【60天冲刺】2012年高考数学二轮三轮总复习专题学案_专题4-立体几何课件_(浙江文科专用)
- 格式:ppt
- 大小:5.08 MB
- 文档页数:76
立体几何初步【专题要点】1.在掌握直线与平面的位置关系(包括直线与直线、直线与平面、平面与平面间的位置关系)的基础上,研究有关平行和垂直的的判定依据(定义、公理和定理)、判定方法及有关性质的应用;在有关问题的解决过程中,进一步了解和掌握相关公理、定理的内容和功能,并探索立体几何中论证问题的规律;在有关问题的分析与解决的过程中提高逻辑思维能力、空间想象能力及化归和转化的数学思想的应用.2.在掌握空间角(两条异面直线所成的角,平面的斜线与平面所成的角及二面角)概念的基础上,掌握它们的求法(其基本方法是分别作出这些角,并将它们置于某个三角形内通过计算求出它们的大小);在解决有关空间角的问题的过程中,进一步巩固关于直线和平面的平行垂直的性质与判定的应用,掌握作平行线(面)和垂直线(面)的技能;通过有关空间角的问题的解决,进一步提高学生的空间想象能力、逻辑推理能力及运算能力.3.通过复习,使学生更好地掌握多面体与旋转体的有关概念、性质,并能够灵活运用到解题过程中.通过教学使学生掌握基本的立体几何解题方法和常用解题技巧,发掘不同问题之间的内在联系,提高解题能力.4.在学生解答问题的过程中,注意培养他们的语言表述能力和“说话要有根据”的逻辑思维的习惯、提高思维品质.使学生掌握化归思想,特别是将立体几何问题转化为平面几何问题的思想意识和方法,并提高空间想象能力、推理能力和计算能力.5.使学生更好地理解多面体与旋转体的体积及其计算方法,能够熟练地使用分割与补形求体积,提高空间想象能力、推理能力和计算能力.【考纲要求】(1)掌握平面的基本性质,会用斜二测的画法画水平放置的平面图形的直观图,能够画出空间两条直线、直线和平面的各种位置关系的图形,能够根据图形想象它们的位置关系(2)了解空两条直线的位置关系,掌握两条直线平行与垂直的判定定理和性质定理,掌握两条直线所成的角和距离的概念(对于异面直线的距离,只要求会计算已给出公垂线时的距离)(3)了解空间直线和平面的位置关系,掌握直线和平面平行的判定定理和性质定理,理解直线和平面垂直的判定定理和性质定理,掌握斜线在平面上的射影、直线和平面所成的角、直线和平面的距离的概念,了解三垂线定理及其逆定理(4)了解平面与平面的位置关系,掌握两个平面平行的判定定理和性质定理。
导数应用的题型与方法一.复习目标:1.了解导数的概念,能利用导数定义求导数.掌握函数在一点处的导数的定义和导数的几何意义,理解导函数的概念.了解曲线的切线的概念.在了解瞬时速度的基础上抽象出变化率的概念.2.熟记基本导数公式(c,x m(m为有理数),sin x, cos x, e x, a x, lnx, logx的a导数)。
掌握两个函数四则运算的求导法则和复合函数的求导法则,会求某些简单函数的导数,利能够用导数求单调区间,求一个函数的最大(小)值的问题,掌握导数的基本应用.3.了解函数的和、差、积的求导法则的推导,掌握两个函数的商的求导法则。
能正确运用函数的和、差、积的求导法则及已有的导数公式求某些简单函数的导数。
4.了解复合函数的概念。
会将一个函数的复合过程进行分解或将几个函数进行复合。
掌握复合函数的求导法则,并会用法则解决一些简单问题。
二.考试要求:⑴了解导数概念的某些实际背景(如瞬时速度、加速度、光滑曲线切线的斜率等),掌握函数在一点处的导数的定义和导数的几何意义,理解导函数的概念。
⑵熟记基本导数公式(c,x m(m为有理数),sin x, cos x, e x, a x,lnx, logx的a导数)。
掌握两个函数四则运算的求导法则和复合函数的求导法则,会求某些简单函数的导数。
⑶了解可导函数的单调性与其导数的关系,了解可导函数在某点取得极值的必要条件和充分条件(导数要极值点两侧异号),会求一些实际问题(一般指单峰函数)的最大值和最小值。
三.教学过程:(Ⅰ)基础知识详析导数是微积分的初步知识,是研究函数,解决实际问题的有力工具。
在高中阶段对于导数的学习,主要是以下几个方面:1.导数的常规问题:(1)刻画函数(比初等方法精确细微);(2)同几何中切线联系(导数方法可用于研究平面曲线的切线);(3)应用问题(初等方法往往技巧性要求较高,而导数方法显得简便)等关于n次多项式的导数问题属于较难类型。
2012届高考数学立体几何备考复习教案专题四:立体几何【备考策略】根据近几年高考命题特点和规律,复习本专题时要注意以下几方面:1.全面掌握空间几何体的概念及性质,特别是常见几何体如正方体、长方体、棱柱、棱锥、球的概念和性质,这是进行计算和证明的基础。
2.多面体画图、分析图,用自己的语言描述图,提高借助图形分析问题的能力,培养空间观念。
3.注重三视图与直观图的相互转化及等积转化的思想。
4.特别关注空间三种角落计算问题以及涉及到探究点的位置的问题。
第一讲空间几何体【最新考纲透析】1.认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构。
2.能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述三视图所表示的立体模型,会用斜二测法画出它们的直观图。
3.会用平行投影与中心投影两种方法画出简单空间图形的三视图与直观图,了解空间图形的不同表示形式。
4.会画某些建筑物的三视图与直观图(在不影响图形特征的基础上,尺寸、线条等不作严格要求)。
.了解球、棱柱、棱锥的表面积和体积的计算公式(不要求记忆公式)。
【核心要点突破】要点考向1:空间几何体的三视图考情聚焦:1.三视图是新标教材的新增内容,是高考中新的增加点及亮点。
2.常与表面积、体积计算综合出现,多以选择题或解答题的形式呈现,属较容易的题。
考向链接:1.解答此类问题,首先由三视图想象出原几何体的形状,并由相关数据得出几何体中的量。
2.掌握三视图是正确解决这类问题的关键,同时也体现了知识间的内在联系,是高考的新动向。
例1:(2010•陕西高考理科•T7)若某空间几何体的三视图如图所示,则该几何体的体积是()(A) (B) () 1 (D) 2【命题立意】本题考查三视图的概念及空间想象能力,属中等题。
【思路点拨】三视图几何体是直三棱柱该几何体的体积【规范解答】选由该几何体的三视图可知,该几何体是直三棱柱,且棱柱的底面是两直角边长分别为和1的直角三角形,棱柱的高为,所以该几何体的体积要点考向2:几何体的表面积与体积考情聚焦:1.几何体的表面积与体积一直是高考的热点内容,应引起重视。