最新人教版七年级数学下册第八章《三元一次方程组解法举例》自我小测
- 格式:doc
- 大小:30.00 KB
- 文档页数:2
七年级数学下册三元一次方程组解法一、概述三元一次方程组是指同时包含三个未知数的一次方程组。
解决这类问题需要运用代数知识和线性方程组的解法,对于初学者来说可能会比较复杂。
在七年级数学下册中,我们将学习如何解决三元一次方程组,下面将逐步介绍三元一次方程组的解法。
二、基本概念1. 三元一次方程组的一般形式三元一次方程组的一般形式为:a₁x + b₁y + c₁z = d₁a₂x + b₂y + c₂z = d₂a₃x + b₃y + c₃z = d₃其中,a₁, b₁, c₁, d₁, a₂, b₂, c₂, d₂, a₃, b₃, c₃, d₃为已知系数。
2. 三元一次方程组的解三元一次方程组的解即为满足所有方程的一组有序数对 (x, y, z),使得代入各方程均成立。
三、解法步骤1. 方法一:代入法对于三元一次方程组,我们可以先通过其中两个方程解出其中两个未知数的值,然后代入第三个方程中,求解出第三个未知数的值。
2. 方法二:化为二元方程组求解将三元一次方程组中的一个方程化为关于一个未知数的表达式,然后代入其他方程中,将其化为二元方程组,通过解二元方程组得到两个未知数的值,最后代入原方程组求解出第三个未知数的值。
3. 方法三:矩阵法将三元一次方程组的系数矩阵和常数向量写成增广矩阵,通过行初等变换将增广矩阵化为阶梯形矩阵或最简形矩阵,从而求解出未知数的值。
四、实例分析举例来说明三元一次方程组的解法:已知方程组:2x + 3y + 4z = 203x - y + z = 10x + 2y - 3z = 3我们可以通过代入法、化为二元方程组求解或者矩阵法来解决这个实例,依次列出解法步骤和计算过程。
五、总结通过上述例子的分析和解法步骤的介绍,我们可以发现解决三元一次方程组需要熟练掌握代数知识和解方程的方法,尤其需要注意运用代入法、化为二元方程组求解和矩阵法中的细节。
对于特殊情况的处理也需要谨慎对待。
希望同学们在学习过程中能够多加练习,提高解决三元一次方程组的能力。
【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。
】三元一次方程组(基础)知识讲解责编:杜少波【学习目标】1.理解三元一次方程(或组)的含义;2.会解简单的三元一次方程组;3. 会列三元一次方程组解决有关实际问题.【要点梳理】要点一、三元一次方程及三元一次方程组的概念1.三元一次方程的定义含有三个未知数,并且含有未知数的项的次数都是1的整式方程.如x+y-z=1,2a-3b+4c=5等都是三元一次方程.要点诠释:(1)三元一次方程的条件:①是整式方程,②含有三个未知数,③含未知数的项的最高次数是1次.(2) 三元一次方程的一般形式:ax+by+cz+d=0,其中a、b、c不为零.2.三元一次方程组的定义一般地,由几个一次方程组成,并且含有三个未知数的方程组,叫做三元一次方程组. 要点诠释:(1) 三个方程中不一定每一个方程中都含有三个未知数,只要三个方程共含有三个未知量即可.(2)在实际问题中含有三个未知数,当这三个未知数同时满足三个相等关系时,可以建立三元一次方程组求解.要点二、三元一次方程组的解法解三元一次方程组的一般步骤(1)利用代入法或加减法,把方程组中一个方程与另两个方程分别组成两组,消去两组中的同一个未知数,得到关于另外两个未知数的二元一次方程组;(2)解这个二元一次方程组,求出两个未知数的值;(3)将求得的两个未知数的值代入原方程组中的一个系数比较简单的方程,得到一个一元一次方程;(4)解这个一元一次方程,求出最后一个未知数的值;(5)将求得的三个未知数的值用“{”合写在一起.要点诠释:(1)解三元一次方程组的基本思路是:通过“代入”或“加减”消元,把“三元”化为“二元”.使解三元一次方程组转化为解二元一次方程组,进而转化为解一元一次方程.其思想方法是:(2)有些特殊的方程组可用特殊的消元法,解题时要根据各方程特点寻求其较简单的解法.要点三、三元一次方程组的应用列三元一次方程组解应用题的一般步骤1.弄清题意和题目中的数量关系,用字母(如x,y,z)表示题目中的两个(或三个)未知数;2.找出能够表达应用题全部含义的相等关系;3.根据这些相等关系列出需要的代数式,从而列出方程并组成方程组; 4.解这个方程组,求出未知数的值; 5.写出答案(包括单位名称). 要点诠释:(1)解实际应用题必须写“答”,而且在写答案前要根据应用题的实际意义,检查求得的结果是否合理,不符合题意的应该舍去. (2)“设”、“答”两步,都要写清单位名称,应注意单位是否统一. (3)一般来说,设几个未知数,就应列出几个方程并组成方程组. 【典型例题】类型一、三元一次方程及三元一次方程组的概念1.下列方程组中是三元一次方程组的是( )A .2102x y y z xz ⎧-=⎪+=⎨⎪=⎩ B .111216y x z yx z⎧+=⎪⎪⎪+=⎨⎪⎪+=⎪⎩ C .123a b c d a c b d +++=⎧⎪-=⎨⎪-=⎩ D .18120m n n t t m +=⎧⎪+=⎨⎪+=⎩【答案】D【解析】A 选项中21x y -=与2xz =中未知数项的次数为2次,故A 选项不是;B 选项中1x,1y ,1z不是整式,故B 选项不是;C 选项中有四个未知数,故C 选项不是;D 项符合三元一次方程组的定义.【总结升华】理解三元一次方程组的定义要注意以下几点:(1)方程组中的每一个方程都是一次方程;(2)一般地,如果三个一次方程合起来共有三个未知数,它们就能组成一个三元一次方程组.类型二、三元一次方程组的解法2.(2016春•枣阳市期末)在等式y=ax 2+bx+c 中,当x=﹣1时,y=0;当x=2时,y=3;当x=5时,y=60.求a ,b ,c 的值.【思路点拨】由“当x=﹣1时,y=0;当x=2时,y=3;当x=5时,y=60”即可得出关于a 、b 、c 的三元一次方程组,解方程组即可得出结论. 【答案与解析】解:根据题意,得,②﹣①,得a+b=1④; ③﹣①,得4a+b=10 ⑤.④与⑤组成二元一次方程组,解这个方程组,得,把代入①,得c=﹣5.因此,即a ,b ,c 的值分别为3,﹣2,﹣5.【总结升华】本题考查了解三元一次方程组,解题的关键是得出关于a 、b 、c 的三元一次方程组.本题属于基础题,难度不大. 【:三元一次方程组 409145 例1】举一反三:【变式】解方程组:【答案】解:①+②得:5311x y +=④①×2+③得:53x y -=⑤由此可得方程组:531153x y x y +=⎧⎨-=⎩④⑤④-⑤得:48y =,2y =将2y =代入⑤知:1x =将1x =,2y =代入①得:3z =所以方程组的解为:123x y z =⎧⎪=⎨⎪=⎩【:三元一次方程组409145 例2(2)】3. 解方程组23520x y zx y z ⎧==⎪⎨⎪++=⎩①②【答案与解析】解法一:原方程可化为:253520x zy zx y z ⎧=⎪⎪⎪=⎨⎪⎪++=⎪⎩①②③2334823x y z x y z x y z -+=⎧⎪+-=⎨⎪+-=-⎩①②③由①③得:25x z =,35y z = ④ 将④代入②得:232055z z z ++=,得:10z = ⑤将⑤代入④中两式,得:2210455x z ==⨯=,3310655y z ==⨯=所以方程组的解为:4610x y z =⎧⎪=⎨⎪=⎩解法二:设235x y zt ===,则2,3,5x t y t z t ===③ 将③代入②得:23520t t t ++=,2t =将2t =代入③得:2224x t ==⨯=,3326,55210y t z t ==⨯===⨯=所以方程组的解为:4610x y z =⎧⎪=⎨⎪=⎩【总结升华】对于这类特殊的方程组,可根据其方程组中方程的特点,采用一些特殊的解法(如设比例系数等)来解. 举一反三:【变式】(2015秋•德州校级月考)若三元一次方程组的解使ax+2y+z=0,则a 的值为( ) A .1 B .0 C .