富民县民族中学2018-2019学年高二上学期数学期末模拟试卷含解析
- 格式:pdf
- 大小:613.08 KB
- 文档页数:16
2018-2019学年高二数学上学期期末考试试题 文一、选择题(本题共12道小题,每小题5分,共60分) 1.10y --=的倾斜角为A . 56πB .23πC .3π D . 4π 2. 已知点A (2,-3)、B (-3,-2),直线l 过点P (1,1),且与线段AB 相交,则直线l 的斜率的取值k 范围是 ( ) A 、k ≥43或k ≤-4 B 、k ≥43或k ≤-41 C 、-4≤k ≤43 D 、43≤k ≤4 3. 在△ABC 中,角A ,B ,C 所对应的边分别为a ,b ,c ,则“a≤b”是“sin A ≤sin B ”的( ) A .充分必要条件 B .充分非必要条件 C .必要非充分条件 D .非充分非必要条件4. 设,αβ是两个不同的平面,l 是一条直线,下列命题正确的是( ) A .若l α⊥,αβ⊥,则l β⊂ B .若//l α,//αβ,则l β⊂ C. 若l α⊥,//αβ,则l β⊥ D .若//l α,αβ⊥,则l β⊥5.在下列命题中,真命题是( )A. “x=2时,x 2-3x+2=0”的否命题; B.“若b=3,则b 2=9”的逆命题;C.若ac>bc,则a>b;D.“相似三角形的对应角相等”的逆否命题6. 已知实数x ,y 满足不等式组⎪⎩⎪⎨⎧≥+≤-+≥+-02042053y y x y x ,则y x Z 2+=的最小值为( )A .-13B .-15C .-1D .77.已知F 1,F 2是椭圆C 的两个焦点,P 是C 上的一点,若21PF PF ⊥,且01260=∠F PF ,则C 的离心率为( )A.221-B. 2错误!未找到引用源。
1错误!未找到引用源。
8. 已知 △ABC 的顶点 B 、C 在椭圆191622=+y x 上,顶点 A 是椭圆的一个焦点,且椭圆的另一个焦点在线段BC 上,则 △ABC 的周长是( )(A) 8 (B) (C) 16 (D) 249.已知命题x x R x p lg 2,:>-∈∃,命题0,:2>∈∀x R x q ,则( ) A.命题q p ∨是假命题 B.命题q p ∧是真命题C.命题)(q p ⌝∧是真命题D.命题)(q p ⌝∨是假命题10..如图,在三棱锥D —ABC 中,AC =BD ,且AC ⊥BD ,E ,F 分别是棱DC ,AB 的中点,则EF 和AC 所成的角等于( )A . 30°B . 45°C . 60°D . 90° 11.若直线:2(0,0)l ax by a b -=>>平分圆22240x y x y +-+=,则11a b+的最小值为( )A ..2 C. 1(32+D .3+12. 已知直线m x y l +=:与曲线21x y -=有两个公共点,则实数m 的取值范围是( )A .(-2,2)B .(-1,1)C .D .]22[,- 二、填空题(本题共4道小题,每小题5分,共20分)13. 命题:“∀x R ∈, 0122≥++x x .”的否是 .14. 中心在原点,焦点在x 轴上的双曲线一条渐近线的方程是20x y +=,则该双曲线的离心率是_______;15. 若圆C与圆2220x y x ++=关于直线x+y-1=0对称,则圆C 的方程是______.16. 已知三棱锥A BCD -中,AB CD ==BC AD AC BD ===A BCD -的外接球的表面积为 .三、解答题(共10+12+12+12+12+12分)17. 圆C :(x -1)2+(y -2)2=25,直线l :(2m +1)x +(m +1)y -7m -4=0(m ∈R ).(1)证明:不论m 取什么数,直线l 与圆C 恒交于两点; (2)求直线l 被圆C 截得的线段的最短长度,并求此时m 的值.18.如图,在三棱柱ABC -A 1B 1C 1中,E ,F ,G ,H 分别是AB ,AC ,A 1B 1,A 1C 1的中点, 求证:(1)B ,C ,H ,G 四点共面;(2)平面EFA 1∥平面BCHG .19. 如图,已知四棱锥P ABCD -,PA ⊥平面ABCD ,底面ABCD 是直角梯形,其中 AD BC ∥,AB BC ⊥,122PA AB BC AD ====,E 为PD 边上的中点.(1) 证明:CE ∥平面PAB (2)证明:平面PAC ⊥平面PCD ; (3)求三棱锥P ACE -的体积.20. 已知椭圆方程为12222=+by a x (a >b >0),离心率23=e ,且短轴长为4.(1)求椭圆的方程;(2)过点P (2,1)作一弦,使弦被这点平分,求此弦所在直线的方程.21.已知双曲线C :-=1(a >0,b >0)的离心率为,且过点(,1).(1)求双曲线C 的方程; (2)若直线l :y =kx +与双曲线C 恒有两个不同的交点A ,B ,求k 的取值范围.22.已知定点(3,0)A -、(3,0)B ,直线AM 、BM 相交于点M ,且它们的斜率之积为19-,记动点M 的轨迹为曲线C . (Ⅰ)求曲线C 的方程;(Ⅱ)设直线l 与曲线C 交于P 、Q 两点,若直线AP 与AQ 斜率之积为118-,求证:直线l 过定点,并求定点坐标.高二文数答案一、选择题1.C2. A3. A4. C5. D6. B7. D8. C9. C 10. B 11. C 12. C 二、填空题13.2000,210x R x x ∃∈++< (写成 2,210x R x x ∃∈++<也给分) 14.2515.222440x y x y +--+= 16.77π 三、解答题17. (1)证明 ∵直线l 的方程可化为(2x +y -7)m +(x +y -4)=0(m ∈R ). ∴l 过的交点M (3,1). 又∵M 到圆心C (1,2)的距离 d ==<5,∴点M (3,1)在圆内,∴过点M (3,1)的直线l 与圆C 恒交于两点. (2)解 ∵过点M (3,1)的所有弦中,弦心距d ≤,弦心距、半弦长和半径r 满足勾股定理, ∴当d 2=5时,半弦长的平方的最小值为25-5=20. ∴弦长AB 的最小值|AB |min =4. 此时,kCM =-,kl =-.∵l ⊥CM ,∴·=-1,解得m =-. ∴当m =-时,取到最短弦长为4.18.证明 (1)∵GH 是△A 1B 1C 1的中位线, ∴GH ∥B 1C 1.又∵B 1C 1∥BC ,∴GH ∥BC , ∴B ,C ,H ,G 四点共面. (2)∵E 、F 分别为AB 、AC 的中点,∴EF ∥BC .∵EF ⊄平面BCHG ,BC ⊂平面BCHG , ∴EF ∥平面BCHG .∵A 1G ∥EB ,且A 1G =EB , ∴四边形A 1EBG 是平行四边形, ∴A 1E ∥GB . ∵A 1E ⊄平面BCHG ,GB ⊂平面BCHG . ∴A 1E ∥平面BCHG . ∵A 1E ∩EF =E , ∴平面EFA 1∥平面BCHG . 19.(Ⅰ)证明:如图5,取PA 的中点F ,连接BF EF ,,因为E 为PD 边上的中点,所以EF AD ∥,且12EF AD =,因为AD BC ∥ 12BC AD =, 所以EF BC ∥,且EF BC =,所以四边形BCEF 是平行四边形, 所以CE BF ∥,又CE PAB ⊄平面,BF PAB ⊂平面, 所以CE ∥平面PAB .(Ⅱ)证明:在直角梯形ABCD 中,122AB BC AD ===,所以AC CD == 所以222AD AC CD =+,所以CD AC ⊥,①又PA ABCD ⊥平面,所以PA CD ⊥,② 又PAAC A =,所以CD PAC ⊥平面,因为CD PCD ⊂平面,所以平面PAC ⊥平面PCD .(Ⅲ)解:因为E 为PD 边上的中点,PA ABCD ⊥平面,所以111223P ACE D ACE P ACD ACD V V V S PA ---===△,因为1222242ACD S ==△,2PA =,所以43P ACE V -=. 20.(1)由已知得,解得,∴椭圆的方程为;(2)由题意知,直线的斜率必存在,设斜率为k , 则所求直线的方程为y-1=k (x-2),代入椭圆方程并整理得(4k 2+1)x 2-8(2k 2-k )x+4(2k-1)2-16=0, 设直线与椭圆的交点为A (x 1,y 1),B (x 2,y 2),则,∵P 是AB 的中点,∴,解得. ∴所求直线方程为x+2y-4=0.21.解 (1)由e =,可得=, 所以a 2=3b 2, 故双曲线方程可化为-=1.将点P (,1)代入双曲线C 的方程, 解得b 2=1,所以双曲线C 的方程为-y 2=1.(2)联立直线与双曲线方程,⇒(1-3k 2)x 2-6kx -9=0. 由题意得,解得-1<k <1且k ≠±.所以k 的取值范围为(-1,-)∪(-,)∪(,1).22.(Ⅰ)设动点(,)M x y ,则,33MA MB y y k k x x ==+-()3x ≠±,19MA MBk k =-,即1339y y x x ⋅=-+-,化简得:2219x y += ,由已知3x ≠±,故曲线C 的方程为2219x y +=()3x ≠±.(Ⅱ)由已知直线l 斜率为0时,显然不满足条件。
