三角函数最值问题的几种常见类型 (1)解读
- 格式:doc
- 大小:136.50 KB
- 文档页数:7
三角函数最值问题的常见类型及解法作者:陈德堂来源:《中学课程辅导高考版·教师版》2010年第04期摘要:归纳出三角函数最值问题常见的七种类型及解法。
关键词:三角函数;最值中国分类号:G424 文献标识码:A文章编号:1992-7711(2010)4-015-02一、形如y=a sin x+b cos x型的函数(化归思想)特点是含有正、余弦函数,并且是一次式.解决此类问题的指导思想是把正、余弦函数转化为只有一种三角函数.应用公式y=a2+b2sin(x+φ)即可,其中tanφ=ba.然后利用三角函数的有界性求最值.例1.求函数y=sin x+3cos x,x∈\π2\〗的最值.分析:由于a sin x+b cos x=a2+b2sin(x+φ),其中tanφ=ba,此结论在运用是时需注意自变量x的取值范围.所以y=sin x+3cos x=2sin(x+π3)因为0≤x≤π2;所以x+π3∈\π3,5π6\〗由三角函数的图象或单调性可知y min=1,y max=2.二、形如y=a sin x+b sin x cos x+c cos x2型的函数(化归思想)特点是含有sin x,cos x的二次式,处理方式是降幂,再化为型一的形式来解.例2.求y=sin2+2sin x cos x+3cos2x的最小值,并求y取最小值时的x 的集合.解:y=sin2x+2sin x cos x+3cos2x=(sin2x+cos2x)+sin2x+2cos2x=1+sin2x+1+cos2x=2+2sin(2x+π4)当sin(2x+π4)=-1时,y取最小值2-2,此时x的集合{x|x=kπ-38π,k∈Z}.三、形如y=a sin2x+b cos c+c型的函数(化归思想和换元思想)特点是含有sin x,cos x,并且其中一个是二次,处理方式是应用sin2x+cos2x=1,使函数式只含有一种三角函数,再应用换元法,转化成二次函数来求解.例3.求函数y=cos2x-2a sin x-a(a为常数)的最大值M.解:y=1-sin2x-2a sin x-a=-(sin x+a)2+a2+1-a令sin x=t,则y=-(t+a)2+a2+1-a,(-1≤t≤1)(1)若-a1时, 在t=-1时,取最大值M=a.(2)若-1(3)若-a>1,即a四、形如y=a sin x+cb cos x+d型的函数(化归思想或数形结合思想)特点是一个分式,分子、分母分别会有正、余弦的一次式.几乎所有的分式型都可以通过分子,分母的化简,最后整理成这个形式,它的处理方式有多种.例4.求函数y=2-sin x2-cosx的最大值和最小值.解法1:原解析式即:sin x-y cos x=2-2y,即sin(x+φ)=2-2y1+y2,∵|sin(x+φ)|≤1,∴2-2y1+y2≤1,解出y的范围即可.解法2:2-sin x2-cos x表示的是过点(2, 2)与点(cos x,sin x)的斜率,而点(cos x,sin x)是单位圆上的点,观察图形可以得出在直线与圆相切时取极值.解法3:应用万能公式设t=tan x2,则y=2t2-2t+23t2+1,即(2-3y)t2-2t+2-y=0,根据Δ≥0解出y的最值即可.五、形如y=sin x cos x型的函数(化归思想或不等式思想)它的特点是关于sin x,cos x的二次式,此类函数用均值不等式求解大为简捷.例5.在直角三角三角形中,两锐角为A和B,则sin A sin B()A.有最大值12和最小值0B.有最大值12,但无最小值C.既无最大值也无最小值D.有最大值1,但无最大值解法1:∵A+B=π2,0∴sin A>0,cos A>0,即sin A cos A>0,又sin AsinB=sin A cos A=12sin2A≤12.故选B.解法2:sin A sin B≤sin2A+sin2B2=sin2A+cos2A2=12.又∵A,B≠0,∴选B.六、含有sin x与cos x的和与积型的函数式(换元思想)其特点是含有或经过化简整理后出现sin x±cos x与sin x cos x的式子,处理方式是应用(sin x±cos x)2进行转化,转化为二次函数的问题.例6.求y=2sin x cos x+sin x+cos x的最大值.解:令sin x+cos x=t(-2≤t≤2),则1+2sin x cos x=t2,所以2sin x cos x=t2-1,所以y=t2-1+t=(t+12)2-54,根据二次函数的图象,解出的最大值是1+2.七、形如y=sin x+a sin x型的函数(分类讨论思想)若0由以上的几种形式可以归纳出解三角函数最值的基本方法:一是应用正弦、余弦函数的有界性来求;二是利用二次函数闭区间内求最大、最小值的方法;此外可以利用重要不等式或利用数形结合的方法来解决.。
三角函数中的最值问题(4种方法)基本方法1、直接法:形如f (x )=a sin x +b (或y =a cos x +b ),值域为[-|a |+b ,|a |+b ],形如y=asinx+bcsinx+c 的函数可反解出sinx,利用|sinx|≤1求解,或分离常数法.2、化一法:形如f (x )=a sin x +b cos x ,f (x )=a sin 2x +b cos 2x +c sin x cos x 的函数可化为f (x )=A sin(ωx +φ)的形式,利用正弦函数的有界性求解,给定x 范围时要注意讨论ωx +φ的范围,注意利用单位圆或函数图象.3、换元法:形如f (x )=a sin 2x +b sin x +c 或f (x )=a cos 2x +b sin x +c 或f (x )=a (sin x ±cos x )+b sin x ·cos x 的函数可通过换元转化为二次函数在某区间上的值域求解.4、几何法(数形结合):形如dx c bx a y ++=cos sin 转化为斜率问题,或用反解法.典型例题例1已知函数f (x )=(sin x+cos x )2+cos 2x ,求f (x )在区间.解:(化一法)因为f (x )=sin 2x+cos 2x+2sin x cos x+cos 2x=1+sin 2x+cos 2x=2sin 2 +1,当x ∈0,2 ∈由正弦函数y=sin x 当2x+π4π2,即x=π8时,f (x )取最大值2+1;当2x+π45π4,即x=π2时,f (x )取最小值0.综上,f (x )在0,上的最大值为2+1,最小值为0.例2求函数y =2+sin x +cos x 的最大值.解:(化一法)y =2+2sin(x +π4),当x =π4+2k π(k ∈Z )时,y max =2+2例3求函数f (x )=cos2x +6cos(π2-x )的最大值.解:(换元法)f (x )=1-2sin 2x +6sin x =-2(sin x -32)2+112.令sin x =t ,则t ∈[-1,1],函数y =-2(t -32)2+112在[-1,1]上递增,∴当t =1时,y 最大=5,即f (x )max =5,例4已知x 是三角形的最小内角,求函数y =sin x +cos x -sin x cos x 的最小值.解:(换元法)由0≤x ≤π3,令t =sin x +cos x =2sin(x +π4),又0<x ≤π3,∴π4<x +π4≤712π,得1<t ≤2;又t 2=1+2sin x cos x ,得sin x cos x =t 2-12,得y =t -t 2-12=-12(t -1)2+1,例5已知sin α+sin β=22,求cos α+cos β的取值范围.解:(换元法)令cos α+cos β=t ,则(sin α+sin β)2+(cos α+cos β)2=t 2+12,即2+2cos(α-β)=t 2+12⇒2cos(α-β)=t 2-32,∴-2≤t 2-32≤2⇒-12≤t 2≤72,∴-142≤t ≤142,即-142≤cos α+cos β≤142.例6求函数y =1+sin x3+cos x的值域解法一:(几何法)1+sin x3+cos x可理解为点P (-cos x ,-sin x )与点C (3,1)连线的斜率,点P (-cos x ,-sin x )在单位圆上,如图所示.故t =1+sin x3+cos x满足k CA ≤t ≤k CB ,设过点C (3,1)的直线方程为y -1=k (x -3),即kx -y +1-3k =0.由原点到直线的距离不大于半径1,得|1-3k |k 2+1≤1,解得0≤k ≤34.从而值域为[0,34].解法二:(反解法)由y =1+sin x3+cos x 得sin x -y cos x =3y -1,∴sin(x +φ)=3y -11+y2其中sin φ=-y 1+y 2,cos φ=11+y 2.∴|3y -11+y2|≤1,解得0≤y ≤34.例7求函数y =2sin x +1sin x -2的值域解法一:(分离常数法)y =2sin x +1sin x -2=2+5sin x -2,由于-1≤sin x ≤1,所以-5≤5sin x -2≤-53,∴函数的值域为[-3,13].