﹣2 D .4【答案】B .解:,①+②+③得:x+y+z=1④, 把①代入④得:z=﹣4, 把②代入④得:y=2, 把③代入④得:x=3,把x=3,y=2,z=﹣4代入方程得:3a+4﹣4=0, 解得:a=0.类型三、三元一次方程组的应用4. (2015春•黄陂区校级月考)购买铅笔7支,作业本3本,圆珠笔1支共需3元;购买铅笔10支,作业本4本,圆珠笔1支共需4元,则购买铅笔11支、作业本5本圆珠笔2支共需 元.【思路点拨】首先假设铅笔的单价是x 元,作业本的单价是y 元,圆珠笔的单价是z 元.购买铅笔11支,作业本5本,圆珠笔2支共需a元.根据题目说明列出方程组,解方程组求出a的值,即为所求结果.【答案】5.【解析】解:设铅笔的单价是x元,作业本的单价是y元,圆珠笔的单价是z元.购买铅笔11支,作业本5本,圆珠笔2支共需a元.则由题意得:,由②﹣①得3x+y=1,④由②+①得17x+7y+2z=7,⑤由⑤﹣④×2﹣③得0=5﹣a,解得:a=5.【总结升华】本题考查了列三元一次不定方程组解实际问题的运用,在解决实际问题时,若未知量较多,要考虑设三个未知数,但同时应注意,设几个未知数,就要找到几个等量关系列几个方程.举一反三:【变式】现有面值为2元、1元和5角的人民币共24张,币值共计29元,其中面值为2元的比1元的少6张,求三种人民币各多少张?【答案】解:设面值为2元、1元和5角的人民币分别为x张、y张和z张.依题意,得24122926x y zx y zx y++=⎧⎪⎪++=⎨⎪⎪+=⎩①②③把③分别代入①和②,得21813232x zx z+=⎧⎪⎨+=⎪⎩④⑤⑤×2,得6x+z=46 ⑥⑥-④,得4x=28,x=7.把x=7代入③,得y=13.把x=7,y=13代入①,得z=4.∴方程组的解是7134xyz=⎧⎪=⎨⎪=⎩.答:面值为2元、l元和5角的人民币分别为7张、13张和4张.初中奥数题试题一一、选择题(每题1分,共10分)1.如果a,b都代表有理数,并且a+b=0,那么 ( )A.a,b都是0 B.a,b之一是0C.a,b互为相反数 D.a,b互为倒数2.下面的说法中正确的是 ( )A.单项式与单项式的和是单项式B.单项式与单项式的和是多项式C.多项式与多项式的和是多项式D.整式与整式的和是整式3.下面说法中不正确的是 ( )A. 有最小的自然数 B.没有最小的正有理数C.没有最大的负整数 D.没有最大的非负数4.如果a,b代表有理数,并且a+b的值大于a-b的值,那么 ( )A.a,b同号 B.a,b异号 C.a>0 D.b>05.大于-π并且不是自然数的整数有 ( )A.2个 B.3个 C.4个 D.无数个6.有四种说法:甲.正数的平方不一定大于它本身;乙.正数的立方不一定大于它本身;丙.负数的平方不一定大于它本身;丁.负数的立方不一定大于它本身。
数学随堂小练人教版七年级下册:8.4三元一次方程组的解法一、单选题1.下列方程组中是三元一次方程组的是( )A. 3{245x y z y z w x z w ++=++=++=B. 0{210211x y z x yz x z ++=+=-=C. 3{04x y z x y z x z ++=-+==+D. 31{45x y y zx z +=+=+= 2.利用加减消元法解方程组+2+=8(1)23(2)321(3)x y z x y z x y z --=-+-=-⎧⎪⎨⎪⎩,下列做法正确的是( )A.要消去z,先将(1)+(2),再将(1)×2+(3)B.要消去z,先将(1)+(2),再将(1)×3-(3)C.要消去y,先将(1)-(3)×2,再将(2)-(3)D.要消去y,先将(1)-(2)×2,再将(2)+(3)3.将三元一次方程组540,3411,2x y z x y z x y z ⎧++=⎪+-=⎨⎪++=-⎩①②③②经过①一③和4⨯+③②消去未知数z 后,得到的二元一次方程组是( )A.{432,753x y x y +=+= B.{432,231711x y x y +=+= C.{342,231711x y x y +=+= D.{342,753x y x y +=+=4.解方程组323,2411,751,x y zx y zx y z⎧-+=⎪+-=⎨⎪+-=⎩若要使运算简便,消元的方法应选取( )A.先消去xB.先消去yC.先消去zD.以上说法都不对5.三元一次方程组1,{5,6x yy zz x+=+=+=的解是( )A.1 {05 xyz===B.1 {24 xyz===C.1 {04 xyz===D.4 {10 xyz===6.三元一次方程组232523633x y zx y zx y z-+=-+=--+=⎧⎪⎨⎪⎩消去未知数y后,得到的方程组可能是( )A.74 512 x zx z+=-=⎧⎨⎩B.7458 x zx z+=-=⎧⎨⎩C.74528x zx z-=-=⎧⎨⎩D.74512 x zx z-=-=⎧⎨⎩7.下列四对数值中,方程组202132x y zx y zx y z++=--=--=⎧⎪⎨⎪⎩的解是( )A.12 xyz===-⎧⎪⎨⎪⎩B.11 xyz===⎧⎪⎨⎪⎩C.10 xyz⎧==-=⎪⎨⎪⎩D.123 xyz⎧==-=⎪⎨⎪⎩8.已知方程组3,{2,9,x yy zz x+=+=-+=则x y z++的值为( )A.6B.-6C.5D.-59.甲、乙、丙三种商品,若购买甲3件、乙2件、丙1件,共需130元,购甲1件、乙2件、丙3件,共需210元,那么购甲、乙、丙三种商品各1件,共需( )A. 105元B.95元C. 85元D. 88元二、填空题10.下列方程是三元一次方程的是__________.(填序号)①1x y z+-=;②437xy z+=;③270y zx+-=;④6430x y+-=11.方程组354x yy zz x+⎧=+=+=⎪⎨⎪⎩的解是__________.12.某服装厂专门安排210名工人进行手工衬衣的缝制,每件衬衣由2个衣袖、1个衣身、1个衣领组成.如果每人每天能够缝制衣袖10个,或衣身15个,或衣领12个,那么应该安排__________名工人缝制衣袖,才能使每天缝制出的衣袖、衣身、衣领正好配套.13.方程组3122a c b c a b c -=--=++=-⎧⎪⎨⎪⎩的解为______.三、解答题14.为确保信息安全,在传输时往往需加密,发送方发出一组密码,,a b c 时,则接收方对应收到的密码为,,A B C .双方约定:2, 2,A a b B b C b =-==,例如发出1,2,3,则收到0,4,5.(1)当发送方发出一组密码2,3,5时,则接收方收到的密码是多少?(2)当接收方收到一组密码2,8,11时,则发送方发出的密码是多少?参考答案1.答案:CA 项含有4个未知数;B 项中2yz 的次数为2;D 项中1 4y z+=不是整式方程.故选C. 2.答案:A3.答案:A ①-③,得432x y +=,4753x y ⨯++=③②,得,得到的二元一次方程组是{432,753x y x y +=+=故选A. 4.答案:B因为未知数y 的系数是-1和1,所以要使运算简便,应先消去y .5.答案:A 根据三元一次方程组的解的概念,将各选项中,,x y z 的值分别代入原方程组中的每一个方程,适合每一个方程的一组未知数的值,才是这个方程组的解.6.答案:A7.答案:D8.答案:C将方程组中各个方程的两边分别相加,可得()222329x y z ++=+-+,即5x y z ++=.9.答案:C设购甲、乙、丙三种商品各1件,分别需要x 元、y 元、z 元,根据题意得{32130,23210,x y z x y z ++=++=把这两个方程相加,得444340x y z ++=,所以85x y z ++=.即购甲、乙、丙三种商品各1件,共需85元.故选C.10.答案:①①是;②不是, 4xy 的次数为2;③不是,2x不是整式;④不是,方程中只有2个未知数. 11.答案:x=1,y=2,z=312.答案:120设应该安排x 名工人缝制衣袖, y 名工人缝制衣身, z 名工人缝制衣领,才能使每天缝制出的衣袖 、衣身、衣领正好配套 依题意有210{10:15:122:1:1x y z x y z ++== 解得120{4050x y z ===故应该安排120名工人缝制衣袖,才能使每天缝制出的衣袖、衣身、衣领正好配套。