城区民族中学2018-2019学年高二上学期数学期末模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1.已知定义在R上的可导函数y=f(x)是偶函数,且满足xf′(x)<0,=0,则满足的x的范围为()A.(﹣∞,)∪(2,+∞)B.(,1)∪(1,2)C.(,1)∪(2,+∞) D.(0,)∪(2,+∞)2.若不等式1≤a﹣b≤2,2≤a+b≤4,则4a﹣2b的取值范围是()A.[5,10] B.(5,10)C.[3,12] D.(3,12)3.如果是定义在上的奇函数,那么下列函数中,一定为偶函数的是()A. B.C. D.10101化为十进制数的结果为()4.二进制数)(2A.15B.21C.33D.415.2016年3月“两会”期间,有代表提出适当下调“五险一金”的缴存比例,现拟从某工厂职工中抽取20名代表调查对这一提案的态度,已知该厂青年,中年,老年职工人数分别为350,500,150,按分层抽样的方法,应从青年职工中抽取的人数为()A. 5B.6C.7D.10【命题意图】本题主要考查分层抽样的方法的运用,属容易题.6.若曲线f(x)=acosx与曲线g(x)=x2+bx+1在交点(0,m)处有公切线,则a+b=()A.1 B.2 C.3 D.47.已知函数f(x)=,则f(0)=()A.﹣1 B.0 C.1 D.38.以的焦点为顶点,顶点为焦点的椭圆方程为()A.B.C.D.9. 如图,在平面直角坐标系中,锐角α、β及角α+β的终边分别与单位圆O 交于A ,B ,C 三点.分别作AA'、BB'、CC'垂直于x 轴,若以|AA'|、|BB'|、|CC'|为三边长构造三角形,则此三角形的外接圆面积为( )A .B .C .D .π10.某几何体的三视图如图所示,该几何体的体积是( )A .B .C .D .11.曲线y=x 3﹣2x+4在点(1,3)处的切线的倾斜角为( ) A .30°B .45°C .60°D .120°12.已知a >b >0,那么下列不等式成立的是( )A .﹣a >﹣bB .a+c <b+cC .(﹣a )2>(﹣b )2D .二、填空题13.【启东中学2018届高三上学期第一次月考(10月)】在平面直角坐标系xOy 中,P 是曲线xC y e :=上一点,直线20l x y c :++=经过点P ,且与曲线C 在P 点处的切线垂直,则实数c 的值为________. 14.若函数()ln f x a x x =-在区间(1,2)上单调递增,则实数的取值范围是__________.15.如果椭圆+=1弦被点A (1,1)平分,那么这条弦所在的直线方程是 .16.抛物线y=x 2的焦点坐标为( )A.(0,)B.(,0)C.(0,4) D.(0,2)17.将一个半径为3和两个半径为1的球完全装入底面边长为6的正四棱柱容器中,则正四棱柱容器的高的最小值为.18.如果直线3ax+y﹣1=0与直线(1﹣2a)x+ay+1=0平行.那么a等于.三、解答题19.已知S n为数列{a n}的前n项和,且满足S n=2a n﹣n2+3n+2(n∈N*)(Ⅰ)求证:数列{a n+2n}是等比数列;(Ⅱ)设b n=a n sinπ,求数列{b n}的前n项和;(Ⅲ)设C n=﹣,数列{C n}的前n项和为P n,求证:P n<.20.如图,在△ABC中,BC边上的中线AD长为3,且sinB=,cos∠ADC=﹣.(Ⅰ)求sin∠BAD的值;(Ⅱ)求AC边的长.21.已知双曲线C:与点P(1,2).(1)求过点P(1,2)且与曲线C只有一个交点的直线方程;(2)是否存在过点P的弦AB,使AB的中点为P,若存在,求出弦AB所在的直线方程,若不存在,请说明理由.22.已知函数f(x)=alnx﹣x(a>0).(Ⅰ)求函数f(x)的最大值;(Ⅱ)若x∈(0,a),证明:f(a+x)>f(a﹣x);(Ⅲ)若α,β∈(0,+∞),f(α)=f(β),且α<β,证明:α+β>2α23.设a,b互为共轭复数,且(a+b)2﹣3abi=4﹣12i.求a,b 的值.24.已知函数3()1xf xx=+,[]2,5x∈.(1)判断()f x的单调性并且证明;(2)求()f x在区间[]2,5上的最大值和最小值.城区民族中学2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1. 【答案】D【解析】解:当x >0时,由xf ′(x )<0,得f ′(x )<0,即此时函数单调递减, ∵函数f (x )是偶函数,∴不等式等价为f (||)<,即||>,即>或<﹣,解得0<x <或x >2,故x 的取值范围是(0,)∪(2,+∞) 故选:D【点评】本题主要考查不等式的求解,根据函数奇偶性和单调性之间的关系是解决本题的关键.2. 【答案】A 【解析】解:令4a ﹣2b=x (a ﹣b )+y (a+b )即解得:x=3,y=1即4a ﹣2b=3(a ﹣b )+(a+b ) ∵1≤a ﹣b ≤2,2≤a+b ≤4, ∴3≤3(a ﹣b )≤6 ∴5≤(a ﹣b )+3(a+b )≤10故选A【点评】本题考查的知识点是简单的线性规划,其中令4a ﹣2b=x (a ﹣b )+y (a+b ),并求出满足条件的x ,y ,是解答的关键.3. 【答案】B【解析】【知识点】函数的奇偶性【试题解析】因为奇函数乘以奇函数为偶函数,y=x 是奇函数,故是偶函数。
富民县高中2018-2019学年上学期高二数学12月月考试题含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 若函数f (x )=﹣2x 3+ax 2+1存在唯一的零点,则实数a 的取值范围为( )A .[0,+∞)B .[0,3]C .(﹣3,0]D .(﹣3,+∞)2. 不等式ax 2+bx+c <0(a ≠0)的解集为R ,那么( )A .a <0,△<0B .a <0,△≤0C .a >0,△≥0D .a >0,△>03. 在曲线y=x 2上切线倾斜角为的点是()A .(0,0)B .(2,4)C .(,)D .(,)4. 如图,在等腰梯形ABCD 中,AB=2DC=2,∠DAB=60°,E 为AB 的中点,将△ADE 与△BEC 分别沿ED 、EC 向上折起,使A 、B 重合于点P ,则P ﹣DCE 三棱锥的外接球的体积为()A .B .C .D .5. 已知向量,,若,则实数( )(,1)a t = (2,1)b t =+ ||||a b a b +=-t =A.B. C. D. 2-1-12【命题意图】本题考查向量的概念,向量垂直的充要条件,简单的基本运算能力.6. 一个几何体的三视图如图所示,且其侧视图是一个等边三角形,则这个几何体的体积为()A .B .(4+π)C .D .7. 如图,长方形ABCD 中,AB=2,BC=1,半圆的直径为AB .在长方形ABCD 内随机取一点,则该点取自阴影部分的概率是()A .B .1﹣C .D .1﹣8. 椭圆的左右顶点分别为,点是上异于的任意一点,且直线斜率的22:143x y C +=12,A A P C 12,A A 1PA 取值范围是,那么直线斜率的取值范围是( )[]1,22PA A . B . C . D .31,42⎡⎤--⎢⎥⎣⎦33,48⎡⎤--⎢⎥⎣⎦1,12⎡⎤⎢⎥⎣⎦3,14⎡⎤⎢⎥⎣⎦【命题意图】本题考查椭圆的标准方程和简单几何性质、直线的斜率等基础知识,意在考查函数与方程思想和基本运算能力.9. 函数f (x )=ax 2+2(a ﹣1)x+2在区间(﹣∞,4]上为减函数,则a 的取值范围为( )A .0<a ≤B .0≤a ≤C .0<a <D .a >10.某几何体的三视图如图所示(其中侧视图中的圆弧是半圆),则该几何体的表面积为()A .20+2πB .20+3πC .24+3πD .24+3π11.若函数y=x 2+bx+3在[0,+∞)上是单调函数,则有( )A .b ≥0B .b ≤0C .b >0D .b <012.下列命题的说法错误的是()A .若复合命题p ∧q 为假命题,则p ,q 都是假命题B .“x=1”是“x 2﹣3x+2=0”的充分不必要条件C .对于命题p :∀x ∈R ,x 2+x+1>0 则¬p :∃x ∈R ,x 2+x+1≤0D .