解法二:(反解法)由y =2sin x +1sin x -2,解得sin x =2y +1y -2,∵-1≤sin x ≤1,∴-1≤2y +1y -2≤1,解得-3≤y ≤13,∴函数的值域为[-3,13].针对训练1.函数y =3-2cos(x +π4)的最大值为____.此时x =____.2.函数xxy cos -3sin -4的最大值为.3.函数f (x )=sin 2x+3cos ∈的最大值是.4.函数y =12+sin x +cos x的最大值是【解析】1.函数y =3-2cos(x +π4)的最大值为3+2=5,此时x +π4=π+2k π(k ∈Z ),即x =3π4+2k π(k ∈Z ).2.解析式表示过A (cos x ,sin x ),B (3,4)的直线的斜率,则过定点(3,4)与单位圆相切时的切线斜率为最值,所以设切线的斜率为k ,则直线方程为y-4=k (x-3),即kx-y-3k+4=+11,∴k max3.由题意可知f (x )=1-cos 2x+3cos x-34=-cos 2x+3cos x+14=-cos -+1.因为x ∈0,cos x ∈[0,1].所以当cos f (x )取得最大值1.4.∵y =12+2sin (x +π4),又2-2≤2+2sin(x +π4)≤2+2∴y ≤12-2=1+22,含参问题一、单选题1.已知函数()sin cos (0,0)62af x x x a πωωω⎛⎫=++>> ⎪⎝⎭,对任意x ∈R ,都有()f x ≤,若()f x 在[0,]π上的值域为3[2,则ω的取值范围是()A.11,63⎡⎤⎢⎥⎣⎦B.12,33⎡⎤⎢⎣⎦C.1,6⎡⎫+∞⎪⎢⎣⎭D.1,12⎡⎤⎢⎥⎣⎦【解析】()sin cos 62af x x x πωω⎛⎫=++ ⎪⎝⎭1cos 2a x x ωω++max ()f x =02a a >∴= ,())3f x x πω∴=+0,0x πω≤≤> ,333x πππωωπ∴≤+≤+,3()2f x ≤ 2233πππωπ∴≤+≤,1163ω∴≤≤.故选:A2.已知函数()()cos 0f x x x ωωω=+>,当()()124f x f x -=时,12x x -最小值为4π,把函数()f x 的图像沿x 轴向右平移6π个单位,得到函数()g x 的图像,关于函数()g x ,下列说法正确的是()A.在,42ππ⎡⎤⎢⎣⎦上是增函数B.其图像关于直线6x π=对称C.在区间,1224ππ⎡⎤-⎢⎥⎣⎦上的值域为[]2,1--D.函数()g x 是奇函数【解析】因()()cos 2sin 06f x x x x πωωωω⎛⎫=+=+> ⎪⎝⎭,当()()124f x f x -=时,12x x -最小值为4π,则()f x 的最小正周期为22T ππω==,即4ω=,所以()2sin 46f x x π⎛⎫=+ ⎪⎝⎭,把函数()f x 的图像沿x 轴向右平移6π个单位,得()2sin 42sin 42cos 46662f x g x x x x ππππ⎡⎤⎛⎫⎛⎫⎛⎫-=-+=-=- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦=,所以,()g x 为偶函数,故D 选项不正确;由4,k x k k Z πππ≤≤+∈,即,44k k x k Z πππ+≤≤∈,故()g x 在区间(),44k k k Z πππ+⎡⎤∈⎢⎥⎣⎦上为减函数,所以()g x 在区间,42ππ⎡⎤⎢⎥⎣⎦上为减函数,故A选项不正确;由4,2x k k Z ππ=+∈,即,48k x k Z ππ=+∈,所以()g x 图像关于,48k x k Z ππ=+∈对称,故B选项不正确;当,1224x ππ⎡⎤∈-⎢⎥⎣⎦时,4,36x ππ⎡⎤∈-⎢⎣⎦,则()21g x -≤≤-,所以C 选项正确.故选:C.3.已知函数()()sin 04f x x πωω⎛⎫=-> ⎪⎝⎭,0,2x π⎡⎤∈⎢⎥⎣⎦的值域是⎡⎤⎢⎥⎣⎦,则ω的取值范围是()A.30,2⎛⎤ ⎥⎝⎦B.3,32⎡⎤⎢⎥⎣⎦C.73,2⎡⎤⎢⎥⎣⎦D.57,22⎡⎤⎢⎥⎣⎦【解析】因为0>ω,所以当0,2x π⎡⎤∈⎢⎥⎣⎦时,[,]4424x ππωππω-∈--因为函数()()sin 04f x x πωω⎛⎫=-> ⎪⎝⎭,0,2x π⎡⎤∈⎢⎥⎣⎦的值域是⎡⎤⎢⎥⎣⎦所以52244πωπππ≤-≤,解得332ω≤≤,故选:B.4.已知函数()(2)f x x ϕ=+22ππϕ-≤≤,若()0f x >在5(0,)12π上恒成立,则3(4f π的最大值为()B.0C.D.2-【解析】因为5(0,)12x π∈,故52(,)6x πϕϕϕ+∈+;由()0f x >,即1sin(2)2x ϕ+>-,得722266k x k πππϕπ-+<+<+,k Z ∈,故57(,)(2,2)666k k πππϕϕππ+⊆-++,k Z ∈,故2657266k k πϕπππϕπ⎧≥-+⎪⎪⎨⎪+≤+⎪⎩,解得2263k k πππϕπ-+≤≤+,k Z ∈;又22ππϕ-≤≤,故63ππϕ-≤≤,5.已知曲线()sin cos f x x m x ωω=+,()m R ∈相邻对称轴之间的距离为2π,且函数()f x 在0x x =处取得最大值,则下列命题正确的个数为()①当0,126x ππ⎡⎤∈⎢⎥⎣⎦时,m的取值范围是⎣;②将()f x 的图象向左平移04x 个单位后所对应的函数为偶函数;③函数()()y f x f x =+的最小正周期为π;④函数()()y f x f x =+在区间00,3x x π⎛⎫+ ⎪⎝⎭上有且仅有一个零点.故33()()42f ππϕϕ⎡⎤+++-⎢⎥⎣⎦,故3()4f π的最大值为0.故选:BA.1B.2C.3D.4【解析】函数()f x 的相邻对称轴之间的距离为2π,则周期为22T ππ=⨯=,∴22πωπ==,()sin 2cos 2f x x m x =+)x ϕ=+,其中cos ϕ=,sin ϕ=[0,2)ϕπ∈,()f x 在0x 处取最大值,则022,2x k k Z πϕπ+=+∈,0222k x πϕπ=+-,k Z ∈,①若0[,]126x ππ∈,则[2,2]63k k ππϕππ∈++,1sin 2ϕ≤≤,12解m ≤正确.②如()sin(28f x x π=+,0316x π=时函数取最大值,将()f x 的图象向左平移04x 个单位后得313()sin[2(4)sin(2)1688g x x x πππ=+⨯+=+,不是偶函数,错;③()()y f x f x =+中,()y f x =是最小正周期是π,()y f x =的最小正周期是2π,但()()y f x f x =+的最小正周期还是π,正确;④003[,44x x x ππ∈++时,()()0y f x f x =+=,因此在区间00,3x x π⎛⎫+ ⎪⎝⎭上有无数个零点,错;∴正确的命题有2个.故选:B.6.已知函数()cos 4cos 12=+-xf x x 在区间[0,]π的最小值是()A.-2B.-4C.2D.4【解析】22()cos 4cos 12cos 14cos 12(cos 1)42222x x x x f x x =+-=-+-=+-,由[0,]x π∈知,[0,]22x π∈,cos [0,1]2x ∈,则当x π=时,函数()f x 有最小值min ()2f x =-.故选:A.7.已知()cos31cos xf x x=+,将()f x 的图象向左平移6π个单位,再把所得图象上所有点的横坐标变为原来的12得到()g x 的图象,下列关于函数()g x 的说法中正确的个数为()①函数()g x 的周期为2π;②函数()g x 的值域为[]22-,;③函数()g x 的图象关于12x π=-对称;④函数()g x 的图象关于,024π⎛⎫⎪⎝⎭对称.A.1个B.2个C.3个D.4个【解析】()()cos 2cos311cos cos x x xf x x x+=+=+cos 2cos sin 2sin 12cos 2cos x x x x x x -=+=.即:()2cos 2f x x =且,2x k k Z ππ≠+∈.()2cos(4)3g x x π=+且,62k x k Z ππ≠+∈.①因为函数()g x 的周期为2π,因此①正确.②因为,62k x k Z ππ≠+∈,故() 2.g x ≠-因此②错误.③令4,3x k k Z ππ+=∈,得,124k x k Z ππ=-+∈.故③正确k ππ二、填空题8.函数()2sin()sin()2sin cos 66f x x x x x ππ=-++在区间[0,2π上的值域为__________.【解析】由11(x)sinx cosx)(sinx cosx)sin 2x2222f =-++22312(sin x cos x)sin 2x 44=-+2231sin cos sin 222x x x=-+11cos 2sin 22x x =--+1x )24π=-当[0,]2x π∈时,2[,]444x ππ3π-∈-,则sin(2)[42x π-∈-,所以11(x)[,22f ∈-.故答案为:11[,22-9.