第15讲三元一次方程组解法(1)代入消元法(2)加减消元法三元一次方程组及其解法:方程组中一共含有三个未知数,含未知数的项的次数都是1,并且方程组中一共有两个或两个以上的方程,这样的方程组叫做三元一次方程组。
解三元一次方程组的关键也是“消元”:三元→二元→一元方程应用题:考点1、三元一次方程的解法例1、在解三元一次方程组中,比较简单的方法是消去()A.未知数B.未知数y C.未知数z D.常数例2、将三元一次方程组,经过①-③和③×4+②消去未知数z后,得到的二元一次方程组是()A.B.C.D.例3、写一个三元一次方程,使它的解有一组为x=1,y=1,z=1,这个三元一次方程为.例4例5、解下列三元一次方程组:(1)(2)(3)(4).1、已知,则x+y+z的值是()A.80 B.40 C.30 D.不能确定2、下列方程组:①;②;③;④,是三元一次方程组的是(填序号)3、已知三元一次方程2a+3b-4c=6,用含b、c的式子表示a为.4、当x=0、1、-1时,二次三项式ax2+bx+c的值分别为5、6、10,则a= ,5、解方程组:考点2、三元一次方程应用求解例1、已知|x-z+4|+|z-2y+1|+|x+y-z+1|=0,则x+y+z=()A.9 B.10 C.5 D.3例2、已知方程组,x与y的值之和等于2,则k的值为.例3、如果方程组的解使代数式kx+2y-z的值为10,那么k= .例4、已知x、y、z都不为零,且.求x:y:z.例5、对于有理数x,y定义新运算x*y=ax+by+c.其中a,b,c是常数,等式右边是通常的加法与乘法运算.已知1*2=9,(-3)*3=6,0*1=2,求(-2)*5的值.1、若方程组的解x与y的和为O,则m等于()A.-2 B.-1 C.1 D.22、已知,则x:y:z=______.34、如果方程组,的解也是方程3x+my+2z=0的解,求m的值.5、已知3x-4y-z=0,2x+y-8z=0,求的值.考点3、三元一次方程应用题例1、有甲,乙,丙三种商品,如果购甲3件,乙2件,丙1件共需315元钱,购甲1件,乙2件,丙3件共需285元钱,那么购甲,乙,丙三种商品各一件共需()A.50 B.100 C.150 D.200例2、一件工作,甲乙合做8小时完成,甲丙合做6小时完成,乙丙合做4.8小时完成,若甲乙丙三人合做,小时完成.例3、已知,甲乙丙三个数的和为26,甲数比乙数大1,甲数的两倍与丙数的和比乙数大18,求这三个数.例4、某工厂每天生产甲种零件120个,或乙种零件100个,或丙种零件200个.甲、乙、丙三种零件分别取3个、2个、1个才能配成一套,现要在30天内生产最多的成套产品,问甲、乙、丙三种零件各应生产多少天?例5、在第29届北京奥运会上,中国体育健儿共获得奖牌100枚,令国人振奋,世界瞩目,下面是两位同学的对话:小明:太厉害了,我们在金牌榜上居第一位,金牌比银牌的2倍还多9块!小华:是呀,我们的银牌也不少啊,只比铜牌少7块!你知道我们共获得金牌、银牌、铜牌各多少块吗?1、有甲、乙、丙三种货物,若购买甲3件,乙7件,丙1件,共需63元,若购甲4件,乙10件,丙1件共需84元.现在购买甲、乙、丙各一件,共需()元.A.21 B.23 C.25 D.272、甲乙丙三数之和为36,而甲乙二数之和与乙丙二数之和与甲丙二数的和之比为2:3:4,则甲乙丙三数分别为.3、已知△ABC的周长为25cm,三边a、b、c中,a=b,c:b=1:2,则边长a= .4、王明在超市用74元钱买了苹果、梨、香蕉三种水果共15.5/kg,苹果比梨多2kg,已知苹果5元/kg,梨5.5元/kg,香蕉4元/kg.王明买了苹果、梨、香蕉各多少/kg?5、某单位职工在植树节时去植树,甲、乙、丙三个小组共植树50株,乙组植树植树多少株?6、已知△ABC的周长为48cm,最长边与最短边之差为14cm,另一边与最短边之和为25cm,求△ABC各边的长.1、解方程组时,第一次消去未知数的最佳方法是()A.加减法消去x,将①-③×3与②-③×2B.加减法消去y,将①+③与①×3+②C.加减法消去z,将①+②与③+②D.代人法消去x,y,z中的任何一个2、若2x+3y-z=0且x-2y+z=0,则x:z=()A.1:3 B.-1:1 C.1:2 D.-1:7 3、若2x+5y-3z=2,3x+8z=3,则x+y+z的值等于()A.0 B.1 C.2 D.无法求出4、关于关于x、y的方程组的解也是二元一次方程x+3y+7m=20的解,则m的值是()A.0 B.1 C.2 D.0.55、某校一年级有64人,分成甲、乙、丙三队,其人数比为4:5:7.若由外校转入1人加入乙队,则后来乙与丙的人数比为()A.3:4 B.4:5 C.5:6 D.6:76、买20枝铅笔、3块橡皮擦、2本日记本需32元;买39枝铅笔,5块橡皮擦、3本日记本需58元;则买5枝铅笔、5块橡皮擦、5本日记本需()A.20元B.25元C.30元D.35元7、若方程组中x和y值相等,则k= .8、已知单项式-8a3x+y-z b12c x+y+z与2a4b2x-y•3z c69、解下列方程组:(1)(2)10、已知方程组的解x、y的和为12,求n的值.11、若,求x,y,z的值.12、已知:△ABC的周长为18cm,且a+b=2c,,求三边a、b、c的长.13、一个三位数的三个数字的和是17,百位数字与十位数字的和比个位数字大3,如果把个位数字与百位数字的位置对调,那么所得的三位数比原数大495,求原来的三位数.1、已知3a-c=a+b+c=4a+2b-c,那么3a:2b:c等于()A.4:(-2):5 B.12:4:5C.12:(-4):5 D.不能确定2、若,且3x+2y+z=32,则(y-z)x= .3、已知=k,则k= .4、有甲、乙、丙三种货物,若购甲3件、乙7件、丙1件共需315元;若购甲4件、乙10件、丙1件共需420元.问购甲、乙、丙各5件共需多少元?5、根据下面的等式,求出妈妈买回来的鱼、鸡、菜各花了多少钱?鸡+鸭+鱼+菜=35.4元鸡+鱼+菜=20.4元鸭+鱼+菜=21.4元鸭+菜=17元.1、解方程组,若要使运算简便,消元的方法应选取()A.先消去B.先消去yC.先消去z D.以上说法都不对2、已知是方程组的解,则a+b+c的值是()A.1 B.2 C.3 D.以上答案都不对3、甲、乙、丙三数之和为98,甲:乙=2:3,乙:丙=5:8,则乙=()A.50 B.45 C.40 D.304、三元一次方程组的解是()A.B.C.D.5、小华到学校超市买铅笔11支,作业本5个,笔芯2支,共花12.5元;小刚在这家超市买同样的铅笔10支,同样的作业本4个,同样的笔芯1支,共花10元钱.若买这样的铅笔1支、作业本1个,笔芯1支共需()元.A.3元B.2.5元C.2元D.无法求出6、若方程组的解是3a+nb=8的一个解,则n的值是()A.1 B.2 C.3 D.47、为了奖励进步较大的学生,某班决定购买甲、乙、丙三种钢笔作为奖品,其单价分别为4元、5元、6元,购买这些钢笔需要花60元;经过协商,每种钢笔单价下降1元,结果只花了48元,那么甲种钢笔可能购买()A.11支B.9支C.7支D.4支8、如果x-y=-5,z-y=11,则z-x= .9、当K= 时,关于x、y的方程的解的和为200.10、有甲、乙、丙三种商品,如果购甲3件、乙2件,丙1件共需315元钱,购甲1件、乙2件、丙3件共需285元钱,那么购甲、乙、丙三种商品各一件共需元钱.11、解方程组(1)(2)(3)12、在等式y=ax2+bx+c中,当x=1时,y=0;当x=2时,y=4;当x=3时,y=10.当x=4时y的值是多少?13、解方程组:.14、琪琪、倩倩、斌斌三位同学去商店买文具用品.琪琪说:“我买了4支水笔,2本笔记本,10本作文本共用了19元.”倩倩说:“我买了2支水笔,3本笔记本,10本练习本共用了20元.”斌斌说:“我买了12本练习本,8本作文本共用了10元;作文本与练习本的价格是一样哦!”请根据以上内容,求出笔记本,水笔,练习本的价格.15、a为何值时,方程组的解x、y的值互为相反数,求出a的值,并求出方程组的解.第15讲三元一次方程组解法考点1、三元一次方程的解法例1、C例2、A例3、例4、例5、1、B2、3、4、5、考点2、三元一次方程应用求解例1、A例2、例3、例4、例5、1、D2、3、4、5、考点3、三元一次方程应用题例1、C例2、例3、例4、例5、1、A2、3、4、5、6、1、C2、D3、B4、C5、A6、C7、8、9、10、11、12、13、1、2、3、4、5、1、B2、C3、D4、C6、B7、D 8、9、10、11、13、.14、15、人教版七年级数学下册第八章《三元一次方程组解法(选学)》知识梳理、考点精讲精练、课堂小测、课后作业第15讲(有答案)21 / 21。
