青岛市青大附中人教版七年级上册数学期末试卷
- 格式:doc
- 大小:793.00 KB
- 文档页数:24
2025届山东省青岛市青岛大附属中学数学七年级第一学期期末调研模拟试题 注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每小题3分,共30分)1.下列说法正确的是( )A .过一点有且只有一条直线与已知直线平行B .过三点最多可以作三条直线C .两条直线被第三条直线所截,同位角相等D .垂直于同一条直线的两条直线平行2.如图,是一个正方体的平面展开图,叠成正方体后,在正方体中写有“心”字的对面的字是( )A .祝B .你C .事D .成3.长方形一边长为32x y +,另一边长比它小x y -,则这个长方形的周长为( )A .4x y +B .82x y +C .1010x y +D .128x y +4.如图,将一刻度尺贴放在数轴上(数轴的单位长度是1 cm),刻度尺上“0 cm”和“8 cm”分别对应数轴上的-3和x ,那么x 的值为( )A .8B .7C .6D .55.以下是各种交通标志指示牌,其中不是轴对称图形的是( )A .B .C .D .6.已知32x =-,那么()()2241321x x x x -+--+的值为( ) A .-2 B .2 C .4 D .-47.如图,两船只A 、B 分别在海岛O 的北偏东30°和南偏东45°方向,则两船只A 、B 与海岛O 形成的夹角∠AOB 的度数为( )A .120°B .90°C .125°D .105°8.有理数a 、b 、c 在数轴上的位置如图所示,则代数式a c a b b c +++--的值等于( )A .2aB .2bC .2cD .0 9.0的相反数是( )A .0B .1C .正数D .负数.10.为了迎接暑假的购物高峰,北碚万达广场耐克专卖店购进甲、乙两种服装,现此商店同时卖出甲、乙两种服装各一件,每件售价都为240元,其中一件赚了20%,另一件亏了20%,那么这个商店卖出这两件服装总体的盈亏情况是( )A .赚了12元B .亏了12元C .赚了20元D .亏了20元二、填空题(本大题共有6小题,每小题3分,共18分)11.若2115m ab -与32n m a b --的和是单项式,则m n -=____. 12.如图,点C 是线段AB 上一点,且,,AC BC M N <分别是AB 和CB 的中点,8,9AC NB == ,则线段MN 的长为_____13.若一个角的补角与这个角的余角之和为200︒,则这个角的度数为__________度.14.在灯塔O 处观测到轮船A 位于北偏西54︒的方向,同时轮船B 在南偏东15︒的方向,那么AOB ∠的大小为______.15.单项式22xy π-系数是________,次数是________,多项式322215x y xy -+的次数为________.16.22.81224'︒+︒=__________.三、解下列各题(本大题共8小题,共72分)17.(8分)解下列方程:(1)131124x x ---=; (2)01.0.2110.020.5x x ---=. 18.(8分)先化简,再求值()()324323x y x y x x y ---++--⎡⎤⎣⎦,其中x 1=-,1y 2=-. 19.(8分)某蔬菜经营户,用1200元从菜农手里批发了长豆角和番茄共450千克,长豆角和番茄当天的批发价和零售价如表:品名长豆角 番茄 批发价(元/千克)3.2 2.4 零售价(元/千克) 5.0 3.6(1)这天该经营户批发了长豆角和番茄各多少千克?(2)当天卖完这些番茄和长豆角能盈利多少元?20.(8分)化简后求值:3(x 2y+xy 2)﹣3(x 2y ﹣1)﹣4xy 2﹣3,其中x 、y 满足|x ﹣2|+(y+)2=1.21.(8分)如图,已知直线l 和直线外三点A ,B ,C ,按下列要求画图:(1)画射线AB ;(2)画直线CB ;(3)在直线l 上确定点E ,使得AE +CE 最小.22.(10分)已知轮船A 在灯塔P 的北偏东30°的方向上,距离为30海里,轮船B 在灯塔P 的南偏东45°的方向上,距离20海里.(1)请用1个单位长度表示10海里,在图上画出A 、B 的位置.(2)求从灯塔P 看两轮船的视角APB ∠的度数.23.(10分)如图,B,C两点把线段AD分成2∶4∶3的三部分,M是线段AD的中点,CD=6 cm,求线段MC的长.24.(12分)华润苏果超市有A、B、C三种果冻出售,A种果冻20千克,售价为m元每千克,B种果冻60千克,售价比A种贵2元每千克,C种果冻40千克,售价比A种便宜1元每千克.(1)若将这三种果冻全部混合在一起销售,在保证总售价不变.....的情况下,混合果冻的售价应定为多少?(2)售货员小张在写混合后的销售单价牌时,误写成原来三个单价的平均数........,如果混合果冻按小张写的单价全部售完,超市的这批果冻的利润有何变化?变化多少元?参考答案一、选择题(每小题3分,共30分)1、B【分析】根据平行线公理可得到A的正误;根据两点确定一条直线可得到B的正误;根据平行线的性质定理可得到C 的正误;根据平行线的判定可得到D的正误.【详解】解:A、过直线外一点有且只有一条直线与已知直线平行,故此选项错误;B、根据两点确定一条直线,当平面内,三点不共线时,过三点最多可作3条直线,故此选项正确;C、两条直线被第三条直线所截,只有被截线互相平行时,才同位角相等,故此选项错误;D、同一平面内,垂直于同一条直线的两条直线平行,故此选项错误.故选:B.【点睛】此题主要考查了平行线的性质、定义、平行公理及推论,容易出错的是平行线的定义,必须在同一平面内,永远不相交的两条直线才是平行线.2、D【分析】解答本题,从相对面入手,分析及解答.具体:1、首先根据所给的平面展开图形想象何以折叠为正方体;2、由平面图形的折叠及立体图形的表面展开图的特点解题;3、心字为正方体的上或下表面,只有成字与它对应. .【详解】解:正方体的平面展开图中,相对的面一定相隔一个正方形,所以在正方体中写有“心”字的那一面的对面的字是成.故选D .【点睛】本题考查折叠的图形,解题关键是要发挥空间想象能力,还原出其正方体的样子,则可以明显得出答案.3、C【分析】根据长方形的周长公式、去括号法则和合并同类项法则计算即可.【详解】解:∵长方形一边长为32x y +,另一边长比它小x y -∴另一边长为:()()32x y x y +--=32x y x y +-+=23x y +∴长方形的周长为()23223x y x y +++=()255x y +=1010x y +故选C .【点睛】此题考查的是整式加减法的应用,掌握长方形的周长公式、去括号法则和合并同类项法则是解决此题的关键. 4、D【解析】根据图形结合数轴的单位长度为1cm 和已知条件进行分析解答即可.【详解】∵数轴的单位长度为1cm ,∴表示-3的点到原点的距离为3cm ,又∵表示-3的点到表示x 的点的距离为8cm ,且表示x 的点在原点的右侧,∴表示x 的点在原点右侧5cm 处,∴x=5.故选D.【点睛】“读懂题意,结合图形分析出表示数x 的点在原点右侧5个单位长度处”是解答本题的关键.5、B【分析】根据轴对称图形的概念对各选项逐一进行分析判断即可得出答案.【详解】A 、是轴对称图形,故本选项不符合题意;B 、不是轴对称图形,故本选项符合题意;C 、是轴对称图形,故本选项不符合题意;D 、是轴对称图形,故本选项不符合题意.故选B .【点睛】本题考查了轴对称图形,掌握轴对称图形的概念:轴对称图形是图形两部分沿对称轴折叠后可重合的图形是解题的关键.6、A 【分析】先把代数式去括号、合并同类项进行化简,再把32x =-代入计算,即可得到答案. 【详解】解:()()2241321x x x x -+--+=22444633x x x x -+-+-=221x x --+; 把32x =-代入,得: 原式=2332()()122-⨯---+ =932142-⨯++ =2-;故选:A.【点睛】本题考查了整式的化简求值,解题的关键是熟练掌握整式加减运算的运算法则进行解题.7、D【分析】由平角的定义和方位角的度数,即可得到答案.【详解】由题意得:∠AOB=180°-30°-45°=105°,故选D .【点睛】本题主要考查角度的计算,掌握平角的定义以及方位角的概念,是解题的关键.8、D【分析】根据数轴,分别判断a+c ,a+b ,b-c 的正负,然后去掉绝对值即可.【详解】解:由数轴可得,a+c>0,a+b<0,b-c<0,则|a+c|+|a+b|-|b-c|=a+c+(-a-b )-(c-b )=a+c-a-b+b-c=0.故选D.【点睛】本题考查了化简绝对值和整式的加减,解答本题的关键是结合数轴判断绝对值符号里面代数式的正负.9、A【分析】直接利用相反数的定义得出答案.【详解】1的相反数是1.故选:A .【点睛】此题主要考查了相反数的定义,正确把握相关定义是解题关键.10、D【解析】设赚钱的衣服的进价为x 元,赔钱的衣服的进价为y 元,则x+20%x=240,解得x=200,y-20%y=240,解得y=300,因为240×2-200-300=-20元,所以亏了20元,故选D.二、填空题(本大题共有6小题,每小题3分,共18分)11、3-【分析】根据题意得这两个单项式是同类项,则它们的字母相同,且相同字母的指数也相同,从而求出m 和n 的值,即可得到结果.【详解】解:∵两个单项式的和还是单项式,∴这两个单项式是同类项,∴31n -=,解得4n =,21m m -=,解得1m =,∴143m n -=-=-.故答案是:3-.【点睛】本题考查同类项,解题的关键是掌握同类项的性质.12、4【分析】由N 是CB 的中点,得BC=18,从而得AB=26,由M 是AB 的中点,得MB=13,进而得到答案.【详解】∵N 是CB 的中点,9NB =,∴BC=2NB=2×9=18,∵8AC =,∴AB=AC+BC=8+18=26,∵M 是AB 的中点,∴MB=12AB=12×26=13, ∴MN=13-9=4.故答案是:4.【点睛】本题主要考查线段的和差倍分相关的计算,掌握线段的中点的意义和线段的和差关系,是解题的关键.13、1【分析】首先设这个角为x°,则它的补角为(180-x )°,它的余角为(90-x )°,由题意得:这个角的补角的度数+它的余角的度数=200,根据等量关系列出方程,再解即可.【详解】解:设这个角为x°,则它的补角为(180-x )°,它的余角为(90-x )°,由题意得:(180-x)+(90-x)=200,解得:x=1,故答案为: 1.【点睛】本题考查余角和补角,关键是掌握如果两个角的和等于90°(直角),就说这两个角互为余角.即其中一个角是另一个角的余角.补角:如果两个角的和等于180°(平角),就说这两个角互为补角.即其中一个角是另一个角的补角. 14、141︒【分析】根据线与角的相关知识:具有公共点的两条射线组成的图形叫做角,这个公共端点叫做角的顶点,这两条射线叫做角的两条边,明确方位角,即可得解.【详解】根据题意可得:∠AOB=(90-54)+90+15=141°.故答案为141°.【点睛】此题主要考查角度的计算与方位,熟练掌握,即可解题.15、2π- 3 1 【分析】根据单项式的系数,次数,多项式的次数的概念,即可得出答案.【详解】由单项式,多项式概念可知:单项式22xy π-的系数为2π-,次数是3, 多项式322215x y xy -+的次数为1, 故答案为:2π-;3;1. 【点睛】本题考查了多项式的次数与系数概念,熟练掌握概念是解题的关键,注意多项式的次数为各项里面次数最高的一项的次数.16、3512'︒【分析】先把22.8︒转化为度分秒的形式,然后计算即可.【详解】解:22.81224'︒+︒=22°48′+12°24′=3512'︒故答案为:3512'︒.【点睛】此题主要考查角度的加减运算,解题的关键是度分秒的形式互换.三、解下列各题(本大题共8小题,共72分)17、(1)x=-5;(2)x=1.【分析】(1)先对原式去分母,再去括号移项合并,最后求解即可得到;(2) 先对原式去分母,再去括号移项合并,最后系数化为1即可得到的答案;【详解】解:(1) 131124x x ---= 去分母得到:2(1)(31)4x x ---=,去括号移项得到:23421x x -=+-,合并得:5x -=,解得:5x =-;(2)01.0.2110.020.5x x ---= 去分母得:50(0.10.2)2(1)1x x ---=,去括号得:510221x x --+=,移项合并得:39x =,解得:3x =;【点睛】本题主要考查了解一元一次方程,熟练掌握解方程的步骤是解题的关键.18、2x ;2-【分析】先去括号合并同类项,再把x 1=-,1y 2=-代入计算即可. 【详解】解:原式()324323x y x y x x y =---++-+324323x y x y x x y =-+---+2x =,当1x =-时,原式22x ==-.【点睛】本题考查了整式的化简求值,解答本题的关键是熟练掌握整式的运算法则,将所给多项式化简.19、(1)这天该经营户批发了长豆角150千克,则批发了番茄300千克,(2)能盈利630元.【解析】(1)设这天该经营户批发了长豆角x 千克,则批发了番茄(450﹣x )千克,根据图表所示,列出关于x 的一元一次方程,解之即可,(2)根据“总利润=长豆角的单位利润×数量+番茄的单位利润×数量”,结合(1)的答案,列式计算即可.【详解】解:(1)设这天该经营户批发了长豆角x 千克,则批发了番茄(450﹣x )千克,根据题意得:3.2x+2.4(450﹣x )=1200,解得:x=150,450﹣150=300(千克),答:这天该经营户批发了长豆角150千克,则批发了番茄300千克,(2)根据题意得:(5﹣3.2)×150+(3.6﹣2.4)×300=1.8×150+1.2×300=630(元),答:当天卖完这些番茄和长豆角能盈利630元.【点睛】本题考查了一元一次方程的应用,正确找出等量关系,列出一元一次方程即可.20、-.【解析】先去括号、合并同类项化简原式,再根据非负数的性质得出x,y的值,继而将x,y的值代入计算可得.【详解】原式∵|x-2|+(y+)=1,∴x-2=1,y+=1,于是x=2,y=-,当x=2,y=-时,原式=-xy2=-2×(-)2=-.【点睛】本题主要考查非负数的性质与整式的加减-化简求值,解题的关键是掌握整式的加减的本质即为去括号、合并同类项.21、(1)见解析;(2)见解析;(3)见解析.【分析】根据射线,直线的定义,两点之间线段最短即可解决问题.【详解】解:(1)如图,射线AB即为所求.