命题“若x 2﹣3x+2=0,则x=1”的逆否命题为:“若x ≠1,则x 2﹣3x+2≠0”二、填空题13.已知函数是定义在R 上的奇函数,且当时,,则在R 上的解析式为 ()f x 0x ≥2()2f x x x =-()y f x =14.“黑白配”游戏,是小朋友最普及的一种游戏,很多时候被当成决定优先权的一种方式.它需要参与游戏的人(三人或三人以上)同时出示手势,以手心(白)、手背(黑)来决定胜负,当其中一个人出示的手势与其它人都不一样时,则这个人胜出,其他情况,则不分胜负.现在甲乙丙三人一起玩“黑白配”游戏.设甲乙丙三人每次都随机出“手心(白)、手背(黑)”中的某一个手势,则一次游戏中甲胜出的概率是 . 15.集合A={x|﹣1<x <3},B={x|x <1},则A ∩B= . 16.圆心在原点且与直线相切的圆的方程为_____ .2x y +=【命题意图】本题考查点到直线的距离公式,圆的方程,直线与圆的位置关系等基础知识,属送分题.17.已知过双曲线的右焦点的直线交双曲线于两点,连结,若22221(0,0)x y a b a b-=>>2F ,A B 11,AF BF ,且,则双曲线的离心率为( )1||||AB BF =190ABF ∠=︒A .BC .D 5-6-【命题意图】本题考查双曲线定义与几何性质,意要考查逻辑思维能力、运算求解能力,以及考查数形结合思想、方程思想、转化思想.18.函数y=a x +1(a >0且a ≠1)的图象必经过点 (填点的坐标) 三、解答题19.已知△ABC 的顶点A (3,2),∠C 的平分线CD 所在直线方程为y ﹣1=0,AC 边上的高BH 所在直线方程为4x+2y ﹣9=0.(1)求顶点C 的坐标;(2)求△ABC 的面积.20.已知,若,求实数的值.{}{}22,1,3,3,31,1A a a B a a a =+-=--+{}3A B =- 21.已知全集U={1,2,3,4,5,6,7},A={2,4,5},B={1,3,5,7}.(1)求A ∪B ;(2)求(∁U A )∩B ;(3)求∁U (A ∩B ). 22.已知二次函数f(x)=x2+2bx+c(b,c∈R).(1)若函数y=f(x)的零点为﹣1和1,求实数b,c的值;(2)若f(x)满足f(1)=0,且关于x的方程f(x)+x+b=0的两个实数根分别在区间(﹣3,﹣2),(0,1)内,求实数b的取值范围.23.已知f(x)是定义在[﹣1,1]上的奇函数,f(1)=1,且若∀a、b∈[﹣1,1],a+b≠0,恒有>0,(1)证明:函数f(x)在[﹣1,1]上是增函数;(2)解不等式;(3)若对∀x∈[﹣1,1]及∀a∈[﹣1,1],不等式f(x)≤m2﹣2am+1恒成立,求实数m的取值范围.24.长方体ABCD﹣A1B1C1D1中,AB=2,AA1=AD=4,点E为AB中点.(1)求证:BD1∥平面A1DE;(2)求证:A1D⊥平面ABD1.富民县高中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1.【答案】D【解析】解:令f(x)=﹣2x3+ax2+1=0,易知当x=0时上式不成立;故a==2x﹣,令g(x)=2x﹣,则g′(x)=2+=2,故g(x)在(﹣∞,﹣1)上是增函数,在(﹣1,0)上是减函数,在(0,+∞)上是增函数;故作g(x)=2x﹣的图象如下,,g(﹣1)=﹣2﹣1=﹣3,故结合图象可知,a>﹣3时,方程a=2x﹣有且只有一个解,即函数f(x)=﹣2x3+ax2+1存在唯一的零点,2. 【答案】A【解析】解:∵不等式ax 2+bx+c <0(a ≠0)的解集为R ,∴a <0,且△=b 2﹣4ac <0,综上,不等式ax 2+bx+c <0(a ≠0)的解集为的条件是:a <0且△<0.故选A . 3. 【答案】D【解析】解:y'=2x ,设切点为(a ,a 2)∴y'=2a ,得切线的斜率为2a ,所以2a=tan45°=1,∴a=,在曲线y=x 2上切线倾斜角为的点是(,).故选D .【点评】本小题主要考查直线的斜率、导数的几何意义、利用导数研究曲线上某点切线方程等基础知识,考查运算求解能力.属于基础题. 4. 【答案】C【解析】解:易证所得三棱锥为正四面体,它的棱长为1,故外接球半径为,外接球的体积为,故选C .【点评】本题考查球的内接多面体,球的体积等知识,考查逻辑思维能力,是中档题. 5. 【答案】B 【解析】由知,,∴,解得,故选B.||||a b a b +=- a b ⊥ (2)110a b t t ⋅=++⨯=1t =-6. 【答案】 D【解析】解:由三视图知,几何体是一个组合体,是由半个圆锥和一个四棱锥组合成的几何体,圆柱的底面直径和母线长都是2,四棱锥的底面是一个边长是2的正方形,四棱锥的高与圆锥的高相同,高是=,∴几何体的体积是=,【点评】本题考查由三视图求组合体的体积,考查由三视图还原直观图,本题的三视图比较特殊,不容易看出直观图,需要仔细观察.7.【答案】B【解析】解:由题意,长方形的面积为2×1=2,半圆面积为,所以阴影部分的面积为2﹣,由几何概型公式可得该点取自阴影部分的概率是;故选:B.【点评】本题考查了几何概型公式的运用,关键是明确几何测度,利用面积比求之.8.【答案】B9.【答案】B【解析】解:当a=0时,f(x)=﹣2x+2,符合题意当a≠0时,要使函数f(x)=ax2+2(a﹣1)x+2在区间(﹣∞,4]上为减函数∴⇒0<a≤综上所述0≤a≤故选B【点评】本题主要考查了已知函数再某区间上的单调性求参数a的范围的问题,以及分类讨论的数学思想,属于基础题.10.【答案】B【解析】由已知中的三视图,可知该几何体是一个以侧视图为底面的柱体(一个半圆柱与正方体的组合体),其底面面积S=2×2+=4+,底面周长C=2×3+=6+π,高为2,故柱体的侧面积为:(6+π)×2=12+2π,故柱体的全面积为:12+2π+2(4+)=20+3π,故选:B【点评】本题考查的知识点是简单空间图象的三视图,其中根据已知中的视图分析出几何体的形状及棱长是解答的关键. 11.【答案】A【解析】解:抛物线f (x )=x 2+bx+3开口向上,以直线x=﹣为对称轴,若函数y=x 2+bx+3在[0,+∞)上单调递增函数,则﹣≤0,解得:b ≥0,故选:A .【点评】本题考查二次函数的性质和应用,是基础题.解题时要认真审题,仔细解答. 12.【答案】A【解析】解:A .复合命题p ∧q 为假命题,则p ,q 至少有一个命题为假命题,因此不正确;B .由x 2﹣3x+2=0,解得x=1,2,因此“x=1”是“x 2﹣3x+2=0”的充分不必要条件,正确;C .对于命题p :∀x ∈R ,x 2+x+1>0 则¬p :∃x ∈R ,x 2+x+1≤0,正确;D .命题“若x 2﹣3x+2=0,则x=1”的逆否命题为:“若x ≠1,则x 2﹣3x+2≠0”,正确.故选:A . 二、填空题13.【答案】222,02,0x x x y x x x ⎧-≥⎪=⎨--<⎪⎩【解析】试题分析:令,则,所以,又因为奇函数满足,0x <0x ->()()()2222f x x x x x -=---=+()()f x f x -=-所以,所以在R 上的解析式为。
云南省昆明市富民县永定中学2018-2019学年高二数学理测试题含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 已知向量的形状为()A.直角三角形B.等腰三角形C.锐角三角形D.钝角三角形参考答案:D2. 在等差数列中,,则前项之和等于A.B.C.D.参考答案:A略3. 函数f(x)=log(x2﹣9)的单调递增区间为()A.(0,+∞)B.(﹣∞,0)C.(3,+∞)D.(﹣∞,﹣3)参考答案:D【考点】3G:复合函数的单调性.【分析】求函数的定义域,利用换元法结合复合函数单调性之间的关系进行判断即可.【解答】解:由x2﹣9>0得x>3或x<﹣3,设t=x2﹣9,则函数y=log t为减函数,则要求函数f(x)=log(x2﹣9)的单调递增区间,即求函数t=x2﹣9的单调递减区间,∵函数t=x2﹣9的单调递减区间是(﹣∞,﹣3),∴函数f(x)=log(x2﹣9)的单调递增区间为(﹣∞,﹣3),故选:D.4. 方程与在同一坐标系中的大致图象可能是().A B CD参考答案:A略5. 一个水平放置的三角形的斜二侧直观图是等腰直角三角形A′B′O′,若O′B′=1,那么原△ABO的面积是()A.B.C.D.参考答案:C6. 若命题,则┐p()A.B.C.D.参考答案:D7. 函数y=xsinx+cosx的导数是()A.y′=2sinx+xcosx B.y′=xcosxC.y′=xcosx﹣sinx D.y′=sinx+xcosx参考答案:B【考点】导数的运算.【分析】利用求导法则以及求导公式解答即可.