若函数()()2cos 2cos 202f x x x πθθ⎛⎫=++<< ⎪⎝⎭的图象过点()0,1M ,则()f x 的值域为__________.【解析】由题意可得()02cos 2cos 02cos 211f θθ=+=+=,得cos 20θ=,02πθ<<,02θπ∴<<,22πθ∴=,则4πθ=,()22cos cos 2cos 22sin 2sin 2sin 12f x x x x x x x π⎛⎫∴=++=-=--+ ⎪⎝⎭2132sin 22x ⎛⎫=-++ ⎪⎝⎭,令[]sin 1,1t x =∈-,则213222y t ⎛⎫=-++ ⎪⎝⎭.当12t =-时,该函数取最大值,即max 32y =,当1t =时,该函数取最小值,即min 3y =-.因此,函数()y f x =的值域为33,2⎡⎤-⎢⎥⎣⎦.故答案为:33,2⎡⎤-⎢⎥⎣⎦.10.函数32()sin 3cos ,32f x x x x ππ⎛⎫⎡⎤=+∈- ⎪⎢⎥⎣⎦⎝⎭的值域为_________.【解析】由题意,可得()3232ππf x sin x 3cos x sin x 3sin x 3,x ,,32⎡⎤=+=-+∈-⎢⎥⎣⎦,令t sinx =,t ⎡⎤∈⎢⎥⎣⎦,即()32g t t 3t 3=-+,t ⎡⎤∈⎢⎥⎣⎦,则()()2g't 3t 6t 3t t 2=-=-,当t 0<<时,()g't 0>,当0t 1<<时,()g't 0>,即()y g t =在⎡⎤⎢⎥⎣⎦为增函数,在[]0,1为减函数,又g ⎛=⎝⎭()g 03=,()g 11=,故函数的值域为:⎤⎥⎣⎦.11.(2019·广东高三月考(文))函数()cos 2|sin |f x x x =+的值域为______.【解析】2219()cos 2|sin |12|sin ||sin |2|sin |48f x x x x x x ⎛⎫=+=-+=--+ ⎪⎝⎭,所以当1sin 4x =时,()f x 取到最大值98,当sin 1x =时,()f x 取到最小值0,所以()f x 的值域为90,8⎡⎤⎢⎥⎣⎦故答案为:90,8⎡⎤⎢⎥⎣⎦。
三角函数求最值五种题型一、最值问题的一般解法:求解三角函数的最值问题可以分为以下五种题型:基本最大、基本最小、最大最小(上下界)、最大、最小。
1.基本最大:即求函数的最大值,通常通过对函数进行求导并令导数为零来求得。
这种情况下,需求导数在给定区间内的零点,并进行极值判断来确定最值。
2.基本最小:与基本最大相反,求函数的最小值,同样需要对函数进行求导并求导数为零,进行极值判断来确定最值。
3.最大最小(上下界):在给定区间内求函数的最大最小值,需将区间的端点以及函数的驻点和不可导点的值进行比较,以确定最大最小值。
4.最大:在给定区间内寻找函数的最大值。
可以通过对函数进行求导来确定驻点和不可导点,并与区间的端点进行比较,以确定最大值。
5.最小:在给定区间内寻找函数的最小值。
同样可以通过求导来确定驻点和不可导点,并与区间的端点进行比较,以确定最小值。
二、详细解答五种题型:以下是对上述五种题型的详细解答:1.基本最大:Example 1: 求函数f(x) = sin(x)的最大值。
解:首先求得导数f'(x) = cos(x),令cos(x) = 0,解得x = π/2 + kπ,其中k为整数。
然后对于x = π/2 + kπ,求得对应的函数值f(x) = sin(π/2 +kπ) = (-1)^k,即奇数项取最大值为1,偶数项取最小值为-1所以函数f(x) = sin(x)的最大值为12.基本最小:Example 2: 求函数f(x) = cos(x)的最小值。
解:同样求导得到f'(x) = -sin(x),令-sin(x) = 0,解得x = kπ,其中k为整数。
然后对于x = kπ,求得对应的函数值f(x) = cos(kπ) = (-1)^k,即奇数项取最小值为-1,偶数项取最大值为1所以函数f(x) = cos(x)的最小值为-13.最大最小(上下界):Example 3: 在区间[0, 2π]内,求函数f(x) = 2sin(x) + cos(x)的最大最小值。
解题宝典三角函数最值问题的类型很多.要提高解答三角函数最值问题的效率,需要掌握不同类型三角函数最值问题的特点,对三角函数式进行合理的化简或转化,充分利用三角函数的性质与图象来解题.本文重点探讨一下几类常见三角函数最值问题的解法.一、f ()x =A sin ()ωx +φ+k 型对于形如f ()x =A sin ()ωx +φ+k 、f ()x =A cos(ωx +φ)+k 、f ()x =A tan ()ωx +φ+k 的三角函数最值问题,一般要利用三角函数y =sin x 、y =cos x 、y =tan x 的性质和图象来求其最值.例1.求函数y =12sin æèöø2x +π3在区间[-π4,π6]上的最值.解:∵x ∈[-π4,π6],∴-π6≤2x +π3≤2π3,由正弦函数y =sin x 的图象可知-12≤sin æèöø2x +π3≤1,-14≤12sin æèöø2x +π3≤12,∴函数y =12sin æèöø2x +π3在区间[-π4,π6]上的最大值是12,最小值是-14.解答形如f ()x =A sin ()ωx +φ+k 、f ()x =A cos(ωx +φ)+k 、f ()x =A tan ()ωx +φ+k 的三角函数最值问题,要首先从y =sin x 、y =cos x 、y =tan x 的性质和图象入手,在y =sin x 、y =cos x 、y =tan x 图象的基础上作相应的变换,找出对应的最值点、与坐标轴的交点、对称轴等,从而快速确定函数在定义域内的最值.二、f ()x =λsin x +μcos x +t 型对于f ()x =λsin x +μcos x +t (λ、μ不全为0,t ∈R)型三角函数的最值问题,应先把函数式进行恒等变换,利用辅助角公式,将其转化为f ()x =λ2+μ2⋅sin(x +φ)+t (其中cos φ=λλ2+μ2,sin φ=μλ2+μ2,tan φ=μλ)的形式,或转化为f ()x =μ2+λ2cos(x +φ)+t 的形式;然后根据正弦或余弦函数的有界性来求其最值.例2.在直角坐标系中,曲线C 的参数方程是ìíîïïïïx =1-t 21+t 2,y =4t 1+t 2,(t 为参数)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程是2ρcos θ+3ρsin θ+11=0,求曲线C 上的点到直线l 的最短距离.解:将参数方程设为{x =cos α,y =2sin α,(α为参数,-π<α<π)根据点到直线的距离公式,可得曲线C 上任意一点(cos α,2sin α)到直线l 的距离为d =||||||4cos æèöøα-π3+117,当α=-2π3时,||||||4cos æèöøα-π3+11取得最小值7,则曲线C 到l 的最短距离是7.目标式2cos α+23sin α+11形如f ()x =λsin x+μcos x +t ,要求三角函数的最值,需要先利用辅助角公式进行恒等变换,将目标式转化成余弦函数式4cos æèöøα-π3;然后再根据余弦函数的有界性求其最值.三、f ()x =k sin 2x +m sin x +n (k ≠0)型对于形如f ()x =k sin 2x +m sin x +n (k ≠0)、f ()x =k cos 2x +m cos x +n (k ≠0)的三角函数最值问题,一般采用换元法求解.首先令sin x =t 、cos x =k ,得到二次函数;再利用二次函数和正余弦函数的性质求最值.例3.求函数f ()x =sin æèöø2x +3π2-3cos x的最小值.解:f ()x =sin æèöø2x +3π2-3cos x=-2cos 2x -3cos x +1,令cos x =t ,t ∈[-1,1],得y =-2t 2-3t +1=-2æèöøt +342+178,当t =1时,函数最小值是-4.原函数可化成f ()x =k cos 2x +m cos x +n 的形式,于是通过换元,将三角函数式转化为关于t 的二次函数式,这样便可直接根据二次函数的性质求最值.在解题时,需重点关注二次函数的定义域,此时二次函数的定义域受三角函数cos x =t 的单调性和有界性影响.四、f ()x =λsin x +t μcos x +n 或f ()x =μcos x +nλsin x +t(λμ≠0)型对于此类三角函数最值问题,一般有两种解法.一余涛涛38解题宝典是解析法,将函数f ()x =μcos x +nλsin x +t化成f ()x =μλ.cos x +n μsin x +t λ,再用换元法,令k =cos x +n μsin x +t λ,这样就得到线性函数f ()k =μλ.k (λμ≠0),即可根据线性函数的单调性求最值;或将k 看作是单位圆上的一个动点(sin x ,cos x )与定点(-t λ,-nμ)连线的斜率的最值,通过数形结合来解题.二是利用三角函数的有界性,通过恒等变形,将函数式转化成整式,再根据辅助角公式和三角函数的有界性来求最值.例4.求函数f ()x =sin x -1cos x +1的最大值.