H2/(mol Rh×min))values of rhodium nanoparticles supported on different oxides at(a)high and(b)low rhodium loadings of catalysts used in hydrogen generation from the hydrolysis of ammonia borane(10mL,100mM)at25.0±0.1◦C.For all the tests Rh/AB molar ratio of0.0008wasused and no correction has been made for the initial TOF values by the fraction of catalytically active surfacesites.Fig.2.Powder XRD patterns of(a)CeO2,(b)Rh0/CeO2with a0.1%wt.Rh loading, (c)Rh00/CeO2with a3.42%wt.Rh loading.oxides such as ceria(CeO2)provide high catalytic activity in many reactions[21].Cerium oxides have cerium(III)defects which can readily be formed because of the favorable large positive standard reduction potential of Ce4+→Ce3+(1.76V in acidic solution[22]). It is conceivable that the interconversion of two oxidation states cerium(IV)and cerium(III)can occur under the catalytic reaction conditions,that is,ceria can undergo redox cycling in aqueous solu-tion[23].The formation of cerium(III)causes an excess negative charge to build up on the oxide surface which enhances the coordi-nation of metal(0)nanoparticles to the oxide surface and,thus,the catalytic activity through a more favorable substrate-metal inter-action[24].Therefore,ceria has been used to improve the catalytic performance of transition metals through strong metal–support interaction,in particular,of the electron rich late-transition metal nanoparticles[25–27].Although the mechanism of the promoting effect of cerium oxides has not been well understood yet,ceria has found broad applications in thefield of catalysis such as in water splitting reactions[28,29],water–gas shift reactions[30,31], hydrogen generation from ammonia borane[32],decomposition of hydrazine[33],methanol synthesis from carbon dioxide[34], removal of nitrogen oxides from exhaust gases[35,36],and formic acid oxidation[37].Herein we report the preparation,characterization,and catalytic use of rhodium(0)nanoparticles supported on nanoceria,Rh0/CeO2. For comparison,nanopowders of silica(SiO2),alumina(Al2O3),tita-nia(TiO2),zirconia(ZrO2),and hafnia(HfO2)were also employed as support for the rhodium(0)nanoparticles catalyst in hydrolysis of ammonia borane under the same conditions.The comparative study shows that Rh0/CeO2has superior catalytic activity with a turnover frequency of TOF=2010min−1in hydrogen generation from the hydrolysis of ammonia borane at25.0±0.1◦C.Our report also shows that the nanoceria supported rhodium(0)nanoparticles are reusable catalyst providing a TOF value of1350min−1after the fifth run of hydrogen generation from the complete hydrolysis of ammonia borane at25.0±0.1◦C.2.Experimental2.1.MaterialsRhodium(III)chloride hydrate(RhCl3·3H2O),ammonia borane (AB,97%),nanoceria(CeO2,particle size≈25nm),nanotita-nia(TiO2,particle size≈25nm),nanozirconia(ZrO2,particle size≈100nm),hafnia(HfO2,particle size≈100nm),nanoalu-mina(Al2O3,particle size≈13nm),and nanosilica(SiO2,particle size≈12nm)were purchased from Aldrich.Deionized water was distilled by water purification system(Milli-QSystem).All glass-ware and Teflon-coated magnetic stir bars were cleaned with acetone,followed by copious rinsing with distilled water before drying in an oven at150◦C.2.2.CharacterizationThe rhodium content of Rh0/CeO2samples was determined by the Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES,Leeman-Direct Reading Echelle)after each sample was completely dissolved in the mixture of HNO3/HCl(1/3ratio). Transmission electron microscopy(TEM)was performed on a JEM-2100F(JEOL)microscope operating at200kV.Samples were examined at magnification between400K and700K.Scanning electron microscope(SEM)images were taken using a JEOL JSM-5310LVat15kV and33Pa in a low-vacuum mode without metal coating on aluminum support.The X-ray photoelectron spec-troscopy(XPS)analysis was performed on a Physical Electronics 5800spectrometer equipped with a hemispherical analyzer and using monochromatic Al K␣radiation of1486.6eV,the X-ray tube working at15kV,350W and pass energy of23.5keV.11B NMR spec-tra were recorded on a Bruker Avance DPX400with an operating frequency of128.15MHz for11B.164S.Akbayrak et al./Applied Catalysis B:Environmental 198(2016)162–170Fig.3.(a)SEM image and (b)SEM-EDS spectrum of Rh 0/CeO 2with a 0.1%wt.Rhloading.Fig.4.TEM images of Rh 0/CeO 2with a 0.1%wt.Rh loading at different magnifications (a–d)and the corresponding histogram showing the particle size distribution (e).2.3.Preparation of rhodium(0)nanoparticles supported on ceriaCeria (500mg)was added to a solution of RhCl 3·3H 2O (in the amount required for the desired rhodium loading)in 100mL H 2O in a 250mL round bottom flask.This slurry was stirred at room temperature for 4h and,then,10mL of 5mM NaBH 4solution was added dropwise.After 30min stirring Rh 0/CeO 2were formed which were isolated by centrifugation and washed with 100mL ofwater.The remnant was dried under vacuum (10−3torr)at 60◦C for 12h.For comparison,Rh 0/SiO 2,Rh 0/Al 2O 3,Rh 0/TiO 2,Rh 0/ZrO 2,and Rh 0/HfO 2were prepared by following the same procedure as described above,by using silica,alumina,titania,zirconia,or hafnia,respectively,instead of ceria.S.Akbayrak et al./Applied Catalysis B:Environmental 198(2016)162–170165Fig.5.X-ray photoelectron spectrum of Rh 0/CeO 2with a 0.1%wt.Rh loading.The inset shows the high resolution scan and deconvolution of Rh 3dbands.Fig.6.The turnover frequency (TOF)values in hydrolysis of AB (100mM)starting with Rh 0/CeO 2(0.08mM Rh)at different rhodium loading at 25.0±0.1◦C.2.4.Catalytic hydrolysis of AB using rhodium(0)nanoparticles supported on ceriaBefore starting the hydrolysis of AB,a jacketed reaction flask (20mL)containing a Teflon-coated stir bar was placed on a mag-netic stirrer (Heidolph MR-301)and thermostated to 25.0±0.1◦C by circulating water through its jacket from a constant tempera-ture bath.Then,a graduated glass tube (60cm in height and 3.0cm in diameter)filled with water was connected to the reaction flask to measure the volume of the hydrogen gas to be evolved from the reaction.Next,20mg powder of Rh 0/CeO 2was dispersed in 10mL distilled water in the reaction flask thermostated at 25.0±0.1◦C.Then,31.8mg AB (1.0mmol H 3N ·BH 3)was added into the flask and the reaction medium was stirred at 1200rpm.The volume of hydrogen gas evolved was measured by recording the displace-ment of water level every 1min at constant atmospheric pressure of 693Torr.The catalytic activity of Rh 0/SiO 2,Rh 0/Al 2O 3,Rh 0/ZrO 2,Rh 0/TiO 2,and Rh 0/HfO 2was also tested by following the same pro-cedure as described above under the same conditions at the same rhodium concentration.2.5.Determination of the most active rhodium loading for Rh 0/CeO 2in the hydrolysis of ABThe catalytic activity of Rh 0/CeO 2samples with various rhodium loadings in the range of 0.1–4.0%wt.was tested in hydrogen genera-tion from