【解答】解:y'=(xsinx+cosx)'=(xsinx)'+cosx'=sinx+xcosx﹣sinx=xcosx;所以函数y=xsinx+cosx的导数是xcosx;故选B.8. 直线y=ax+1与圆x2+y2=2的位置关系是( )A.相离B.相交C.相切D.与的值有关参考答案:B【考点】直线与圆的位置关系.【专题】直线与圆.【分析】由圆的方程找出圆心坐标与半径r,利用点到直线的距离公式表示出圆心到直线y=ax+1的距离d,判断得到d<r,即可得到直线与圆相交.【解答】解:由x2+y2=2,得到圆心坐标为(0,0),半径r=,∵圆心到直线y=ax+1的距离d=≤1<=r,∴直线y=ax+1与圆x2+y2=2的位置关系是相交.故选B【点评】此题考查了直线与圆的位置关系,涉及的知识有:圆的标准方程,点到直线的距离公式,其中当d>r时,直线与圆相离;当d=r时,直线与圆相切;当d<r时,直线与圆相交(d表示圆心到直线的距离,r表示圆的半径).9. 定义在R上的偶函数f(x),满足f(x+1)=﹣f(x),且在区间[﹣1,0]上为递增,则()A.B.C.D.参考答案:A【考点】3N:奇偶性与单调性的综合.【分析】由f(x+1)=﹣f(x),可推出其周期为2;由偶函数在关于原点对称的区间上单调性相反及周期为2可得f(x)在[1,2]、[2,3]上的单调性,根据单调性及对称性即可作出判断.【解答】解:因为f(x+1)=﹣f(x),所以f(x+2)=﹣f(x+1)=﹣[﹣f(x)]=f(x).所以f(x)是以2为周期的函数.又f(x)为偶函数,且在[﹣1,0]上递增,所以f(x)在[0,1]上递减,又2为周期,所以f(x)在[1,2]上递增,在[2,3]上递减,故f(2)最大,又f(x)关于x=2对称,且离2近,所以f()>f(3),故选A.10. 执行如图所示的程序框图,输出的值为()A. B. C.D.参考答案:C二、填空题:本大题共7小题,每小题4分,共28分11. 已知复数z=3+4i(i为虚数单位),则|z|= .参考答案:5【考点】复数求模.【分析】直接利用复数模的计算公式得答案.【解答】解:∵z=3+4i,∴|z|=.故答案为:5.12. 如图8—1,F1、F2分别为椭圆=1的左、右焦点,点P在椭圆上,△POF2是面积为的正三角形,则b2的值是_____.参考答案:2略13. 已知关于的不等式<0的解集是.则参考答案:-214. 执行如图所示的程序框图,若输出的的值为,则图中判断框内①处应填()A. B. C. D.参考答案:B15. 盒子里装有大小质量完全相同且分别标有数字1、2、3、4的四个小球,从盒子里随机摸出两个小球,那么事件“摸出的小球上标有的数字之和为5”的概率是.参考答案:【考点】列举法计算基本事件数及事件发生的概率.【分析】从盒子里随机摸出两个小球,共有6种结果,“摸出的小球上标有的数字之和为5”的有(1,4),(2,3)共2种,根据古典概型概率公式得到结果.【解答】解:从盒子里随机摸出两个小球,共有6种结果,列举如下:(1,2),(1,3),(1,4),(2,3),(2,4),(3,4);“摸出的小球上标有的数字之和为5”的有(1,4),(2,3)共2种,故“摸出的小球上标有的数字之和为5”的概率P==,故答案为:16. 在区间[-2,3]上随机选取一个数X,则X≤1的概率为 . 参考答案:17. 母线长为1的圆锥的侧面积为,则此圆锥展开图的中心角为▲参考答案:三、解答题:本大题共5小题,共72分。
贵阳市民族中学2018-2019学年高二上学期数学期末模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 复数(为虚数单位),则的共轭复数为( )2(2)i z i-=i z A . B . C . D .43i -+43i +34i +34i-【命题意图】本题考查复数的运算和复数的概念等基础知识,意在考查基本运算能力.2. 已知a ,b 都是实数,那么“a 2>b 2”是“a >b ”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件3. 已知函数f (x )=sin 2(ωx )﹣(ω>0)的周期为π,若将其图象沿x 轴向右平移a 个单位(a >0),所得图象关于原点对称,则实数a 的最小值为( )A .πB .C .D .4. 如图所示为某几何体的正视图和侧视图,则该几何体体积的所有可能取值的集合是()A .{, }B .{,, }C .{V|≤V ≤}D .{V|0<V ≤}5. 某工厂产生的废气经过过虑后排放,过虑过程中废气的污染物数量(单位:毫克/升)与时间(单位:P t 小时)间的关系为(,均为正常数).如果前5个小时消除了的污染物,为了消除0e ktP P -=0P k 10%27.1%的污染物,则需要( )小时.A. B. C. D. 8101518【命题意图】本题考指数函数的简单应用,考查函数思想,方程思想的灵活运用,体现“数学是有用的”的新课标的这一重要思想.6. 已知回归直线的斜率的估计值为1.23,样本点的中心为(4,5),则回归直线方程为( )A .B .C .D . =0.08x+1.237. 已知向量,(),且,点在圆上,则(,2)a m = (1,)b n =- 0n >0a b ⋅= (,)P m n 225x y +=( )|2|a b +=A B .C .D .8. 如果随机变量ξ~N (﹣1,σ2),且P (﹣3≤ξ≤﹣1)=0.4,则P (ξ≥1)等于()A .0.1B .0.2C .0.3D .0.49. 设x ,y 满足线性约束条件,若z=ax ﹣y (a >0)取得最大值的最优解有数多个,则实数a 的值为( )A .2B .C .D .310.设长方体的长、宽、高分别为2a 、a 、a ,其顶点都在一个球面上,则该球的表面积为( )A .3πa 2B .6πa 2C .12πa 2D .24πa 211.设函数f (x )在x 0处可导,则等于( )A .f ′(x 0)B .f ′(﹣x 0)C .﹣f ′(x 0)D .﹣f (﹣x 0)12.若命题p :∃x ∈R ,x ﹣2>0,命题q :∀x ∈R ,<x ,则下列说法正确的是()A .命题p ∨q 是假命题B .命题p ∧(¬q )是真命题C .命题p ∧q 是真命题D .命题p ∨(¬q )是假命题 二、填空题13.若的展开式中含有常数项,则n 的最小值等于 .14.下列四个命题:①两个相交平面有不在同一直线上的三个公交点②经过空间任意三点有且只有一个平面③过两平行直线有且只有一个平面④在空间两两相交的三条直线必共面其中正确命题的序号是 . 15.“黑白配”游戏,是小朋友最普及的一种游戏,很多时候被当成决定优先权的一种方式.它需要参与游戏的人(三人或三人以上)同时出示手势,以手心(白)、手背(黑)来决定胜负,当其中一个人出示的手势与其它人都不一样时,则这个人胜出,其他情况,则不分胜负.现在甲乙丙三人一起玩“黑白配”游戏.设甲乙丙三人每次都随机出“手心(白)、手背(黑)”中的某一个手势,则一次游戏中甲胜出的概率是 . 16.如图,在三棱锥中,,,,为等边三角形,则P ABC -PA PB PC ==PA PB ⊥PA PC ⊥PBC △PC与平面所成角的正弦值为______________.ABC【命题意图】本题考查空间直线与平面所成角的概念与计算方法,意在考查学生空间想象能力和计算能力.17.直线l 1和l 2是圆x 2+y 2=2的两条切线,若l 1与l 2的交点为(1,3),则l 1与l 2的夹角的正切值等于 _________ 。