解法一:设P ()x ,y 是圆x 2+y 2=1上的动点,点A ()-1,1,k 是P 、A 两点所在直线的斜率,则PA 的直线方程是y -1=k (x +1),整理得kx -y +k +1=0.可知当直线与圆相切时,直线PA 的斜率最大,∵圆心到PA 直线的距离d ==1,解得k =0,∴f ()x =sin x -1cos x +1的最大值是0.解法二:将y =sin x -1cos x +1(x ≠(2k +1)π)变形,可得y +1=sin x -y cos x =1+y 2sin (x +φ),即sin ()x +φ=y +11+y 2,而||||||||y +11+y2=|sin (x +φ)|≤1,得||y +1≤1,则y ≤0,即函数()x =sin x -1cos x +1的最大值是0.解法一主要是运用了解析法,将函数最值问题转化为求单位圆x 2+y 2=1上的动点P (x ,y )与定点A (-1,1)连线斜率的最值,通过数形结合求得最值.解法二主要是利用正弦函数的有界性,通过三角恒等变换,将函数式转化为sin ()x +φ,再根据正弦函数的有界性|sin (x +φ)|≤1,建立关于y 的不等式,从而求得y 的最值.五、f ()x =λsin x +nμsin x 型对于形如f ()x =λsin x +nμsin x 、f ()x =λcos x +n μcos x 、f ()x =λtan x +n μtan x(λ、μ、n 为常数)的三角函数最值问题,通常利用基本不等式来求最值.当不能使用基本不等式求解时,可设t =sin x ,将原函数变为f ()t =λt +n μt ,再利用对勾函数的单调性求最值.还可以利用导数法来求最值.例5.当π4≤x ≤π2时,求函数f ()x =cos x +1cos x 的最小值.解法一:函数可变形为f ()x =cos x +12cos x+12cos x ,由基本不等式得cos x +12cos x≥2,当且仅当cos x=12cos x (即x =π4)等号成立,∵12cos x ≥,∴f ()x.解法二:∵π4≤x ≤π2,∴0<cos x ≤,令t =cos x ,∴0<t ≤,∴f ()t =t+1t为减函数,∴当t =时,f ()t =t +1t 有最小值解法三:对函数求导数,可得f ′()x =sin 3xcos 2x,∵π4≤x ≤π2,∴f ′()x >0,由此可判断出函数f ()x =cos x +1cos x在区间[π4,π2]x =π4时,函数f ()x =cos x +1cos x 取得最小值.解法一主要运用了基本不等式a +b ≥2ab(a >0,b >0),由于cos x +12cos x为两式的和,且其积为定值,在两式相等时可取等号,这就满足了运用基本不等式的应用条件:一正、二定、三相等.解法二主要运用对勾函数f ()x =x +ax的性质.运用对勾函数的性质求最值,需熟记对勾函数的单调性和最值点.解法三主要运用到导数法来求得最值.可见,求解三角函数最值问题是有规律可循的.(1)一般是从三角函数的解析式入手,明确其结构特征,充分利用函数的性质与图象来寻找解题思路;(2)对于比较复杂的三角函数式,需要利用诱导公式、同角的三角函数关系式、两角和差公式、二倍角公式等进行恒等变换,将函数式化简或转化成单一的三角函数式来求最值;(3)在求三角函数最值时,可灵活运用换元法、基本不等式法、解析法、三角函数的有界性进行解题.掌握这些方法与规律就能有效提高求三角函数最值问题的效率.(作者单位:江苏省无锡市洛社高级中学)39。
三角函数最值问题的十种常见解法.doc三角函数最值问题的十种常见解法三角函数是重要的数学运算工具,三角函数最值问题是三角函数中的基本内容,对三角函数的恒等变形能力及综合应用要求较高.解决三角函数最值这类问题的基本途径,一方血应充分利用三角函数自身的特殊性(如有界性等),另一方血还要注意将求解三角函数最值问题转化为求一些我们所熟知的函数(二次函数等)最值问题?下面介绍几种常见的求三角函数最值的方法:一.转化一次函数在三角函数中,正弦函数与余弦函数具有一个最基本也是最重要的特征一一有界性,利用正弦函数与余弦函数的有界性是求解三角函数最值的最基本方法.例1.求函数j = 2cosx-l的值域[分析]此为y = acosx + h型的三角函数求最值问题,设r = cosx,由三角函数的有界性得re [-1,1],则y = 2^-16 [-3,1]二.转化y = Asin(ex + 0) + b(辅助角法)观察三角函数名和角,先化简,使三角函数的名和角统一.例2. (2017年全国II卷)求函数/(x) = 2cosx + sinx的最大值为______________ .[分析]此为y二dsinx + bcos兀型的三角函数求最值问题,通过引入辅助角公式把三角函数化为y = 4sin(Qx + 0)+ B的形式,再借助三角函数图象研究性质,解题时注意观察角、函数名、结构等特征.一般可利用\asinx + bcosx\< yja2+b2求最值./(X)< J2? + 1 = yf5 ?三.转化二次函数(配方法)若函数表达式中只含有正弦函数或余弦函数,且它们次数是2时,一般就需要通过配方或换元将给定的函数化归为二次函数的最值问题来处理.例3.求函数y = -sin2 x-3cosx + 3的最小值.[分析闲用 sin 2 x + cos 2 x = 1 将原函数转化为 y = cos 2 x-3cosx + 2 ,令t = cosx,( 3 V i则—1 = 3( + 2,配方,得),=t ————,V -1<=""cosx=l 时,y min = 0四. 引入参数转化(换元法)对于表达式屮同时含有sinx+cosx ,与sinxcosx 的函数,运用关系式(sin x ± cos %)2 = 1 ± 2 sin x cos %,—般都可釆用换元法转化为t 的二次函数去求最值,但必须要注意换元后新变量的取值范围.例4.求函数y = sinx + cosx + sinx.cosx 的最大值.[分析]解:令(sinx + cosx)2 =l + 2sinxcosx ,设 / = sinx + cosx.则其屮 / w [— V2,V2]五. 利用基本不等式法利用基本不等式求函数的最值,要合理的拆添项,凑常数,同吋要注意等号成立的条件,否则会陷入误区.例5.已知兀丘(0,龙),求函数y = sinx + —!—的最小值. 2 sin % [分析]此题为sin% +旦型三角函数求最值问题,当sinx>(),a>l,不能用均值不等式求最sinx 值,适合用函数在区间内的单调性来求解.设sinx = (0< Z 51),y = Z + — n 2^t.— = V2,当且仅当 t —时等号成立. 六. 利用函数在区间内的单调性2 例6.已知XG (0,^),求函Sy = sinx + ———的最小值. sinx当 t = V2,sin x + —I 4丿sin A : cos x = [-Q 同,.??y =存[分析]此题为sinx + ——型三角函数求最值问题,当sinx>(),a>l,不能用均值不等式求最 sinx 值,适合用函数在区间内的单调性来求解.设 sin 兀二 f,(0 v f 5 l),y 二 f + -,在(0, 1)上为减函数,当匸1 时,y min = 3.七. 转化部分分式例7.求函数〉」心+ 1的值域 2cosx-ln CQQ r 4-[分析]此为型的三角函数求最值问题,分子、分母的三角函数同名、 ccosx-d同角,这类三角函数一般先化为部分分式,再利用三角函数的有界性去解.或者也可先用反八.数形结合由于sin 2 x + cos 2 x = 1 ,所以从图形考虑,点(cosx,sinx)在单位圆上,这样对一类既含有正弦函数,又含有余弦函数的三角函数的最值问题可考虑用几何方法求得. ■例& 求函数兀(0<兀<龙)的最小值.2 一 cos x0 — ein Y[分析]法一:将表达式改写成丿= ---------- ,y 可看成连接两点A(2,0)与点(cosx,sinx) 2-cosx的直线的斜率.由于点(cosx,sinx)的轨迹是单位圆的上半圆(如图),所以求y 的最小值就是在这个半圆上求一点,使得相应的直线斜率最小.设过点A 的切线与半圆相切与点B,则k AB <y<0.< p="">£7 所以y 的最小值为-+ (此时法二:该题也可利用关系式asinx+bcosx= -Ja 2 +/?2 sin(x + (即引入辅助角法)和有解法,再用三角函数的有界性去解.9解法一:原函数变形为歹=1+——=—, 2cosx-l/ |cosx| < 1 ,可直接得到:y>3^y<^.解法一:原函数变形为cosx-(2(y-1) V COSX < 1,/. / \ 2(y-1)< 1,/. y >3i^y < —. 可求得仏BRan 竺」 6 3界性来求解.九.判别式法亠弋皿 tan 2 x-tanx + l s _例9. 求函数y = ------- ----------- 白、J 取值. tan" x +tanx + 1 [分析]同一变量分子、分母最高次数齐次,常用判别式法和常数分离法.tan 2 x-tanx+1 y =——; ------------ tan~x + tanx + l解:/.