8.4 三元一次方程组的解法 练习一、选择题1. 解方程组{3x −y +2z =3,2x +y −4z =11,7x +y −5z =1,要使运算简便,消元的方法为( )A. 先消去xB. 先消去yC. 先消去zD. 以上说法都不对2. 对于三元一次方程组,我们一般是先消去一个未知数,转化为二元一次方程组求解.那么在解三元一次方程组{2x +y +z =9x +2y +z =8x +y +2z =7时,下列没行实现这一转化的是( )A. {x −y =1y −z =1B. {x −y =13x +y =11C. {x −z =23x +z =10D. {y −z =13y +z =73. 方程组{2x +y =33x −z =7x −y +3z =0的解为( )A. {x =2y =1z =−1B. {x =2y =−1z =1C. {x =2y =−1z =−1D. {x =2y =1z =14. 方程组{2x +y =33x −z =7x −y +3z =0的解为( )A. {x =2y =1z =−1B. {x =2y =−1z =1C. {x =2y =−1z =−1D. {x =2y =1z =15. 下列四组数中,是方程组{x +2y +z =0,2x −y −z =1,3x −y −z =2的解是( )A. {x =1,y =−2,z =3.B. {x =1,y =0,z =1.C. {x =0,y =−1,z =0.D. {x =0,y =1,z =−2.6. 解方程组{3x −y +z =4①,2x +3y −z =12②,x +y +z =6③时,第一次消去未知数的最佳方法是( )A. 加减法消去x ,将①−③×3与②−③×2B. 加减法消去y ,将①+③与①×3+②C. 加减法消去z ,将①+②与③+②D. 代入法消去x ,y ,z 中的任意一个7. 下列方程组中,是三元一次方程组的是( )A. {a 2=b b 2=2c c 2=3aB. {ab =2bc =3ca =4C. { 1a =21b =11c=4 D. {a +2b +c =12a −3b =6b +3c =48. 三元一次方程组{3x +4z =72x +3y +z =95x −9y +7z =8的解为( )A. {x =5y =3z =−2B. {x =5y =13z =2C. {x =5y =13z =−2D. {x =5y =−13z =−29. 方程组{x +y =−1,x +z =0,y +z =1的解是( )A. {x =−1,y =1,z =0B. {x =1,y =0,z =−1C. {x =−1,y =0,z =1D. {x =0,y =1,z =−110. 下列四组数值中,为方程组{x +2y +z =02x −y −z =13x −y −z =2的解是( )A. {x =0y =1z =−2B. {x =1y =0z =1C. {x =0y =−1z =0D. {x =1y =−2z =3二、填空题11. 把方程组{2x +3y =5,3y −4z =3,消去未知数z,转化为只含x,y 的4z +5x =7方程组为_______.12. 三元一次方程组{x +y +z =102x +3y +z =173x +2y −z =8 的解是______.13. 三元一次方程组{x +y +z =26x −y =12x −y +z =18 的解为___________. 14. 三元一次方程组{x +y =1,y +z =2,x +z =3的解是_______. 15. 已知{x +y =4y +z =7x +z =9,则x +y +z 的值为______.三、计算题16. 解方程组:{x +y =3y +z =5z +x =4.17.解方程组{x+y−z=0 2x+y+z=5 3x−2y+z=318.解三元一次方程组{a−b+c=0,4a+2b+c=3, 25a+5b+c=60.19.解下列三元一次方程组:(1){4x−9z=17,3x+y+15z=18, x+2y+3z=2;(2){2x+4y+3z=9, 3x−2y+5z=11, 5x−6y+7z=13.四、解答题20.甲、乙、丙三人共解出100道数学题,每人都解出其中的60道题,将其中只有1人解出的题叫做难题,3人都解出的题叫做容易题,试问:难题多还是容易题多?(多的比少的)多几道题?21.某汽车在相距70km的甲、乙两地往返行驶,因为行驶中有一坡度均匀的小山,该汽车从甲地到乙地需要2.5ℎ,而从乙地到甲地需要2.3ℎ.假设汽车在平地、上坡、下坡的行驶过程中的时速分别为30km、20km、40km.问:从甲地到乙地的过程中,平地路、上坡路、下坡路各为多少千米?参考答案1.【答案】B2.【答案】A3.【答案】C4.【答案】C5.【答案】A6.【答案】C7.【答案】D8.【答案】C9.【答案】C 10.【答案】D11.【答案】{2x +3y =55x +3y =1012.【答案】{x =3y =2z =513.【答案】{x =10y =9z =714.【答案】.15.【答案】1016.【答案】解:{x +y =3①y +z =5②z +x =4③,②−①得,z −x =2④, ③+④得,2z =6,z =3, ③−④得,2x =2,x =1,把x =1代入①得,1+y =3,y =2, ∴原方程组的解是:{x =1y =2z =3.17.【答案】解:{x +y −z =0①2x +y +z =5②3x −2y +z =3③,由①+②得:3x +2y =5,④ 由③−②得:x −3y =−2,⑤由④和⑤组成二元一次方程组{3x +2y =5x −3y =−2,解得{x =1y =1,把x =1,y =1代入方程①中得:z =2,∴该三元一次方程组的解为{x =1y =1z =2.18.【答案】解:{a −b +c =0①4a +2b +c =3②25a +5b +c =60③②−①得,3a +3b =3 即a +b =1④③−②得,21a +3b =57 即7a +b =19⑤ 联立④⑤得,{a +b =1④7a +b =19⑤⑤−④得,6a =18 ∴a =3.把a =3代入④得,3+b =1 ∴b =−2.把a =3,b =−2代入①得,3−(−2)+c =0∴c =−5.∴方程组的解为{a =3b =−2c =−5.19.【答案】解:(1){4x −9z =17①3x +y +15z =18②x +2y +3z =2③,②×2−③:5x +27z =34④, ①×3+➃:17x =85,解得x =5, 把x =5代入①,解得z =13, 把z =13代入③,解得y =−2, 故原方程组的解是{x =5y =−2z =13;(2){2x +4y +3z =9①3x −2y +5z =11②5x −6y +7z =13③,①+②×2:8x +13z =31④, ③−②+①:4x +5z =11⑤, 联立④➄解得{x =−1z =3,代入①,解得y =12,故原方程组的解是{x =−1y =12z =3.20.【答案】解:设共有x 道题“难题”,y 道“容易题”,“中等难度的题”为z 道,则{x +y +z = 100 ① x +3y +2z =180 ②由①×2−②, 得x 一y =20 答:“难题”比“容易题”多,多20道。