(2)如图,直线CB即为所求.(3)如图,连接AC交直线l于点E,点E即为所求.【点睛】本题考查作图﹣简单作图,直线,射线,线段的定义等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.22、(1)见解析;(2)两轮船的视角∠APB的是105°【分析】(1)根据方向角的定义画出图形即可;(2)根据角的和差计算即可.【详解】解:(1) 如图所示,A、B就是所求作的点.(2)由题意可知,得:∠APN=30°,∠BPS=45°,∠APB=180°-∠APN-∠BPS=180°-30°-45°=105°.答:两轮船的视角∠APB的是105°.【点睛】本题考查了方向角,熟练掌握方向角的意义是解答本题的关键.在观测物体时,地球南北方向与观测者观测物体视线的夹角叫做方向角.23、3cm【分析】设AB=2x,BC=4x,CD=3x,再根据CD=6cm求出x的值,故可得出线段AD的长度,再根据M是AD的中点可求出MD的长,由MC=MD-CD即可得出结论.【详解】解:∵B,C两点把线段AD分成2:4:3三部分,∴设AB=2x,BC=4x,CD=3x,∵CD=6cm,即3x=6cm,解得x=2cm,∴AD=2x+4x+3x=9x=9×2=18cm,∵M是AD的中点,∴MD=12AD=12×18=9cm,∴MC=MD-CD=9-6=3cm.【点睛】本题考查的是两点间的距离,在解答此类问题时要注意各线段之间的和、差及倍数关系.24、(1)2()3m 元;(2)这批果冻的利润将减少,减少40元.【分析】(1)计算出所有果冻的总售价及总质量,利用单价等于售价除以质量即可得到答案;计算三个单价的平均数时的总售价,及(1)中混合果冻的总售价,两种相减即可得到答案.【详解】(1) []2060(2)40(1)(206040)m m m +++-÷++, =(20601204040)120m m m +++-÷,=(23m +)元, ∴混合果冻的售价应定为(23m +)元; (2)[](21)312012040m m m m +++-÷⨯=+ ()2060(2)40112080m m m m +++-=+12040(12080)40m m +-+=-(元),所以如果按小张写的单价全部售完,这批果冻的利润将减少,减少40元.【点睛】此题考查列代数式解决问题,正确理解题意是解题的关键.。
2023-2024学年青岛版七年级数学上册期末考试卷附答案(时间:120分钟 分值:120分)学校:___________班级:___________姓名:___________考号:___________一、选择题(共12题,共36分) 1. (3分)下列说法错误的是 ( ) A .长方体、正方体都是棱柱B .六棱柱有 18 条棱、 6 个侧面、 12 个顶点C .三棱柱的侧面是三角形D .圆柱由两个平面和一个曲面围成2. (3分)在 1,-3,-4.5,0,32与−37,3.14 中,负数的个数为A .2 个B .3 个C .4 个D .5 个3. (3分) −18的倒数是 ( ) A . 18B . −8C . 8D . −184. (3分)随着中国 5G 的开发,预计到 2025 年,我国 5G 用户将超过 460000000,将 460000000 用科学记数法表示为 ( ) A . 4.6×109 B . 46×107 C . 4.6×108 D . 0.46×1095. (3分) ∣−5∣ 的倒数是 ( ) A . −5B . −15C . 5D . 156. (3分)为了了解我区 16000 名初中生的身高情况,从中抽取了 400 名学生测量身高,在这个问题中,样本是 ( ) A .4000B .4000 名C .400 名学生的身高情况D .400 名学生7. (3分)当 a =1 时a +2a +3a +4a +⋯+99a +100a 的值为 ( )A . 5050B . 100C . −50D . 508.(3分)已知∣a∣=3,∣b∣=2且a⋅b<0,则a+b值为( )A.5或−5B.1或−1C.3或−2D.5或19.(3分)下列各式中,正确的是( )A.2a+3b=5ab B.−2xy−3xy=−xyC.−2(a−6)=−2a+6D.5a−7=−(7−5a)10.(3分)下列各式中运算正确的是( )A.a3+a2=a5B.5a−3a=2C.3a2b−2a2b=a2b D.3a2+2a2=5a411.(3分)有理数a,b在数轴上的位置如图所示,则下列结论中正确的是( )A.a+b>0B.ab>0C.a−b<0D.a÷b>012.(3分)下列方程中,是一元一次方程的是( )C.x+2y=1D.xy−3=5 A.x2−4x=3B.3x−1=x2二、填空题(共6题,共18分)13.(3分)有理数a、b在数轴上对应点的位置如图所示,则∣a∣∣b∣(填“ >”、“ <”或“ =”).14.(3分)近似数54.62万精确到位.15.(3分)调查市场上某种食品的色素含量是否符合国家标准,这种调查适用.(填全面调查或者抽样调查)16.(3分)若规定一种运算:a∗b=ab+a−b,则1∗(−2)=.17.(3分)已知a−b=3,c+d=2则(b+c)−(a−d)的值为.18.(3分)若(a−2)x∣2a−3∣−6=0是关于x的一元一次方程,则a=.三、解答题(共7题,共66分) 19. (6分)计算:(1) (−23)÷(−58)÷(−0.25);(2) 2×(−7)−6×(−9).20. (8分)化简:(1) 12(−4x 2+2x −8)−2(12x −1).(2) 2(x 2y +xy 2)−2(x 2y −3x )−2xy 2−2y .21. (8分)先化简,再求值:5ab 2−[2a 2b −(4ab 2−2a 2b )],其中 a ,b 满足 ∣a −2∣+(b +1)2=0.22. (10分)为了了解学校图书馆上个月借阅情况,管理老师从学生对艺术、经济、科普及生活四类图书借阅情况进行了统计,并绘制了下列不完整的统计图,请根据图中信息解答下列问题:(1) 上个月借阅图书的学生有多少人?扇形统计图中“艺术”部分的圆心角度数是多少? (2) 把条形统计图补充完整.(3) 从借阅情况分析,如果要添置这四类图书 300 册,请你估算“科普”类图书应添置多少册合适?23. (10分)小明同学准备购买若干本某品牌的笔记本,甲、乙两家文具店该笔记本标价都是每本 6元,甲文具店的销售方案是:购买该笔记本的数量不超过 5 本时,按原价销售;购买该笔记本的数量超过 5 本时,从第 6 本开始按标价的 70% 出售.乙文具店的销售方案是:不管购买多少本该笔记本,一律按标价的 80% 出售.(1) 若设小明要购买 x (x >5) 本该笔记本,请用含 x 的代数式分别表示小明到甲文具店购买所需的费用 元;到乙文具店购买所需的费用 元.(2) 小明购买多少本笔记本时,到甲、乙两家文具店购买全部笔记本所需的费用相同?24. (12分)某城市按以下规定收取每月的水费:用水量如果不超过 6 吨,按每吨 1.2 元收费;如果超过 6 吨,未超过的部分仍按每吨 1.2 元收取,而超过部分则按每吨 2 元收费.如果某用户 5 月份水费平均为每吨 1.4 元,那么该用户 5 月份应交水费多少元?25.(12分)某学校准备印刷一批证书,现有两个印刷厂可供选择:甲厂收费方式:收制版费1000元,每本印刷费0.5元;乙厂收费方式:无制版费,不超过2000本时,每本收印刷费 1.5元;超过2000本时,超过部分每本收印刷费0.25元.(1) 若设该校共需印制证书x本,请用代数式分别表示甲,乙两厂的收费情况;(2) 当印制证书8000本时应该选择哪个印刷厂更节省费用?节省了多少?答案一、选择题(共12题,共36分)1. 【答案】C【解析】A.长方体、正方体都是棱柱是正确的,不符合题意;B.六棱柱有18条棱、6个侧面、12个顶点是正确的,不符合题意;C.棱柱的侧面是长方形,不可能是三角形,原来的说法是错误的,符合题意;D.圆柱由两个平面和一个曲面围成是正确的,不符合题意.2. 【答案】B3. 【答案】B4. 【答案】C【解析】460000000用科学记数法表示为4.6×108.5. 【答案】D【解析】∵∣−5∣=5,5的倒数是15.∴∣−5∣的倒数是156. 【答案】C7. 【答案】A【解析】当a=1时a+2a+3a+4a+⋯+99a+100a=1+2+3+4+⋯+99+100=100×(100+1)2=5050.8. 【答案】B【解析】∵∣a∣=3,∣b∣=2且ab<0∴a=3,b=−2或a=−3,b=2∴a+b=3+(−2)=1或a+b=−3+2=−1.故选B.9. 【答案】D10. 【答案】C【解析】A.a3+a2,无法计算故此选项错误;B.5a−3a=2a故此选项错误;C.3a2b−2a2b=a2b故此选项正确;D.3a2+2a2=5a2故此选项错误;故选:C.11. 【答案】C【解析】由图可知,−2<a<−1<0<b<1∴a+b<0故A错误;ab<0故B错误;a−b<0故C正确;a÷b<0故D错误.12. 【答案】B【解析】A.未知数的指数最高为2,不是一元一次方程.C.含有两个未知数,不是一元一次方程.D.含有两个未知数,不是一元一次方程.二、填空题(共6题,共18分)13. 【答案】>14. 【答案】百【解析】54.62万精确到0.01万,即精确到百位.15. 【答案】抽样调查16. 【答案】1【解析】∵a∗b=ab+a−b∴1∗(−2)=1×(−2)+1−(−2)=(−2)+1+2=1.17. 【答案】−1【解析】原式=b+c−a+d=c+d−a+b=(c+d)−(a−b)=2−3=−1.18. 【答案】1【解析】(a−2)x∣2a−3∣−6=0是关于x的一元一次方程∴a−2≠0且∣2a−3∣=1解得:a=1.故答案为:1.三、解答题(共7题,共66分)19. 【答案】(1)(−23)÷(−58)÷(−0.25)=−23×(−85)×(−4)=−6415.(2)2×(−7)−6×(−9) =−14+54=40.20. 【答案】(1) 原式=−2x 2+x−4−x+2=−2x2−2.(2) 原式=2x 2y+2xy2−2x2y+6x−2xy2−2y=6x−2y.21. 【答案】原式=5ab 2−2a2b+4ab2−2a2b=9ab2−4a2b.∵∣a−2∣+(b+1)2=0∴a=2,b=−1,则原式=18+16=34.22. 【答案】(1) 上个月借阅图书的学生总人数为60÷25%=240(人);扇形统计图中“艺术”部分的圆心角度数=360∘×100240=150∘.(2) 借阅“科普”的学生数=240−100−60−40=40(人).条形统计图为:(3) 300×40240=50估计“科普”类图书应添置50册合适.23. 【答案】(1) 4.2x+9;4.8x(2) 依题意得4.2x +9=4.8x.x =15.答:小明购买 15 本笔记本时,到甲、乙两家文具店购买该笔记本所需的费用相同. 【解析】(1) 在甲文具店所需费用:5×6+(x −5)×6×70%=4.2x +9; 在乙文具店所需费用:6×80%x =4.8x .24. 【答案】设该用户 5 月份用水 x 吨,则1.2×6+(x −6)×2=1.4x.7.2+2x −12=1.4x.0.6x =4.8.x=8.∴1.4×8=11.2(元).答:该用户 5 月份应交水费 11.2 元.25. 【答案】(1) 若 x 不超过 2000 时,甲厂的收费为 (1000+0.5x ) 元,乙厂的收费为 (1.5x ) 元. 若 x 超过 2000 时,甲厂的收费为 (1000+0.5x ) 元,乙厂的收费为 2000×1.5+0.25(x −2000)=0.25x +2500 元.(2) 当 x =8000 时,甲厂费用为 1000+0.5×8000=5000 元 乙厂费用为:0.25×8000+2500=4500 元∴ 当印制证书 8000 本时应该选择乙印刷厂更节省费用,节省了 500 元.。
山东省青岛市青岛大学附属中学2021-2022学年七年级上学期期末数学试题一、选择题(本大题满分24分,共有8道小题,每小题3分)1.21()2=()A.14B.﹣14C.﹣4D.4【答案】A2.如图是由5个小立方块搭成的几何体,则该几何体从左面看到的形状图是()A. B.C. D.【答案】D3.下列说法正确的()A.连接两点的线段叫做两点之间的距离B.过七边形的一个顶点有5条对角线C.若AC =BC ,则C 是线段AB 的中点D.用一个平面去截三棱柱,截面可能是四边形【答案】D4.某校随机调查了若干名家长与中学生对带手机进校园的态度统计图(如图),已知调查家长的人数与调查学生的人数相等,则家长反对学生带手机进校园的人数有()A.140B.120C.220D.100【答案】C5.有理数a 、b 、c 在数轴上所对应的点如图所示,则下列结论正确的是()A.0a b +>B.0a b ->C.0a c +<D.0b c +>【答案】B6.如图,C 为线段AB 上一点,点D 为BC 的中点,且30cm AB =,4AC CD =.则AC 的长为()cm .A.18B.18.5C.20D.20.5【答案】C7.如图的数阵是由77个偶数排成:小颖用一平行四边形框出四个数(如图中示例),计算出四个数的和是436,那么这四个数中最小的一个是()A.100B.102C.104D.106【答案】A8.“九宫图”传说是远古时代洛河中的一个神龟背上的图案,故又称“龟背图”,中国古代数学史上经常研究这一神话.数学上的“九宫图”所体现的是一个3×3表格,每一行的三个数、每列的三个数、斜对角的三个数之和都相等,也称为三阶幻方,如图是一个满足条件的三阶幻方的一部分,则图中字母m 表示的数是()A.6B.7C.9D.11【答案】B二、填空题(本大题满分24分,共有8道小题,每小题3分)9.北京时间2021年10月16日0时23分,搭载神州十三号载入飞船的长征二号F 遥十三运载火箭在酒泉卫星发射中心发射升空,之后飞船与火箭分离后,飞船将三名宇航员进入中国空间站(天宫空间站),天宫空间站在一个距地面约388600米的接近圆(椭圆)的轨道飞行,388600用科学记数法表示为___.【答案】3.886×10510.如图,一个正方体的平面展开图,若折成正方体后,每对相对面上标注的值的和均相等,则x+y=_____.【答案】1011.每次考试不仅是前段学习情况的检测,更是今后学习的加油站.因而考后分析,总结得失尤为重要.如图,A 、B 两名同学用折线统计图分析了各自最近5次的数学成绩,由统计图可知,_______同学的进步大.【答案】A12.已知2x =是关于x 的方程710ax x a -=-的解,则=a __________.