城区民族中学2018-2019学年高二上学期数学期末模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 已知函数与轴的交点为,且图像上两对称轴之间的最()2sin()f x x ωϕ=+(0)2πϕ<<y (0,1)小距离为,则使成立的的最小值为()1111]2π()()0f x t f x t +--+=t A .B .C .D .6π3π2π23π2. 函数f (x )=有且只有一个零点时,a 的取值范围是()A .a ≤0B .0<a <C .<a <1D .a ≤0或a >13. 在空间中,下列命题正确的是()A .如果直线m ∥平面α,直线n ⊂α内,那么m ∥nB .如果平面α内的两条直线都平行于平面β,那么平面α∥平面βC .如果平面α外的一条直线m 垂直于平面α内的两条相交直线,那么m ⊥αD .如果平面α⊥平面β,任取直线m ⊂α,那么必有m ⊥β4. 如图所示,已知四边形ABCD 的直观图是一个边长为的正方形,则原图形的周长为()A .B . C. D .5. 函数的零点所在区间为()A .(3,4)B .(2,3)C .(1,2)D .(0,1)6. 如图,已知平面=,.是直线上的两点,是平面内的两点,且,,,.是平面上的一动点,且有,则四棱锥体积的最大值是( )A .B .C .D .7. 函数y=2x 2﹣e |x|在[﹣2,2]的图象大致为()A .B .C .D .8. 四棱锥P ﹣ABCD 的底面是一个正方形,PA ⊥平面ABCD ,PA=AB=2,E 是棱PA 的中点,则异面直线BE 与AC 所成角的余弦值是()A .B .C .D .9. 过点,的直线的斜率为,则( )),2(a M -)4,(a N 21-=||MN A .B .C .D .10180365610.已知圆方程为,过点与圆相切的直线方程为( )C 222x y +=(1,1)P -C A .B .C .D .20x y -+=10x y +-=10x y -+=20x y ++=11.已知曲线的焦点为,过点的直线与曲线交于两点,且,则2:4C y x =F F C ,P Q 20FP FQ += OPQ∆的面积等于( )A .B . CD12.如图在圆中,,是圆互相垂直的两条直径,现分别以,,,为直径作四个O AB CD O OA OB OC OD 圆,在圆内随机取一点,则此点取自阴影部分的概率是()O DABCO A .B .C .D .π1π21π121-π2141-【命题意图】本题考查几何概型概率的求法,借助圆这个载体,突出了几何概型的基本运算能力,因用到圆的几何性质及面积的割补思想,属于中等难度.二、填空题13.过椭圆+=1(a >b >0)的左焦点F 1作x 轴的垂线交椭圆于点P ,F 2为右焦点,若∠F 1PF 2=60°,则椭圆的离心率为 . 14.函数f (x )=2a x+1﹣3(a >0,且a ≠1)的图象经过的定点坐标是 .15.已知f (x+1)=f (x ﹣1),f (x )=f (2﹣x ),方程f (x )=0在[0,1]内只有一个根x=,则f (x )=0在区间[0,2016]内根的个数 .16.已知一个动圆与圆C :(x+4)2+y 2=100相内切,且过点A (4,0),则动圆圆心的轨迹方程 .17.在△ABC 中,若角A为锐角,且=(2,3),=(3,m ),则实数m 的取值范围是 .18.如图是一个正方体的展开图,在原正方体中直线AB 与CD 的位置关系是 .三、解答题19.(本小题满分12分)某市拟定2016年城市建设三项重点工程,该市一大型城建公司准备参加这,,A B C三个工程的竞标,假设这三个工程竞标成功与否相互独立,该公司对三项重点工程竞标成功的概率分,,A B C 别为,,,已知三项工程都竞标成功的概率为,至少有一项工程竞标成功的概率为.a b 14()a b 12434(1)求与的值;a b (2)公司准备对该公司参加三个项目的竞标团队进行奖励,项目竞标成功奖励2万元,项目竞,,A B C A B 标成功奖励4万元,项目竞标成功奖励6万元,求竞标团队获得奖励金额的分布列与数学期望.C 【命题意图】本题考查相互独立事件、离散型随机变量分布列与期望等基础知识,意在考查学生的运算求解能力、审读能力、获取数据信息的能力,以及方程思想与分类讨论思想的应用.20.(本小题满分12分)某旅行社组织了100人旅游散团,其年龄均在岁间,旅游途中导游发现该[10,60]旅游散团人人都会使用微信,所有团员的年龄结构按分成5组,分[10,20),[20,30),[30,40),[40,50),[50,60]别记为,其频率分布直方图如下图所示.,,,,A B C D E(Ⅰ)根据频率分布直方图,估计该旅游散团团员的平均年龄;(Ⅱ)该团导游首先在三组中用分层抽样的方法抽取了名团员负责全团协调,然后从这6名团员中,,C D E 6随机选出2名团员为主要协调负责人,求选出的2名团员均来自组的概率.C21.在平面直角坐标系中,以坐标原点为极点,x轴非负半轴为极轴建立极坐标系.已知直线l过点P(1,0),斜率为,曲线C:ρ=ρcos2θ+8cosθ.(Ⅰ)写出直线l的一个参数方程及曲线C的直角坐标方程;(Ⅱ)若直线l与曲线C交于A,B两点,求|PA|•|PB|的值.22.已知函数f(x)=ax2+2x﹣lnx(a∈R).(Ⅰ)若a=4,求函数f(x)的极值;(Ⅱ)若f′(x)在(0,1)有唯一的零点x0,求a的取值范围;(Ⅲ)若a∈(﹣,0),设g(x)=a(1﹣x)2﹣2x﹣1﹣ln(1﹣x),求证:g(x)在(0,1)内有唯一的零点x1,且对(Ⅱ)中的x0,满足x0+x1>1.23.已知数列{a n}满足a1=﹣1,a n+1=(n∈N*).(Ⅰ)证明:数列{+}是等比数列;(Ⅱ)令b n=,数列{b n}的前n项和为S n.①证明:b n+1+b n+2+…+b2n<②证明:当n≥2时,S n2>2(++…+)24.已知f(x)=log3(1+x)﹣log3(1﹣x).(1)判断函数f(x)的奇偶性,并加以证明;(2)已知函数g(x)=log,当x∈[,]时,不等式f(x)≥g(x)有解,求k的取值范围.城区民族中学2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1.【答案】A【解析】考点:三角函数的图象性质.2.【答案】D【解析】解:∵f(1)=lg1=0,∴当x≤0时,函数f(x)没有零点,故﹣2x+a>0或﹣2x+a<0在(﹣∞,0]上恒成立,即a>2x,或a<2x在(﹣∞,0]上恒成立,故a>1或a≤0;故选D.【点评】本题考查了分段函数的应用,函数零点与方程的关系应用及恒成立问题,属于基础题.3.【答案】C【解析】解:对于A,直线m∥平面α,直线n⊂α内,则m与n可能平行,可能异面,故不正确;对于B,如果平面α内的两条相交直线都平行于平面β,那么平面α∥平面β,故不正确;对于C,根据线面垂直的判定定理可得正确;对于D,如果平面α⊥平面β,任取直线m⊂α,那么可能m⊥β,也可能m和β斜交,;故选:C.【点评】本题主要考查命题的真假判断与应用,考查了空间中直线与平面之间的位置关系、平面与平面之间的位置关系,同时考查了推理能力,属于中档题.4.【答案】C【解析】考点:平面图形的直观图.5.【答案】B【解析】解:函数的定义域为(0,+∞),易知函数在(0,+∞)上单调递增,∵f(2)=log32﹣1<0,f(3)=log33﹣>0,∴函数f(x)的零点一定在区间(2,3),故选:B.【点评】本题考查函数的单调性,考查零点存在定理,属于基础题.6.【答案】A【解析】【知识点】空间几何体的表面积与体积【试题解析】由题知:是直角三角形,又,所以。
富民县高级中学2018-2019学年上学期高二数学12月月考试题含解析班级__________ 座号_____ 姓名__________ 分数__________ 一、选择题1.如果点P在平面区域220,210,20x yx yx y-+≥⎧⎪-+≤⎨⎪+-≤⎩上,点Q在曲线22(2)1x y++=上,那么||PQ的最小值为()A1B1-C. 1D12.复数i﹣1(i是虚数单位)的虚部是()A.1 B.﹣1 C.i D.﹣i 3.下面各组函数中为相同函数的是()A.f(x)=,g(x)=x﹣1 B.f(x)=,g(x)=C.f(x)=ln e x与g(x)=e lnx D.f(x)=(x﹣1)0与g(x)=4.为了得到函数的图象,只需把函数y=sin3x的图象()A.向右平移个单位长度B.向左平移个单位长度C.向右平移个单位长度D.向左平移个单位长度5.已知直线a平面α,直线b⊆平面α,则()A.a b B.与异面C.与相交D.与无公共点6.如图,AB是半圆O的直径,AB=2,点P从A点沿半圆弧运动至B点,设∠AOP=x,将动点P到A,B 两点的距离之和表示为x的函数f(x),则y=f(x)的图象大致为()是sinA=的( )7. 在△ABC 中,sinB+sin (A ﹣B )=sinC A .充分非必要条件B .必要非充分条件C .充要条件D .既不充分也非必要条件8. 下列函数中,既是偶函数,又在区间(0,+∞)上单调递减的是( ) A .B .y=x 2C .y=﹣x|x|D .y=x ﹣29. 已知集合,则A0或 B0或3C1或D1或310.满足集合M ⊆{1,2,3,4},且M ∩{1,2,4}={1,4}的集合M 的个数为( ) A .1B .2C .3D .411.函数2-21y x x =-,[0,3]x ∈的值域为( ) A. B. C. D.12.如果对定义在R 上的函数)(x f ,对任意n m ≠,均有0)()()()(>--+m nf n mf n nf m mf 成立,则称 函数)(x f 为“H 函数”.给出下列函数: ①()ln25x f x =-;②34)(3++-=x x x f ;③)cos (sin 222)(x x x x f --=;④⎩⎨⎧=≠=0,00|,|ln )(x x x x f .