最新人教版七年级数学下册第八章 二元一次方程组 基础训练题(含答案)8.4 三元一次方程组的解法1.下列是三元一次方程组的是( )A.⎩⎨⎧2x =5x 2+y =7x +y +z =6 B.⎩⎪⎨⎪⎧3x -y +z =-2x -2y +z =9y =-3 C.⎩⎨⎧x +y -z =7xyz =1x -3y =4 D.⎩⎨⎧x +y =2y +z =1x +z =9 2.观察方程组⎩⎨⎧3x -y +2z =3,2x +y -4z =11,7x +y -5z =1的系数特点,若要使求解简便,消元的方法应选取( )A .先消去xB .先消去yC .先消去zD .以上说法都不对3.将三元一次方程组⎩⎨⎧5x +4y +z =0, ①3x +y -4z =11, ①x +y +z =-2 ①经过步骤①-①和①×4+①消去未知数z 后,得到的二元一次方程组是( )A.⎩⎨⎧4x +3y =27x +5y =3B.⎩⎨⎧4x +3y =223x +17y =11C.⎩⎨⎧3x +4y =27x +5y =3D.⎩⎨⎧3x +4y =223x +17y =11 4.已知方程组⎩⎨⎧x +2y =k ,2x +y =1的解满足x +y =3,则k 的值为( ) A .10 B .8 C .2 D .-85.由方程组⎩⎨⎧2x +y =7,2y +z =8,2z +x =9,可以得到x +y +z 的值等于( )A .8B .9C .10D .116.解下列三元一次方程组:(1)⎩⎨⎧2x +y =4,①x +3z =1,①x +y +z =7;①(2)⎩⎨⎧x +z -3=0,①2x -y +2z =2,①x -y -z =-3.①7.一个三位数,个位、百位上的数字的和等于十位上的数字,百位上的数字的7倍比个位、十位上的数字的和大2,个位、十位、百位上的数字的和是14.则这个三位数是____________.8.已知-a x +y -z b 5c x +z -y 与a 11b y +z -x c 是同类项,则x =_______,y =_______,z =_______.9.已知y =ax 2+bx +c ,当x =1时,y =3;当x =-1时,y =1;当x =0时,y =1.求a ,b ,c 的值.10.2016里约奥运会,中国运动员获得金、银、铜牌共70枚,位列奖牌榜第三.其中金牌比银牌多8枚,铜牌比银牌的总数的2倍少10枚.问金、银、铜牌各多少枚?参考答案:1-5 DBABA6.(1)解:由①,得y =4-2x.①由①得z =1-x 3.①把①,①代入①,得x +4-2x +1-x 3=7.解得x =-2.①y =8,z =1.①原方程组的解为⎩⎨⎧x =-2,y =8,z =1.(2)解:①-①,得x +3z =5.①解由①,①组成的方程组,得⎩⎨⎧x =2,z =1. 将⎩⎨⎧x =2,z =1代入①,得y =4. ①原方程组的解为⎩⎨⎧x =2,y =4,z =1.7.2758.6 8 39.解:①y =ax 2+bx +c ,当x =1时,y =3;当x =-1时,y =1;当x =0时,y =1,①代入,得⎩⎨⎧a +b +c =3,①a -b +c =1,①c =1,①把①代入①和①,得⎩⎨⎧a +b =2,a -b =0.解得a =1,b =1, 即a =1,b =1,c =1.10.解:设金牌x 枚,银牌y 枚,铜牌z 枚,则⎩⎨⎧x +y +z =70,x -y =8,2y -z =10,解得⎩⎨⎧x =26,y =18,z =26.答:金牌26枚,银牌18枚,铜牌26枚.。
8.4 三元一次方程组的解法同步测试题(满分120分;时间:120分钟)一、选择题(本题共计10 小题,每题3 分,共计30分,)1. 三个二元一次方程2x+5y−6=0,3x−2y−9=0,y=kx−9有公共解的条件是k=()A.4B.3C.2D.12. 若方程组{4x+3y=1kx+(k−1)y=3的解x和y的值相等,则k的值为()A.4B.10C.11D.123. 有甲、乙、丙三种货物,若购甲3件,乙7件丙1件,共需64元,若购甲4件,乙10件,丙1件,共需79元.现购甲、乙、丙各一件,共需()元.A.32B.33C.34D.354. 若方程x+y=3,x−y=5和x+ky=2有公共解,则k的值是()A.2B.−2C.1D.35. 甲、乙、丙三数之和为98,甲:乙=2:3,乙:丙=5:8,则乙=()A.50B.45C.40D.306. 方程组{x+y+z=103x+y−z=502x+y=40()A.无解B.有1组解C.有2组解D.有无穷多组解7. 已知{a −2b +3c =02a −3b +4c =0,则a:b:c 等于( ) A.3:2:1 B.1:3:1 C.1:2:3 D.1:2:18. 若{x +2y +3z =104x +3y +2z =5,则x +y +z =( ) A.2B.3C.5D.69. 甲,乙,丙三人做某项工作,甲单独做所需时间为乙,丙合做所需时间的3倍,乙独做所需时间甲,丙合做所需2倍,则丙单独做所需时间为甲,乙合做所需时间的( )A.1.4倍B.1.5倍C.2.5倍D.1.8倍10. 某大型音乐会在艺术中心举行.观众在门口等候检票进入大厅,且排队的观众按照一定的速度增加,检票速度一定,当开放一个大门时,需用半小时待检观众全部进入大厅,同时开放两个大门,只需十分钟,现在想提前开演,必须在5分钟内全部检完票,则音乐厅应同时开放的大门数是( )A.3个B.4个C.5个D.6个 二、 填空题 (本题共计 10 小题 ,每题 3 分 ,共计30分 , )11. 小梅买3支笔、7本练习本、1瓶修正液需付31.5元,若买4支笔、10本练习本、一瓶修正液需付44元.则她买1支笔、1本练习本、1瓶修正液需付________元.12. 已知三根木棒长分别为a ,b ,c ,其中a 与b 的和等于c 的2倍,a 与b 的比为1:2,且三根木棒之和为18,则三根木棒的长分别为________.13. 已知关于x 的整系数的二次三项式ax 2+bx +c ,当x 分别取1,3,6,8时,某同学算得这个二次三项式的值分别为1,5,25,50,经过验算,只有一个结果是错误的,这个错误的结果是________.14. 若方程组{4x +3y =14kx +(k −1)y =6的解中x 与y 的值相等,则k 为________.15. 在方程组{x +7y =m +12x −y =4的解中,x 、y 的和等于2,则2m +1=________.16. 甲、乙、丙三数的和是26,甲数比乙数大1,甲数的两倍与丙数的和比乙数大18,那么甲、乙、丙三个数分别是________.17. 若4x −3y −6z =0,x +2y −7z =0(xyz ≠0),则x:y:z =________.18. 已知{x −y +z =0x +2y −3z =0,则x:y:z =________.19. 一次数学竞赛准备了22支铅笔作为奖品发给一、二、三等奖的学生,原计划发给一等奖每人6支,二等奖每人3支,三等奖每人2支,后来改为一等奖每人9支,二等奖每人4支,三等奖每人1支,则获一、二等奖的学生总共有________人.20. 五羊公园门票规定为:每人20元;30人以上的团体购票,每人18元,每30人优惠1人免票(不足30人的余数不优惠).今有花城旅行社、穗城旅行社、羊城旅行社的三支旅游团前来参观:如果花城团、穗城团合起来作为一个团体购票,应购门票3834元;如果穗城团、羊城团合起来购票,应购门票4770元;如果羊城团、花城团合起来购票,应购门票5220元,那么三个团共有人________.三、 解答题 (本题共计 5 小题 ,共计60分 , )21. 解方程组:{x +y +z =6x −z =22x −y +z =5.22. 已知:4x−3y−6z=0,x+2y−7z=0(xyz≠0),求2x+3y+6z的值.x+5y+7z23. 