【答案】913.根据如图所示的流程图中的程序,当输入数据2x =-,1y =时,m 值为__________.【答案】314.如图,将一张长方形纸片ABCD 沿对角线BD 折叠后,点C 落在点E 处,连接BE 交AD 于F ,再将三角形DEF 沿DF 折叠后,点E 落在点G 处,若DG 刚好平分∠ADB ,那么∠ADB 的度数是__________.【答案】36°##36度15.城际铁路开通运营,预计高速列车在北京、天津间单程直达运行时间为半小时.某次试车时,试验列车由北京到天津的行驶时间比预计时间多用了6分钟,由天津返回北京的行驶时间与预计时间相同.如果这次试车时,由天津返回北京比去天津时平均每小时多行驶40千米,那么这次试车时由北京到天津的平均速度是每小时多少千米?设由北京到天津的平均速度是每小时x 千米,则可列方程为__________.【答案】1(40)162260x x +-=16.将正偶数按下表排成5列:根据上表排列规律,则偶数2022应在第__________列.第一列第二列第三列第四列第五列第一行2468第二行16141210第三行18202224第四行32302826…【答案】四三、解答题(本大题满分72分)17.作图题:(尺规作图,保留作图痕迹)已知:线段a 、b ,求作:线段AB ,使2AB a b =-.【答案】线段AB 为所作,图形见详解.18.(1)计算:()()71456388⎛⎫---+-- ⎪⎝⎭(2)计算:()()()20213116822⎛⎫-+-⨯--÷- ⎪⎝⎭(3)化简:()()22426x xy x xy --+-(4)化简求值:232312622ab a b ab a b ⎡⎤⎛⎫-+-⎪⎢⎥⎝⎭⎣⎦,其中2a =-,15b =(5)解方程:()()()2234191x x x ---=-(6)解方程:14223x x x +--=+【答案】(1)-9;(2)3;(3)7x 2-5xy +6;(4)-5a 3b ,8;(5)x =-10;(6)x =-15.19.保护环境,让我们从垃圾分类做起.某区环保部门为了提高宣传实效,抽样调查了部分居民小区一段时间内生活垃圾的分类情况(如图1),进行整理后,绘制了如下两幅尚不完整的统计图:根据图表解答下列问题:(1)请将图2﹣条形统计图补充完整;(2)在图3﹣扇形统计图中,求出“D”部分所对应的圆心角等于度;(3)在抽样数据中,产生的有害垃圾共有吨;(4)调查发现,在可回收物中废纸垃圾约占15,若每回收1吨废纸可再造好红外线0.85吨.假设该城市每月产生的生活垃圾为10000吨,且全部分类处理,那么每月回收的废纸可再造好纸多少吨?【答案】(1)见解析;(2)36°;(3)3(吨);(4)918(吨).20.从一个边长为a的正方形纸片(如图1)上剪去两个相同的小长方形,得到一个美术字“S”的图案(如图2),再将剪下的两个小长方形拼成一个新长方形(如图3).(1)用含有a,b的式子表示新长方形的长是________,宽是________;(2)若8a ,剪去的1个小长方形的宽为1,求新长方形的周长.【答案】(1)a-b,a-3b(2)新长方形的周长为16.21.如图,已知90AOB ∠=︒,OD 平分AOC ∠,OE 平分BOC ∠.(1)若15DOB ∠=︒,求DOE ∠的度数;(2)若DOB x ∠=,此时DOE ∠=________.(3)解:∵90AOB ∠=︒,15DOB ∠=︒∴1∠=________又∵OD 平分AOC ∠∴________请继续完成求DOE ∠度数的推理过程:【答案】(1)∠DOE =45°;(2)45°(3)见解析22.目前节能灯在城市已基本普及,某商场计划购进甲、乙两种节能灯共1200只,这两种节能灯的进价、售价如下表:甲型乙型进价(元/只)2545售价(元/只)3060(1)商场如何进货,进货款恰好为46000元?(2)当乙型节能灯销售一半的数量后,商场发现用原价销售可能会滞销,于是对剩下的乙型节能灯打折,使其销售完后全部的乙型节能灯的利润率为20%,请问剩下的乙型节能灯要打几折?【答案】(1)购进甲型节能灯400只,购进乙型节能灯800只进货款恰好为46000元;(2)乙型节能灯需打9折.23.阅读下面材料,完成问题探究:【问题提出】:将正方形的四条边都n 等分,连接各边对应的等分点,则图中一共有多少个长方形(包括正方形)?【问题探究】:为解决上面的问题,我们将采取一般问题特殊化的策略,先从简单和具体的情形入手:(1)探究一:将一条线段n 等分,图中一共可以形成多少条线段?如图1:将线段AB 二等分,图中线段共有13232=⨯⨯条;如图2:将线段AB 三等分,图中线段共有16342=⨯⨯条;如图3:将线段AB 四等分,图中线段共有110452=⨯⨯条;……将线段AB n 等分,图中线段共有________条.(2)探究二:将正方形的四条边都n 等分,连接各边对应的等分点,则图中一共有多少个长方形(包括正方形)?如图4:将正方形的四条边都2等分,连接各边对应的等分点,图中一共有多少个长方形(包括正方形)?我们发现,AB 边上有3线段,AD 边上也有3条线段,则图中长方形(包括正方形)个数是339⨯=个;如图5:将正方形的四条边都3等分,连接各边对应的等分点,图中一共有多少个长方形(包括正方形)?因为AB 边上有6条线段,AD 边上也有6条线段,则图中长方形(包括正方形)个数是6636⨯=个;如图6:将正方形的四条边都4等分,连接各边对应的等分点,图中一共有多少个长方形(包括正方形)?则图中长方形个数(包括正方形)是________个.(3)【问题解决】:将正方形的四条边n 等分,连接各边对应的等分点,则图中一共有_________个长方形(包括正方形).(4)【拓展延伸】:将长8cm 宽5cm 高7cm 的长方体的各边等分成1cm 的线段,连接各边对应的等分点,则一共可以形成________个长方体(包括正方体),其中长5cm 宽4cm 高4cm 的长方体的个数是________.【答案】(1)()112n n +(2)100(3)()221n 14n +(4)15120;32.24.数轴上点A 表示-8,点B 表示6,点C 表示12,点D 表示18.如图,将数轴在原点O 和点B ,C 处各折一下,得到一条“折线数轴”.在“折线数轴”上,把两点所对应的两数之差的绝对值叫这两点间的和谐距离.例如,点A 和点D 在折线数轴上的和谐距离为81826--=个单位长度.动点M 从点A 出发,以4个单位/秒的速度沿着折线数轴的正方向运动,从点O 运动到点C 期间速度变为原来的一半,过点C 后继续以原来的速度向终点D 运动;点M 从点A 出发的同时,点N 从点D 出发,一直以3个单位/秒的速度沿着“折线数轴”负方向向终点A 运动.其中一点到达终点时,两点都停止运动.设运动的时间为t 秒.(1)当2t =秒时,M 、N 两点在折线数轴上的和谐距离MN 为________;(2)当点M 、N 都运动到折线段O B C --上时,O 、M 两点间的和谐距离OM =________(用含有t 的代数式表示);C 、N 两点间的和谐距离CN =________(用含有t 的代数式表示);t =________时,M 、N 两点相遇;(3)当t =________时,M 、N 两点在折线数轴上的和谐距离为4个单位长度;(4)当t =________时,M 、O 两点在折线数轴上的和谐距离与N 、B 两点在折线数轴上的和谐距离相等.【答案】(1)12(2)2(t -2);3t -6;4.4(3)当t =5.2或3.6秒时,M 、N 两点在折线数轴上的和谐距离为4个单位长度;(4)当t =3.2或8秒时,M 、O 两点在折线数轴上的和谐距离与N 、B 两点在折线数轴上的和谐距离相等。
山东省青岛市2023-2024学年七年级上学期期末数学试题学校:___________姓名:___________班级:___________考号:___________..C .D ..地球的表面积约为51000000km,将51009000用科学记数法表示为(0.51×109B .5.1×109C 5.1×108D .已知132n x y +与4313x y 是同类项,则n 的值是()2B .3C 4D .如果()2320a b ++-=,那么代数式()a b +的值是()2023-B .2023C 1-D .如图是甲,乙两个家庭全年支出情况统计图,关于教育经费的支出,下列结论正确)A .甲比乙多B .乙比甲多C .甲和乙一样多6.我国元朝朱世杰所著的《算学启蒙》中记载:“良马日行二百四十里,驽马日行一百驽马先行一十二日,问良马几何追及之.跑得慢的马每天走150里,慢马先走12天,快马几天可以追上慢马?”若设快马x 天可以追上慢马,则可列方程为()A .()15012240x x +=B .()24012150x x +=C .()15012240x x-=D .()24012150x x-=7.某品牌服装,每件的标价是220元,按标价的七折销售时,仍可获利10%,则该品牌服装每件的进价为()A .200元B .160元C .140元D .180元8.按图示的方法搭1个三角形需要3根火柴棒,搭2个三角形需要5根火柴棒.现有2022根火柴棒,能搭这样的三角形个数为()A .1010个B .1011个C .1012个D .1013个二、填空题12.小红第1至6周每周零花钱收支情况如图所示,元.15.如图是一个“数值转换机结果为96,第2次输出的结果为16.观察下列图中所示的一系列图形,它们是按一定规律排列的,依照此规律,第个图形中共有2023个〇.三、解答题17.计算:(1)7531()()96436+-÷-;(2)22222(3)()443-+-⨯--÷-.(1)画直线AB ;(2)连接AC BD 、,相交于点(3)画射线AD BC 、,交于点19.(1)化简:2ab (2)化简并求值:20.解方程:(1)2335x x -=+;(2)212134x x -+=-.21.“十一”黄金周期间,某动物园在示比前一天多的人数,(1)求A、B两点之间的距离;(2)点C在A点的右侧,D在B点的左侧,AC为14个单位长度,求点C与点D之间的距离;(3)在(2)的条件下,动点P以3个单位/秒的速度从A点出发沿正方向运动.同时点Q 以2个单位长度/秒的速度从D点出发沿正方向运动,求经过几秒,点P、点Q到点C 的距离相等.。
考试时间:120分钟满分:100分一、选择题(每题4分,共40分)1. 下列数中,是质数的是()A. 15B. 16C. 17D. 182. 一个等腰三角形的底边长为10cm,腰长为8cm,那么这个三角形的周长是()A. 26cmB. 24cmC. 25cmD. 28cm3. 若a、b、c是三角形的三边,且满足a+b>c,b+c>a,a+c>b,则下列结论一定成立的是()A. a=bB. b=cC. c=aD. a、b、c两两不相等4. 下列函数中,是反比例函数的是()A. y=x+2B. y=2xC. y=2/xD. y=x^25. 已知一次函数y=kx+b(k≠0)的图象经过点(2,3),则下列结论正确的是()A. k=2,b=3B. k=3,b=2C. k=1,b=3D. k=3,b=16. 在梯形ABCD中,AD∥BC,AD=10cm,BC=6cm,AB=8cm,CD=12cm,则梯形的高是()A. 4cmB. 5cmC. 6cmD. 7cm7. 若一个数的平方根是±3,则这个数是()A. 9B. -9C. 3D. -38. 下列命题中,是真命题的是()A. 所有平行四边形都是矩形B. 所有等边三角形都是等腰三角形C. 所有圆都是椭圆D. 所有正方形都是矩形9. 若一个数的立方根是2,则这个数是()A. 8B. -8C. 4D. -410. 下列数中,是偶数的是()A. 0.5B. 1.5C. 2.5D. 3.5二、填空题(每题4分,共40分)11. 一个等腰三角形的底边长为6cm,腰长为8cm,则这个三角形的面积是________cm²。
12. 若一个数的倒数是1/5,则这个数是________。
13. 下列数中,是正数的是________。
14. 若一个数的平方是4,则这个数是________。
15. 下列函数中,是正比例函数的是________。
青岛大学附属中学七年级上册数学期末试题及答案解答一、选择题1.在数3,﹣3,13,13-中,最小的数为( ) A .﹣3B .13C .13-D .32.以下选项中比-2小的是( ) A .0B .1C .-1.5D .-2.53.下列方程中,以32x =-为解的是( ) A .33x x =+ B .33x x =+ C .23x = D .3-3x x = 4.已知线段AB 的长为4,点C 为AB 的中点,则线段AC 的长为( ) A .1B .2C .3D .45.下列方程是一元一次方程的是( ) A .213+x =5x B .x 2+1=3x C .32y=y+2 D .2x ﹣3y =16.已知一个两位数,个位数字为b ,十位数字比个位数字大a ,若将十位数字和个位数字对调,得到一个新的两位数,则原两位数与新两位数之差为( ) A .9a 9b -B .9b 9a -C .9aD .9a -7.在直线AB 上任取一点O ,过点O 作射线OC 、OD ,使OC ⊥OD ,当∠AOC=40°时,∠BOD 的度数是( ) A .50°B .130°C .50°或 90°D .50°或 130°8.观察下列算式,用你所发现的规律得出22015的末位数字是( ) 21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…. A .2B .4C .6D .89.以下调查方式比较合理的是( )A .为了解一沓钞票中有没有假钞,采用抽样调查的方式B .为了解全区七年级学生节约用水的情况,采用抽样调查的方式C .为了解某省中学生爱好足球的情况,采用普查的方式D .为了解某市市民每天丢弃塑料袋数量的情况,采用普查的方式 10.如果a ﹣3b =2,那么2a ﹣6b 的值是( ) A .4 B .﹣4 C .1 D .﹣1 11.已知a ﹣b=﹣1,则3b ﹣3a ﹣(a ﹣b )3的值是( )A .﹣4B .﹣2C .4D .212.如果单项式13a x y +与2b x y 是同类项,那么a b 、的值分别为( )A .2,3a b ==B .1,2a b ==C .1,3a b ==D .2,2a b ==二、填空题13.一个角的余角等于这个角的13,这个角的度数为________. 14.2019年11月11日是第11个“双十一”购物狂欢节,天猫“双十一”总成交额为2684亿,再创历史新高;其中,“2684亿”用科学记数法表示为__________.15.