其中函数是“H 函数”的个数为( ) A .1 B .2 C .3 D . 4【命题意图】本题考查学生的知识迁移能力,对函数的单调性定义能从不同角度来刻画,对于较复杂函数也要有利用导数研究函数单调性的能力,由于是给定信息题,因此本题灵活性强,难度大.二、填空题13.若“x <a ”是“x 2﹣2x ﹣3≥0”的充分不必要条件,则a 的取值范围为 .14.【2017-2018学年度第一学期如皋市高三年级第一次联考】已知函数()ln 4f x x x =+-的零点在区间()1k k +,内,则正整数k 的值为________.15.已知α为钝角,sin (+α)=,则sin (﹣α)= .16.定义:[x](x ∈R )表示不超过x 的最大整数.例如[1.5]=1,[﹣0.5]=﹣1.给出下列结论: ①函数y=[sinx]是奇函数;②函数y=[sinx]是周期为2π的周期函数; ③函数y=[sinx]﹣cosx 不存在零点;④函数y=[sinx]+[cosx]的值域是{﹣2,﹣1,0,1}.其中正确的是 .(填上所有正确命题的编号) 17.已知定义在R 上的奇函数()f x 满足(4)()f x f x +=,且(0,2)x ∈时2()1f x x =+,则(7)f 的值为 ▲ .18.已知=1﹣bi ,其中a ,b 是实数,i 是虚数单位,则|a ﹣bi|= .三、解答题19.(本题满分12分) 已知数列{a n }满足a 1=1,a n+1=2a n +1. (1)求数列{a n }的通项公式;(2)令b n =n (a n +1),求数列{b n }的前n 项和T n .20.已知复数z=m (m ﹣1)+(m 2+2m ﹣3)i (m ∈R ) (1)若z 是实数,求m 的值; (2)若z 是纯虚数,求m 的值;(3)若在复平面C 内,z 所对应的点在第四象限,求m 的取值范围.21.【徐州市2018届高三上学期期中】如图,有一块半圆形空地,开发商计划建一个矩形游泳池及其矩形附属设施,并将剩余空地进行绿化,园林局要求绿化面积应最大化.其中半圆的圆心为,半径为,矩形的一边在直径上,点、、、在圆周上,、在边上,且,设.(1)记游泳池及其附属设施的占地面积为,求的表达式;(2)怎样设计才能符合园林局的要求?22.(本小题满分12分)某校为了解高一新生对文理科的选择,对1 000名高一新生发放文理科选择调查表,统计知,有600名学生选择理科,400名学生选择文科.分别从选择理科和文科的学生随机各抽取20名学生的数学成绩得如下累计表:(1率分布直方图.(2)根据你绘制的频率分布直方图,估计意向选择理科的学生的数学成绩的中位数与平均分.23.(本小题满分12分)某超市销售一种蔬菜,根据以往情况,得到每天销售量的频率分布直方图如下:(Ⅰ)求频率分布直方图中的a 的值,并估计每天销售量的中位数;(Ⅱ)这种蔬菜每天进货当天必须销售,否则只能作为垃圾处理.每售出1千克蔬菜获利4元,未售出的蔬菜,每千克亏损2元.假设同一组中的每个数据可用该组区间的中点值代替,估计当超市每天的进货量为75千克时获利的平均值.0.02a频率组距千克A B-到它的距离相等的直线1,22,3,0,5P的直线,且使()()24.(本小题满分10分)求经过点()方程.富民县高级中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案) 一、选择题1. 【答案】A 【解析】试题分析:根据约束条件画出可行域||PQ Z =表示圆上的点到可行域的距离,当在点A 处时,求出圆心到可 行域的距离内的点的最小距离5,∴当在点A 处最小, ||PQ 最小值为15-,因此,本题正确答案是15-.考点:线性规划求最值.2. 【答案】A【解析】解:由复数虚部的定义知,i ﹣1的虚部是1, 故选A .【点评】该题考查复数的基本概念,属基础题.3. 【答案】D【解析】解:对于A :f (x )=|x ﹣1|,g (x )=x ﹣1,表达式不同,不是相同函数;对于B :f (x )的定义域是:{x|x ≥1或x ≤﹣1},g (x )的定义域是{x}x ≥1},定义域不同,不是相同函数; 对于C :f (x )的定义域是R ,g (x )的定义域是{x|x >0},定义域不同,不是相同函数;对于D :f (x )=1,g (x )=1,定义域都是{x|x ≠1},是相同函数;故选:D .【点评】本题考查了判断两个函数是否是同一函数问题,考查指数函数、对数函数的性质,是一道基础题.4.【答案】A【解析】解:把函数y=sin3x的图象向右平移个单位长度,可得y=sin3(x﹣)=sin(3x﹣)的图象,故选:A.【点评】本题主要考查函数y=Asin(ωx+φ)的图象变换规律,属于基础题.5.【答案】D【解析】试题分析:因为直线a平面α,直线b⊆平面α,所以//a b或与异面,故选D.考点:平面的基本性质及推论.6.【答案】【解析】选B.取AP的中点M,则P A=2AM=2OA sin∠AOM=2sin x2,PB=2OM=2OA·cos∠AOM=2cos x2,∴y=f(x)=P A+PB=2sin x2+2cos x2=22sin(x2+π4),x∈[0,π],根据解析式可知,只有B选项符合要求,故选B.7.【答案】A【解析】解:∵sinB+sin(A﹣B)=sinC=sin(A+B),∴sinB+sinAcosB﹣cosAsinB=sinAcosB+cosAsinB,∴sinB=2cosAsinB,∵sinB≠0,∴cosA=,∴A=,∴sinA=,当sinA=,∴A=或A=,故在△ABC中,sinB+sin(A﹣B)=sinC是sinA=的充分非必要条件,故选:A8. 【答案】D 【解析】解:函数为非奇非偶函数,不满足条件;函数y=x 2为偶函数,但在区间(0,+∞)上单调递增,不满足条件; 函数y=﹣x|x|为奇函数,不满足条件;函数y=x ﹣2为偶函数,在区间(0,+∞)上单调递减,满足条件; 故选:D【点评】本题考查的知识点是函数的单调性与函数的奇偶性,是函数图象和性质的综合应用,难度不大,属于基础题.9. 【答案】B【解析】,,故或,解得或或,又根据集合元素的互异性,所以或。
富宁县民族中学2018-2019学年高二上学期数学期末模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 一个四边形的斜二侧直观图是一个底角为45°,腰和上底的长均为1的等腰梯形,那么原四边形的面积是()A .2+B .1+C .D .2. 已知x ,y ∈R ,且,则存在θ∈R ,使得xcos θ+ysin θ+1=0成立的P (x ,y )构成的区域面积为()A .4﹣B .4﹣C .D . +3. 冶炼某种金属可以用旧设备和改造后的新设备,为了检验用这两种设备生产的产品中所含杂质的关系,调查结果如下表所示.杂质高杂质低旧设备37121新设备22202根据以上数据,则()A .含杂质的高低与设备改造有关B .含杂质的高低与设备改造无关C .设备是否改造决定含杂质的高低D .以上答案都不对4. 已知f (x )=x 3﹣3x+m ,在区间[0,2]上任取三个数a ,b ,c ,均存在以f (a ),f (b ),f (c )为边长的三角形,则m 的取值范围是()A .m >2B .m >4C .m >6D .m >85. 自圆:外一点引该圆的一条切线,切点为,切线的长度等于点到C 22(3)(4)4x y -++=(,)P x y Q P 原点的长,则点轨迹方程为()O P A . B . C . D .86210x y --=86210x y +-=68210x y +-=68210x y --=【命题意图】本题考查直线与圆的位置关系、点到直线的距离,意在考查逻辑思维能力、转化能力、运算求解能力.6. 如图是某几何体的三视图,则该几何体任意两个顶点间的距离的最大值为()A .4B .5C .D .7. 已知函数f (x )=x 2﹣6x+7,x ∈(2,5]的值域是()A .(﹣1,2]B .(﹣2,2]C .[﹣2,2]D .[﹣2,﹣1)8. 已知=(2,﹣3,1),=(4,2,x ),且⊥,则实数x 的值是()A .﹣2B .2C .﹣D .9. 函数f (x )=1﹣xlnx 的零点所在区间是()A .(0,)B .(,1)C .(1,2)D .(2,3)10.已知为的三个角所对的边,若,则,,a b c ABC ∆,,A B C 3cos (13cos )b C c B =-sin :sin C A =( )A .2︰3B .4︰3C .3︰1D .3︰2【命题意图】本题考查正弦定理、余弦定理,意在考查转化能力、运算求解能力.11.