一个三位数,各数位上的数字之和为13,十位上的数字比个位上的数字大2,如果把百位上的数字与个位上的数字对调,那么所得新数比原来三位数大99,求原来的三位数.24. 有三种布料,每米的售价甲种比乙种贵2元,乙种比丙种贵3元,已知3米长的甲种布料、2米长的乙种布料与4米长的丙种布料的总价为156元,则甲、乙、丙三种布料的售价分别是每米多少元?25. 某电脑公司有A型、B型、C型三种型号的电脑,其中A型每台5000元、B型每台4000元、C型每台3000元,某中学现有资金100000元,计划全部用从这家电脑公司购进30台两种型号的电脑,请你设计几种不同的购买方案供这个学校选择,并说明理由.参考答案一、 选择题 (本题共计 10 小题 ,每题 3 分 ,共计30分 )1.【答案】B【解答】解:由题意得:{2x +5y −6=03x −2y −9=0y =kx −9,①×3−②×2得y =0,代入①得x =3,把x ,y 代入③,得:3k −9=0,解得k =3.故选B .2.【答案】C【解答】解:把y =x 代入4x +3y =1得:7x =1,解得x =17,∴ y =x =17. 得:17k +17(k −1)=3, 解得:k =11.故选C .3.【答案】C【解答】设购甲每件x元,购乙每件y元,购丙每件z元.列方程组得:{3x+7y+z=644x+10y+z=79,①×3−②×2得:x+y+z=34.4.【答案】A【解答】解;把x+y=3,x−y=5和x+ky=2组成方程组得;{x+y=3①x−y=5②x+ky=2③,①+②得:2x=8,x=4,把x=4代入①得;y=−1,把x=4,y=−1代入③得;k=2,∴ 方程组的解为{x=4y=−1k=2.故选A.5.【答案】D【解答】解:设甲数为x 、乙数是y 、丙数是z由题意得{ x +y +z =98①x y =23②y z =58③由②得x =23y ④由③得z =85y ⑤将④⑤代入①得23y +y +85y =98解得y =30故选D6.【答案】A【解答】解:∴ {x +y +z =10①3x +y −z =50②2x +y =40③,∴ ①+②得:4x +2y =60,即2x +y =30④,又∴ 2x +y =40③,∴ 原方程组无解.故选A .7.【答案】D【解答】解:{a −2b +3c =02a −3b +4c =0, ①×2−②得:−b +2c =0则b =2c ;①×3−②×2得:−a +c =0则a =c ;所以a:b:c =c:2c:c =1:2:1.故选:D .8.【答案】B【解答】解:{x +2y +3z =10①4x +3y +2z =5②, ①+②得,5x +5y +5z =15,解得x +y +z =3.故选B .9.【答案】A【解答】解:设甲、乙、丙的工作效率分别是x ,y ,z ,则{3x =y +z 2y =x +z把z 当作已知数,解这个二元一次方程组得 x =35z ;y =45z ;∴ x +y =75z ,∴ 丙单独做这件工作的时间是乙甲合作这件工作的1z ÷1x+y=75zz=1.4.故丙单独做做所需时间是甲,乙合作这件工作的1.4倍.故选A.10.【答案】B【解答】解:设现在有观众a人,每分钟增加b人,一个大门每分钟检票c人,若要求5分钟内全部检完,则需要x个大门.根据题意,得{30c=a+30b2×10c=a+10b,解,得{c=115ab=130a .则有5cx≥a+5b,x≥3.5.故选B.二、填空题(本题共计10 小题,每题 3 分,共计30分)11.【答案】6.5【解答】解:设笔每支x元,练习本每本y元,修正液每支z元.则{3x+7y+z=31.5,①4x+10y+z=44,②,由②-①得x+3y=12.5,所以2x+6y=25,③由①-③得x+y+z=6.5故答案是:6.5.12.【答案】8,5,6【解答】解:根据题意得:{a +b =2ca =2b a +b +c =18, 解得:{a =8b =5c =6∴ 三根木棒的长分别为8,5,6.故答案为:8,5,6.13.【答案】25【解答】解:把x 的值分别代入二次三项式ax 2+bx +c 得,a +b +c =1①,9a +3b +c =5②,36a +6b +c =25③,64a +8b +c =50④, ④-③得:28a +2b =25,∴ a 和b 都是整数,∴ 28a +2b 只能是偶数,故③和④中有一个错误;③-①得:35a +5b =24,∴ a 和b 都是整数,∴ 35a +5b 只能是5的倍数,故③和①中有一个错误;综上,故③是错误的,故答案为25.14.【答案】2【解答】根据题意得:{4x +3y =14x =y, 解得{x =2y =2①, 将①代入kx +(k −1)y =6得,2k +2(k −1)=6,解得k =2.15.【答案】3【解答】解:根据题意增加一个方程x +y =2得y =2−x ,代入第二个方程得:2x −2+x =4则x =2,y =0.将x ,y 的值代入第一个方程得:2+0=m +1则m =1.所以2m +1=3.16.【答案】10,9,7【解答】设甲数为x ,乙数为y ,丙数为z ,根据题意得:{x+y+z=26 x−y=12x+z−y=18解得: {x=10 y=9 z=7则甲数是10,乙数是9,丙数是7,故答案为:10,9,7.17.【答案】3:2:1【解答】解:x+2y−7z=0可化为x=7z−2y,把x=7z−2y代入4x−3y−6z=0中,得28z−8y−3y−6z=0,22z−11y=0,y=2z,把y=2z代入4x−3y−6z=0中,则x=7z−4z,x=3z,所以x:y:z=3z:2z:z=3:2:1.18.【答案】1:4:3【解答】解:由x−y+z=0得x=y−z①,由x+2y−3z=0得x=3z−2y②,由①②得:y−z=3z−2y,∴ z=34y,把它代入①得:x=14y,∴ x:y:z=14y:y:34y=1:4:3.故答案为:1:4:3.19.【答案】3【解答】解:设获一、二、三等奖的人数分别为x,y,z,根据题意得:{6x+3y+2z=22①9x+4y+z=22②,2×②,得18x+8y+2z=44③;③-①,得12x+5y=22,y=22−12x5,因为x,y只能取整数,所以x=1,y=2,则获一、二等奖的学生总共有1+2=3(人);故答案为:3.20.【答案】397【解答】解:设花城团有x人,穗城团有y人,羊城团有z人,因为3834÷18=213,4770÷18=265,5220÷18=290,又213=30×7+3,265=30×8+25,290=30×9+20.根据公园门票优惠方法得方程组:x+y=213+7,即x+y=220;y+z=265+8,即y+z=273;z+x=290+9,即z+x=299.三式相加得:2(x+y+z)=792,故x+y+z=396,即三个团共有396人.由y +z =273可知,穗城团与羊城团合起来有273人,而273应写成30×9+3,即273人只需有273−9=264人买票,与题目中的265不符.因此,穗城团、羊城团的人数加起来不可能是273人而应是265+9=274人,而274=30×9+4,因为只有274人才需要购买274−9=265人的票,同样,由z +x =299人,若再增加一人,变为300人,则300=3010,省10人的票,同样也是290人买票.所以羊城团、花城团合起来可能是299人,也可能是300人.即可能是z +x =299,也可能是z +x =300.综上所述,可得方程组:{x +y =220y +z =274z +x =299①或{x +y =220y +z =274z +x =300②由方程组①可得:2(x +y +z)=793,故x +y +z =396.5,由方程组②可得:2(x +y +z)=794,故x +y +z =397,由于人数不可能为小数, 所以方程组①不符合实际,应舍去,故三个团共有397人.故答案为:397.三、 解答题 (本题共计 5 小题 ,每题 10 分 ,共计50分 )21.