the hydrolysis of ammonia borane starting with 0.08mM Rh and 100mM AB in 10mL solution at 25.0±0.1◦C.The highest catalytic activity was achieved by using 0.1%wt.rhodium loaded ceria.For all the tests reported hereafter,rhodium loading of 0.1%wt.was used unless otherwise stated.2.6.Determination of activation energy for the hydrolysis of AB catalyzed by Rh 0/CeO 2In a typical experiment,the hydrolysis reaction was performed starting with 10mL of 100mM (31.8mg)AB solution and 20mg Rh 0/CeO 2(0.1%wt.Rh),[Rh]=0.02mM)at various temperatures (20,25,30,35◦C)in order to obtain the activation energy.The rate constant for the hydrogen generation reaction was calculated from the slope of the linear part of each hydrogen evolution versus time plot at various temperatures.Activation energy for the hydrolysis of ammonia borane catalyzed by Rh 0/CeO 2was obtained from the slope of Arrhenius plot.2.7.Reusability of Rh 00/CeO 2in the hydrolysis of ABAfter the complete hydrolysis of AB started with 10mL of 100mM AB (31.8mg H 3NBH 3),and 80mg Rh 0/CeO 2(0.1%wt.Rh,[Rh]=0.08mM)at 25.0±0.1◦C,the catalyst was isolated as dark grey powder by centrifugation and dried under vacuum (10−3Torr)at 60◦C after washing with 50mL of water.The isolated samples of Rh 0/CeO 2were weighed (Table 3)and redispersed in 10mL solution of 100mM AB for a subsequent run of hydrolysis at 25.0±0.1◦C.2.8.Durability of Rh 00/CeO 2catalyst in the hydrolysis of ABRecyclability test was started with 10mL of 100mM AB (31.8mg H 3NBH 3),and 80mg Rh 0/CeO 2(0.1%wt.Rh,[Rh]=0.08mM)at 25.0±0.1◦C.When the AB present in the solution was completely hydrolyzed,1mmol AB was added for another run of hydrolysis.3.Results and discussionA series of survey experiments were performed to find out the best support for the rhodium(0)nanoparticles which would pro-vide the highest catalytic activity in hydrogen generation from the hydrolysis of ammonia borane at room temperature.First,rhodium(III)ions were impregnated from the aqueous solution of rhodium(III)chloride on one of the following supports with the average particle size given in parentheses:CeO 2(25nm),SiO 2(12nm),Al 2O 3(13nm),TiO 2(25nm),ZrO 2(100nm),and HfO 2(100nm).Then,the impregnated rhodium(III)ions were reduced by sodium borohydride at room temperature yield-ing Rh 00/CeO 2,Rh 00/SiO 2,Rh 00/Al 2O 3,Rh 00/TiO 2,Rh 00/ZrO 2,and Rh 00/HfO 2,respectively.The metal content of the isolated powders was determined by ICP and given in Table 1.The supported rhodium(0)nanoparticles were tested for their catalytic activity in hydrogen generation from the hydrolysis of ammonia borane.The catalytic hydrolysis of ammonia borane was followed by monitoring the change in H 2volume,which was then converted into the equivalent H 2per mole of AB using the known 3:1H 2/AB stoichiometry (Eq.(1)).Fig.S1a and b shows the vol-ume of hydrogen versus time plots for the hydrolysis of 0.10M ammonia borane solution performed starting with rhodium(0)nanoparticles supported on different oxide nanopowders at high166S.Akbayrak et al./Applied Catalysis B:Environmental 198(2016)162–170Table 1The rhodium contents and turnover frequency values of rhodium(0)nanoparticles supported on different oxide nanopowders at (a)high and (b)low rhodium loading of the catalysts used in hydrogen generation from the hydrolysis of ammonia borane at 25.0±0.1◦C for a fair comparison.CatalystRh loading (%wt.)a[Rh]conc.(mM)aTOF (min −1)aRh loading (wt.%)b[Rh]conc.(mM)bTOF(min −1)b Rh 0/CeO 2 1.610.081610.100.082010Rh 0/SiO 2 2.030.08430.400.08112Rh 0/Al 2O 3 2.070.081010.500.08195Rh 0/TiO 2 1.950.08730.470.08105Rh 0/ZrO 2 2.120.08150.590.08102Rh 0/HfO 2 1.920.08290.480.0824Fig.7.(a)mol H 2/mol H 3N ·BH 3versus time graph depending on the rhodium concentration in Rh 0/CeO 2for the hydrolysis of AB (100mM)at 25.0±0.1◦C.(b)The logarithmic plot of hydrogen generation rate versus the concentration of Rh;ln (rate)=1.01ln [Rh]+6.33.Fig.8.(a)The evolution of equivalent hydrogen per mole of AB versus time plot for the hydrolysis of AB starting with Rh 0/CeO 2(0.02mM Rh)and 100mM AB at various temperatures.(b)The Arrhenius plot for the Rh 0/CeO 2catalyzed hydrolysis of AB.lnk =−5122.6(1/T)+19.68.and low rhodium loadings,respectively,at 25.0±0.1◦C.The ini-tial turnover frequency values were calculated from the initial rate of hydrogen generation and listed in Table 1.As it can eas-ily be seen from the graphical illustration in Fig.1,among the catalysts tested,rhodium(0)nanoparticles supported on nanoce-ria show the highest catalytic activity in hydrogen generation from the hydrolysis of ammonia borane at room temperature.Therefore,we decided to use nanoceria as support for the further investiga-tion on rhodium(0)nanoparticles catalysts in hydrogen generation from the hydrolysis of ammonia borane.Rhodium(0)nanoparticles supported on nanoceria (Rh 0/CeO 2)were isolated from the reaction solution by centrifugation,copi-ous washing with water,and drying under vacuum (10−3Torr)at 60◦C and characterized by ICP-OES,XRD,BET,SEM,SEM-EDS,TEM and XPS.Fig.2shows the XRD pattern of ceria powders and rhodium(0)nanoparticles supported on ceria (Rh 00/CeO 2)with two different rhodium loadings.Powder XRD pattern of Rh 0/CeO 2in Fig.2b exhibits peaks at 28.5◦,33.07◦,47.08◦,56.33◦and 59.08◦assigned to the (111),(200),(220),(311)and (222)reflections of CeO 2,respectively (JPDS =43-1002).Comparison of the XRD pat-terns clearly shows that there is no change in intensity and position of the characteristic diffraction peaks of ceria.This observation indi-cates that ceria remains intact after reduction of rhodium(III)ions and there is no noticeable alteration in the framework lattice orS.Akbayrak et al./Applied Catalysis B:Environmental198(2016)162–170167 Table2Turnover frequency value(TOF)and activation energy(E a)of the most active rhodium,ruthenium,palladium and platinum catalysts reported for the hydrolysis of AB at 25.0±0.1◦C.Catalyst TOF(min−1)E a(kJ/mol)Metal/AB molar ratio Ref.Rh0/CeO2(0.1%wt.Rh)201042.60.0008This study Rh(0)/CNT706320.0025[15]Pt/CNTs-O-HT468–0.0047[42]Ru/CB429.534.810.00425[43]Pt@MIL-10141440.70.0029[44]Pd@Co/graphene408.9–0.02[45]Ru@MWCNT329330.00189[46]Rh/graphene32519.70.004[38]Pt/␥-Al2O3308210.018[47]Rh(0)@TiO226065.50.00116[48]Pd(0)/SiO2-CoFe2O4254520.0031[49] Laurate stabilized Rh(0)nanocluster20043.60.0025[50]Rh0/nanoAl2O3(0.5%wt.Rh)195–0.0008This study Pt/CeO2182–0.0018[32]Ru(0)/SiO2-CoFe2O4172.545.60.00097[51]Ru/HAp137580.00392[52]Ru/X-NW135770.00271[53]Rh/␥-Al2O3128.2210.018[47]Rh0/nanoSiO2(0.4wt.