下面每个正方形中的五个数之间都有相同的规律,根据这种规律,则第4个正方形中间数字m 为________,第n 个正方形的中间数字为______.(用含n 的代数式表示)…………16.如图,数轴上点A 与点B 表示的数互为相反数,且AB =4则点A 表示的数为______.17.9的算术平方根是________ 18.52.42°=_____°___′___″.19.把(a ﹣b )看作一个整体,合并同类项:3()4()2()-+---a b a b a b =_____. 20.如图,已知O 为直线AB 上一点,OC 平分∠AOD ,∠BOD =4∠DOE ,∠COE =α,则∠BOE 的度数为___________.(用含α的式子表示)21.小何买了5本笔记本,10支圆珠笔,设笔记本的单价为a 元,圆珠笔的单价为b 元,则小何共花费_____元(用含a ,b 的代数式表示).22.8点30分时刻,钟表上时针与分针所组成的角为_____度.23.如图,已知线段16AB cm =,点M 在AB 上:1:3AM BM =,P Q 、分别为AM AB 、的中点,则PQ 的长为____________.24.钟表显示10点30分时,时针与分针的夹角为________.三、解答题25.如图,图1中小正方形的个数为1个;图2中小正方形的个数为:1+3=4=22个;图3中小正方形的个数为:1+3+5=9=32个;图4中小正方形的个数为:1+3+5+7=16=42个;…(1)根据你的发现,第n 个图形中有小正方形:1+3+5+7+…+ = 个. (2)由(1)的结论,解答下列问题:已知连续奇数的和:(2n +1)+(2n +3)+(2n +5)+……+137+139=3300,求n 的值.26.如图1,点O 为直线AB 上一点,过O 点作射线OC ,使50AOC ∠=︒,将一直角三角板的直角项点放在点O 处,一边OM 在射线OB 上,另一边ON 在直线AB 的下方.()1如图2,将图1中的三角板绕点O 逆时针旋转,使边OM 在BOC ∠的内部,且OM 恰好平分BOC ∠.此时BON ∠=__ 度;()2如图3,继续将图2中的三角板绕点O 按逆时针方向旋转,使得ON 在AOC ∠的内部.试探究AOM ∠与NOC ∠之间满足什么等量关系,并说明理由;()3将图1中的三角板绕点O 按每秒5︒的速度沿逆时针方向旋转一周,在旋转的过程中,若第t 秒时,,,OA OC ON 三条射线恰好构成相等的角,则t 的值为__ (直接写出结果). 27.计算:|﹣2|+(﹣1)2019+19×(﹣3)228.一位同学做一道题:“已知两个多项式A ,B ,计算.”他误将“”看成“”,求得的结果为.已知,请求出正确答案.29.解方程:()2(-2)-3419(1)x x x -=-30.全民健身运动已成为一种时尚 ,为了解揭阳市居民健身运动的情况,某健身馆的工作人员开展了一项问卷调查,问卷内容包括五个项目:A:健身房运动;B:跳广场舞;C:参加暴走团;D:散步;E:不运动. 以下是根据调查结果绘制的统计图表的一部分, 运动形式 ABCDE人数1230m54 9请你根据以上信息,回答下列问题:()1接受问卷调查的共有 人,图表中的m = ,n = . ()2统计图中,A 类所对应的扇形的圆心角的度数是 度.()3揭阳市环岛路是市民喜爱的运动场所之一,每天都有“暴走团”活动,若某社区约有1500人,请你估计一下该社区参加环岛路“暴走团”的人数.四、压轴题31.如图1,线段AB 的长为a .(1)尺规作图:延长线段AB 到C ,使BC =2AB ;延长线段BA 到D ,使AD =AC .(先用尺规画图,再用签字笔把笔迹涂黑.)(2)在(1)的条件下,以线段AB 所在的直线画数轴,以点A 为原点,若点B 对应的数恰好为10,请在数轴上标出点C ,D 两点,并直接写出C ,D 两点表示的有理数,若点M 是BC 的中点,点N 是AD 的中点,请求线段MN 的长.(3)在(2)的条件下,现有甲、乙两个物体在数轴上进行匀速直线运动,甲从点D 处开始,在点C ,D 之间进行往返运动;乙从点N 开始,在N ,M 之间进行往返运动,甲、乙同时开始运动,当乙从M 点第一次回到点N 时,甲、乙同时停止运动,若甲的运动速度为每秒5个单位,乙的运动速度为每秒2个单位,请求出甲和乙在运动过程中,所有相遇点对应的有理数.32.如图,12cm AB =,点C 是线段AB 上的一点,2BC AC =.动点P 从点A 出发,以3cm/s的速度向右运动,到达点B后立即返回,以3cm/s的速度向左运动;动点Q从点C出发,以1cm/s的速度向右运动. 设它们同时出发,运动时间为s t. 当点P与点Q 、两点停止运动.第二次重合时,P Q(1)求AC,BC;=;(2)当t为何值时,AP PQ(3)当t为何值时,P与Q第一次相遇;PQ=.(4)当t为何值时,1cm33.如图,A、B、P是数轴上的三个点,P是AB的中点,A、B所对应的数值分别为-20和40.(1)试求P点对应的数值;若点A、B对应的数值分别是a和b,试用a、b的代数式表示P点在数轴上所对应的数值;(2)若A、B、P三点同时一起在数轴上做匀速直线运动,A、B两点相向而行,P点在动点A和B之间做触点折返运动(即P点在运动过程中触碰到A、B任意一点就改变运动方向,向相反方向运动,速度不变,触点时间忽略不计),直至A、B两点相遇,停止运动.如果A、B、P运动的速度分别是1个单位长度/s,2个单位长度/s,3个单位长度/s,设运动时间为t.①求整个运动过程中,P点所运动的路程.②若P点用最短的时间首次碰到A点,且与B点未碰到,试写出该过程中,P点经过t秒钟后,在数轴上对应的数值(用含t的式子表示);③在②的条件下,是否存在时间t,使P点刚好在A、B两点间距离的中点上,如果存在,请求出t值,如果不存在,请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.【详解】解:∵3>13>13->﹣3,∴在数3,﹣3,13,13-中,最小的数为﹣3.故选:A.【点睛】此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.2.D解析:D【解析】【分析】根据有理数比较大小法则:负数的绝对值越大反而越小可得答案.【详解】根据题意可得:2.52 1.501-<-<-<<,故答案为:D.【点睛】本题考查的是有理数的大小比较,解题关键在于负数的绝对值越大值越小.3.A解析:A【解析】【分析】把32x=-代入方程,只要是方程的左右两边相等就是方程的解,否则就不是.【详解】解:A中、把32x=-代入方程得左边等于右边,故A对;B中、把32x=-代入方程得左边不等于右边,故B错;C中、把32x=-代入方程得左边不等于右边,故C错;D中、把32x=-代入方程得左边不等于右边,故D错.故答案为:A.【点睛】本题考查方程的解的知识,解题关键在于把x值分别代入方程进行验证即可. 4.B【解析】 【分析】根据线段中点的性质,可得AC 的长. 【详解】解:由线段中点的性质,得AC =12AB =2. 故选B . 【点睛】本题考查了两点间的距离,利用了线段中点的性质.5.A解析:A 【解析】 【分析】只含有一个未知数(元),并且未知数的指数是1次的整式方程叫做一元一次方程,它的一般形式是ax+b =0(a ,b 是常数且a≠0).据此可得出正确答案. 【详解】 解:A 、213+x =5x 符合一元一次方程的定义; B 、x 2+1=3x 未知数x 的最高次数为2,不是一元一次方程; C 、32y=y+2中等号左边不是整式,不是一元一次方程; D 、2x ﹣3y =1含有2个未知数,不是一元一次方程; 故选:A . 【点睛】解题的关键是根据一元一次方程的定义,未知数x 的次数是1这个条件.此类题目可严格按照定义解题.6.C解析:C 【解析】 【分析】分别表示出愿两位数和新两位数,进而得出答案. 【详解】解:由题意可得,原数为:()10a b b ++; 新数为:10b a b ++,故原两位数与新两位数之差为:()()10a b b 10b a b 9a ++-++=. 故选C .本题考查列代数式,正确理解题意得出代数式是解题关键.7.D解析:D【解析】【分析】根据题意画出图形,再分别计算即可.【详解】根据题意画图如下;(1)∵OC⊥OD,∴∠COD=90°,∵∠AOC=40°,∴∠BOD=180°﹣90°﹣40°=50°,(2)∵OC⊥OD,∴∠COD=90°,∵∠AOC=40°,∴∠AOD=50°,∴∠BOD=180°﹣50°=130°,故选D.【点睛】此题考查了角的计算,关键是根据题意画出图形,要注意分两种情况画图.8.D解析:D【解析】【分析】解:∵21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,….2015÷4=503…3,∴22015的末位数字和23的末位数字相同,是8.故选D.【点睛】本题考查数字类的规律探索.9.B解析:B【解析】【分析】抽取样本注意事项就是要考虑样本具有广泛性与代表性,所谓代表性,就是抽取的样本必须是随机的,即各个方面,各个层次的对象都要有所体现.【详解】解:A.为了解一沓钞票中有没有假钞,采用全面调查的方式,故不符合题意;B.为了解全区七年级学生节约用水的情况,采用抽样调查的方式,故符合题意;C.为了解某省中学生爱好足球的情况,采用抽样调查的方式,故不符合题意;D.为了解某市市民每天丢弃塑料袋数量的情况,采用抽样调查的方式,故不符合题意;故选:B.【点睛】本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.10.A解析:A【解析】【分析】将a﹣3b=2整体代入即可求出所求的结果.【详解】解:当a﹣3b=2时,∴2a﹣6b=2(a﹣3b)=4,故选:A.【点睛】本题考查了代数式的求值,正确对代数式变形,利用添括号法则是关键.11.C解析:C【解析】由题意可知3b-3a-(a-b)3=3(b-a)-(a-b)3,因此可以将a-b=-1整体代入即可.【详解】3b-3a-(a-b)3=3(b-a)-(a-b)3=-3(a-b)-(a-b)3=3-(-1)=4;故选C.【点睛】代数式中的字母表示的数没有明确告知,而是隐含在题设中,利用“整体代入法”求代数式的值.12.C解析:C【解析】【分析】由题意根据同类项的定义即所含字母相同,相同字母的指数相同,进行分析即可求得.【详解】解:根据题意得:a+1=2,b=3,则a=1.故选:C.【点睛】本题考查同类项的定义,同类项定义中的两个“相同”:相同字母的指数相同,是易混点,要注意.二、填空题13.【解析】【分析】设这个角度的度数为x度,根据题意列出方程即可求解.【详解】设这个角度的度数为x度,依题意得90-x=解得x=67.5故填【点睛】此题主要考查角度的求解,解题的关键是解析:67.5【解析】【分析】设这个角度的度数为x度,根据题意列出方程即可求解.【详解】设这个角度的度数为x度,依题意得90-x=1 3 x解得x=67.5故填67.5【点睛】此题主要考查角度的求解,解题的关键是熟知补角的性质.14.684×1011【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.解析:684×1011【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:将 2684 亿用科学记数法表示为:2.684×1011.故答案为:2.684×1011【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.15.【解析】【分析】由前三个正方形可知:右上和右下两个数的和等于中间的数,根据这一个规律即可得出m的值;首先求得第n个的最小数为1+4(n-1)=4n-3,其它三个分别为4n-2,4n-1,4n,解析:83n【解析】【分析】由前三个正方形可知:右上和右下两个数的和等于中间的数,根据这一个规律即可得出m 的值;首先求得第n个的最小数为1+4(n-1)=4n-3,其它三个分别为4n-2,4n-1,4n,由以上规律即可求解.【详解】解:由题知:右上和右下两个数的和等于中间的数,∴第4个正方形中间的数字m=14+15=29;∵第n个的最小数为1+4(n-1)=4n-3,其它三个分别为4n-2,4n-1,4n,∴第n个正方形的中间数字:4n-2+4n-1=8n-3.故答案为:29;8n-3【点睛】本题主要考查的是图形的变化规律,通过观察、分析、归纳发现数字之间的运算规律是解题的关键.16.-2【解析】【分析】根据图和题意可得出答案.【详解】解:表示的数互为相反数,且,则A表示的数为:.故答案为:.【点睛】本题考查的是数轴上距离的含义,解题关键是对数轴距离的理解.解析:-2【解析】【分析】根据图和题意可得出答案.【详解】解:,A B表示的数互为相反数,AB=,且4则A表示的数为:2-.故答案为:2-.【点睛】本题考查的是数轴上距离的含义,解题关键是对数轴距离的理解.17.【解析】【分析】根据算术平方根的定义,即可得到答案.【详解】解:∵,∴的算术平方根是;故答案为:.【点睛】本题考查了算术平方根的定义,解题的关键是掌握定义进行解题.【解析】【分析】根据算术平方根的定义,即可得到答案.【详解】3=,;【点睛】本题考查了算术平方根的定义,解题的关键是掌握定义进行解题.18.52; 25; 12.【解析】【分析】将高级单位化为低级单位时,乘60,用0.42乘60,可得:0.42°=25.2′;用0.2乘60,可得:0.2′=12′′;据此求解即解析:52; 25; 12.【解析】【分析】将高级单位化为低级单位时,乘60,用0.42乘60,可得:0.42°=25.2′;用0.2乘60,可得:0.2′=12′′;据此求解即可.【详解】52.42°=52°25′12″.故答案为52、25、12.【点睛】此题主要考查了度分秒的换算,要熟练掌握,解答此题的关键是要明确:1度=60分,即1°=60′,1分=60秒,即1′=60″.19.【解析】【分析】根据合并同类项,系数相加,字母及指数不变,可得答案.【详解】解:,故答案为:.【点睛】本题考查合并同类项,熟记合并同类项的法则是解题的关键.解析:5()-a b【解析】【分析】根据合并同类项,系数相加,字母及指数不变,可得答案.【详解】解:3()4()2()(342)()5()-+---=+--=-a b a b a b a b a b ,故答案为:5()-a b .