若函数f (x )=log a (2x 2+x )(a >0且a ≠1)在区间(0,)内恒有f (x )>0,则f (x )的单调递增区间为( )A .(﹣∞,)B .(﹣,+∞)C .(0,+∞)D .(﹣∞,﹣)12.给出下列各函数值:①sin100°;②cos (﹣100°);③tan (﹣100°);④.其中符号为负的是()A .①B .②C .③D .④二、填空题13.如图,在棱长为的正方体中,点分别是棱的中点,是侧1111D ABC A B C D -,E F 1,BC CC P 面内一点,若平行于平面,则线段长度的取值范围是_________.11BCC B 1AP AEF 1A P14.将一个半径为3和两个半径为1的球完全装入底面边长为6的正四棱柱容器中,则正四棱柱容器的高的最小值为 .15.等差数列中,,公差,则使前项和取得最大值的自然数是________.{}n a 39||||a a =0d <n S 16.已知a ,b 是互异的负数,A 是a ,b 的等差中项,G 是a ,b 的等比中项,则A 与G 的大小关系为 .17.曲线y =x 2+3x 在点(-1,-2)处的切线与曲线y =ax +ln x 相切,则a =________.18.= . 三、解答题19.已知函数f (x )=|2x ﹣1|+|2x+a|,g (x )=x+3.(1)当a=2时,求不等式f (x )<g (x )的解集;(2)设a >,且当x ∈[,a]时,f (x )≤g (x ),求a 的取值范围.20.在四棱锥E ﹣ABCD 中,底面ABCD 是边长为1的正方形,AC 与BD 交于点O ,EC ⊥底面ABCD ,F 为BE 的中点.(Ⅰ)求证:DE ∥平面ACF ;(Ⅱ)求证:BD ⊥AE .21.(本小题满分12分)已知直三棱柱中,上底面是斜边为的直角三角形,分别是的中点.111C B A ABC -AC F E 、11AC B A 、(1)求证:平面;//EF ABC (2)求证:平面平面.⊥AEF B B AA 1122.某校高一(1)班的一次数学测试成绩的茎叶图和频率分布直方图都受到不同程度的污损,可见部分如图.(Ⅰ)求分数在[50,60)的频率及全班人数;(Ⅱ)求分数在[80,90)之间的频数,并计算频率分布直方图中[80,90)间矩形的高;(Ⅲ)若要从分数在[80,100)之间的试卷中任取两份分析学生失分情况,求在抽取的试卷中,至少有一份分数在[90,100)之间的概率.23.某民营企业生产A,B两种产品,根据市场调查和预测,A产品的利润与投资成正比,其关系如图1,B 产品的利润与投资的算术平方根成正比,其关系如图2(注:利润与投资单位是万元)(1)分别将A,B两种产品的利润表示为投资的函数,并写出它们的函数关系式.(2)该企业已筹集到10万元资金,并全部投入A,B两种产品的生产,问:怎样分配这10万元投资,才能使企业获得最大利润,其最大利润约为多少万元.(精确到1万元).24.已知集合A={x|1<x<3},集合B={x|2m<x<1﹣m}.(1)若A⊆B,求实数m的取值范围;(2)若A∩B=∅,求实数m的取值范围.富宁县民族中学2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1.【答案】A【解析】解:∵四边形的斜二侧直观图是一个底角为45°,腰和上底的长均为1的等腰梯形,∴原四边形为直角梯形,且CD=C'D'=1,AB=O'B=,高AD=20'D'=2,∴直角梯形ABCD的面积为,故选:A.2.【答案】A【解析】解:作出不等式组对应的平面区域如图:对应的区域为三角形OAB,若存在θ∈R,使得xcosθ+ysinθ+1=0成立,则(cosθ+sinθ)=﹣1,令sinα=,则cosθ=,则方程等价为sin(α+θ)=﹣1,即sin(α+θ)=﹣,∵存在θ∈R,使得xcosθ+ysinθ+1=0成立,∴|﹣|≤1,即x2+y2≥1,则对应的区域为单位圆的外部,由,解得,即B(2,2),A(4,0),则三角形OAB的面积S=×=4,直线y=x的倾斜角为,则∠AOB=,即扇形的面积为,则P(x,y)构成的区域面积为S=4﹣,故选:A【点评】本题主要考查线性规划的应用,根据条件作出对应的图象,求出对应的面积是解决本题的关键.综合性较强.3.【答案】A【解析】独立性检验的应用.【专题】计算题;概率与统计.【分析】根据所给的数据写出列联表,把列联表的数据代入观测值的公式,求出两个变量之间的观测值,把观测值同临界值表中的数据进行比较,得到有99%的把握认为含杂质的高低与设备是否改造是有关的.【解答】解:由已知数据得到如下2×2列联表杂质高杂质低合计旧设备37121158新设备22202224合计59323382由公式κ2=≈13.11,由于13.11>6.635,故有99%的把握认为含杂质的高低与设备是否改造是有关的.【点评】本题考查独立性检验,考查写出列联表,这是一个基础题.4. 【答案】C【解析】解:由f ′(x )=3x 2﹣3=3(x+1)(x ﹣1)=0得到x 1=1,x 2=﹣1(舍去)∵函数的定义域为[0,2]∴函数在(0,1)上f ′(x )<0,(1,2)上f ′(x )>0,∴函数f (x )在区间(0,1)单调递减,在区间(1,2)单调递增,则f (x )min =f (1)=m ﹣2,f (x )max =f (2)=m+2,f (0)=m由题意知,f (1)=m ﹣2>0 ①;f (1)+f (1)>f (2),即﹣4+2m >2+m ②由①②得到m >6为所求.故选C【点评】本题以函数为载体,考查构成三角形的条件,解题的关键是求出函数在区间[0,2]上的最小值与最大值5. 【答案】D【解析】由切线性质知,所以,则由,得,PQ CQ ⊥222PQ PC QC =-PQ PO =,化简得,即点的轨迹方程,故选D ,2222(3)(4)4x y x y -++-=+68210x y --=P 6. 【答案】D【解析】试题分析:因为根据几何体的三视图可得,几何体为下图相互垂直,面面,,AD AB AG AEFG ⊥,根据几何体的性质得:,//,3,1ABCDE BC AE AB AD AG DE ====AC GC ==,,所以最长为.GE ===4,BG AD EF CE ====GC =考点:几何体的三视图及几何体的结构特征.7. 【答案】C【解析】解:由f (x )=x 2﹣6x+7=(x ﹣3)2﹣2,x ∈(2,5].∴当x=3时,f (x )min =﹣2.当x=5时,.∴函数f (x )=x 2﹣6x+7,x ∈(2,5]的值域是[﹣2,2].故选:C .8. 【答案】A【解析】解:∵ =(2,﹣3,1),=(4,2,x ),且⊥,∴=0,∴8﹣6+x=0;∴x=﹣2;故选A .【点评】本题考查向量的数量积判断向量的共线与垂直,解题的关键是将垂直关系转化为两向量的内积为0,建立关于x 的方程求出x 的值.9. 【答案】C【解析】解:∵f (1)=1>0,f (2)=1﹣2ln2=ln <0,∴函数f (x )=1﹣xlnx 的零点所在区间是(1,2).故选:C .【点评】本题主要考查函数零点区间的判断,判断的主要方法是利用根的存在性定理,判断函数在给定区间端点处的符号是否相反.10.【答案】C【解析】由已知等式,得,由正弦定理,得,则3cos 3cos c b C c B =+sin 3(sin cos sin cos )C B C C B =+,所以,故选C .sin 3sin()3sin C B C A =+=sin :sin 3:1C A =11.【答案】D【解析】解:当x ∈(0,)时,2x 2+x ∈(0,1),∴0<a <1,∵函数f (x )=log a (2x 2+x )(a >0,a ≠1)由f (x )=log a t 和t=2x 2+x 复合而成,0<a <1时,f (x )=log a t 在(0,+∞)上是减函数,所以只要求t=2x 2+x >0的单调递减区间.t=2x 2+x >0的单调递减区间为(﹣∞,﹣),∴f (x )的单调增区间为(﹣∞,﹣),故选:D.【点评】本题考查复合函数的单调区间问题,复合函数的单调区间复合“同增异减”原则,在解题中勿忘真数大于0条件.12.【答案】B【解析】解::①sin100°>0,②cos(﹣100°)=cos100°<0,③tan(﹣100°)=﹣tan100>0,④∵sin>0,cosπ=﹣1,tan<0,∴>0,其中符号为负的是②,故选:B.【点评】本题主要考查三角函数值的符号的判断,判断角所在的象限是解决本题的关键,比较基础.二、填空题13.【答案】【解析】考点:点、线、面的距离问题.【方法点晴】本题主要考查了点、线、面的距离问题,其中解答中涉及到直线与平面平行的判定与性质,三角形的判定以及直角三角形的勾股定理等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力,同时考查了学生空间想象能力的训练,试题有一定的难度,属于中档试题.14.