%Rh)112–0.0008This study Rh0/nanoTiO2(0.47%wt.Rh)105–0.0008This study Rh0/nanoZrO2(0.59%wt.Rh)102–0.0008This study Zeolite stabilized Rh(0)nanocluster9266.90.002[54]Rh0/HfO2(0.48%wt.Rh)24–0.0008This studyloss in the crystallinity of host material.There is no observable peak attributable to rhodium nanoparticles in Fig.2,most likely as a result of low rhodium loading on ceria.The BET nitrogen adsorption analysis(Fig.S2in the Supporting information)gave the surface area of ceria and Rh0/CeO2as48.1and 47.32m2g−1,respectively.This slight decrease in the surface area of ceria upon rhodium loading implies the existence of rhodium(0) nanoparticles on the surface of support.Fig.3exhibits the SEM image and SEM-EDS spectrum of Rh0/CeO2indicating that rhodium is the only element detected in the sample in addition to the framework elements of ceria(Ce,O).The morphology and size of rhodium nanoparticles on the sur-face of ceria were investigated by high resolution TEM(Fig.4a–d) which shows rhodium nanoparticles with particle size in the range 1.8–5.3nm(average diameter:3.2±0.8nm,histogram in Fig.4e) are successfully anchored on ceria nanopowder.The composition of Rh0/CeO2and the oxidation state of rhodium were also studied by XPS technique.The survey-scan XPS spectrum of Rh0/CeO2with a rhodium loading of0.1%wt.given in Fig.5shows the presence of all the framework elements of Rh0/CeO2in agree-ment with the SEM-EDS result.High resolution X-ray photoelectron spectrum of Rh0/CeO2sample given in the inset of Fig.5shows two prominent Rh3d bands at307.07eV and312.10eV which can readily be assigned to Rh(0)3d5/2and3d3/2bands,respectively, by comparing to the values of metallic rhodium[38].The bands at 309.8and305.2eV(inset of Fig.5)are attributable to rhodium oxide [39],which might be formed during the XPS sampling.For compar-ison,high resolution XPS spectra of CeO2and Rh00/CeO2with a rhodium loading of0.1%wt.in Ce3d and Ce4d regions are given in Fig.S3of the Supporting Information.There is no observable change in the spectra after rhodium loading.Before starting with the investigation on the catalytic activity of Rh0/CeO2in the hydrolysis of ammonia borane,a control exper-iment was performed to check whether ceria shows any catalytic activity in the hydrolysis of ammonia borane at the same tempera-ture.In the control experiments performed starting with1.0mmol AB and80mg CeO2(the same amount as the one used in catalytic activity tests)in10mL of water at20.0or35.0±0.1◦C,no hydrogen generation was observed in1h at both temperatures.This obser-vation indicates that the hydrolysis of ammonia borane does not occur in the presence of CeO2in the temperature range used in Table3The TOF value of Rh0/CeO2(0.1%wt.Rh)in the subsequent runs of the hydroly-sis of ammonia borane(The material loss has been taken into account for the TOF calculations in each run).Run Rh0/CeO2(mg)[Rh](mM)TOF(min−1) 1800.08020102720.07215403640.06414704610.06114505560.0561350this study.However,Rh0/CeO2is found to be highly active catalyst in the hydrolysis of ammonia borane generating3.0equivalent H2 gas per mole of AB in the same temperature range.AB molecule interacts with the active site of the metal particle and an activated complex is formed.Then,B N bond dissociation takes place by the attack of water molecule on the activated complex,which results in the hydrolysis of the BH3intermediate to form the borate ion together with the release of H2[40,41].The catalytic activity of Rh0/CeO2in hydrogen generation from the hydrolysis of ammonia borane at25.0±0.1◦C was investigated depending on the rhodium loading of catalyst.The plots of equiva-lent H2gas generated per mole of H3NBH3versus time during the catalytic hydrolysis of100mM AB solution using Rh0/CeO2with different loading at25.0±0.1◦C are available in Fig.S4of the Sup-porting Information.The turnover frequency(TOF)values were calculated from the initial rate measured in each of the hydro-gen generation versus time plots given in Fig.S4of the Supporting Information.The variation of TOF with the rhodium loading of the catalyst is illustrated in Fig.6.It is seen that the Rh0/CeO2sam-ple with a rhodium loading of0.1%wt.Rh provides the highest catalytic activity in hydrogen generation from the hydrolysis of ammonia borane at25.0±0.1◦C.Therefore,Rh0/CeO2catalyst with rhodium loading of0.1%wt.Rh was used in all of the further exper-iments performed in this study.The decrease in catalytic activity of Rh0/CeO2with the increasing rhodium loading may be attributed to the aggregation of rhodium nanoparticles as seen from the TEM images in Fig.S5.Fig.7a shows the plots of equivalent H2gas generated per mole of H3NBH3versus time during the catalytic hydrolysis of 100mM AB solution using Rh0/CeO2catalyst in different rhodium168S.Akbayrak et al./Applied Catalysis B:Environmental 198(2016)162–170Fig.10.TEM image of Rh 0/CeO 2sample (0.1%wt.Rh)harvested after the fifth use (a)and fifth cycle (b)in hydrolysis of AB at 25.0±0.1◦C.Fig.9.Graph of the evolution of equivalent hydrogen per mole of AB versus time plot for the first and fifth use of Rh 0/CeO 2(0.1%wt.Rh)in catalytic hydrolysis of AB for at 25.0±0.1◦C.concentration at 25.0±0.1◦C.The hydrogen generation rate was determined from the linear portion of each plot in Fig.7a and plot-ted versus the initial concentration of rhodium,both in logarithmic scale,in Fig.7b,which gives straight line with a slope of 1.01indi-cating that the catalytic hydrolysis of ammonia borane is first order with respect to the rhodium concentration.The TOF values for hydrogen generation from the hydrolysis of ammonia borane (100mM)at 25.0±0.1◦C were determined from the hydrogen generation rate in the linear portion of the plots given in Fig.7a for experiment performed starting with 100mM AB plus Rh 0/CeO 2(0.1%wt.Rh)in various rhodium concentrations.The TOF value of Rh 0/CeO 2catalyst in rhodium concentration of 0.08mM Rh is as high as 2010min −1in hydrogen generation from the hydroly-sis of ammonia borane at 25.0±0.1◦C.TOF values of the most active rhodium,platinum,ruthenium catalysts used in hydrogen genera-tion from the hydrolysis of ammonia borane are listed in Table 2for comparison.As clearly seen from the TOF values listed in Table 2,rhodium(0)nanoparticles supported on nanoceria (Rh 0/CeO 2)pro-vide the highest catalytic activity (TOF =2010min −1)ever reported for the room temperature hydrolysis of ammonia borane in litera-ture.This high catalytic activity of Rh 0/CeO 2can be attributed to the fact that ceria is a reducible oxide support [20].Because of large standard reduction potential of Ce 4+→Ce 3+(1.76V in acidic solution)[21],Ce 3+defects can easily be formed in ceria under the reaction conditions leading to the build up of excess negative charge on the oxide surface.This negative charge on the oxide sur-face can bind the rhodium(0)nanoparticles strongly making thesurface rhodium sites catalytically more active in hydrogen gener-ation from the hydrolysis of ammonia borane.Catalytic hydrolysis of ammonia borane was also performed starting with 100mM AB in the presence of Rh 0/CeO 2(0.02mM Rh)at various temperatures.Fig.8a shows the evolution of