【点睛】本题考查合并同类项,熟记合并同类项的法则是解题的关键.20.270°-3α【解析】【分析】设∠DOE=x,根据OC 平分∠AOD,∠COE=α,可得∠COD=α-x ,由∠BOD=4∠DOE,可得∠BOD=4x,由平角∠AOB=180°列出关于x 的一次方程解析:270°-3α【解析】【分析】设∠DOE=x ,根据OC 平分∠AOD ,∠COE =α,可得∠COD=α-x ,由∠BOD =4∠DOE ,可得∠BOD=4x ,由平角∠AOB=180°列出关于x 的一次方程式,求解即可.【详解】设∠DOE=x ,根据OC 平分∠AOD ,∠BOD =4∠DOE ,∠COE =α,∴∠BOD=4x ,∠AOC=∠COD=α-x ,由∠BOD+∠AOD=180°,∴4x+2(α-x )=180°解得x=90°-α,∴∠BOE=3x=3(90°-α)=270°-3α,故答案为:270°-3α.【点睛】本题考查了角平分线的定义,平角的定义,一元一次方程的应用,掌握角平分线的定义是解题的关键.21.(5a+10b ).【解析】【分析】由题意得等量关系:小何总花费本笔记本的花费支圆珠笔的花费,再代入相应数据可得答案.【详解】解:小何总花费:,故答案为:.【点睛】此题主要考查了列代数解析:(5a +10b ).【解析】【分析】由题意得等量关系:小何总花费5=本笔记本的花费10+支圆珠笔的花费,再代入相应数据可得答案.【详解】解:小何总花费:510a b +,故答案为:(510)a b +.【点睛】此题主要考查了列代数式,关键是正确理解题意,找出题目中的数量关系.22.75【解析】钟表8时30分时,时针与分针所成的角的角的度数为30×8-(6-0.5)×30=240-165=75度,故答案为75.解析:75【解析】钟表8时30分时,时针与分针所成的角的角的度数为30×8-(6-0.5)×30=240-165=75度,故答案为75.23.6cm【解析】【分析】根据已知条件得到AM=4cm .BM=12cm ,根据线段中点的定义得到AP=AM=2cm ,AQ=AB=8cm ,从而得到答案.【详解】解:∵AB=16cm ,AM :BM=1解析:6cm【解析】【分析】根据已知条件得到AM=4cm .BM=12cm ,根据线段中点的定义得到AP=12AM=2cm ,AQ=12AB=8cm ,从而得到答案. 【详解】 解:∵AB=16cm ,AM :BM=1:3,∴AM=4cm .BM=12cm ,∵P ,Q 分别为AM ,AB 的中点,∴AP=12AM=2cm,AQ=12AB=8cm,∴PQ=AQ-AP=6cm;故答案为:6cm.【点睛】本题考查了线段的长度计算问题,把握中点的定义,灵活运用线段的和、差、倍、分进行计算是解决本题的关键.24.【解析】由于钟面被分成12大格,每格为30°,而10点30分时,钟面上时针指向数字10与11的中间,分针指向数字6,则它们所夹的角为4×30°+×30°.解:10点30分时,钟面上时针指向数字解析:【解析】由于钟面被分成12大格,每格为30°,而10点30分时,钟面上时针指向数字10与11的中间,分针指向数字6,则它们所夹的角为4×30°+12×30°.解:10点30分时,钟面上时针指向数字10与11的中间,分针指向数字6,所以时针与分针所成的角等于4×30°+12×30°=135°.故答案为:135°.三、解答题25.(1)(2n﹣1);n2;(2)n的值为40.【解析】【分析】(1)根据各图形中小正方形个数的变化可找出变化规律“第n个图形中有小正方形的个数为:1+3+5+7+…+(2n-1)=n2个”,此问得解;(2)根据(1)的结论结合(2n+1)+(2n+3)+(2n+5)+……+137+139=3300,即可得出关于n的一元二次方程,解之取其正值即可得出结论.【详解】解:(1)∵图1中小正方形的个数为1个;图2中小正方形的个数为:1+3=4=22个;图3中小正方形的个数为:1+3+5=9=32个;图4中小正方形的个数为:1+3+5+7=16=42个;…,∴第n个图形中有小正方形的个数为:1+3+5+7+…+(2n﹣1)=n2个.故答案为:(2n﹣1);n2.(2)∵(2n+1)+(2n+3)+(2n+5)+……+137+139=3300,∴702﹣n2=3300,解得:n=40或n=﹣40(舍去).答:n的值为40.本题考查了规律型:图形的变化类,根据各图形中小正方形个数的变化,找出变化规律“第n个图形中有小正方形的个数为n2个”是解题的关键.26.(1)25°;(2)∠AOM-∠N OC=40°,理由详见解析;(3)t的值为13,34,49或64.【解析】【分析】(1)由平角的定义先求出∠BOC的度数,然后由角平分线的定义求出∠BOM的度数,再根据∠BON=∠MON-∠BOM可以求出结果;(2)根据题意得出∠AOM+∠AON=90°①,∠AON+∠NOC=50°②,利用①-②可以得出结果;(3)根据已知条件可知,在第t秒时,三角板转过的角度为5°t,然后按照OA、OC、ON三条射线构成相等的角分四种情况讨论,即可求出t的值.【详解】解:(1)∵∠AOC=50°,∴∠BOC=180°-∠AOC=130°,∵OM平分∠BOC,∴∠BOM=12∠BOC=55°,∴∠BON=90°-∠BOM=25°.故答案为:25;(2)∠AOM与∠NOC之间满足等量关系为:∠AOM-∠N OC=40°,理由如下:∵∠MON=90°,∠AOC=50°,∴∠AOM+∠AON=90°①,∠AON+∠NOC=50°②,∴①-②得,∠AOM-∠NOC=40°.(3)∵三角板绕点O按每秒5°的速度沿逆时针方向旋转,∴第t秒时,三角板转过的角度为5°t,当三角板转到如图①所示时,∠AON=∠CON.∵∠AON=90°+5°t,∠CON=∠BOC+∠BON=130°+90°-5°t=220°-5°t,∴90°+5°t=220°-5°t,即t=13;当三角板转到如图②所示时,∠AOC=∠CON=50°,∵∠CON=∠BOC-∠BON=130°-(5°t-90°)=220°-5°t,∴220°-5°t=50°,当三角板转到如图③所示时,∠AON=∠CON=12∠AOC=25°,∵∠CON=∠BON-∠BOC=(5°t-90°)-130°=5°t-220°,∴5°t-220°=25°,即t=49;当三角板转到如图④所示时,∠AON=∠AOC=50°,∵∠AON=5°t-180°-90°=5°t-270°,∴5°t-270°=50°,即t=64.故t的值为13,34,49或64.【点睛】本题主要考查角的和、差关系,难点是找出变化过程中的不变量,需要结合图形来计算,在计算分析的过程中注意动手操作,在旋转的过程中得到不变的量.27.2【解析】【分析】直接利用绝对值的性质以及有理数的混合运算法则计算得出答案.【详解】解:原式1 2199=-+⨯11=+2=.【点睛】此题主要考查了有理数的混合运算,正确掌握相关运算法则是解题关键.28.【解析】【分析】根据题意列出式子,先求出A表示的多项式,然后再求2A+B.【详解】解:由,,得.所以.【点睛】本题考查整式的加减运算,整式的加减运算实际上就是去括号、合并同类项,这是各地中考的常考点.根据题中的关系可先求出A,进一步求得2A+B.【解析】【分析】分别按照一元一次方程的解法进行即可,即有去分母,去括号,移项,合并同类项,系数化成1.【详解】去括号得:2x−4−12x+3=9−9x,移项得:2x−12x+9x=9+4−3,合并同类项得:−x=10,解得:x=−10;【点睛】此题考查解一元一次方程,解题关键在于掌握运算法则.30.(1)150、45、36;(2)28.8°;(3)450人【解析】【分析】(1)由B项目的人数及其百分比求得总人数,根据各项目人数之和等于总人数求得m=45,再用D项目人数除以总人数可得n的值;(2)360°乘以A项目人数占总人数的比例可得;(3)利用总人数乘以样本中C人数所占比例可得.【详解】解:(1)接受问卷调查的共有30÷20%=150人,m=150-(12+30+54+9)=45,54%100%36%150n=⨯=∴n=36,故答案为:150、45、36;(2)A类所对应的扇形圆心角的度数为12 36028.8150︒︒⨯=故答案为:28.8°;(3)451500450150⨯=(人)答:估计该社区参加碧沙岗“暴走团”的大约有450人【点睛】本题考查的是统计表和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.扇形统计图直接反映部分占总体的百分比大小.四、压轴题31.(1)详见解析;(2)35;(3)﹣5、15、1123、﹣767.【解析】【分析】(1)根据尺规作图的方法按要求做出即可;(2)根据中点的定义及线段长度的计算求出;(3)认真分析甲、乙物体运行的轨迹来判断它们相遇的可能性,分情况建立一元一次方程来计算相遇的时间,然后计算出位置.【详解】解:(1)如图所示;(2)根据(1)所作图的条件,如果以点A为原点,若点B对应的数恰好为10,则有点C对应的数为30,点D对应的数为﹣30,MN=|20﹣(﹣15)|=35(3)设乙从M点第一次回到点N时所用时间为t,则t=223522MN⨯==35(秒)那么甲在总的时间t内所运动的长度为s=5t=5×35=175可见,在乙运动的时间内,甲在C,D之间运动的情况为175÷60=2……55,也就是说甲在C,D之间运动一个来回还多出55长度单位.①设甲乙第一次相遇时的时间为t1,有5t1=2t1+15,t1=5(秒)而﹣30+5×5=﹣5,﹣15+2×5=﹣5这时甲和乙所对应的有理数为﹣5.②设甲乙第二次相遇时的时间经过的时间t2,有5t2+2t2=25+30+5+10,t2=10(秒)此时甲的位置:﹣15×5+60+30=15,乙的位置15×2﹣15=15这时甲和乙所对应的有理数为15.③设甲乙第三次相遇时的时间经过的时间t3,有5t3﹣2t3=20,t3=203(秒)此时甲的位置:30﹣(5×203﹣15)=1123,乙的位置:20﹣(2×203﹣5)=1123这时甲和乙所对应的有理数为112 3④从时间和甲运行的轨迹来看,他们可能第四次相遇.设第四次相遇时经过的时间为t4,有5t4﹣1123﹣30﹣15+2t4=1123,t4=91621(秒)此时甲的位置:5×91621﹣45﹣1123=﹣767,乙的位置:1123﹣2×91621=﹣767这时甲和乙所对应的有理数为﹣767.四次相遇所用时间为:5+10+203+91621=3137(秒),剩余运行时间为:35﹣3137=347(秒) 当时间为35秒时,乙回到N 点停止,甲在剩余的时间运行距离为5×347=5257⨯=1767. 位置在﹣767+1767=10,无法再和乙相遇,故所有相遇点对应的有理数为﹣5、15、1123、﹣767.【点睛】本题考查数轴作图及线段长度计算的基础知识,重要的是两个点在数轴上做复杂运动时的运动轨迹和相遇的位置,具有比较大的难度.正确分析出可能相遇的情况并建立一元一次方程是解题的关键.32.(1)AC=4cm, BC=8cm ;(2)当45t =时,AP PQ =;(3)当2t =时,P 与Q 第一次相遇;(4)35191cm.224t PQ =当为,,时, 【解析】【分析】(1)由于AB=12cm ,点C 是线段AB 上的一点,BC=2AC ,则AC+BC=3AC=AB=12cm ,依此即可求解;(2)分别表示出AP 、PQ ,然后根据等量关系AP=PQ 列出方程求解即可;(3)当P 与Q 第一次相遇时由AP AC CQ =+得到关于t 的方程,求解即可; (4)分相遇前、相遇后以及到达B 点返回后相距1cm 四种情况列出方程求解即可.【详解】(1)AC=4cm, BC=8cm.(2) 当AP PQ =时,AP 3t,PQ AC AP CQ 43t t ==-+=-+,即3t 43t t =-+,解得4t 5=. 所以当4t 5=时,AP PQ =. (3) 当P 与Q 第一次相遇时,AP AC CQ =+,即3t 4t =+,解得t 2=.所以当t 2=时,P 与Q 第一次相遇.(4)()()P,Q 1cm,4t 3t 13t 4t 1+-=-+=因为点相距的路程为所以或,35t t 22解得或==, P B P,Q 1cm 当到达点后时立即返回,点相距的路程为,193t 4t 1122,t 4+++=⨯=则解得, 3519t PQ 1cm.224所以当为,,时,= 【点睛】此题考查一元一次方程的实际运用,掌握行程问题中的基本数量关系以及分类讨论思想是解决问题的关键.33.(1)10,(a+b);(2)①60个单位长度;②10-3t ,0≤t≤7.5;③不存在,理由见解析.【解析】 【分析】(1)根据数轴上两点间的距离公式结合A 、B 两点表示的数,即可得出结论;(2) ①点P 运动的时间与A 、B 相遇所用时间相等,根据路程=速度×时间即可求得;②由P 点用最短的时间首次碰到A 点,且与B 点未碰到,可知开始时点P 是和点A 相向而行的;③点P 与点A 的距离越来越小,而点P 与点B 的距离越来越大,不存在PA=PB 的时候.【详解】解:(1)∵A 、B 所对应的数值分别为-20和40,∴AB=40-(-20)=60,∵P 是AB 的中点,∴AP=60=30,∴点P 表示的数是-20+30=10;∵如图,点A 、B 对应的数值分别是a 和b ,∴AB=b-a ,∵P 是AB 的中点,∴AP=(b-a)∴点P 表示的数是a+(b-a) =(a+b).(2)①点A 和点B 相向而行,相遇的时间为=20(秒),此即整个过程中点P 运动的时间.所以,点P 的运动路程为3×20=60(单位长度),故答案是60个单位长度.②由P 点用最短的时间首次碰到A 点,且与B 点未碰到,可知开始时点P 是和点A 相向而行的.所以这个过程中0≤t≤7.5.P 点经过t 秒钟后,在数轴上对应的数值为10-3t . 故答案是:10-3t ,0≤t≤7.5.③不存在.由②可知,点P是和点A相向而行的,整个过程中,点P与点A的距离越来越小,而点P 与点B的距离越来越大,所以不存在相等的时候.故答案为:(1)10,(a+b);(2)①60个单位长度;②10-3t,0≤t≤7.5;③不存在,理由见解析.【点睛】本题考查了数轴上点与点的距离和动点问题.。