(y-l)tan 2 兀+ (y + l)tanx + (y-l) = Oy = l,tanx = O,x = k;r(kw 龙)J 工1吋此吋一元二次方程总有实数解 /. A = (y +1)2 - 4(y -1)2 > 0,/.(3y - l)(y -3)< 0 /. — < y < 3. 3由 y=3, tanx=-l, x = k/r+ e z), y max = 3. 1 . . 7t 1由 y = -,tanx = l,/.x = ^ + -,y 「nin = §? 十.分类讨论法含参数的三角函数的值域问题,需要对参数进行讨论.a j ( 兀、例10 ?设f(x) = — cos ?无+ dsin x ---------------------------------------------- 0W 42 2, (1) 当 ^>1,即 d?2,g(/)在[0, 1]上递增,M@)=g(l) =手—I 2丿解:f(x) = -sin 2 x + asinx- —+ 丄.令 sinx=t,则 0 < Z < 1, 八4 2g(J = / W = -z 2 +〃_# + * =a 2 a 1H---------- 1 - 4 4 2当05 — 51,即05d52时,g(f)在[0 ,1]上先增后减,(3) 当-<0,即 a50,g(J 在[0, 1]上递减,M (a)=g (0)=丄—2 22 4* 3d 1 ”------ ,ci n 2 4 2a 2 a 1八,八--------- 1— 4 4 2Id c2 4 以上几种方法中又以配方法和辅助角法及利用三角函数的有界性解题最为常见?解决这类问题最关键的在于对三角函数的灵活应用及抓住题日关键和本质所在.挑战自我:1. 求函数y=5sinx+cos2x 的最值2. 已知函数y 二二cos? x +=-sinrcosx + l(xw/?)当函数y 取得最大值时,求自变量x 的集合.3.已知函数/(x) = 2sin x(sinx + cos x),求函数f(x)的最小正周期和最大值.参考答案:1 ?[分析]:观察三角函数名和角,其中一个为正眩,一个为余眩,角分别是单角和倍角,所以先化简,使三角函数的名和角达到统一.2?[分析]此类问题为y = asin ,x + /?sinx-cosx + ccos 2 x 的三角函数求最值问题,它可通M@)=g [彳a 2 a 1 T~4 + 2, 5) sinx-- 4丿 v -1 < sinx < 1,?°? sinx = -l,x = Zk7V~ — 9ke z, y m [n = -2x 2 . [ "冗 i 1 33 . sinx = 1 x - 2K 7T H ——e z, v m .1Y = -2x ------- 1 --- = 4 2 16 8>' =5 sin x + (1 - 2 sin 2 x) = -2 sin 2 x + 5 sin x +1 = -2 si 33H --- 833 乙 + ——=-6 16 8过降次化简整理为y = asinx + bcosx 型求解.1 + cos 2x V3 sin 2x t 1 o V3 . 5 ----------- + --------------- +1 = — coszxH ----- s in 2x + —2 2 2 4 4 4f(x)的最小正周期为龙,最大值为1 + V2.3?[分析]在本题的函数表达式中,既含有正弦函数,又有余弦函数,并且含有它们的二次式,故需设法通过降次化二次为一次式,再化为只含有正弦函数或余弦函数的表达式.x + 2sinxcosx = 1-cos2x + sin 2x = l + 42sm 2x ---------- I 4 ——cos 2x + — sin 2x 2 2 1 —sin 2 「2兀+耳+二2兀+三 4, ?二壬 + 2航, x 二? + k 兀(k w z), y max o 2 o 解: /(x) = 2sin 2 </y<0.<>。
三角函数最值问题的十种常见解法三角函数是重要的数学运算工具,三角函数最值问题是三角函数中的基本内容,对三角函数的恒等变形能力及综合应用要求较高.解决三角函数最值这类问题的基本途径,一方血应充分利用三角函数自身的特殊性(如有界性等),另一方血还要注意将求解三角函数最值问题转化为求一些我们所熟知的函数(二次函数等)最值问题•下面介绍几种常见的求三角函数最值的方法:一.转化一次函数在三角函数中,正弦函数与余弦函数具有一个最基本也是最重要的特征一一有界性,利用正弦函数与余弦函数的有界性是求解三角函数最值的最基本方法.例1.求函数j = 2cosx-l的值域[分析]此为y = acosx + h型的三角函数求最值问题,设r = cosx,由三角函数的有界性得re [-1,1],则y = 2^-16 [-3,1]二.转化y = Asin(ex + 0) + b(辅助角法)观察三角函数名和角,先化简,使三角函数的名和角统一.例2. (2017年全国II卷)求函数/(x) = 2cosx + sinx的最大值为______________ .[分析]此为y二dsinx + bcos兀型的三角函数求最值问题,通过引入辅助角公式把三角函数化为y = 4sin(Qx + 0)+ B的形式,再借助三角函数图象研究性质,解题时注意观察角、函数名、结构等特征.一般可利用\asinx + bcosx\< yja2+b2求最值./(X)< J2? + 1 = yf5 •三.转化二次函数(配方法)若函数表达式中只含有正弦函数或余弦函数,且它们次数是2时,一般就需要通过配方或换元将给定的函数化归为二次函数的最值问题来处理.例3.求函数y = -sin2 x-3cosx + 3的最小值.[分析闲用 sin 2 x + cos 2 x = 1 将原函数转化为 y = cos 2 x-3cosx + 2 ,令t = cosx,( 3 V i则—1 = 3( + 2,配方,得),=t — — ——,V -1<Z <15A 当 t=l 时,即 ~ l 2丿 4cosx=l 时,y min = 0四. 引入参数转化(换元法)对于表达式屮同时含有sinx+cosx ,与sinxcosx 的函数,运用关系式 (sin x ± cos %)2 = 1 ± 2 sin x cos %,—般都可釆用换元法转化为t 的二次函数去求最值,但 必须要注意换元后新变量的取值范围.例4.求函数y = sinx + cosx + sinx.cosx 的最大值.[分 析]解:令(sinx + cosx)2 =l + 2sinxcosx ,设 / = sinx + cosx.则其屮 / w [— V2,V2]五. 利用基本不等式法利用基本不等式求函数的最值,要合理的拆添项,凑常数,同吋要注意等号成立的条件,否则会陷入误区.例5.已知兀丘(0,龙),求函数y = sinx + —!—的最小值. 2 sin %[分析]此题为sin% +旦型三角函数求最值问题,当sinx>(),a>l,不能用均值不等式求最 sinx 值,适合用函数在区间内的单调性来求解.设sinx = (0< Z 51),y = Z + — n 2^t.— = V2,当且仅当 t —时等号成立. 六. 利用函数在区间内的单调性2 例6.已知XG (0,^),求函Sy = sinx + ———的最小值. sinx当 t = V2,sin x + —I 4丿sin A : cos x = [-Q 同,.・・y =存[分析]此题为sinx + ——型三角函数求最值问题,当sinx>(),a>l,不能用均值不等式求最 sinx 值,适合用函数在区间内的单调性来求解.设 sin 兀二 f,(0 v f 5 l),y 二 f + -,在(0, 1)上为减函数,当匸1 时,y min = 3.七. 转化部分分式例7.求函数〉」心+ 1的值域 2cosx-ln CQQ r 4-[分析]此为型的三角函数求最值问题,分子、分母的三角函数同名、 ccosx-d同角,这类三角函数一般先化为部分分式,再利用三角函数的有界性去解.或者也可先用反八.数形结合由于sin 2 x + cos 2 x = 1 ,所以从图形考虑,点(cosx,sinx)在单位圆上,这样对一类既含 有正弦函数,又含有余弦函数的三角函数的最值问题可考虑用几何方法求得. ■例& 求函数兀(0<兀<龙)的最小值.2 一 cos x0 — ein Y[分析]法一:将表达式改写成丿= ---------- ,y 可看成连接两点A(2,0)与点(cosx,sinx) 2-cosx的直线的斜率.由于点(cosx,sinx)的轨迹是单位圆的上半圆(如图),所以求y 的最小值就是 在这个半圆上求一点,使得相应的直线斜率最小.设过点A 的切线与半圆相切与点B,则k AB <y<0.£7 所以y 的最小值为-+ (此时法二:该题也可利用关系式asinx+bcosx= -Ja 2 +/?2 sin(x + (即引入辅助角法)和有解法,再用三角函数的有界性去解.9解法一:原函数变形为歹=1+——=—, 2cosx-l•/ |cosx| < 1 ,可直接得到:y>3^y<^.解法一:原函数变形为cosx-(2(y-1) V COSX < 1,/. / \ 2(y-1)< 1,/. y >3i^y < —. 可求得仏BRan 竺」 6 3界性来求解.九.