equivalent H 2per mole of ammonia borane versus time plots for the hydrolysis of AB at various temperatures in the range 20–35◦C.The rate con-stant for the hydrogen generation reactions was calculated from the slope of the linear part of each hydrogen evolution versus time plot at various temperatures (Fig.8a).From the slope of Arrhenius plot in Fig.8b,activation energy for the hydrolysis of ammonia borane catalyzed by Rh 0/CeO 2was found to be E a =43±2kJ/mol,which is comparable to the literature values reported for the other catalysts used in the same reaction (Table 2).Reusability of Rh 0/CeO 2catalyst was tested in successive exper-iments performed using the catalyst isolated from the reaction solution after a previous run of hydrolysis of ammonia borane.After the completion of hydrogen generation from the hydrolysis of ammonia borane starting with 0.08mM Rh 0/CeO 2plus 100mM AB in 10mL aqueous solution at 25.0±0.1◦C,the catalyst was isolated by centrifugation and dried under vacuum (10−3torr)at 60◦C after washing with 50mL of water.The isolated solid sample of Rh 0/CeO 2was weighed and redispersed in 10mL solution of 100mM AB for a subsequent run of hydrolysis which was then started immedi-ately and continued until the completion of hydrogen evolution at 25.0±0.1◦C.This hydrogen generation process was repeated 5times in the same way at 25.0±0.1◦C and the results are listed in Table 3.The results of reusability tests reveal that Rh 0/CeO 2are still active in the subsequent runs of hydrolysis of ammonia borane providing 100%conversion (yielding 3equivalent H 2per mole of AB).Fig.9shows the evolution of equivalent H 2per mole of H 3NBH 3versus time plot for the first and fifth use of Rh 0/CeO 2(0.08mM Rh)in catalytic hydrolysis of ammonia borane at 25.0±0.1◦C.After the fifth run of hydrolysis of ammonia borane,Rh 0/CeO 2still exhibits a record TOF value (1350min −1),preserving 67%of the initial cat-alytic activity.The decrease in catalytic activity in successive runs (Table 3)can be attributed to the agglomeration of nanoparticles on the surface of ceria during the isolation,drying and redispersion processes.Indeed,the TEM image in Fig.10a for the sample har-vested after the fifth run of hydrolysis indicates the agglomeration of rhodium(0)nanoparticles on the surface of ceria.Durability of the Rh 0/CeO 2(0.1%wt.Rh)catalyst was also tested in hydrogen generation from the hydrolysis of ammonia borane.For the recyclability test,a standard hydrolysis of ammonia borane cat-alyzed by Rh 0/CeO 2was performed starting with 10mL solution of 100mM AB and 0.08mM Rh at 25.0±0.1◦C.When the ammonia borane present in the solution was completely hydrolyzed,1mmol。
几种食用香辛料的抑菌活性研究杨倩,谭婷,吴娟娟,史娟!(陕西省催化重点实验室陕西理工大学化学与环境科学学院,陕西汉中723000)摘要:采用浓度梯度法,研究花椒、辣椒、生姜和大蒜的乙醇提取物对马铃薯干腐病菌、番茄灰霉病菌、尖孢镰刀病菌、苹果灰疽病菌、水稻稻瘟病菌和苹果腐烂病菌的体外抑菌试验。
结果表明&种天然食用香辛料的提取物对以上植物真菌均表现出明显的抑制作用。
其中,花椒提取物对6种菌的抑制作用最强;大蒜提取物对马铃薯干腐病菌、苹果腐烂病菌和水稻稻瘟病菌的抑菌作用较强,而对尖孢镰刀病菌的抑制作用相对较弱;生姜提取物对尖孢镰刀病菌的抑制作用最弱。
4种香辛料提取物的抑菌效果均随其浓度的增加而逐渐增大。
花椒、辣椒、生姜和大蒜均具有良好的抑菌作用,可作为天然植物抗菌剂资源。
关键词:花椒'束椒;生姜;大蒜'是取物;抑菌活性中图分类号:T S264.3 文献标志码:A d o i:10. 3969/j.issn. 1000-9973. 2019. 04. 005文章编号:1000-9973(2019)04-0023-04Study on the Antibacterial Activity of Several Edible SpicesY A N G Q ia n,T A N T in g,W U Juan-juan,S H I Juan!(K e y Lab oratory of Catalysis in Shaanxi P ro vin ce,College o f Chemical and E nvironm ental Science,Shaanxi U n iv e rs ity o f T e ch no log y,Hanzhong 723000, China)concentration gradient m ethod is used to study the antibacterial a c tiv ity of ethanol extracts of Zanthoxylum bungeanum,c h ili,ginger and garlic.The tested strains are Fusarium coeruleum,B otrytis cin trea,Fusarium o xy sp o ru m,Colletotrichum gloeo sp o rioid ss,=y ricularia grisea and Valsa ma—respectively.The results show th a t the extracts of the fo u r natural edible spices have obvious in h ib ito ry effects on the above several fu n g i.The extract o f Zanthoxylum bungeanum has the strongest inhibitory effect on the six kinds of fungi.The extract of garlic m aii and P yricu la ria grisea has strong antibacterial a c tiv ity,w hile the in h ib ito ry effect on Fusarium oxysporum is re la tive ly w eaker.The extract of ginger has the weakest in h ib ito ry effect on Fusarium oxysporum.The antibacterial effect of fo u r spices'extracts gradually increase w ith the increase of concentration.Zanthoxylum bungeanum,c h ili,ginger and garlic have good antibacterial a c tiv ity andcan be used as natural p lant antibacterial resources.;)%7〇「$5: ZanfhoxyZwm bungeanum;c h ili;g in g e r;g a rlic;e x tra c t;antibacterial a ctivity我国是传统的农业生产大国,农业经济是我国国 民经济的基础,也是农村居民的主要经济来源。
小学上册英语第1单元暑期作业英语试题一、综合题(本题有100小题,每小题1分,共100分.每小题不选、错误,均不给分)1.The ______ (种子发芽) process requires optimal conditions.2.We will play ________ tomorrow.3.My ________ (兄弟) plays football every weekend.4.The green color of leaves comes from a pigment called ______. (叶子的绿色来自一种叫做叶绿素的色素。
)5.What do you call a young llama?A. CalfB. FoalC. KidD. CriaD6.What do you call the process of changing a liquid to a gas?A. MeltingB. EvaporationC. CondensationD. Freezing7.I have a _____ (饼干盒) filled with tasty cookies. 我有一个装满美味饼干的饼干盒。
8. A ______ is a mixture of two or more substances that can be easily separated.9.What do you call a baby cat?A. PuppyB. KittenC. CubD. FoalB10.Which animal is often kept as a pet and purrs?A. DogB. CatC. HamsterD. FishB11.The _____ (sapling) will grow into a strong tree.12.What do you call the process of changing from a liquid to a gas?A. EvaporationB. FreezingC. MeltingD. Condensation13.What is the term for a baby pig?A. PigletB. CalfC. KidD. LambA14.What is the opposite of 'hot'?A. WarmB. CoolC. ColdD. Freezing15.The chemical symbol for lead is ______.16.What is the largest mammal in the world?A. ElephantB. Blue whaleC. GiraffeD. HippoB Blue whale17.I saw a _____ (狮子) in the zoo.18.Can you ___ (help) me?19.In a chemical reaction, the rate can be influenced by factors such as concentration, temperature, and _____.20.What is 50 - 25?A. 15B. 20C. 25D. 3021.I have a ___ (favorite) movie.22.The ______ (果实) can be red or green.23.I can dive into my imagination with my ________ (玩具名称).24. A __________ is a geological feature that can affect local ecosystems and human activities.25.The __________ (历史的启发) shapes our futures.26.The bark of a tree protects its ______. (树皮保护树的内部。