青岛市青大附中人教版七年级上册数学 压轴题 期末复习试卷一、压轴题1.阅读理解:如图①,若线段AB 在数轴上,A 、B 两点表示的数分别为a 和b (b a >),则线段AB 的长(点A 到点B 的距离)可表示为AB=b a -.请用上面材料中的知识解答下面的问题:如图②,一个点从数轴的原点开始,先向左移动2cm 到达P 点,再向右移动7cm 到达Q 点,用1个单位长度表示1cm .(1)请你在图②的数轴上表示出P ,Q 两点的位置;(2)若将图②中的点P 向左移动x cm ,点Q 向右移动3x cm ,则移动后点P 、点Q 表示的数分别为多少?并求此时线段PQ 的长.(用含x 的代数式表示);(3)若P 、Q 两点分别从第⑴问标出的位置开始,分别以每秒2个单位和1个单位的速度同时向数轴的正方向运动,设运动时间为t (秒),当t 为多少时PQ=2cm ?2.已知AOD α∠=,OB 、OC 、OM 、ON 是AOD ∠内的射线.(1)如图1,当160α=︒,若OM 平分AOB ∠,ON 平分BOD ∠,求MON ∠的大小;(2)如图2,若OM 平分AOC ∠,ON 平分BOD ∠,20BOC ∠=︒,60MON ∠=︒,求α.3.综合与探究问题背景数学活动课上,老师将一副三角尺按图(1)所示位置摆放,分别作出∠AOC ,∠BOD 的平分线OM 、ON ,然后提出如下问题:求出∠MON 的度数.特例探究“兴趣小组”的同学决定从特例入手探究老师提出的问题,他们将三角尺分别按图2、图3所示的方式摆放,OM 和ON 仍然是∠AOC 和∠BOD 的角平分线.其中,按图2方式摆放时,可以看成是ON 、OD 、OB 在同一直线上.按图3方式摆放时,∠AOC 和∠BOD 相等.(1)请你帮助“兴趣小组”进行计算:图2中∠MON 的度数为 °.图3中∠MON 的度数为 °.发现感悟解决完图2,图3所示问题后,“兴趣小组”又对图1所示问题进行了讨论:小明:由于图1中∠AOC 和∠BOD 的和为90°,所以我们容易得到∠MOC 和∠NOD 的和,这样就能求出∠MON 的度数.小华:设∠BOD为x°,我们就能用含x的式子分别表示出∠NOD和∠MOC度数,这样也能求出∠MON的度数.(2)请你根据他们的谈话内容,求出图1中∠MON的度数.类比拓展受到“兴趣小组”的启发,“智慧小组”将三角尺按图4所示方式摆放,分别作出∠AOC、∠BOD的平分线OM、ON,他们认为也能求出∠MON的度数.(3)你同意“智慧小组”的看法吗?若同意,求出∠MON的度数;若不同意,请说明理由.4.已知∠AOB=110°,∠COD=40°,OE平分∠AOC,OF平分∠BOD.(1)如图1,当OB、OC重合时,求∠AOE﹣∠BOF的值;(2)如图2,当∠COD从图1所示位置绕点O以每秒3°的速度顺时针旋转t秒(0<t<10),在旋转过程中∠AOE﹣∠BOF的值是否会因t的变化而变化?若不发生变化,请求出该定值;若发生变化,请说明理由.(3)在(2)的条件下,当∠COF=14°时,t=秒.5.已知多项式3x6﹣2x2﹣4的常数项为a,次数为b.(1)设a与b分别对应数轴上的点A、点B,请直接写出a=,b=,并在数轴上确定点A、点B的位置;(2)在(1)的条件下,点P以每秒2个单位长度的速度从点A向B运动,运动时间为t①若PA﹣PB=6,求t的值,并写出此时点P所表示的数;②若点P从点A出发,到达点B后再以相同的速度返回点A,在返回过程中,求当OP=3时,t为何值?6.如图,数轴上点A表示的数为4-,点B表示的数为16,点P从点A出发,以每秒3个单位长度的速度沿数轴向右匀速运动同时点Q从点B出发,以每秒2个单位长度的速度向左匀速运动.设运动时间为t秒(t0)>.()1A,B两点间的距离等于______,线段AB的中点表示的数为______;()2用含t的代数式表示:t秒后,点P表示的数为______,点Q表示的数为______;()3求当t为何值时,1PQ AB2=?()4若点M为PA的中点,点N为PB的中点,点P在运动过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变请直接写出线段MN的长.7.结合数轴与绝对值的知识解决下列问题:探究:数轴上表示4和1的两点之间的距离是____,表示-3和2两点之间的距离是____;结论:一般地,数轴上表示数m和数n的两点之间的距离等于∣m-n∣.直接应用:表示数a和2的两点之间的距离等于____,表示数a和-4的两点之间的距离等于____;灵活应用:(1)如果∣a+1∣=3,那么a=____;(2)若数轴上表示数a的点位于-4与2之间,则∣a-2∣+∣a+4∣=_____;(3)若∣a-2∣+∣a+4∣=10,则a =______;实际应用:已知数轴上有A、B、C 三点,分别表示-24,-10,10,两只电子蚂蚁甲、乙分别从A、C两点同时相向而行,甲的速度为4个单位长度/秒,乙的速度为6个单位长度/秒.(1)两只电子蚂蚁分别从A、C两点同时相向而行,求甲、乙数轴上相遇时的点表示的数。
青岛青大附中七年级上学期期末数学试题一、选择题1.下列方程中,以32x =-为解的是( ) A .33x x =+B .33x x =+C .23x =D .3-3x x =2.如图,将线段AB 延长至点C ,使12BC AB =,D 为线段AC 的中点,若BD =2,则线段AB 的长为( )A .4B .6C .8D .123.将连续的奇数1、3、5、7、…、,按一定规律排成如表:图中的T 字框框住了四个数字,若将T 字框上下左右移动,按同样的方式可框住另外的四个数, 若将T 字框上下左右移动,则框住的四个数的和不可能得到的数是( ) A .22B .70C .182D .2064.在223,2,7-四个数中,属于无理数的是( ) A .0.23B 3C .2-D .2275.下列方程是一元一次方程的是( ) A .213+x =5x B .x 2+1=3x C .32y=y+2 D .2x ﹣3y =16.如果﹣2xy n+2与 3x 3m-2y 是同类项,则|n ﹣4m|的值是( ) A .3 B .4 C .5 D .67.已知单项式2x 3y 1+2m 与3x n +1y 3的和是单项式,则m ﹣n 的值是( ) A .3B .﹣3C .1D .﹣18.观察下列算式,用你所发现的规律得出22015的末位数字是( ) 21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…. A .2 B .4C .6D .89.若OC 是∠AOB 内部的一条射线,则下列式子中,不能表示“OC 是∠AOB 的平分线”的是( ) A .∠AOC=∠BOCB .∠AOB=2∠BOCC .∠AOC=12∠AOB D .∠AOC+∠BOC=∠AOB10.下列各数中,有理数是( ) A .2B .πC .3.14D .3711.如图,将长方形ABCD 绕CD 边旋转一周,得到的几何体是( )A .棱柱B .圆锥C .圆柱D .棱锥12.某商店有两个进价不同的计算器都卖了135元,其中一个盈利25%,另一个亏本25%,在这次买卖中,这家商店( ) A .不赔不赚B .赚了9元C .赚了18元D .赔了18元二、填空题13.单项式2x m y 3与﹣5y n x 是同类项,则m ﹣n 的值是_____. 14.已知x =3是方程(1)21343x m x -++=的解,则m 的值为_____. 15.若x =2是关于x 的方程5x +a =3(x +3)的解,则a 的值是_____.16.在灯塔O 处观测到轮船A 位于北偏西54︒的方向,同时轮船B 在南偏东15︒的方向,那么AOB ∠的大小为______.17.如图所示是计算机程序设计,若开始输入的数为-1,则最后输出的结果是______.18.|-3|=_________; 19.﹣213的倒数为_____,﹣213的相反数是_____. 20.因式分解:32x xy -= ▲ .21.某水果点销售50千克香蕉,第一天售价为9元/千克,第二天降价6元/千克,第三天再降为3元/千克.三天全部售完,共计所得270元.若该店第二天销售香蕉t 千克,则第三天销售香蕉 千克.22.如果A 、B 、C 在同一直线上,线段AB =6厘米,BC =2厘米,则A 、C 两点间的距离是______.23.比较大小:﹣8_____﹣9(填“>”、“=”或“<“).24.设一列数中相邻的三个数依次为m ,n ,p ,且满足p=m 2﹣n ,若这列数为﹣1,3,﹣2,a ,b ,128…,则b=________.三、压轴题25.阅读理解:如图①,若线段AB 在数轴上,A 、B 两点表示的数分别为a 和b (b a >),则线段AB 的长(点A 到点B 的距离)可表示为AB=b a -.请用上面材料中的知识解答下面的问题:如图②,一个点从数轴的原点开始,先向左移动2cm 到达P 点,再向右移动7cm 到达Q 点,用1个单位长度表示1cm .(1)请你在图②的数轴上表示出P ,Q 两点的位置;(2)若将图②中的点P 向左移动x cm ,点Q 向右移动3x cm ,则移动后点P 、点Q 表示的数分别为多少?并求此时线段PQ 的长.(用含x 的代数式表示);(3)若P 、Q 两点分别从第⑴问标出的位置开始,分别以每秒2个单位和1个单位的速度同时向数轴的正方向运动,设运动时间为t (秒),当t 为多少时PQ=2cm ?26.综合与探究问题背景数学活动课上,老师将一副三角尺按图(1)所示位置摆放,分别作出∠AOC ,∠BOD 的平分线OM 、ON ,然后提出如下问题:求出∠MON 的度数. 特例探究“兴趣小组”的同学决定从特例入手探究老师提出的问题,他们将三角尺分别按图2、图3所示的方式摆放,OM 和ON 仍然是∠AOC 和∠BOD 的角平分线.其中,按图2方式摆放时,可以看成是ON 、OD 、OB 在同一直线上.按图3方式摆放时,∠AOC 和∠BOD 相等.(1)请你帮助“兴趣小组”进行计算:图2中∠MON 的度数为 °.图3中∠MON 的度数为 °. 发现感悟解决完图2,图3所示问题后,“兴趣小组”又对图1所示问题进行了讨论: 小明:由于图1中∠AOC 和∠BOD 的和为90°,所以我们容易得到∠MOC 和∠NOD 的和,这样就能求出∠MON 的度数.小华:设∠BOD 为x °,我们就能用含x 的式子分别表示出∠NOD 和∠MOC 度数,这样也能求出∠MON 的度数.(2)请你根据他们的谈话内容,求出图1中∠MON 的度数. 类比拓展受到“兴趣小组”的启发,“智慧小组”将三角尺按图4所示方式摆放,分别作出∠AOC 、∠BOD 的平分线OM 、ON ,他们认为也能求出∠MON 的度数.(3)你同意“智慧小组”的看法吗?若同意,求出∠MON 的度数;若不同意,请说明理由.27.如图1,已知面积为12的长方形ABCD,一边AB在数轴上。
青岛市青大附中人教版七年级上册数学期末试卷一、选择题1.如图,将线段AB 延长至点C ,使12BC AB =,D 为线段AC 的中点,若BD =2,则线段AB 的长为( )A .4B .6C .8D .12 2.某地冬季某天的天气预报显示气温为﹣1℃至8℃,则该日的最高与最低气温的温差为( )A .﹣9℃B .7℃C .﹣7℃D .9℃3.如图,已知直线//a b ,点,A B 分别在直线,a b 上,连结AB .点D 是直线,a b 之间的一个动点,作//CD AB 交直线b 于点C,连结AD .若70ABC ︒∠=,则下列选项中D ∠不可能取到的度数为()A .60°B .80°C .150°D .170°4.若21(2)0x y -++=,则2015()x y +等于( )A .-1B .1C .20143D .20143-5.互不相等的三个有理数a ,b ,c 在数轴上对应的点分别为A ,B ,C 。
若:||||||a b b c a c -+-=-,则点B ( )A .在点 A, C 右边B .在点 A,C 左边 C .在点 A, C 之间D .以上都有可能6.如图,∠AOD =84°,∠AOB =18°,OB 平分∠AOC ,则∠COD 的度数是( )A .48°B .42°C .36°D .33°7.如图是由下列哪个立体图形展开得到的?( )A.圆柱B.三棱锥C.三棱柱D.四棱柱8.﹣3的相反数是()A.13-B.13C.3-D.39.不等式x﹣2>0在数轴上表示正确的是()A.B.C.D.10.若a<b,则下列式子一定成立的是( )A.a+c>b+c B.a-c<b-c C.ac<bc D.a b c c <11.如果代数式﹣3a2m b与ab是同类项,那么m的值是( )A.0 B.1 C.12D.312.如图为一无盖长方体盒子的展开图(重叠部分不计),可知该无盖长方体的容积为()A.8 B.12 C.18 D.20二、填空题13.单项式2x m y3与﹣5y n x是同类项,则m﹣n的值是_____.14.若|x|=3,|y|=2,则|x+y|=_____.15.如图,将一张长方形纸片分別沿着EP,FP对折,使点B落在点B,点C落在点C′.若点P,B′,C′不在一条直线上,且两条折痕的夹角∠EPF=85°,则∠B′PC′=_____.16.在数轴上,点A ,B 表示的数分别是 8-,10.点P 以每秒2个单位长度从A 出发沿数轴向右运动,同时点Q 以每秒3个单位长度从点B 出发沿数轴在B ,A 之间往返运动,设运动时间为t 秒.当点P ,Q 之间的距离为6个单位长度时,t 的值为__________.17.﹣213的倒数为_____,﹣213的相反数是_____. 18.禽流感病毒的直径约为0.00000205cm ,用科学记数法表示为_____cm ;19.若单项式 3a 3 b n 与 -5a m+1 b 4所得的和仍是单项式,则 m - n 的值为_____.20.请先阅读,再计算:因为:111122=-⨯,1112323=-⨯,1113434=-⨯,…,111910910=-⨯, 所以:1111122334910++++⨯⨯⨯⨯ 1111111122334910⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭11111111911223349101010=-+-+-++-=-= 则111110010110110210210320192020++++=⨯⨯⨯⨯_________. 21.数字9 600 000用科学记数法表示为 . 22.小康家里养了8头猪,质量分别为:104,98.5,96,91.8,102.5,100.7,103,95.5(单位:kg ),每头猪超过100kg 的千克数记作正数,不足100kg 的千克数记作负数.那么98.5对应的数记为_____.23.8点30分时刻,钟表上时针与分针所组成的角为_____度.24.如图,已知线段16AB cm =,点M 在AB 上:1:3AM BM =,P Q 、分别为AM AB 、的中点,则PQ 的长为____________.三、压轴题25.阅读理解:如图①,若线段AB 在数轴上,A 、B 两点表示的数分别为a 和b (b a >),则线段AB 的长(点A 到点B 的距离)可表示为AB=b a -.