判别式法亠弋皿 tan 2 x-tanx + l s _例9. 求函数y = ------- ----------- 白、J 取值. tan" x +tanx + 1[分析]同一变量分子、分母最高次数齐次,常用判别式法和常数分离法.tan 2 x-tanx+1 y =——; ------------ tan~x + tanx + l解:/.(y-l)tan 2 兀+ (y + l)tanx + (y-l) = O・•・ y = l,tanx = O,x = k;r(kw 龙)J 工1吋此吋一元二次方程总有实数解 /. A = (y +1)2 - 4(y -1)2 > 0,/.(3y - l)(y -3)< 0 /. — < y < 3. 3由 y=3, tanx=-l, x = k/r+ e z), y max = 3. 1 . . 7t 1由 y = -,tanx = l,/.x = ^ + -,y 「nin = §・ 十.分类讨论法含参数的三角函数的值域问题,需要对参数进行讨论.a j ( 兀、例10 •设f(x) = — cos 〜无+ dsin x ---------------------------------------------- 0W 42 2, (1) 当 ^>1,即 d»2,g(/)在[0, 1]上递增,M@)=g(l) =手—I 2丿 解:f(x) = -sin 2 x + asinx- —+ 丄.令 sinx=t,则 0 < Z < 1, 八 4 2g(J = / W = -z 2 +〃_# + * =a 2 a 1H---------- 1 - 4 4 2当05 — 51,即05d52时,g(f)在[0 ,1]上先增后减,(3) 当-<0,即 a50,g(J 在[0, 1]上递减,M (a)=g (0)=丄—2 22 4* 3d 1 ”------ ,ci n 2 4 2a 2 a 1八, 八--------- 1— 4 4 2Id c2 4 以上几种方法中又以配方法和辅助角法及利用三角函数的有界性解题最为常见•解决这 类问题最关键的在于对三角函数的灵活应用及抓住题日关键和本质所在.挑战自我:1. 求函数y=5sinx+cos2x 的最值2. 已知函数y 二㊁cos? x +=-sinrcosx + l(xw/?)当函数y 取得最大值时,求自变 量x 的集合.3.已知函数/(x) = 2sin x(sinx + cos x),求函数f(x)的最小正周期和最大值.参考答案:1 •[分 析]:观察三角函数名和角,其中一个为正眩,一个为余眩,角分别是单角和倍 角,所以先化简,使三角函数的名和角达到统一.2•[分析]此类问题为y = asin ,x + /?sinx-cosx + ccos 2 x 的三角函数求最值问题,它可通M@)=g [彳a 2 a 1 T~4 + 2, 5) sinx-- 4丿 v -1 < sinx < 1,・°・ sinx = -l,x = Zk7V~ — 9ke z, y m [n = -2x 2 . [ "冗 i 1 33 . sinx = 1 ••• x - 2K 7T H ——e z, v m .1Y = -2x ------- 1 --- = 4 2 16 8>' =5 sin x + (1 - 2 sin 2 x) = -2 sin 2 x + 5 sin x +1 = -2 si 33 H --- 833 乙 + ——=-6 16 8过降次化简整理为y = asinx + bcosx 型求解.1 + cos 2x V3 sin 2x t 1 o V3 . 5 ----------- + --------------- + 1 = — coszxH ----- s in 2x + —2 2 2 4 4 4・・• f(x)的最小正周期为龙,最大值为1 + V2.3•[分析]在本题的函数表达式中,既含有正弦函数,又有余弦函数,并且含有它们的二 次式,故需设法通过降次化二次为一次式,再化为只含有正弦函数或余弦函数的表达式.x + 2sinxcosx = 1-cos2x + sin 2x = l + 42sm 2x ---------- I 4 — —cos 2x + — sin 2x 2 2 1 —sin 2 「2兀+耳+二・・・2兀+三 4, •二壬 + 2航,・•・ x 二? + k 兀(k w z), y max o 2 o 解: /(x) = 2sin 2。
三角函数的最值问题河南省漯河实验高中张银焕高中数学中,函数的最值是比较重要的内容之一,并且一直是各类考试的热点问题。
同样,三角函数的最大值,最小值也是非常重要的。
从近几年的高考试卷中可以看到,三角函数的最值问题是高考中一个重要内容。
在学习和教学中发现三角函数最值问题不仅仅是一个热点问题,也是一个难点问题。
一、三角函数最值问题的常见类型1.1y=acosx+bsinx 型.通常是化为y=22b a +sin(x+a),其中(tanΦ=a b ).这种类型可借助三角函数的值域来求最值.例1当-2π≤x≤2π时,函数f(x)=sinx+3cosx 的最值是什么?分析f(x)=2(12cosx)=2sin(x+3π).由-2π≤x≤2π,可得–6π≤x+3π≤56π,所以–12≤sin(x+3π)≤1.所以-1≤f(x)≤2.所以f(x)的最大值是2、最小值是-1.1.2y=sin sin c x d a x b++型.通常是先解出sinx=d by ay c −−后,再解出不等式|d by ay c−−|≤1得出y 的范围.例2求y=2sin 1sin 2x x −+的最值.分析由y=2sin 1sin 2x x −+,解得sinx=212y y −−−.再有|212y y −−−|≤1,解得-3≤y≤13.所以y 的最大值是13、最小值是-3.1.3y=cos sin c x d a x b++型.通常是将原式化为aysinx-ccosx=d-by,即22)(cay +sin(x-Φ)=d-by.得sin(x-Φ)≤|1|≤1,得出y 的范围.例3求函数y=12sin cos x x ++的最大值.分析由y=12sin cos x x ++,知y≠0.于是原式可以化为ysinx+ycosx=1-2y,即2ysin(x+4π)=1-2y.∵y≠0,∴sin(x+4π)=.解得≤y≤1+.所以y 的最大值是.1.4y=asin 2x+bsinx+c(或y=acos 2x+bcosx+c)型.通常用配方法求最值,但是应该注意条件-1≤sinx1≤以及对称轴与区间[-1,1]的位置关系.例4求函数y=cos 2x-2asinx-a.(a 为定值)的最大值M.分析y=cos 2x-2asinx-a=1-sin 2x-2asinx-a=-(sinx+a)2+a 2-a+1.(1)若a>1,则sinx=-1时,M=-(-1+a)2+a 2-a+1=a.(2)若a<-1,则sinx=1时,M=-(1+a)2+a 2-a+1=-3a.(3)若-1≤a≤1,则sinx=a 时,M=a 2-a+1.1.5y=asin 2x+bsinxcosx+ccos 2x 型.通常是运用降幂公式、倍角公式整理后化为y=acosx+bsinx 型.例5若0≤θ≤π,且f(θ)=53cos 2θ+3sin 2θ-4sinθcosθ,求f(θ)的最大值和最小值.分析利用降幂公式可得:f(θ)=−−++22cos 1322cos 135θθ)23sin(4332sin 2θπθ−+=.由0≤θ≤π,可得-53π<3π-2θ≤3π.所以-1≤sin(3π-2θ)≤1.所以f(θ)的最大值是33+4、最小值是33-4.1.6y=sinxcos 2x 型.通常是用均值不等式求解.例6已知sin 2α+sin 2β+sin 2γ=1(α、β、γ为锐角),那么cosαcosβcosγ最大值是什么?分析由sin 2α+sin 2β+sin 2γ=1,得sin 2α+sin 2β=cos 2γ.那么cos 2αcos 2βcos 2γ=cos 2αcos 2β(sin 2α+sin 2β)≤(3sin sin cos cos 2222βαβα+++)3=827.所以.1.7f(sinx±cosx、sinxcosx)型.通常是用和差换元的方法化为二次函数问题.例7求函数y=sinxcosx+sinx+cosx 的最大值.分析设sinx+cosx=t(|t|≤2),则sinxcosx=212t −.这样y=212t −+t=12(t+1)2-1(-2≤t≤2).所以t=2时y 的最大值是12(2+1)2-1=2+12.二、三角函数最值问题的常见错误.最值问题是中学数学中很常见,很重要的体型,也是高考的热点,此类问题在代数、三角、立体几何和解析几何中屡屡出现,它的解法灵活多变,在学习中发现大家在解题时常常出现错误,而且有的还相当隐蔽,现列举解三角函数最值时常见错误加以分析仅供参考。
三角函数的最值问题分类例析三角函数式的最值问题是函数最值的重要组成部分,也是历屉高考的热点之一。
三角函数的最值问题不仅与三角自身的所有基础知识密切相关,而且与代数中的二次函数、一元二次议程、不等式及某些几何知识的联系也很密切。
因此,三角函数的最值问题的求解,往往要综合应用多方面的知识。