2020年12月第39卷第4期内蒙古科技大学学报JournalofInnerMongoliaUniversityofScienceandTechnologyDecember,2020Vol.39,No.4中低温稀土氧化物固体电解质的研究进展刘媛媛1,2,3,安胜利1,3 ,李舒婷1,蔡长 1(1 内蒙古科技大学材料与冶金学院,内蒙古包头 014010;2 内蒙古科技大学化学与化工学院,内蒙古包头 014010;3 内蒙古科技大学内蒙古先进陶瓷与器件重点实验室,内蒙古包头 014010)摘 要:中低温固体电解质是中低温固体氧化物燃料电池的关键组件,介绍了常用的中低温固体电解质的种类,较为全面地介绍了掺杂氧化铈固体电解质,对该电解质的优缺点和改进方式进行了较为全面的综述关键词:中低温固体氧化物燃料电池;中低温固体电解质;掺杂氧化铈固体电解质中图分类号:TQ174.75 文献标识码:A文章编号:2095-2295(2020)04-0388-05 DOI:10.16559/j.cnki.2095-2295.2020.04.016 高效洁净能源逐渐成为未来能源的开发和利用方向 燃料电池是一种新型洁净的能量转换装置,可以直接利用生物质气将化学能转化为电能 因其具有燃料适应性强、环境友好、能量转换效率高等优点,受到了人们广泛关注氧化钇稳定的氧化锆(YSZ)是目前高温SOFC制备中使用最为寻常的电解质材料之一[1-4] 然而,YSZ的电导率偏低,以该电解质组装的电池工作温度基本在900~1100℃高温 高温运行会要求SOFC各部件材料在高温下具有良好的性能,但这无疑增加了电池的工作成本,并且对电池内关键材料的化学稳定性、热稳定性、高温强度、热膨胀匹配等都有更高的要求 基于以上考虑,低温SOFC具有更高能量利用率,当使用不锈钢作为电池堆的封接材料时,SOFC的组装就具备了密封更容易、开启时间更短、开启耗能更低、电极团聚更少、热膨胀不匹配产生热应力更少等诸多优点SOFC工作温度的降低会直接导致电解质材料电导率的降低,而这势必引起Rohm增加 保证SOFC在低温下高性能运行,首先是要保证SOFC内部欧姆电阻的降低,实现的途径通常有2个:第一种途径是适当减薄电解质的厚度 如采用电化学气相淀积(EVD)成功制备了阴极支撑薄膜YSZ电池(1990年)[4] 但高成本的EVD方法限制了应用;成本较低的方法,诸如压片、流延、丝网印刷、悬涂、喷雾法被广泛应用于SOFC工业领域 当电解质厚度减少至1μm级别时就可以实现低温区域内SOFC的顺利运行[5-7]降低SOFC内部欧姆电阻的第二种途径是不断开发具有高离子电导率的电解质体系 针对第二种途径,SOFC关键基础材料主要目的是为了改善电解质的电导率,主要包括萤石和钙钛矿结构材料2类[8-11] 萤石结构材料主要有掺杂ZrO2基、掺杂Bi2O3基及掺杂CeO2基电解质材料1 掺杂氧化锆体系电解质材料19世纪90年代,德国化学家能斯特(WALTHERHERMANNNERNST)首先发现了高氧离子电导率的YSZ电解质[12],其中8mol%Y2O3ZrO2氧离子电导率高达0 1S·cm-1(1000℃)[13],故YSZ一直作为高温SOFC的电解质材料 Sc2O3掺杂ZrO2(ScSZ),在掺杂ZrO2基电解质中具有最高的电导率,当温度为750℃时,ScSZ的电导率可达0 1S·cm-1,然而,ScSZ电解质也存在一个显著的问题:温度变化会导致ScSZ发生相的转变,实验证实由于相转变,ScSZ在高温条件下电基金项目:国家自然科学基金资助项目(51474133);内蒙古自治区自然科学基金资助项目(2017MS0221) 作者简介:刘媛媛(1981-),女,内蒙古科技大学副教授、博士研究生,研究方向为固体氧化物燃料电解质 通信作者:e mail:san@imust.edu.cn收稿日期:2020-06-19刘媛媛,等:中低温稀土氧化物固体电解质的研究进展导率会出现下降的趋势[14]2 稳定Bi2O3体系电解质材料高温δ Bi2O3内含25%氧空位晶格位点,是立方萤石相结构,因而δ Bi2O3具有极高的离子电导率 在已发现的O2-导体电解质中,δ Bi2O3稳定的相结构决定了它最高的O2-电导率[15-18]除最高电导率这一优势外,在300~350℃温度区间,δ Bi2O3还具有良好的O2 O2-电催化活性 然而,δ Bi2O3在730~804℃保持立方相结构稳定,当温度低于730℃,δ Bi2O3立方相会转变为具有较差离子传导能力的α相单斜结构,电导率也会随之急剧下降[19] 采用Er3+,La3+,Y3+等价稀土金属元素掺杂时,很好地保持δ Bi2O3相结构,并且在室温下仍能保持稳定 这进一步说明,低温下δ Bi2O3仍具高电导率,从而成为极具潜力的低温SOFC电解质材料之一[20-22]与YSZ电解质相比ESB电解质的欧姆损失可以降低1~2个数量级[23]3 掺杂CeO2体系电解质材料CeO2为萤石型立方结构,晶格常数为54 0nm,比重7 3g·cm-3,熔点2750℃,CeO2烧结体在0~800℃的热膨胀系数为8 6×10-6℃-1 氧化铈立方萤石相晶体结构如图1所示,4a(0,0,0)和8c(1/4,1/4,1/4)Wyckoff位点分别表示的是+4价Ce和-2价O的位置,没有被元素占据的八面体位点可提供O2-快速扩散路径,并通过空位扩散机制实现O2-传导[24]纯氧化铈并无足够氧空位来保持氧离子传导能力如图1(a)所示,因此使用低价离子取代Ce4+来保证充足的氧空位含量如图1(b)所示 O通过空位跳跃机制从四面体中心位置跳跃至相邻的氧空位位点来传导O2-如图1(c)所示图1 氧化铈立方莹石相晶体结构图(a)CeO2本征结构;(b)CeO2因掺杂产生氧空位示意图;(c)CeO2传导O2-跳跃机制示意图O2-与主位离子间键能、掺杂剂浓度及类型、温度及移动离子的迁移能影响O2-电导率[25-27]CeO2基电解质中大部分三价掺杂离子在掺杂浓度10~20mol%时,会得到最大氧离子电导值 当掺杂离子半径近似等于主离子半径(Ce4+)时,即可得到最高O2-电导率[25-28] 掺杂CeO2电导率温度在低于700℃时比YSZ电解质材料高1~2个数量级,主要原因是在较为开放的空间结构中大离子半径会使O2-更容易迁移,而Ce4+离子半径为0 87×10-10m,Zr4+离子半径为0 82×10-10m,两者相比Ce4+更占优势 Gd3+与Ce4+离子半径近似相等,因此导致Gd掺杂CeO2材料在各种掺杂浓度下,在500~700℃温度范围内均具有高的离子电导率[28-30],GDC作为低温区域SOFC电解质材料一直是掺杂CeO2电解质的研究热点WACHSMAN课题组在ANDERSSON等人[31]前期理论的基础上,制备出了掺杂CeO2基电解质材料,其电导率比550℃10GDC的电导率提高30%[32-35]同时,在低温区域、阳极支撑单电池上,SNDC电解质材料显示出了高电性能输出结果[36],说明SNDC是优良的低温SOFC电解质材料当氧分压小于10~14atm时,氧化铈基电解质材料的Ce4+会被还原成Ce3+,产生电子漏电 由于电子漏电主要发生在SOFC阳极侧,其还原过程将造成点阵体积膨胀进而削弱电解质力学性能,同时电子泄露会使SOFC电化学性能减弱 这样的结果会降低掺杂CeO2基材料的离子迁移数,减小SOFC电池的开路电压(OCV),这样会使掺杂CeO2基材料作为SOFC电解质的效率降低[37]为了提高电子泄露现象对氧化铈基电解质材料的效率,常增加一层电解质在阳极侧(或阴极侧),这样可以有效地阻隔CeO2内部的电子电导,进而提升电池的OCV及离子迁移数,如在阴极侧,Sm0 2Ce0 8O2-δ(SDC)电解质层中间增加一层YSZ,起到电子阻隔的作用,发现电子电导阻隔效果明显,可获得高工作电压输出,或在SDC与阳极层中间加入BaZr0 1Ce0 7Y0 2O3-δ,YSZ,其主要目的是避免SDC裸露于还原气氛中[38],避免还原Ce4+产生电子导电,制备的YSZ(2μm)/SDC(6μm)双层电解质薄膜在700℃时OCV可达0 98V,输出功率为1 08W·cm-2 除上述介绍,还可以将Ba加入至阳极中,这样阳极侧、SDC电解质层中间就形成了SDC@Ba(Ce,Zr)1-x(Sm,Y)O3-δ电子阻隔层[39],电子阻隔层既保证离子传导,又可阻隔SDC与还原气接983内蒙古科技大学学报2020年12月 第39卷第4期触,650℃OCV可达1 037V,输出功率为基材638mW·cm-2[40] 当温度高于600℃,CeO2料的电子泄露现象会削弱SOFC的电池性能,故不能忽略电子泄露现象带来的影响[41]参考文献:[1] LAWRENCESJ,SPACILHS,SCHROEDERDL.Thesolidelectrolyteoxygensensortheoryandapplications[J].Automatica,1969,5(5):633.[2] KWONCW,SONJW,LEEJH,etal.High performancemicro solidoxidefuelcellsfabricatedonnanoporousanodicaluminumoxidetemplates[J].AdvancedFunctionalMaterials,2011,21(6):1154.[3] EVANSA,BIEBERLEHA,RUPPJLM,etal.Reviewonmicrofabricatedmicro solidoxidefuelcellmembranes[J].JournalofPowerSources,2009,194(1):119.[4] SUPC,CHAOCC,SHIMJH,etal.Solidoxidefuelcellwithcorrugatedthinfilmelectrolyte[J].NanoLetters,2008,8(8):2289.[5] MAHATON,BANERJEEA,GUPTAA,etal.Progressinmaterialselectionforsolidoxidefuelcelltechnology:Areview[J].ProgressinMaterialsScience,2015,46(51):141.[6] LEEKT,YOONHS,WACHSMANED.Theevolutionoflowtemperaturesolidoxidefuelcells[J].JournalofMaterialsResearch,2012,27(16):2063.[7] WINCEWICZKC,COOPERJS.TaxonomiesofSOFCmaterialandmanufacturingalternatives[J].JournalofPowersources,2005,140(2):280.[8] WACHSMANE,ISHIHARAT,KILNERJ.Low temperaturesolid-oxidefuelcells[J].MrsBulletin,2014,39(9):773.[9] ETSELLTH,FLENGASSN.Electricalpropertiesofsolidoxideelectrolytes[J].ChemicalReviews,1970,70(3):339.[10] OMARS,NAJIBWB,BONANOSN.Conductivityageingstudieson1M10ScSZ(M4+=Ce,Hf)[J].SolidStateIonics,2011,189(1):100.[11] 林祖刘媛媛,等:中低温稀土氧化物固体电解质的研究进展view[J].MaterialsatHighTemperatures,2003,20(2):115.[26] ETSELLTH,FLENGASSN.Electricalpropertiesofsolidoxideelectrolytes[J].ChemicalReviews,1970,70:339.[27] BRETTDJ,ATKINSONA,BRANDONNP,etal.In termediatetemperaturesolidoxidefuelcells[J].ChemicalSocietyReviews,2008,37:1568.[28] LEEKT,YOONHS,WACHSMANED.Theevolu tionoflowtemperaturesolidoxidefuelcells[J].JournalofMaterialsResearch,2012,27:2063.[29] MOGENSENM,SAMMESNM,TOMPSETTGA.Physical,chemicalandelectrochemicalpropertiesofpureanddopedceria[J].SolidStateIonics,2000,129(1 4):63.[30] MAHATON,GUPTAA,BALANIK.Dopedzirconiaandceria basedelectrolytesforsolidoxidefuelcells:areview[J].NanomaterialsandEnergy,2012,1(1):27.[31] SAKAIN,YUEPX,YAMAJIK,etal.Anomalousconductivityandmicrostructureingadoliniumdopedceriapreparedfromnano sizedpowder[J].SolidStateIonics,2006,177(26 32):2503.[32] ANDERSSONDA,SIMAKSI,SKORODUMOVANV,etal.Optimizationofionicconductivityindopedceria[J].ProceedingsoftheNationalAcademyofSciences,2006,103(10):3518.[33] OMARS,WACHSMANED,NINOJC.Highercon ductivitySm3+andNd3+co dopedceria basedelectrolytematerials.[J].SolidStateIonics,2008,178(3738):1890.[34] OMARS,WACHSMANED,NINOJC.Higherionicconductiveceria basedelectrolytesforsolidoxidefuelcells[J].AppliedPhysicsLetters,2007,91(14):144106.[35] OMARS,WACHSMANED,NINOJC.Aco dopingapproachtowardsenhancedionicconductivityinfluoritebasedelectrolytes[J].SolidStateIonics,2006,177(35 36):3199.[36] AHNJS,OMARS,YOONH,etal.Performanceofanode supportedsolidoxidefuelcellusingnovelceriaelectrolyte[J].JournalofPowerSources,2010,195(8):2131.[37] WANGS,INABAH,TAGAWAH,etal.Nonstoichi ometryofCe0.9Gd0.1O1.95-x[J].SolidStateIonics,1998,107(1 2):73.[38] SUNW,SHIZ,WANGZ,etal.BilayeredBaZr0.1Ce0.7Y0.2O3-δ/Ce0.8Sm0.2O2-δelectrolytemembranesforsolidoxidefuelcellswithhighopencircuitvoltages[J].JournalofMembraneScience,2015,476:394.[39] SUNW,LIUW.Anovelceria basedsolidoxidefuelcellfreefrominternalshortcircuit[J].JournalofPowerSources,2012,217:114.[40] GONGZ,SUNW,CAOJ,etal.Ce0.8Sm0.2O1.9decoratedwithelectron blockingacceptor dopedBaCeO3aselectrolyteforlow temperaturesolidoxidefuelcells[J].ElectrochimicaActa,2017,228:226.[41] CAOJ,GONGZ,HOUJ,etal.Novelreduction resistantBa(Ce,Zr)1-xGdxO3-δelectron blockinglayerforGd0.1Ce0.9O2-δelectrolyteinIT SOFCs[J].Ceram icsInternational,2015,41(5):6824.(责任编辑:李波)ResearchprogressofmediumandlowtemperaturerareearthoxidesolidelectrolyteLIUYuanyuan1,2,3,ANShengli1,3 ,LIShuting1,3,CAIChangkun1,3(1.MaterialsandMetallurgySchool,InnerMongoliaUniversityofScienceandTechnology,Baotou014010,China;2.ChemistryandChemicalEngineeringSchool,InnerMongoliaUniversityofScienceandTechnology,Baotou014010,China;3.InnerMongoliaKeyLaboratoryofAdvancedCeramicsandDevice,InnerMongoliaUniversityofScienceandTechnology,Baotou014010,China)Abstract:Themediumandlowtemperaturesolidelectrolyteisthekeycomponentofthemediumandlowtemperaturesolidoxidefuelcell.Thetypesofthecommonmediumandlowtemperaturesolidelectrolytewereintroduced.Andthedopedceriumoxidesolidelec trolytewasintroducedmorecomprehensively,givingacomprehensivereviewoftheadvantagesanddisadvantagesoftheelectrolyteanditsimprovementmethods.Keywords:IT SOFC;IT solidelectrolyte;dopedCeO2solidelectrolyte193。