请用上面材料中的知识解答下面的问题:如图②,一个点从数轴的原点开始,先向左移动2cm 到达P 点,再向右移动7cm 到达Q 点,用1个单位长度表示1cm .(1)请你在图②的数轴上表示出P ,Q 两点的位置;(2)若将图②中的点P向左移动x cm,点Q向右移动3x cm,则移动后点P、点Q表示的数分别为多少?并求此时线段PQ的长.(用含x的代数式表示);(3)若P、Q两点分别从第⑴问标出的位置开始,分别以每秒2个单位和1个单位的速度同时向数轴的正方向运动,设运动时间为t(秒),当t为多少时PQ=2cm?26.已知有理数a,b,c在数轴上对应的点分别为A,B,C,且满足(a-1)2+|ab+3|=0,c=-2a+b.(1)分别求a,b,c的值;(2)若点A和点B分别以每秒2个单位长度和每秒1个单位长度的速度在数轴上同时相向运动,设运动时间为t秒.i)是否存在一个常数k,使得3BC-k•AB的值在一定时间范围内不随运动时间t的改变而改变?若存在,求出k的值;若不存在,请说明理由.ii)若点C以每秒3个单位长度的速度向右与点A,B同时运动,何时点C为线段AB的三等分点?请说明理由.27.射线OA、OB、OC、OD、OE有公共端点O.(1)若OA与OE在同一直线上(如图1),试写出图中小于平角的角;(2)若∠AOC=108°,∠COE=n°(0<n<72),OB平分∠AOE,OD平分∠COE(如图2),求∠BOD的度数;(3)如图3,若∠AOE=88°,∠BOD=30°,射OC绕点O在∠AOD内部旋转(不与OA、OD重合).探求:射线OC从OA转到OD的过程中,图中所有锐角的和的情况,并说明理由.28.已知:如图数轴上两点A、B所对应的数分别为-3、1,点P在数轴上从点A出发以每秒钟2个单位长度的速度向右运动,点Q在数轴上从点B出发以每秒钟1个单位长度的速度向左运动,设点P的运动时间为t秒.(1)若点P和点Q同时出发,求点P和点Q相遇时的位置所对应的数;(2)若点P比点Q迟1秒钟出发,问点P出发几秒后,点P和点Q刚好相距1个单位长度;(3)在(2)的条件下,当点P和点Q刚好相距1个单位长度时,数轴上是否存在一个点C,使其到点A、点P和点Q这三点的距离和最小,若存在,直接写出点C所对应的数,若不存在,试说明理由.29.数轴上线段的长度可以用线段端点表示的数进行减法运算得到,例如:如图①,若点A,B在数轴上分别对应的数为a,b(a<b),则AB的长度可以表示为AB=b-a.请你用以上知识解决问题:如图②,一个点从数轴上的原点开始,先向左移动2个单位长度到达A点,再向右移动3个单位长度到达B点,然后向右移动5个单位长度到达C点.(1)请你在图②的数轴上表示出A,B,C三点的位置.(2)若点A以每秒1个单位长度的速度向左移动,同时,点B和点C分别以每秒2个单位长度和3个单位长度的速度向右移动,设移动时间为t秒.①当t=2时,求AB和AC的长度;②试探究:在移动过程中,3AC-4AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.30.如图,直线l上有A、B两点,点O是线段AB上的一点,且OA=10cm,OB=5cm.(1)若点C是线段AB的中点,求线段CO的长.(2)若动点P、Q分别从 A、B同时出发,向右运动,点P的速度为4c m/s,点Q的速度为3c m/s,设运动时间为x秒,①当x=__________秒时,PQ=1cm;②若点M从点O以7c m/s的速度与P、Q两点同时向右运动,是否存在常数m,使得4PM+3OQ﹣mOM为定值,若存在请求出m值以及这个定值;若不存在,请说明理由.(3)若有两条射线OC、OD均从射线OA同时绕点O顺时针方向旋转,OC旋转的速度为6度/秒,OD旋转的速度为2度/秒.当OC与OD第一次重合时,OC、OD同时停止旋转,设旋转时间为t秒,当t为何值时,射线OC⊥OD?31.如图①,点O为直线AB上一点,过点O作射线OC,使∠AOC=120°,将一直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.(1)将图①中的三角板OMN摆放成如图②所示的位置,使一边OM在∠BOC的内部,当OM平分∠BOC时,∠BO N= ;(直接写出结果)(2)在(1)的条件下,作线段NO的延长线OP(如图③所示),试说明射线OP是∠AOC的平分线;(3)将图①中的三角板OMN摆放成如图④所示的位置,请探究∠NOC与∠AOM之间的数量关系.(直接写出结果,不须说明理由)32.如图,已知线段AB=12cm ,点C 为AB 上的一个动点,点D 、E 分别是AC 和BC 的中点.(1)若AC=4cm ,求DE 的长;(2)试利用“字母代替数”的方法,说明不论AC 取何值(不超过12cm ),DE 的长不变; (3)知识迁移:如图②,已知∠AOB=α,过点O 画射线OC ,使∠AOB:∠BOC=3:1若OD 、OE 分别平分∠AOC 和∠BOC ,试探究∠DOE 与∠AOB 的数量关系.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】根据题意设BC x =,则可列出:()223x x +⨯=,解出x 值为BC 长,进而得出AB 的长即可.【详解】解:根据题意可得:设BC x =,则可列出:()223x x +⨯=解得:4x =,12BC AB =, 28AB x ∴==.故答案为:C.【点睛】 本题考查的是线段的中点问题,解题关键在于对线段间的倍数关系的理解,以及通过等量关系列出方程即可.2.D解析:D【解析】【分析】这天的温差就是最高气温与最低气温的差,列式计算.【详解】解:该日的最高与最低气温的温差为8﹣(﹣1)=8+1=9(℃),故选:D .【点睛】本题主要考查有理数的减法法则:减去一个数等于加上这个数的相反数,这是需要熟记的内容.3.A解析:A【解析】【分析】延长CD 交直线a 于E .由∠ADC =∠AED +∠DAE ,判断出∠ADC >70°即可解决问题.【详解】解:延长CD 交直线a 于E .∵a ∥b ,∴∠AED =∠DCF ,∵AB ∥CD ,∴∠DCF =∠ABC =70°,∴∠AED =70°∵∠ADC =∠AED +∠DAE ,∴∠ADC >70°,故选A .本题考查平行线的性质,三角形的外角等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.4.A解析:A【解析】(y+2)2=0,列出方程x-1=0,y+2=0,求出x=1、y=-2,代入所求代数式(x+y )2015=(1﹣2)2015=﹣1.故选A 5.C解析:C【解析】【分析】 根据a b b c -+-表示数b 的点到a 与c 两点的距离的和,a c -表示数a 与c 两点的距离即可求解.【详解】∵绝对值表示数轴上两点的距离a b -表示a 到b 的距离b c -表示b 到c 的距离a c -表示a 到c 的距离∵a b b c a c -+-=-丨丨丨丨丨丨∴B 在A 和C 之间故选:C【点睛】本题考查的是数轴的特点,熟知数轴上两点之间的距离公式是解答此题的关键.6.A解析:A【解析】【分析】首先根据角平分线的定义得出2AOC AOB ∠=∠,求出AOC ∠的度数,然后根据角的和差运算得出COD AOD AOC ∠=∠-∠,得出结果.【详解】解:OB 平分AOC ∠,18AOB ∠=︒,236AOC AOB ∴∠=∠=︒,又84AOD ∠=︒, 843648COD AOD AOC ∴∠=∠-∠=︒-︒=︒.故选:A .本题考查了角平分线的定义.根据角平分线定义得出所求角与已知角的关系转化求解.7.C解析:C【解析】【分析】三棱柱的侧面展开图是长方形,底面是三角形.【详解】解:由图可得,该展开图是由三棱柱得到的,故选:C.【点睛】此题主要考查了几何体展开图,熟记常见几何体的平面展开图的特征,是解决此类问题的关键.8.D解析:D【解析】【分析】相反数的定义是:如果两个数只有符号不同,我们称其中一个数为另一个数的相反数,特别地,0的相反数还是0.【详解】根据相反数的定义可得:-3的相反数是3.故选D.【点睛】本题考查相反数,题目简单,熟记定义是关键.9.C解析:C【解析】【分析】先求出不等式的解集,再在数轴上表示出来,找出符合条件的选项即可.【详解】移项得,x>2,在数轴上表示为:故选:C.【点睛】本题考查的是在数轴上表示一元一次不等式的解集,解答此类题目的关键是熟知实心圆点与空心圆点的区别.10.B解析:B【分析】根据不等式的基本性质逐一进行分析判断即可.【详解】A.由a<b,两边同时加上c,可得 a+c<b+c,故A选项错误,不符合题意;B. 由a<b,两边同时减去c,得a-c<b-c,故B选项正确,符合题意;C. 由a<b,当c>0时,ac<bc,当c<0时,ac<bc,当c=0时,ac=bc,故C选项错误,不符合题意;D.由 a<b,当a>0,c≠0时,a bc c<,当a<0时,a bc c>,故D选项错误,故选B.【点睛】本题考查了不等式的基本性质,熟练掌握不等式的基本性质是解题的关键. 11.C解析:C【解析】【分析】根据同类项的定义得出2m=1,求出即可.【详解】解:∵单项式-3a2m b与ab是同类项,∴2m=1,∴m=12,故选C.【点睛】本题考查了同类项的定义,能熟记同类项的定义是解此题的关键,所含字母相同,并且相同字母的指数也分别相同的项,叫同类项.12.A解析:A【解析】【分析】根据观察、计算可得长方体的长、宽、高,根据长方体的体积公式,可得答案.【详解】解:由图可知长方体的高是1,宽是3-1=2,长是6-2=4,长方体的容积是4×2×1=8,故选:A.【点睛】本题考查了几何体的展开图.能判断出该几何体为长方体的展开图,并能根据展开图求得长方体的长、宽、高是解题关键.二、填空题13.-2.【解析】【分析】所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.【详解】解:∵单项式2xmy3与﹣5ynx是同类项,∴m=1,n=3,∴m﹣n=1﹣3=﹣2.故答案解析:-2.【解析】【分析】所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.【详解】解:∵单项式2x m y3与﹣5y n x是同类项,∴m=1,n=3,∴m﹣n=1﹣3=﹣2.故答案为:﹣2.【点睛】本题主要考查的是同类项的定义,熟练掌握同类项的概念是解题的关键.14.1或5.【解析】【分析】根据|x|=3,|y|=2,可得:x=±3,y=±2,据此求出|x+y|的值是多少即可.【详解】解:∵|x|=3,|y|=2,∴x=±3,y=±2,(1)x=3解析:1或5.【解析】【分析】根据|x|=3,|y|=2,可得:x=±3,y=±2,据此求出|x+y|的值是多少即可.【详解】解:∵|x|=3,|y|=2,∴x=±3,y=±2,(1)x=3,y=2时,|x+y|=|3+2|=5(2)x=3,y=﹣2时,|x+y|=|3+(﹣2)|=1(3)x=﹣3,y=2时,|x+y|=|﹣3+2|=1(4)x=﹣3,y=﹣2时,|x+y|=|(﹣3)+(﹣2)|=5故答案为:1或5.【点睛】此题主要考查了有理数的加法的运算方法,以及绝对值的含义和求法,要熟练掌握.15.10°.【解析】【分析】由对称性得:∠BPE=∠B′PE,∠CPF=∠C′PF,再根据角的和差关系,可得∠B′PE+∠C′PF=∠B′PC′+85°,再代入2∠B′PE+2∠C′PF-∠B′P解析:10°.【解析】【分析】由对称性得:∠BPE=∠B′PE,∠CPF=∠C′PF,再根据角的和差关系,可得∠B′PE+∠C′PF=∠B′PC′+85°,再代入2∠B′PE+2∠C′PF-∠B′PC′=180°计算即可.【详解】解:由对称性得:∠BPE=∠B′PE,∠CPF=∠C′PF,∴2∠B′PE+2∠C′PF﹣∠B′PC′=180°,即2(∠B′PE+∠C′PF)﹣∠B′PC′=180°,又∵∠EPF=∠B′PE+∠C′PF﹣∠B′PC′=85°,∴∠B′PE+∠C′PF=∠B′PC′+85°,∴2(∠B′PC′+85°)﹣∠B′PC′=180°,解得∠B′PC′=10°.故答案为:10°.【点睛】此题考查了角的计算,以及折叠的性质,熟练掌握折叠的性质是解本题的关键.16.【解析】【分析】根据题意分别表示P,Q的数为-8+2t和10-3t,并分到A前和到A后进行分析求值.【详解】解:由题意表示P,Q 的数为-8+2t ()和10-3t (),-8+3(t-6)() 解析:125【解析】【分析】根据题意分别表示P ,Q 的数为-8+2t 和10-3t ,并分Q 到A 前和Q 到A 后进行分析求值.【详解】解:由题意表示P ,Q 的数为-8+2t (09t <≤)和10-3t (06t <≤),-8+3(t-6)(69t <≤)Q 到A 前:103826t t -+-=,求得125t =,且满足06t <≤, Q 到A 后:82836t t -++--()=6,求得12t =,但不满足69t <≤,故舍去, 综上125t =. 故填125. 【点睛】本题考查数轴上的动点问题,运用数形结合的思想将动点问题转化为代数问题进行分析求解.17.﹣ 2【解析】【分析】根据乘积是1的两数互为倒数;只有符号不同的两个数叫做互为相反数可得答案.【详解】﹣2的倒数为﹣,﹣2的相反数是2.【点睛】本题考查的是相反数和倒数,解析:﹣37 213【解析】【分析】根据乘积是1的两数互为倒数;只有符号不同的两个数叫做互为相反数可得答案.【详解】 ﹣213的倒数为﹣37,﹣213的相反数是213. 【点睛】 本题考查的是相反数和倒数,熟练掌握两者的性质是解题的关键.18.【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解析:62.0510-⨯【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为10n a -⨯,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】0.00000205=62.0510-⨯故答案为62.0510-⨯【点睛】此题考查科学记数法,难度不大19.-2【解析】【分析】根据同类项的定义(所含字母相同,相同字母的指数相同)列出方程,求出n ,m 的值,再代入代数式计算即可.【详解】根据题意得m+1=3,n=4,解得m=2,n=4.则m-解析:-2【解析】【分析】根据同类项的定义(所含字母相同,相同字母的指数相同)列出方程,求出n ,m 的值,再代入代数式计算即可.【详解】根据题意得m+1=3,n=4,解得m=2,n=4.