三角函数的最值问题的类型很好,其常见类型有以下几种: 一、y=asinx+b (或y=acosx+b )型 处理方法:利用()1cos 1sin ≤≤x x 或,即可求解,此时必须注意字母a 的符号对最值的影响。
例1 函数y =a cos x +b (a 、b 为常数),若-7≤y ≤1,求b sin x +a cos x 的最大值. 剖析:函数y =a cos x +b 的最值与a 的符号有关,故需对a 分类讨论.解:当a >0时,⇒⎩⎨⎧=+-=+71b a b a a =4,b =-3; 当a =0时,不合题意;当a <0时,⇒⎩⎨⎧-=+=+-71b a b a a =-4,b =-3. 当a =4,b =-3时,b sin x +a cos x =-3sin x +4cos x =5sin (x +ϕ)(tan ϕ=-34); 当a =-4,b =-3时,b sin x +a cos x =-3sin x -4cos x =5sin (x +ϕ)(tan ϕ=34). ∴b sin x +a cos x 的最大值为5.例2.例3已知函数()b a x x a x a x f++--=2cos sin 322cos 的定义域为⎥⎦⎤⎢⎣⎡20π,,值域为[5,1]-,求常数a 、b 的值. 解:∵()b a x a x a x f++--=22sin 32cos ,b a x a ++⎪⎭⎫ ⎝⎛--=232cos 2π .∵20π≤≤x ,∴32323πππ≤-≤-x ,∴1 32cos 21≤⎪⎭⎫ ⎝⎛-≤-πx .当0a >时,()3b f x a b ≤≤+.∴⎩⎨⎧-==+.513b b a ,解得⎩⎨⎧-==.52b a ,当0a <时,3()a b f x b +≤≤.∴⎩⎨⎧=-=+.153b b a ,解得⎩⎨⎧=-=.12b a ,故a 、b 的值为⎩⎨⎧-==52b a 或⎩⎨⎧=-=12b a感悟:分类讨论是重要的数学思想方法,本例若不对常数a 进行讨论,将会出错。
数学部分•创新题追根溯源A也耳虽曲"高一使用2021年6月T子王隶圧仁邑爲園齣鉤最倡闻殛■胡磊纵观近几年的高考试题,三角函数的最值问题是高考的必考内容。
三角函数常见的最值问题的求法有:二次函数法求最值,基本不等式法求最值,利用辅助角公式求最值。
下面就这几类情况逐一探讨说明O方法一:二次函数法求最值例1定义一种运算:Q区5= {a,a Wb9—令函数f(rr)=(cos2rc+sin rc)®b,a>b o|■,且vW[o,y],则函数/(工一今)的值域是____O解:由于cos2a:+sin ac=一sin2^c+/1\25气sin re十1=一(sin jc----)+&=玄,所以5T7(乞)=(cos2x.+sin j:)®—=cos2x.+sin工o (V普)的最小值是解:令t=sin x.+cos x=^2sin贝[]2sin rccos jc—t2一1o可得^e(o,y2]e由此可得函数y=g^= 9^2-I1---------=2左+—,t G(0,72-],所以gQ)A 2^2t•y=2^2(当且仅当t=%时取等号),即所求函数的最小值为2^2oJt本题主要考查换元法和O””厅基本不等式法在求三角函数最值问题中的应用。
方法三:利用辅助角公式求最值例3函数jf(工)=3sin2re—2sin2jc+在函数f中,由OWz—守三今,可得—K>所以f--牙=8S(违sin cos oc cos2^c+2sin jc—cos uc W[o,守]的值域是____。
解:设t=2sin jc—cos re=y5^sin(re—,其中0由tan5=y,且ew(0,守)所确定。
cos ac +#)+l+#=—(cosz+却守],所以工一3G[—Q,—&],5—o因为cos jc,G「一1,0],所以当cos h=0—sin Q,sin或cos H=—l时/(h—今)有最小值1,当cos x,=时,卜--)有最大值鲁。
思路探寻在近几年的高考数学试题中,三角函数最值问题屡见不鲜.此类问题一般具有较强的综合性、抽象性,侧重于考查同学们的抽象思维能力和综合处理问题的能力.本文重点谈一谈三类常见的三角函数最值问题及其求法一、求一次三角函数的最值一次三角函数最值问题属于常规题目.解答此类问题,需灵活运用三角函数中的诱导公式、两角和差公式、辅助角公式等进行三角恒等变换,将三角函数式转化为只含有一个角、一种函数名称的式子,然后根据三角函数的图象和性质来求得函数的最值.例1.求函数f ()x =cos x ()2sin x +3cos x 的最值.解:f ()x =2sin x cos x +3cos 2x =sin 2x +32cos 2x +32=sin ()2x +φ+32(2x +φ+32.由于||sin ()2x +φ≤1,因≤f ()x 那么函数的最大值是.第一步,我们要仔细观察三角函数的形式,将其进行适当的变形.若三角函数式中含有括号就要先将括号去掉;若含有两种不同的函数名称,就需用辅助角公式或tan x =sin xcos x将函数名称统一;若含有两个不同的角,就需用诱导公式、两角和差公式将角统一,最后根据三角函数的图象和性质求得最值.二、求二次三角函数的最值解答二次三角函数最值问题,我们一般要先利用二倍角sin 2x =2sin x cos x 、cos 2x =2cos 2-1=1-2sin 2x或其变形式2cos 2x =cos 2x -1、sin 2x =1-cos 2x 2等,将三角函数式的幂或角统一,将其转化成为f ()x =A sin ()ωx +φ+B 的形式,或者只含有一种函数名称的二次式,然后利用三角函数的有界性和二次函数的性质来求最值.例2.已知函数f ()x =23sin x cos x +2cos 2x -1()x ∈R .试求出函数f ()x 的最小正周期,以及当x ∈éëùû0,π2时f ()x 的最大值与最小值.分析:该三角函数式中含有二次式,需先用正弦、余弦的二倍角公式将其化简,然后利用辅助角公式,将其转化为只含有一种函数名称的函数式,再根据正余弦函数的单调性和有界性便可求得原函数的最值.解:f ()x =23sin x cos x +2cos 2x -1=3()2sin x cos x +()2cos 2x -1=3sin 2x +cos 2x =2sin æèöø2x +π6.因此这个函数的最小正周期是T =2π2=π.当x ∈éëùû0,π6,即2x +π6∈éëùûπ6,π2时,函数f ()x 单调递增;而当x ∈éëùûπ6,π2,即2x +π6∈éëùûπ2,7π6时,函数f ()x 单调递减,因此当x =π6时,函数取最大值f æèöøπ6=2sin π2=2;当x =π2时,函数取最小值f æèöøπ2=2sin 7π6=-1.三、求含有分式的三角函数的最值求含有分式的三角函数的最值有两种思路,第一种思路是尝试将常数分离,求得分离后含有变量式子的最值便可解题;第二种思路是,将函数y =f (x )看作参数,将函数式变形为整式,然后运用辅助角公式,将其转化为A sin ()ωx +φ+B 或A cos ()ωx +φ+B 的形式,再利用正余弦函数的有界性来建立关系式,解不等式便可求得y 的取值范围,进而确定函数的最值.例3.求函数y =sin x -23-2sin x 的最值.解:将y =sin x -23-2sin x变形可得()2y +1sin x =3y +2æèöøy ≠-12,即sin x =3y +22y +1.又因为||sin x ≤1,则||||||3y +22y +1≤1,将其两边同时平方可得()3y +22≤()2y +12,解得-1≤y ≤-35,因此函数的最大值为-35,最小值为-1.我们先将函数式变形为一边只含有sin x 、一边不含有sin x 的式子,然后根据y =sin x 的有界性求3y +22y +1的取值范围,求出y 的取值范围便可以确定函数的最值.总之,要想顺利求得三角函数的最值,我们需熟练掌握三角函数中的基本公式以及三角恒等变换的技巧,先将所求函数式化简为只含有一个角、一种函数名称、次数统一的最简形式,然后根据三角函数的单调性和有界性来求得原函数的最值.王国顺46。
必修4《三角函数》最值问题的探讨
主讲人:吴南寿 时间:2015.5.12
三角函数的最值问题是三角函数基础知识的综合应用,近几年的高考题中经常出现。
其出现的形式,或者是在小题中单纯地考察三角函数的值域问题;或者是隐含在解答题中,作为解决解答题所用的知识点之一;或者在解决某一问题时,应用三角函数有界性会使问题更易于解决(比如参数方程)。
题目给出的三角关系式往往比较复杂,进行化简后,再进行归纳,主要有以下几种类型。
掌握这几种类型后,几乎所有的三角函数最值问题都可以解决。
1.y=asinx+bcosx 型的函数
特点是含有正余弦函数,并且是一次式。
解决此类问题的指导思想是把正、余弦函数转化为只有一种三角函数。
应用课本中现成的公
式即可:φ),其中tan b
a
φ= 例1已知函数f (x )=2cos x sin(x +3
π)-
3sin
2
x +sin x cos x
(1)求函数f (x )的最小正周期;
(2)求f (x )的最小值及取得最小值时相应的x 的值;
(3)若当x ∈[12
π,12
7π]时,f (x )的反函数为f -1(x ),求f --1(1)
的值.