absolute error 绝对误差 absorbance 吸光度 absorbent 吸附剂 absorption curve 吸收曲线 absorption peak 吸收峰 absorptivity 吸收系数 accident error 偶然误差 accuracy 准确度 acid-base titration 酸碱滴定 acidic effective coefficient 酸效应系数 acidic effective curve 酸效应曲线 acidity constant 酸度常数 activity 活度 activity coefficient 活度系数 adsorption 吸附 adsorption indicator 吸附指⽰剂 affinity 亲和⼒ aging 陈化 amorphous precipitate ⽆定形沉淀 amphiprotic solvent 两性溶剂 amphoteric substance 两性物质 amplification reaction 放⼤反应 analytical balance 分析天平 analytical chemistry 分析化学 analytical concentration 分析浓度 analytical reagent (AR)分析试剂 apparent formation constant 表观形成常数 aqueous phase ⽔相 argentimetry 银量法 ashing 灰化 atomic spectrum 原⼦光谱 autoprotolysis constant 质⼦⾃递常数 auxochrome group 助⾊团 back extraction 反萃取 band spectrum 带状光谱 bandwidth 带宽 bathochromic shift 红移 blank 空⽩ blocking of indicator 指⽰剂的封闭 bromometry 溴量法 buffer capacity 缓冲容量 buffer solution 缓冲溶液 burette 滴定管 calconcarboxylic acid 钙指⽰剂 calibrated curve 校准曲线 calibration 校准 catalyzed reaction 催化反应 cerimetry 铈量法 charge balance 电荷平衡 chelate 螯合物 chelate extraction 螯合物萃取 chemical analysis 化学分析 chemical factor 化学因素 chemically pure 化学纯 chromatography ⾊谱法 chromophoric group 发⾊团 coefficient of variation 变异系数 color reagent 显⾊剂 color transition point 颜⾊转变点 colorimeter ⽐⾊计 colorimetry ⽐⾊法 column chromatography 柱⾊谱 complementary color 互补⾊ complex 络合物 complexation 络合反应 complexometry complexometric titration 络合滴定法 complexone 氨羧络合剂 concentration constant 浓度常数 conditional extraction constant 条件萃取常数 conditional formation coefficient 条件形成常数 conditional potential 条件电位 conditional solubility product 条件溶度积 confidence interval 置信区间 confidence level 置信⽔平 conjugate acid-base pair 共轭酸碱对 constant weight 恒量 contamination 沾污 continuous extraction 连续萃取 continuous spectrum 连续光谱 coprecipitation 共沉淀 correction 校正 correlation coefficient 相关系数 crucible 坩埚 crystalline precipitate 晶形沉淀 cumulative constant 累积常数 curdy precipitate 凝乳状沉淀 degree of freedom ⾃由度 demasking 解蔽 derivative spectrum 导数光谱 desiccant; drying agent ⼲燥剂 desiccator 保⼲器 determinate error 可测误差 deuterium lamp 氘灯 deviation 偏差 deviation average 平均偏差 dibasic acid ⼆元酸 dichloro fluorescein ⼆氯荧光黄 dichromate titration 重铬酸钾法 dielectric constant 介电常数 differential spectrophotometry ⽰差光度法 differentiating effect 区分效应 dispersion ⾊散 dissociation constant 离解常数 distillation 蒸馏 distribution coefficient 分配系数 distribution diagram 分布图 distribution ratio 分配⽐ double beam spectrophotometer 双光束分光光度计 dual-pan balance 双盘天平 dual-wavelength spectrophotometry 双波长分光光度法 electronic balance 电⼦天平 electrophoresis 电泳 eluent 淋洗剂 end point 终点 end point error 终点误差 enrichment 富集 eosin 曙红 equilibrium concentration 平衡浓度 equimolar series method 等摩尔系列法 Erelenmeyer flask 锥形瓶 eriochrome black T (EBT)铬⿊T error 误差 ethylenediamine tetraacetic acid (EDTA)⼄⼆胺四⼄酸 evaporation dish 蒸发⽫ exchange capacity 交换容量 extent of crosslinking 交联度 extraction constant 萃取常数 extraction rate 萃取率 extraction spectrphotometric method 萃取光度法 Fajans method 法杨斯法 ferroin 邻⼆氮菲亚铁离⼦ filter 漏⽃ filter 滤光⽚ filter paper 滤纸 filtration 过滤 fluex 溶剂 fluorescein 荧光黄 flusion 熔融 formation constant 形成常数 frequency 频率 frequency density 频率密度 frequency distribution 频率分布 gas chromatography (GC)⽓相⾊谱 grating 光栅 gravimetric factor 重量因素 gravimetry 重量分析 guarantee reagent (GR)保证试剂 high performance liquid chromatography (HPLC)⾼效液相⾊谱 histogram 直⽅图 homogeneous precipitation 均相沉淀 hydrogen lamp 氢灯 hypochromic shift 紫移 ignition 灼烧 indicator 指⽰剂 induced reaction 诱导反应 inert solvent 惰性溶剂 instability constant 不稳定常数 instrumental analysis 仪器分析 intrinsic acidity 固有酸度 intrinsic basicity 固有碱度 intrinsic solubility 固有溶解度 iodimetry 碘滴定法 iodine-tungsten lamp 碘钨灯 iodometry 滴定碘法 ion association extraction 离⼦缔合物萃取 ion chromatography (IC)离⼦⾊谱 ion exchange 离⼦交换 ion exchange resin 离⼦交换树脂 ionic strength 离⼦强度 isoabsorptive point 等吸收点 Karl Fisher titration 卡尔。
氧化铈表面羟基数量## English Answer:The number of surface hydroxyl groups on ceria is a crucial factor influencing its catalytic activity, oxygen storage capacity, and other physicochemical properties. Several experimental and theoretical studies have been conducted to determine the surface hydroxyl concentration on ceria.Experimental Methods:Temperature-Programmed Desorption (TPD): This technique involves heating the ceria sample in an inert gas atmosphere and monitoring the desorption of hydroxyl groups as a function of temperature. The number of surface hydroxyl groups can be quantified by integrating the desorption peak area.X-ray Photoelectron Spectroscopy (XPS): XPS providesinformation about the elemental composition and chemical states of the ceria surface. The O 1s core level spectrum can be deconvoluted into contributions from lattice oxygen, oxygen vacancies, and surface hydroxyl groups.Infrared Spectroscopy (IR): IR spectroscopy can identify the vibrational modes of surface hydroxyl groups on ceria. The intensity of the characteristic O-Hstretching band can be used to estimate the surface hydroxyl concentration.Atomic Force Microscopy (AFM): AFM can image the surface morphology of ceria and provide information about the distribution and size of surface hydroxyl clusters.Theoretical Methods:Density Functional Theory (DFT): DFT calculations can simulate the surface structure and chemistry of ceria. The number of surface hydroxyl groups can be determined by optimizing the atomic configuration and calculating the electronic density of states.Molecular Dynamics (MD) Simulations: MD simulations can provide a dynamic view of the surface hydroxylation process on ceria. The hydroxyl group concentration can be monitored as a function of temperature, water vapor pressure, and other environmental conditions.## Chinese Answer:氧化铈表面羟基数量。
庄燕苹,杨帆,肖曼,等. 忧遁草乙醇提取物对秀丽隐杆线虫的抗衰老作用及机制[J]. 食品工业科技,2023,44(11):411−417. doi:10.13386/j.issn1002-0306.2022090024ZHUANG Yanping, YANG Fan, XIAO Man, et al. Anti-aging Effect and Mechanism of Ethanol Extract of Clinacanthus nutans on Caenorhabditis elegans [J]. Science and Technology of Food Industry, 2023, 44(11): 411−417. (in Chinese with English abstract). doi:10.13386/j.issn1002-0306.2022090024· 营养与保健 ·忧遁草乙醇提取物对秀丽隐杆线虫的抗衰老作用及机制庄燕苹1,杨 帆1, +,肖 曼1,田小雨1,陈 怡1,龙紫宇1,陈柏岑1,倪雅丽2,宫爱民1, *,谢毅强1,*(1.海南医学院中医学院,海南海口 571199;2.海南省第二人民医院药学部,海南海口 572299)摘 要:目的:以秀丽隐杆线虫为模式生物,探究忧遁草乙醇提取物(Clinacanthus nutans ethanol extract ,CNEE )对线虫的抗衰老作用及作用机制。