则m-n=2-4=-2.故答案为-2.【点睛】本题考查了同类项的定义,同类项定义中的两个“相同”:相同字母的指数相同,是易混点.20.【解析】【分析】根据给出的例子找出规律,然后依据规律列出式子解决即可.【详解】解:故答案为【点睛】本题考查了规律计算,解决本题的关键是正确理解题意,能够根据题意找到式子间存在的 解析:242525【解析】【分析】根据给出的例子找出规律,然后依据规律列出式子解决即可.【详解】 解:111110010110110210210320192020++++⨯⨯⨯⨯ 1111111110010110110210210320192020⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ 1111111110010110110210210320192020-+-+-++-= 9610100242525== 故答案为242525【点睛】本题考查了规律计算,解决本题的关键是正确理解题意,能够根据题意找到式子间存在的规律,利用规律将所求算式进行化简计算.21.6×106【解析】试题分析:根据科学记数法的定义,科学记数法的表示形式为a×10n,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.在确定n的值时,看该数是大于或等于1还是解析:6×106【解析】试题分析:根据科学记数法的定义,科学记数法的表示形式为a×10n,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.在确定n的值时,看该数是大于或等于1还是小于1.当该数大于或等于1时,n为它的整数位数减1;当该数小于1时,-n 为它第一个有效数字前0的个数(含小数点前的1个0).9 600 000一共7位,从而9 600 000=9.6×106.22.5.【解析】【分析】利用有理数的减法运算即可求得答案.【详解】解:每头猪超过100kg的千克数记作正数,不足100kg的千克数记作负数.那么98.5对应的数记为﹣1.5.故答案为:﹣1.解析:5.【解析】【分析】利用有理数的减法运算即可求得答案.【详解】解:每头猪超过100kg的千克数记作正数,不足100kg的千克数记作负数.那么98.5对应的数记为﹣1.5.故答案为:﹣1.5.【点睛】本题考查了“正数”和“负数”..解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.依据这一点可以简化数的求和计算.23.75【解析】钟表8时30分时,时针与分针所成的角的角的度数为30×8-(6-0.5)×30=240-165=75度,故答案为75.解析:75钟表8时30分时,时针与分针所成的角的角的度数为30×8-(6-0.5)×30=240-165=75度,故答案为75.24.6cm【解析】【分析】根据已知条件得到AM=4cm .BM=12cm ,根据线段中点的定义得到AP=AM=2cm ,AQ=AB=8cm ,从而得到答案.【详解】解:∵AB=16cm ,AM :BM=1解析:6cm【解析】【分析】根据已知条件得到AM=4cm .BM=12cm ,根据线段中点的定义得到AP=12AM=2cm ,AQ=12AB=8cm ,从而得到答案. 【详解】 解:∵AB=16cm ,AM :BM=1:3,∴AM=4cm .BM=12cm ,∵P ,Q 分别为AM ,AB 的中点,∴AP=12AM=2cm ,AQ=12AB=8cm , ∴PQ=AQ-AP=6cm ;故答案为:6cm .【点睛】 本题考查了线段的长度计算问题,把握中点的定义,灵活运用线段的和、差、倍、分进行计算是解决本题的关键.三、压轴题25.(1)见详解;(2)2x --,53x +,47x +;(3)当运动时间为5秒或9秒时,PQ=2cm.【解析】【分析】(1)根据数轴的特点,所以可以求出点P ,Q 的位置;(2)根据向左移动用减法,向右移动用加法,即可得到答案;(3)根据题意,可分为两种情况进行分析:①点P 在点Q 的左边时;②点P 在点Q 的右边时;分别进行列式计算,即可得到答案.解:(1)如图所示:.(2)由(1)可知,点P 为2-,点Q 为5;∴移动后的点P 为:2x --;移动后的点Q 为:53x +;∴线段PQ 的长为:53(2)47x x x +---=+;(3)根据题意可知,当PQ=2cm 时可分为两种情况:①当点P 在点Q 的左边时,有(21)72t -=-,解得:5t =;②点P 在点Q 的右边时,有(21)72t -=+,解得:9t =;综上所述,当运动时间为5秒或9秒时,PQ=2cm.【点睛】本题要是把方程和数轴结合起来,既要根据条件列出方程,又要把握数轴的特点.解题的关键是熟练掌握数轴上的动点运动问题,注意分类讨论进行解题.26.(1)1,-3,-5(2)i )存在常数m ,m=6这个不变化的值为26,ii )11.5s【解析】【分析】(1)根据非负数的性质求得a 、b 、c 的值即可;(2)i )根据3BC-k•AB 求得k 的值即可;ii )当AC=13AB 时,满足条件. 【详解】(1)∵a 、b 满足(a-1)2+|ab+3|=0,∴a-1=0且ab+3=0.解得a=1,b=-3.∴c=-2a+b=-5.故a ,b ,c 的值分别为1,-3,-5.(2)i )假设存在常数k ,使得3BC-k•AB 不随运动时间t 的改变而改变.则依题意得:AB=5+t ,2BC=4+6t .所以m•AB -2BC=m (5+t )-(4+6t )=5m+mt-4-6t 与t 的值无关,即m-6=0,解得m=6,所以存在常数m ,m=6这个不变化的值为26.ii)AC=13 AB,AB=5+t,AC=-5+3t-(1+2t)=t-6,t-6=13(5+t),解得t=11.5s.【点睛】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.27.(1)图1中小于平角的角∠AOD,∠AOC,∠AOB,∠BOE,∠BOD,∠BOC,∠COE,∠COD,∠DOE;(2)∠BOD=54°;(3)∠AOE+∠AOB+∠AOC+∠AOD+∠BOC+∠BOD+∠BOE+∠COD+∠COE+∠DOE=412°.理由见解析. 【解析】【分析】(1)根据角的定义即可解决;(2)利用角平分线的性质即可得出∠BOD=12∠AOC+12∠COE,进而求出即可;(3)将图中所有锐角求和即可求得所有锐角的和与∠AOE、∠BOD和∠BOD的关系,即可解题.【详解】(1)如图1中小于平角的角∠AOD,∠AOC,∠AOB,∠BOE,∠BOD,∠BOC,∠COE,∠COD,∠DOE.(2)如图2,∵OB平分∠AOE,OD平分∠COE,∠AOC=108°,∠COE=n°(0<n<72),∴∠BOD=12∠AOD﹣12∠COE+12∠COE=12×108°=54°;(3)如图3,∠AOE =88°,∠BOD =30°,图中所有锐角和为∠AOE+∠AOB+∠AOC+∠AOD+∠BOC+∠BOD+∠BOE+∠COD+∠COE+∠DOE=4∠AOB+4∠DOE =6∠BOC+6∠COD=4(∠AOE ﹣∠BOD )+6∠BOD=412°.【点睛】本题考查了角的平分线的定义和角的有关计算,本题中将所有锐角的和转化成与∠AOE 、∠BOD 和∠BOD 的关系是解题的关键,28.(1)13-;(2)P 出发23秒或43秒;(3)见解析. 【解析】【分析】(1)由题意可知运动t 秒时P 点表示的数为-3+2t ,Q 点表示的数为1-t ,若P 、Q 相遇,则P 、Q 两点表示的数相等,由此可得关于t 的方程,解方程即可求得答案;(2)由点P 比点Q 迟1秒钟出发,则点Q 运动了(t+1)秒,分相遇前相距1个单位长度与相遇后相距1个单位长度两种情况分别求解即可得;(3)设点C 表示的数为a ,根据两点间的距离进行求解即可得.【详解】(1)由题意可知运动t 秒时P 点表示的数为-5+t ,Q 点表示的数为10-2t ;若P ,Q 两点相遇,则有-3+2t=1-t , 解得:t=43, ∴413233-+⨯=-, ∴点P 和点Q 相遇时的位置所对应的数为13-;(2)∵点P 比点Q 迟1秒钟出发,∴点Q 运动了(t+1)秒,若点P 和点Q 在相遇前相距1个单位长度,则()2t 1t 141+⨯+=-,解得:2t 3=;若点P和点Q在相遇后相距1个单位长度,则2t+1×(t+1) =4+1,解得:4t3 =,综合上述,当P出发23秒或43秒时,P和点Q相距1个单位长度;(3)①若点P和点Q在相遇前相距1个单位长度,此时点P表示的数为-3+2×23=-53,Q点表示的数为1-(1+23)=-23,设此时数轴上存在-个点C,点C表示的数为a,由题意得AC+PC+QC=|a+3|+|a+53|+|a+23|,要使|a+3|+|a+53|+|a+23|最小,当点C与P重合时,即a=-53时,点C到点A、点P和点Q这三点的距离和最小;②若点P和点Q在相遇后相距1个单位长度,此时点P表示的数为-3+2×43=-13,Q点表示的数为1-(1+43)=-43,此时满足条件的点C即为Q点,所表示的数为43 -,综上所述,点C所表示的数分别为-53和-43.【点睛】本题考查了数轴上的动点问题,一元一次方程的应用,数轴上两点间的距离,正确理解数轴上两点间的距离,从中找到等量关系列出方程是解题的关键.本题也考查了分类讨论思想. 29.(1)详见解析;(2)①16;②在移动过程中,3AC﹣4AB的值不变【解析】【分析】(1)根据点的移动规律在数轴上作出对应的点即可;(2)①当t=2时,先求出A、B、C点表示的数,然后利用定义求出AB、AC的长即可;②先求出A、B、C点表示的数,然后利用定义求出AB、AC的长,代入3AC-4AB即可得到结论.【详解】(1)A,B,C三点的位置如图所示:.(2)①当t=2时,A点表示的数为-4,B点表示的数为5,C点表示的数为12,∴AB=5-(-4)=9,AC=12-(-4)=16.②3AC-4AB的值不变.当移动时间为t秒时,A点表示的数为-t-2,B点表示的数为2t+1,C点表示的数为3t +6,则:AC=(3t+6)-(-t-2)=4t+8,AB=(2t+1)-(-t-2)=3t+3,∴3AC-4AB=3(4t+8)-4(3t+3)=12t+24-12t-12=12.即3AC﹣4AB的值为定值12,∴在移动过程中,3AC﹣4AB的值不变.【点睛】本题考查了数轴上的动点问题.表示出对应点所表示的数是解答本题的关键.30.(1)CO=2.5;(2)①14和16 ;②定值55,理由见解析;(3)t=22.5和67.5【解析】【分析】(1)先求出线段AB的长,然后根据线段中点的定义解答即可;(2)①由PQ=1,得到|15-(4x-3x)|=1,解方程即可;②先表示出PM、OQ、OM的长,代入4PM+3OQ﹣mOM得到55+(21-7m)x,要使4PM+3OQ﹣mOM为定值,则21-7m=0,解方程即可;(3)分两种情况讨论,画出图形,根据图形列出方程,解方程即可.【详解】(1)∵OA=10cm,OB=5cm,∴AB=OA+OB=15cm.∵点C是线段AB的中点,∴AC=AB=7.5cm,∴CO=AO-AC=10-7.5=2.5(cm).(2)①∵PQ=1,∴|15-(4x-3x)|=1,∴|15-x|=1,∴15-x=±1,解得:x=14或16.②∵PM=10+7x-4x=10+3x,OQ=5+3x,OM=7x,∴4PM+3OQ﹣mOM=4(10+3x)+3(5+3x)-7mx=55+(21-7m)x,要使4PM+3OQ﹣mOM为定值,则21-7m=0,解得:m=3,此时定值为55.(3)分两种情况讨论:①如图1,根据题意得:6t-2t=90,解得:t=22.5;②如图2,根据题意得:6t+90=360+2t,解得:t=67.5.综上所述:当t=22.5秒和67.5秒时,射线OC⊥OD.【点睛】本题考查了一元一次方程的应用.解题的关键是分类讨论.31.(1)60°;(2)射线OP是∠AOC的平分线;(3)30°.【解析】整体分析:(1)根据角平分线的定义与角的和差关系计算;(2)计算出∠AOP的度数,再根据角平分线的定义判断;(3)根据∠AOC,∠AON,∠NOC,∠MON,∠AOM的和差关系即可得到∠NOC 与∠AOM之间的数量关系.解:(1)如图②,∠AOC=120°,∴∠BOC=180°﹣120°=60°,又∵OM 平分∠BOC ,∴∠BOM=30°,又∵∠NOM=90°,∴∠BOM=90°﹣30°=60°,故答案为60°;(2)如图③,∵∠AOP=∠BOM=60°,∠AOC=120°,∴∠AOP=12∠AOC , ∴射线OP 是∠AOC 的平分线;(3)如图④,∵∠AOC=120°,∴∠AON=120°﹣∠NOC ,∵∠MON=90°,∴∠AON=90°﹣∠AOM ,∴120°﹣∠NOC=90°﹣∠AOM ,即∠NOC ﹣∠AOM=30°.32.(1)DE=6;(2) DE=2a ,理由见解析;(3)∠DOE=12∠AOB ,理由见解析 【解析】试题分析:(1)由AC=4cm ,AB=12cm ,即可推出BC=8cm ,然后根据点D 、E 分别是AC 和BC 的中点,即可推出AD=DC=2cm ,BE=EC=4cm ,即可推出DE 的长度,(2)设AC=acm ,然后通过点D 、E 分别是AC 和BC 的中点,即可推出DE=12(AC+BC )=12AB=2a cm ,即可推出结论, (3)分两种情况,OC 在∠AOB 内部和外部结果都是∠DOE=12∠AOB 试题解析:(1))∵AB=12cm ,∴AC=4cm ,∴BC=8cm ,∵点D 、E 分别是AC 和BC 的中点,∴CD=2cm ,CE=4cm ,∴DE=6cm;(2) 设AC=acm ,∵点D 、E 分别是AC 和BC 的中点, ∴DE=CD+CE=12(AC+BC )=12AB=6cm , ∴不论AC 取何值(不超过12cm ),DE 的长不变;(3)①当OC 在∠AOB 内部时,如图所示:∵OM平分∠AOC,ON平分∠BOC,∴∠NOC=12∠BO C,∠COM=12∠COA.∵∠CON+∠COM=∠MON,∴∠MON=12(∠BOC+∠AOC)=12α;②当OC在∠AOB外部时,如图所示:∵OM平分∠AOC,ON平分∠BOC,∴∠MOC=12(∠AOB+∠BOC),∠CON=12∠BOC.∵∠MON+∠CON=∠MOC,∴∠MON=∠MOC-∠CON=12(AOB+∠BOC)-12∠BOC=12∠AOB=12α.【点睛】本题主要考察角平分线和线段的中点的性质,关键在于认真的进行计算,熟练运用相关的性质定理.。