解:(1)f (x )=2cos x sin(x +3
π)-
3sin
2
x +sin x cos x
=2cos x (sin x cos 3π+cos x sin 3
π
)-
3sin 2
x +sin x cos x
=2sin x cos x +3cos2x =2sin(2x +3
π
)
∴f (x )的最小正周期T =π
(2)当2x +3
π=2k π-2
π,即x =k π-12
5π (k ∈Z )时,f (x )取得最小
值-2.
(3)令2sin(2x +3
π)=1,又x ∈[2
7,2ππ],
∴2x +3π∈[3π,23π],∴2x +3
π
=6
5π,则
x =4π,故f --1(1)= 4
π. 2.y=asin 2x+bsinxcosx+cos 2x 型的函数。
特点是含有sinx, cosx 的二次式,处理方式是降幂,再化为型1的形式来解。
例2.求y=sin 2x+2sinxcosx+3cos 2x 的最小值,并求出y 取最小值时的x 的集合。
解:
y=sin 2x+2sinxcosx+3cos 2x=(sin 2x+cos 2x)+sin2x+2cos 2x=1+sin2x+1+cos2x
sin(2x+4
π)
当sin(2x+4
π)=-1时,y 取最小值,此时x 的集合{x|x=k π-38
π, k ∈Z}.
3.y=asin 2x+bcosx+c 型的函数
特点是含有sinx, cosx ,并且其中一个是二次,处理方式是应
用sin 2x+cos 2x=1,使函数式只含有一种三角函数,再应用换元法,转化成二次函数来求解。
例3 是否存在实数a ,使得函数y =sin 2x +a ·cos x +8
5a -2
3在闭区间
[0,2
π]上的最大值是1?若存在,求出对应的a 值;若不存在,
试说明理由.
22
2max 2max 5351.:1cos cos (cos ).
822482
0,0cos 1.
2
53
1,2,cos 1,1282
202(),135101,02,cos ,1
224823
40().
20,0,cos 0,2a a y x a x a x a x x a a x y a a a a a a a x y a a a a a x y π
=-++-=--++-≤≤≤≤>>==+-=⇒=<≤≤≤≤==+-=⇒==-<<<=解当时若
时即则当时舍去若即则当时或舍去若即则当时max 5112
1()825
a a =-=⇒=>舍去
综合上述知,存在2
3=a 符合题设
4.y=
sin cos a x c
b x d
++型的函数
特点是一个分式,分子、分母分别会有正、余弦的一次式。
几乎所有的分式型都可以通过分子,分母的化简,最后整理成这个形式,它的处理方式有多种。
例4.求函数y=
2sin 2cos x
x
--的最大值和最小值。
解法1:原解析式即:sinx-ycosx=2-2y, 即sin(x+φ
,
∵ |sin(x+φ)|≤1,
≤1,解出y 的范围即可。
解法2:
2s i n
2c o s
x x --表示的是过点(2, 2)与点(cosx, sinx)的斜率,
而点(cosx, sinx)是单位圆上的点,观察图形可以得出在直线与圆相切时取极值。
解法3:应用万能公式设t=tg(2
x
) 则y=22
22231t t t -++,即(2-3y)t 2-2t+2-y=0
根据Δ≥0解出y 的最值即可。
5.y=sinxcos2x 型的函数。
它的特点是关于sinx ,cosx 的三次式(cos2x 是cosx 的二次式)。
因为高中数学不涉及三次函数的最值问题,故几乎所有的三次式的最值问题(不只是在三角)都用均值不等式来解(没有其它的方法)。
但需要注意是否符合应用的条件(既然题目让你求,多半是符合使用条件的,但做题不能少这一步),及等号是否能取得。
例6如右图,在半径为R 的圆桌的正中央上空挂一盏电灯,桌
子边缘一点处的照度和灯光射到桌子边缘的光线与桌面的夹角θ的
正弦成正比,角和这一点到光源的距离 r 的平方成反比,即I =k ·2
sin r
θ
,
其中 k 是一个和灯光强度有关的常数,那么怎样选择电灯悬挂的高度h ,才能使桌子边缘处最亮?
解:R =r cos θ,由此得:2
0,cos 1π<θ<θ=R
r
,
R
R h R
k I R
k R k I R k R k r k I 22
tan ,33sin ,392)32
()()sin 1)(sin 1(sin 2)(2)cos (sin cos sin sin 23
22222222222
22=θ==θ⋅≤⋅≤θ-θ-⋅θ⋅=θ⋅θ⋅=θ⋅θ⋅=θ⋅=此时时成立等号在由此得 注:本题的角和函数很难统一,并且还会出现次数太高的问题。
6.含有sinx 与cosx 的和与积型的函数式。
其特点是含有或经过化简整理后出现sinx+cosx 与sinxcosx 的式子,处理方式是应用
(sinx+cosx)2=1+2sinxcosx 进行转化,变成二次函数的问题。
例6.求y=2sinxcosx+sinx+cosx 的最大值。
解:令
≤t
),则1+2sinxcosx=t 2,所以 2sinxcosx=t 2-1,
所以y=t 2-1+t=(t+1
2
)2-54
.
根据二次函数的图象,解出y 的最大值是。
相信通过这一归纳整理,大家对有关三角函数最值的问题就不会陌生了。
并且好多
其它的求最值的问题可以通过代换转化成三角求最值的问题。
望同学们在做有关的问题时结合上面的知识。
读书的好处
1、行万里路,读万卷书。
2、书山有路勤为径,学海无涯苦作舟。
3、读书破万卷,下笔如有神。
4、我所学到的任何有价值的知识都是由自学中得来的。
——达尔文
5、少壮不努力,老大徒悲伤。
6、黑发不知勤学早,白首方悔读书迟。
——颜真卿
7、宝剑锋从磨砺出,梅花香自苦寒来。
8、读书要三到:心到、眼到、口到
9、玉不琢、不成器,人不学、不知义。
10、一日无书,百事荒废。
——陈寿
11、书是人类进步的阶梯。
12、一日不读口生,一日不写手生。
13、我扑在书上,就像饥饿的人扑在面包上。
——高尔基
14、书到用时方恨少、事非经过不知难。
——陆游
15、读一本好书,就如同和一个高尚的人在交谈——歌德
16、读一切好书,就是和许多高尚的人谈话。
——笛卡儿
17、学习永远不晚。
——高尔基
18、少而好学,如日出之阳;壮而好学,如日中之光;志而好学,如炳烛之光。
——刘向
19、学而不思则惘,思而不学则殆。
——孔子
20、读书给人以快乐、给人以光彩、给人以才干。
——培根。