方法:通过寿命、产卵、运动等实验检测忧遁草乙醇提取物对线虫抗衰老的作用;通过急性氧化应激、抗氧化酶活力测定、活性氧(ROS )测定、实时荧光定量PCR 等实验初步探究忧遁草乙醇提取物的抗氧化能力及延缓衰老的作用机制。
结果:忧遁草乙醇提取物在100 μg/mL 时能延长N2野生型线虫寿命(P <0.001),对其运动能力也有促进作用(P <0.001),同时对产卵能力没有毒性影响(P >0.05);该提取物还可以提高线虫在急性氧化应激条件下的寿命(P <0.05)及过氧化氢酶的活力(P <0.01),并有效降低体内ROS 的堆积情况(P <0.05),上调daf-16(P <0.01)及下游ctl-1(P <0.001)基因的表达水平。
Ceria concentration effect on chemical mechanical polishing of optical glassLiangyong Wang *,Kailiang Zhang,Zhitang Song,Songlin FengLaboratory of Nano Technology,Research Center of Functional Semiconductor Film Engineering &Technology,Shanghai Institute of Microsystem andInformation Technology,CAS,Graduate School of the Chinese Academy of Sciences,Shanghai 200050,ChinaReceived 27June 2006;received in revised form 3October 2006;accepted 31October 2006AbstractIt was found material removal rate (MRR)sharply increased from 250to 675nm/min as the concentration decreased from 1to 0.25wt%in optical glass chemical mechanical polishing (CMP)using ceria slurries.Scanning electron microscopy was employed to characterize the ceria abrasive used in the slurry.Atomic force microscopy results showed good surface had been got after CMP.Schematic diagrams of the CMP process were shown.Furthermore,the absorption spectra indicated a sudden change from Ce 4+to Ce 3+of the ceria surface when the concentration decreased,which revealed a quantum origin of the phenomenon.#2006Elsevier B.V .All rights reserved.PACS :81.65.PsKeywords:CMP;Ceria;Concentration;Physical model;Quantum origin1.IntroductionCeria (CeO 2)has received much attention due to its high reactivity.It has applications for automotive emission-control catalysis [1]and electrolytes in solid oxide fuel cells [2].It also has potential applications for catalytic converters in environ-mental friendly technologies [3]and new sources of low-emission power generation [4].Recently there has been a great deal of interest in its application in chemical mechanical polishing (CMP)due to its high performance with respect to high material removal rate (MRR)and high surface quality.It is the most widely used abrasive for the CMP of silicate glasses [5,6].CMP is a process that has been employed for centuries to form precise optics [7].Though ceria has been widely commercially used in optical glass CMP [8],yet the optical glass surface quality in terms of scratch numbers and root mean squares (RMS)after CMP and the decrease of slurry cost are still needed to be improved.In this study,it is found that MRR increased as the concentration decreased in optical glass CMP using ceria slurries within an ultralow concentration (below 1wt%).In a concentration of 0.25wt%,a MRR of 675nm/minwas achieved and a good surface with a RMS 4.7A˚in a 1m m Â1m m area was obtained meanwhile.On the base of this find,it is very promising to use this ceria slurry within an ultra low concentration (below 1wt%)instead of the widely used commercial one in a concentration of 5wt%(or maybe higher)due to the low cost and well performance.2.Experimental proceduresThe polishing slurry was prepared by first adding a dispersant to deionized (DI)water until dissolved.Ceria abrasives (from Shanghai Gona Powder Technology Co.Ltd.)were then dispersed and treated by ultrasound for 10min.The last step of slurry preparation was adjusting the pH value to be 4by 0.1M nitric acid.Polishing was performed with 2.5in.conventional optical glass wafers using a CMP Tester (CETR CP-4)with an IC 1000/Suba IV stacked pad (Rodel).The polishing process parameters were set as follows:pad rotation speed 150rpm,wafer rotation speed 150rpm,down force 3psi,feed rate of the slurry 100ml/min and polishing time 10min.Ceria slurries were composed of 0.1wt%dispersant,DI water and ceria,1,0.5and 0.25wt%,respectively.The morphology of the abrasives was observed with Field-emission-scan-electron-microscopy (FESEM,s-4700type,Hitachi).Atomic force microscopic (AFM)images of the surface in a 1m m Â1m m/locate/apsuscApplied Surface Science xxx (2006)xxx–xxx*Corresponding author.Fax:+862162134404.E-mail addresses:wly@ ,wangliangyong@ (L.Wang).0169-4332/$–see front matter #2006Elsevier B.V .All rights reserved.doi:10.1016/j.apsusc.2006.10.074area were obtained using an AFM Q-Scope 250(Quesant Instrument Corporation,USA).AV-570UV/VIS/NIR Spectro-photometer (JASCO,Japan)was employed for acquisition of the absorption spectra of ceria slurries in different concentra-tions at room temperature.3.Results and discussionFig.1shows the MRR versus the ceria concentration.The MRR sharply increased from 250to 675nm/min when the concentration decreased from 1to 0.25wt%,which is quite different from the conventional concept thinking that the MRR should decrease as the concentration decreases due to the decrease of abrasive numbers.Meanwhile,good surface quality was obtained using these ceria slurries.Typical AFM images of the optical glass surface before and after CMP are shown inFig.2.The RMS of the surface was 9.7A˚before CMP,but it had dropped to a number varied from about 4.7A˚to approximate 5.0A˚after CMP using the ceria slurry in a concentration between 0.25and 1wt%.Some dim rotary/circular patterns appear in Fig.2,this may be aroused by the noise during the process of the AFM test.Two main reasons may account for the mentioned abnormal phenomenon.The basic one is that when the concentration reduced from 1to 0.25wt%,functioned abrasives’number in CMP would not reduce or at least would not reduce sharply due to the efficiency improvement.Fig.3shows the typical SEM image of ceria abrasives used in a slurry.As this image indicates,the size of most particles is about 80nm while a number of 40nm particles still exist.The ununiformity of particle size distribution in slurries reflects the extent of ceria dispersion by ultrasound.Undoubtedly,the dispersion will become better as the concentration reduces due to the particle quantity decrease and the increase of completeness of the ultrasound function,which will result in slurry with more uniform particle size in a lower concentration.On the base of this fact,schematic diagrams of the CMP process are shown inFig.4.When using a kind of slurry with a higher concentration,abrasives with larger size instead of all the abrasives will really work due to the direct contact of the pad and the raised parts of the wafer.In addition,because of the pressure,recesses of the pad will occur and a number of small particles will be trapped.The larger the functioned particles,the deeper the recesses will happen and the more small particles will be trapped and make no sense as be shown in Fig.4(a).On the contrary,when using a slurry with a lower concentration,the proportion of functioned abrasives to all the abrasives in the slurry will increase due to the better uniformity of particle size,which can be seen from Fig.4(b).Thus,because of the enhancement of the proportion of functioned abrasives when the concentration decreased from 1to 0.25wt%,really worked abrasives did not reduce or at least did not reduce sharply.This is the basic reason for the abnormal phenomenon that the MRR increases as the concentration deceases.Another reason is that a quantum process better for optical glass CMP occurred at the ceria surface when the concentration decreased,which makes a decisive contribution to the mentioned abnormal phenomenon.In a CMP process,except for the anterior expounded mechanic tear,the performance of the slurry mainly relies on the activity of the abrasive surface.Thus,the change of surface with respect to valence state and quantum effect and so on may really result the abnormal phenomenon.Chiang et al.