【答案】解:{x +y +z =6①x −z =2②2x −y +z =5③,①+③得:3x +2z =11④,由②④组成方程组得:{x −z =2②3x +2z =11④, 解得:{x =3z =1, 将{x =3z =1,代入①得:y =2, 所以原方程组的解为:{x =3y =2z =1.【解答】解:{x +y +z =6①x −z =2②2x −y +z =5③,①+③得:3x +2z =11④,由②④组成方程组得:{x −z =2②3x +2z =11④, 解得:{x =3z =1,将{x =3z =1,代入①得:y =2,所以原方程组的解为:{x =3y =2z =1.22.【答案】解:由题意得{4x −3y −6z =0①x +2y −7z =0②,①-②×4得:−11y +22z =0,解得:y =2z ,将y =2z 代入①得:x =3z ,即{x =3z y =2z ,代入2x+3y+6z x+5y+7z 得:原式=6z+6z+6z 3z+10z+7z =910.【解答】解:由题意得{4x −3y −6z =0①x +2y −7z =0②,①-②×4得:−11y +22z =0,解得:y =2z ,将y =2z 代入①得:x =3z ,即{x =3z y =2z, 代入2x+3y+6z x+5y+7z 得:原式=6z+6z+6z 3z+10z+7z =910.23.【答案】解:设个位、十位、百位上的数字为x 、y 、z ,则{x +y +z =13y −x =2100z +10y +x +99=100y +10z +x,解得{x =4y =6z =3.故原来的三位数为364.【解答】解:设个位、十位、百位上的数字为x 、y 、z ,则{x +y +z =13y −x =2100z +10y +x +99=100y +10z +x,解得{x =4y =6z =3.故原来的三位数为364.24.【答案】甲种布料的售价为20元/米,乙种布料的售价为18元/米,丙种布料的售价为15元/米,【解答】解:设甲种布料的售价为x 元/米,乙种布料的售价为x 元/米,丙种布料的售价为x 元/米,依题意得:{x −y =2y −z =33x +2y +4z =156,解得{x =20y =18z =15.25.【答案】解:设购买A 型电脑x 台,B 型y 台,C 型z 台,(1)若购买A 型、B 型时,由题意,得{x +y =305000x +4000y =100000, 解得:{x =−20y =50,不符合题意,舍去; (2)若购买A 型、C 型,由题意,得{x +z =305000x +3000z =100000, 解得:{x =5z =25; (3)当购买C 型、B 型时,由题意,得{y +z =304000y +3000z =100000, 解得:{y =10z =20. 故共有两种购买方案:①购买A 型5台,C 型25台;②购买B 型10台,C 型20台.【解答】解:设购买A 型电脑x 台,B 型y 台,C 型z 台,(1)若购买A 型、B 型时,由题意,得{x +y =305000x +4000y =100000, 解得:{x =−20y =50,不符合题意,舍去; (2)若购买A 型、C 型,由题意,得{x +z =305000x +3000z =100000, 解得:{x =5z =25; (3)当购买C 型、B 型时,由题意,得{y +z =304000y +3000z =100000, 解得:{y =10z =20. 故共有两种购买方案:①购买A 型5台,C 型25台;②购买B 型10台,C 型20台.。
【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。
】三元一次方程组(基础)知识讲解责编:杜少波【学习目标】1.理解三元一次方程(或组)的含义;2.会解简单的三元一次方程组;3. 会列三元一次方程组解决有关实际问题.【要点梳理】要点一、三元一次方程及三元一次方程组的概念1.三元一次方程的定义含有三个未知数,并且含有未知数的项的次数都是1的整式方程.如x+y-z=1,2a-3b+4c=5等都是三元一次方程.要点诠释:(1)三元一次方程的条件:①是整式方程,②含有三个未知数,③含未知数的项的最高次数是1次.(2) 三元一次方程的一般形式:ax+by+cz+d=0,其中a、b、c不为零.2.三元一次方程组的定义一般地,由几个一次方程组成,并且含有三个未知数的方程组,叫做三元一次方程组. 要点诠释:(1) 三个方程中不一定每一个方程中都含有三个未知数,只要三个方程共含有三个未知量即可.(2)在实际问题中含有三个未知数,当这三个未知数同时满足三个相等关系时,可以建立三元一次方程组求解.要点二、三元一次方程组的解法解三元一次方程组的一般步骤(1)利用代入法或加减法,把方程组中一个方程与另两个方程分别组成两组,消去两组中的同一个未知数,得到关于另外两个未知数的二元一次方程组;(2)解这个二元一次方程组,求出两个未知数的值;(3)将求得的两个未知数的值代入原方程组中的一个系数比较简单的方程,得到一个一元一次方程;(4)解这个一元一次方程,求出最后一个未知数的值;(5)将求得的三个未知数的值用“{”合写在一起.要点诠释:(1)解三元一次方程组的基本思路是:通过“代入”或“加减”消元,把“三元”化为“二元”.使解三元一次方程组转化为解二元一次方程组,进而转化为解一元一次方程.其思想方法是:(2)有些特殊的方程组可用特殊的消元法,解题时要根据各方程特点寻求其较简单的解法.要点三、三元一次方程组的应用列三元一次方程组解应用题的一般步骤1.弄清题意和题目中的数量关系,用字母(如x,y,z)表示题目中的两个(或三个)未知数;2.找出能够表达应用题全部含义的相等关系;3.根据这些相等关系列出需要的代数式,从而列出方程并组成方程组; 4.解这个方程组,求出未知数的值; 5.写出答案(包括单位名称). 要点诠释:(1)解实际应用题必须写“答”,而且在写答案前要根据应用题的实际意义,检查求得的结果是否合理,不符合题意的应该舍去. (2)“设”、“答”两步,都要写清单位名称,应注意单位是否统一. (3)一般来说,设几个未知数,就应列出几个方程并组成方程组. 【典型例题】类型一、三元一次方程及三元一次方程组的概念1.下列方程组中是三元一次方程组的是( )A .2102x y y z xz ⎧-=⎪+=⎨⎪=⎩ B .111216y x z yx z⎧+=⎪⎪⎪+=⎨⎪⎪+=⎪⎩ C .123a b c d a c b d +++=⎧⎪-=⎨⎪-=⎩ D .18120m n n t t m +=⎧⎪+=⎨⎪+=⎩【答案】D【解析】A 选项中21x y -=与2xz =中未知数项的次数为2次,故A 选项不是;B 选项中1x,1y ,1z不是整式,故B 选项不是;C 选项中有四个未知数,故C 选项不是;D 项符合三元一次方程组的定义.【总结升华】理解三元一次方程组的定义要注意以下几点:(1)方程组中的每一个方程都是一次方程;(2)一般地,如果三个一次方程合起来共有三个未知数,它们就能组成一个三元一次方程组.类型二、三元一次方程组的解法2.(2016春•枣阳市期末)在等式y=ax 2+bx+c 中,当x=﹣1时,y=0;当x=2时,y=3;当x=5时,y=60.求a ,b ,c 的值.【思路点拨】由“当x=﹣1时,y=0;当x=2时,y=3;当x=5时,y=60”即可得出关于a 、b 、c 的三元一次方程组,解方程组即可得出结论. 【答案与解析】解:根据题意,得,②﹣①,得a+b=1④; ③﹣①,得4a+b=10 ⑤.④与⑤组成二元一次方程组,解这个方程组,得,把代入①,得c=﹣5.因此,即a ,b ,c 的值分别为3,﹣2,﹣5.【总结升华】本题考查了解三元一次方程组,解题的关键是得出关于a 、b 、c 的三元一次方程组.本题属于基础题,难度不大. 【:三元一次方程组 409145 例1】举一反三:【变式】解方程组:【答案】解:①+②得:5311x y +=④①×2+③得:53x y -=⑤由此可得方程组:531153x y x y +=⎧⎨-=⎩④⑤④-⑤得:48y =,2y =将2y =代入⑤知:1x =将1x =,2y =代入①得:3z =所以方程组的解为:123x y z =⎧⎪=⎨⎪=⎩【:三元一次方程组409145 例2(2)】3. 解方程组23520x y zx y z ⎧==⎪⎨⎪++=⎩①②【答案与解析】解法一:原方程可化为:253520x zy zx y z ⎧=⎪⎪⎪=⎨⎪⎪++=⎪⎩①②③2334823x y z x y z x y z -+=⎧⎪+-=⎨⎪+-=-⎩①②③由①③得:25x z =,35y z = ④ 将④代入②得:232055z z z ++=,得:10z = ⑤将⑤代入④中两式,得:2210455x z ==⨯=,3310655y z ==⨯=所以方程组的解为:4610x y z =⎧⎪=⎨⎪=⎩解法二:设235x y zt ===,则2,3,5x t y t z t ===③ 将③代入②得:23520t t t ++=,2t =将2t =代入③得:2224x t ==⨯=,3326,55210y t z t ==⨯===⨯=所以方程组的解为:4610x y z =⎧⎪=⎨⎪=⎩【总结升华】对于这类特殊的方程组,可根据其方程组中方程的特点,采用一些特殊的解法(如设比例系数等)来解. 举一反三:【变式】(2015秋•德州校级月考)若三元一次方程组的解使ax+2y+z=0,则a 的值为( ) A .1 B .0 C .﹣2 D .4【答案】B .解:,①+②+③得:x+y+z=1④, 把①代入④得:z=﹣4, 把②代入④得:y=2, 把③代入④得:x=3,把x=3,y=2,z=﹣4代入方程得:3a+4﹣4=0, 解得:a=0.类型三、三元一次方程组的应用4. (2015春•黄陂区校级月考)购买铅笔7支,作业本3本,圆珠笔1支共需3元;购买铅笔10支,作业本4本,圆珠笔1支共需4元,则购买铅笔11支、作业本5本圆珠笔2支共需 元.【思路点拨】首先假设铅笔的单价是x 元,作业本的单价是y 元,圆珠笔的单价是z 元.购买铅笔11支,作业本5本,圆珠笔2支共需a元.根据题目说明列出方程组,解方程组求出a的值,即为所求结果.【答案】5.【解析】解:设铅笔的单价是x元,作业本的单价是y元,圆珠笔的单价是z元.购买铅笔11支,作业本5本,圆珠笔2支共需a元.则由题意得:,由②﹣①得3x+y=1,④由②+①得17x+7y+2z=7,⑤由⑤﹣④×2﹣③得0=5﹣a,解得:a=5.【总结升华】本题考查了列三元一次不定方程组解实际问题的运用,在解决实际问题时,若未知量较多,要考虑设三个未知数,但同时应注意,设几个未知数,就要找到几个等量关系列几个方程.举一反三:【变式】现有面值为2元、1元和5角的人民币共24张,币值共计29元,其中面值为2元的比1元的少6张,求三种人民币各多少张?【答案】解:设面值为2元、1元和5角的人民币分别为x张、y张和z张.依题意,得24122926x y zx y zx y++=⎧⎪⎪++=⎨⎪⎪+=⎩①②③把③分别代入①和②,得21813232x zx z+=⎧⎪⎨+=⎪⎩④⑤⑤×2,得6x+z=46 ⑥⑥-④,得4x=28,x=7.把x=7代入③,得y=13.把x=7,y=13代入①,得z=4.∴方程组的解是7134xyz=⎧⎪=⎨⎪=⎩.答:面值为2元、l元和5角的人民币分别为7张、13张和4张.初中奥数题试题一一、选择题(每题1分,共10分)1.如果a,b都代表有理数,并且a+b=0,那么 ( )A.a,b都是0 B.a,b之一是0C.a,b互为相反数 D.a,b互为倒数2.下面的说法中正确的是 ( )A.单项式与单项式的和是单项式B.单项式与单项式的和是多项式C.多项式与多项式的和是多项式D.整式与整式的和是整式3.下面说法中不正确的是 ( )A. 有最小的自然数 B.没有最小的正有理数C.没有最大的负整数 D.没有最大的非负数4.如果a,b代表有理数,并且a+b的值大于a-b的值,那么 ( )A.a,b同号 B.a,b异号 C.a>0 D.b>05.大于-π并且不是自然数的整数有 ( )A.2个 B.3个 C.4个 D.无数个6.有四种说法:甲.正数的平方不一定大于它本身;乙.正数的立方不一定大于它本身;丙.负数的平方不一定大于它本身;丁.负数的立方不一定大于它本身。
& 鑫达捷致力于精品文档 精心制作仅供参考 &鑫达捷 初中数学试卷 桑水出品8.4三元一次方程组解法举例1.在方程5x -2y +z =3中,若x =-1,y =-2,则z =_______.2.已知单项式-8a 3x +y -z b 12 c x +y +z 与2a 4b 2x -y +3z c 6,则x =____,y =____,z =_____.3.解方程组 ,则x =_____,y =______,z =_______.4.已知代数式ax 2+bx +c ,当x =-1时,其值为4;当x =1时,其值为8;当x =2时,其值为25;则当x =3时,其值为_______.5.已知,则x ∶y ∶z =___________. 6.解方程组,若要使运算简便,消元的方法应选取( ) A 、先消去x B 、先消去y C 、先消去z D 、以上说法都不对7.方程组 的解是( )A 、B 、C 、D 、8.若x +2y +3z =10,4x +3y +2z =15,则x +y +z 的值为( )A 、2B 、3C 、4D 、59.若方程组 的解x 与y 相等,则a 的值等于( )A 、4B 、10C 、11D 、1210.已知∣x -8y ∣+2(4y -1)2+3∣8z -3x ∣=0,求x +y +z 的值.11.解方程组(1) (2)12.一对夫妇现在年龄的和是其子女年龄和的6倍,他们两年前年龄和是子女两年前年龄和的10倍,6年后他们的年龄和是子女6年后年龄和的3倍,问这对夫妇共有多少个子女?4x +3y =1 ax +(a -1)y =3 x -3y +2z =0 3x -3y -4z =0。
自我小测
1.下列方程组中,为三元一次方程组的是( ). A.⎩⎪⎨⎪
⎧
a =1,
b =2,b -
c =3
B.⎩⎪⎨⎪
⎧ x +y =2,y +z =1,z +c =3
C.⎩⎪⎨⎪
⎧
4x -3y =7,5x -2y =14,2x -y =4
D.⎩⎪⎨⎪
⎧
xy +z =3,x +yz =5,xz +y =7
2.解方程组⎩⎪⎨⎪
⎧
3x -y +2z =3,2x +y -4z =11,
7x +y -5z =1.
若要使运算简便,消元的方法应选取( ).
A .先消去x
B .先消去y
C .先消去z
D .以上说法都不对
3.一次足球比赛共赛11轮,胜一场记3分,平一场记1分,负一场记0分.某省队所负场数是所胜场数的1
2,结果共得20分,则该省队共平几场?若设该省队共胜x 场,平y 场,
负z 场,则所列方程组是( ).
A.⎩⎪⎨⎪⎧ x +y +z =11,3y +x =20,x 2=z
B.⎩⎪⎨⎪⎧ x +y +z =11,3y +x =20,z 2=x
C.⎩⎪⎨⎪⎧
x +y +z =11,
3x +y =20,z 2=x
D.⎩⎪⎨⎪⎧
x +y +z =11,
3x +y =20,x 2=z
4.三元一次方程组⎩⎪⎨⎪
⎧ x +y =1,y +z =5,
z +x =6的解是__________.
5.对于方程组⎩⎪⎨⎪
⎧
x +y +z =6,y -z =4,
x -y -2z =3.
(1)如果先消去x ,那么可得含y ,z 的方程组是__________; (2)如果先消去y ,那么可得含x ,z 的方程组是__________; (3)如果先消去z ,那么可得含x ,y 的方程组是__________.
参考答案
答案:1.A
2.B y 的系数相同或相反,用加减消元,消去y 较简单. 3.D 4.⎩⎪⎨⎪
⎧
x =1,y =0,z =5
5.(1)⎩⎪⎨⎪⎧
y -z =4,2y +3z =3 (2)⎩⎪⎨⎪⎧
2x -z =9,x -3z =7
(3)⎩
⎪⎨⎪
⎧
x +2y =10,x -3y =-5。