[9]showed experimentally that ultrafine polycrystals of ceria (grain size 1–20nm)required one-half the heat of reduction of a coarse-grained polycrystal ($5m m grain size).In addition,commercially available ceria abrasives contain La impurities,which have been confirmed by direct EELS observations [6].And optical glass usually contains alkali metals impurities,too.Therefore,when dispersing the ceria powders in the slurry using the ultrasound,the high energy of micro bubbles produced by the ultrasound would promote metal impurities enter ceria abrasives except for opening the conglomeration of the abrasives.Especially when the concentration of the slurry was lower,more uniform and smaller particles would be obtained due to the ultrasound’s dispersion function.Meanwhile,metal impurities’enter to the ceria structure from the surface would become more easily,because the heat needed to promote a change in the surface had been reduced due to the smaller particle size [9].A simple defect model for metal doping may be written by analogy withthe Kro¨ger–Vink notation [10]:R m O n À!CeO 2¨VO þm R 0Ce þn O 0(1)Or in the case of ceria reduction:2CeO 2À!CeO 22Ce 0Ce þ¨V O þ12O 2þ3O 0(2)In the Eq.(1),R represents metal ion impurities such as La oralkali metals and R m O n represents the corresponding oxide.When metal ion impurities entered the structure of ceria abrasives according to Eqs.(1)and (2),oxygen-vacancy formed,which was closely coupled with a quantum effect of the location of 4f electron of cerium.In the quantum effect of the electron location,two electrons would remain whenoxygenFig.1.Material removal rate (MRR)as a function of CeO 2concentration.L.Wang et al./Applied Surface Science xxx (2006)xxx–xxx2leaved the lattice (oxygen-vacancy formation)[11].In another word,Ce 4+had been changed to Ce 3+on the abrasive surface due to the process.And the lower the concentration was,the more easily the change would happen due to the decrease of heat request in the dispersion by ultrasound.In addition,Ce(OH)3has been shown to be thermodynamically stable in aqueous solutions,whereas CeO 2is thermodynamically unstable in the presence of aqueous solutions and deposes by evolving oxygen and reducing to the trivalent state [12].Therefore,more Ce 3+on the surface of the abrasive in a lower concentration would be beneficial for the CMP process due to the ease of forming a Ce(OH)3hydration layer which would promote the process of the CMP according to Cook’s CMP model [13].These assumptions were indirectly confirmed by spectro-scopy.Fig.5shows the absorption spectra of ceria slurries in different concentration.In accordance with the figure,the positions of the maxima of the absorption of Ce 3+and Ce 4+ions are substantially different and lie in the regions 342and 357–377nm,respectively,which basically coincides with the published data (a little excursion in the long wavelength direction due to the abundant-electron groups’effect)[14–16].As can be seen from the figure,the ratio of Ce 3+to Ce 4+increased when the concentration decreased from 1toFig.2.Typical AFM images of the optical glass surface:(a)Pre-CMP;(b)Post-CMP.L.Wang et al./Applied Surface Science xxx (2006)xxx–xxx30.25wt%.At the concentration of 1wt%,both of the maximum absorption peak of Ce 3+and Ce 4+ions were high.However,when the concentration decreased to 0.25wt%,there was almost no maximum absorption for Ce 4+ions while the absorption peak of Ce 3+still remained high,yet the height of the sharp peak became a little lower due to the decrease of abrasives’quantity.These facts are consistent with those assumptions mentioned in the second reason.4.ConclusionIn summary,it is found that the MRR sharply increases from 250to 675nm/min as the concentration decreases from 1to 0.25wt%in optical glass CMP using ceria slurries.Mean-while,AFM results showed good surface quality had been got after CMP using these ceria slurries within ultralow concentration.On the base of the characterization of ceria abrasives by SEM,schematic diagrams of the CMP process were shown.Furthermore,the absorption spectra indicates a sudden change from Ce 4+to Ce 3+of the ceria surface when the concentration decreases,which reveals a quantum origin of the phenomenon.AcknowledgementsThis work is supported by Chinese Academy of Sciences (Y2005027),Science and Technology Council of Shanghai (0452nm012,04ZR14154,04JC14080,05JC14076,AM0414,0552nm043,AM0517,06QA14060).References[1]T.Bunluesin,R.J.Gorte,G.W.Graham,Appl.Catal.B 15(1998)107.[2]D.Schneider,M.Go¨dickemeier,L.J.Gauckler,J.Electroceram.1(1997)165.[3]M.S.Dresselhaus,I.L.Thomas,Nature (Lond.)414(2001)332.[4]T.Hibino,et al.Science 288(2000)2031;S.Park,et al.Nature (Lond.)404(2000)265;B.C.H.Steele,A.Heinzel,Nature (Lond.)414(2001)345.[5]R.Sabia,H.J.Stevens,Mach.Sci.Technol.4(2000)235.[6]S.R.Gilliss,et al.Appl.Surf.Sci.241(2005)61–67.[7]S.V .Babu,K.C.Cadien,H.Yano,Mater.Res.Soc.Symp.Proc.671(2001)288.[8]P.B.Zantye, A.Kumar, A.K.Sikder,Mater.Sci.Eng.R.45(2004)89–220.[9]Y .M.Chiang,vik,I.Kosacki,H.L.Tuller,J.Y .Ying,Appl.Phys.Lett.69(1996)185.[10]F.A.Kro¨ger,H.J.Vink,Solid State Phys.3(1956)307.[11]N.V .Skorodumova,S.I.Simak, B.I.Lundqvist,I.A.Abrikosov, B.Johansson,Phys.Rev.Lett.89(2002)166601.[12]M.Pourbaix,Altas of Electrochemical Equilibria in Aqueous Solutions,first English ed.,Pergamon Press Ltd.,London,1966.[13]L.M.Cook,J.Non-Cryst.Solids 120(1990)152.[14]A.V .Karyakin,in:E.A.Bozhevol’nov (Ed.),Spektral’nyi Analiz Red-kozemel’nykhokislov (Spectral Analysis of Rare-Earth Oxides),Nauka,Moscow,1974.[15]H.L.Greenhaus,A.M.Feibush,L.J.Gordon,Anal.Chem.29(1957)1531.[16]Z.W.Zhu,Z.Q.Luo,D.L.Cui,S.L.Zhang,G.C.Zhang,Chin.J.Non-ferrous Met.15(2005)435–440.Fig.4.Schematic diagrams of CMP process using the novel CeO 2slurry in different concentrations:(a)higher concentration;(b)lowerconcentration.Fig.3.SEM image of CeO 2abrasives used in aslurry.Fig.5.Absorption spectra of ceria slurries in different concentration.L.Wang et al./Applied Surface Science xxx (2006)xxx–xxx4。