【答案】 4+ .【解析】解:作出正四棱柱的对角面如图,∵底面边长为6,∴BC=,球O的半径为3,球O1的半径为1,则,在Rt △OMO 1中,OO 1=4,,∴=,∴正四棱柱容器的高的最小值为4+.故答案为:4+.【点评】本题考查球的体积和表面积,考查空间想象能力和思维能力,是中档题.15.【答案】或【解析】试题分析:因为,且,所以,所以,所以,所以0d <39||||a a =39a a =-1128a d a d +=--150a d +=,所以,所以取得最大值时的自然数是或.60a =0n a >()15n ≤≤n S 考点:等差数列的性质.【方法点晴】本题主要考查了等差数列的性质,其中解答中涉及到等差数列的通项公式以及数列的单调性等知识点的应用,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力,属于中档试题,本题的解答中,根据数列的单调性,得出,所以是解答的关键,同时结论中自然数是或是结论的一个150a d +=60a =易错点.16.【答案】 A <G .【解析】解:由题意可得A=,G=±,由基本不等式可得A ≥G ,当且仅当a=b 取等号,由题意a ,b 是互异的负数,故A <G .故答案是:A <G .【点评】本题考查等差中项和等比中项,涉及基本不等式的应用,属基础题.17.【答案】【解析】由y =x 2+3x 得y ′=2x +3,∴当x =-1时,y ′=1,则曲线y =x 2+3x 在点(-1,-2)处的切线方程为y +2=x +1,即y =x -1,设直线y =x -1与曲线y =ax +ln x 相切于点(x 0,y 0),由y =ax +ln x 得y ′=a +(x >0),1x ∴,解之得x 0=1,y 0=0,a =0.{a +1x 0=1y 0=x 0-1y 0=ax 0+ln x 0)∴a =0.答案:018.【答案】 2 .【解析】解:=2+lg100﹣2=2+2﹣2=2,故答案为:2.【点评】本题考查了对数的运算性质,属于基础题. 三、解答题19.【答案】【解析】解:(1)由|2x ﹣1|+|2x+2|<x+3,得:①得x ∈∅;②得0<x ≤;③得…综上:不等式f (x )<g (x )的解集为…(2)∵a >,x ∈[,a],∴f (x )=4x+a ﹣1…由f (x )≤g (x )得:3x ≤4﹣a ,即x ≤.依题意:[,a]⊆(﹣∞,]∴a ≤即a ≤1…∴a 的取值范围是(,1]…20.【答案】【解析】【分析】(Ⅰ)连接FO ,则OF 为△BDE 的中位线,从而DE ∥OF ,由此能证明DE ∥平面ACF .(Ⅱ)推导出BD ⊥AC ,EC ⊥BD ,从而BD ⊥平面ACE ,由此能证明BD ⊥AE .【解答】证明:(Ⅰ)连接FO ,∵底面ABCD 是正方形,且O 为对角线AC 和BD 交点,∴O 为BD 的中点,又∵F 为BE 中点,∴OF 为△BDE 的中位线,即DE ∥OF ,又OF ⊂平面ACF ,DE ⊄平面ACF ,∴DE ∥平面ACF .(Ⅱ)∵底面ABCD 为正方形,∴BD ⊥AC ,∵EC ⊥平面ABCD ,∴EC ⊥BD ,∴BD ⊥平面ACE ,∴BD ⊥AE .21.【答案】(1)详见解析;(2)详见解析.【解析】试题解析:证明:(1)连接,∵直三棱柱中,四边形是矩形,C A 1111C B A ABC C C AA 11故点在上,且为的中点,F C A 1F C A 1在中,∵分别是的中点,∴.BC A 1∆F E 、11AC B A 、BC EF //又平面,平面,∴平面.⊄EF ABC ⊂BC ABC //EF ABC考点:1.线面平行的判定定理;2.面面垂直的判定定理.22.【答案】【解析】解:(Ⅰ)分数在[50,60)的频率为0.008×10=0.08,由茎叶图知:分数在[50,60)之间的频数为2,∴全班人数为.(Ⅱ)分数在[80,90)之间的频数为25﹣22=3;频率分布直方图中[80,90)间的矩形的高为.(Ⅲ)将[80,90)之间的3个分数编号为a 1,a 2,a 3,[90,100)之间的2个分数编号为b 1,b 2,在[80,100)之间的试卷中任取两份的基本事件为:(a 1,a 2),(a 1,a 3),(a 1,b 1),(a 1,b 2),(a 2,a 3),(a 2,b 1),(a 2,b 2),(a 3,b 1),(a 3,b 2),(b 1,b 2)共10个,其中,至少有一个在[90,100)之间的基本事件有7个,故至少有一份分数在[90,100)之间的概率是. 23.【答案】【解析】解:(1)投资为x 万元,A 产品的利润为f (x )万元,B 产品的利润为g (x )万元,由题设f (x )=k 1x ,g (x )=k 2,(k 1,k 2≠0;x ≥0)由图知f (1)=,∴k 1=又g(4)=,∴k2=从而f(x)=,g(x)=(x≥0)(2)设A产品投入x万元,则B产品投入10﹣x万元,设企业的利润为y万元y=f(x)+g(10﹣x)=,(0≤x≤10),令,∴(0≤t≤)当t=,y max≈4,此时x=3.75∴当A产品投入3.75万元,B产品投入6.25万元时,企业获得最大利润约为4万元.【点评】本题考查利用待定系数法求函数的解析式、考查将实际问题的最值问题转化为函数的最值问题.解题的关键是换元,利用二次函数的求最值的方法求解.24.【答案】【解析】解:(1)由A⊆B知:,得m≤﹣2,即实数m的取值范围为(﹣∞,﹣2];(2)由A∩B=∅,得:①若2m≥1﹣m即m≥时,B=∅,符合题意;②若2m<1﹣m即m<时,需或,得0≤m<或∅,即0≤m<,综上知m≥0.即实数m的取值范围为[0,+∞).【点评】本题主要考查集合的包含关系判断及应用,交集及其运算.解答(2)题时要分类讨论,以防错解或漏解.。
富民县民族中学2018-2019学年高二上学期数学期末模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 已知双曲线kx 2﹣y 2=1(k >0)的一条渐近线与直线2x+y ﹣3=0垂直,则双曲线的离心率是( )A .B .C .4D .2. 已知定义在R 上的函数f (x )满足f (x )=,且f (x )=f (x+2),g (x )=,则方程g (x )=f (x )﹣g (x )在区间[﹣3,7]上的所有零点之和为( )A .12B .11C .10D .93. 设是等差数列的前项和,若,则( )n S {}n a 5359a a =95SS =A .1B .2C .3D .44. 若满足约束条件,则当取最大值时,的值为( )y x ,⎪⎪⎩⎪⎪⎨⎧≥≤-+≥+-0033033y y x y x 31++x y y x +A . B . C . D .1-3-35. 已知△ABC 是锐角三角形,则点P (cosC ﹣sinA ,sinA ﹣cosB )在( )A .第一象限B .第二象限C .第三象限D .第四象限6. 高考临近,学校为丰富学生生活,缓解高考压力,特举办一场高三学生队与学校校队的男子篮球比赛.由于爱好者众多,高三学生队队员指定由5班的6人、16班的8人、33班的10人按分层抽样构成一个12人的篮球队.首发要求每个班至少1人,至多2人,则首发方案数为( )A .720B .270C .390D .3007. 已知A={﹣4,2a ﹣1,a 2},B={a ﹣5,1﹣a ,9},且A ∩B={9},则a 的值是( )A .a=3B .a=﹣3C .a=±3D .a=5或a=±38. 如图甲所示, 三棱锥 的高 ,分别在P ABC -8,3,30PO AC BC ACB ===∠=,M N BC和上,且,图乙的四个图象大致描绘了三棱锥的体积与PO (),203CM x PN x x ==∈(,N AMC -y 的变化关系,其中正确的是()A .B . C. D .1111]9. 与椭圆有公共焦点,且离心率的双曲线方程为()A .B .C .D .10.已知直线的参数方程为(为参数,为直线的倾斜角),以原点O 为极点,轴l 1cos sin x t y t αα=+⎧⎪⎨=+⎪⎩t αl x 正半轴为极轴建立极坐标系,圆的极坐标方程为,直线与圆的两个交点为,当C 4sin(3πρθ=+l C ,A B 最小时,的值为( )||AB αA .B .C .D .4πα=3πα=34πα=23πα=11.如图,为正方体,下面结论:① 平面;② ;③ 平1111D C B A ABCD -//BD 11D CB BD AC ⊥1⊥1AC 面.其中正确结论的个数是()11DCB A . B . C . D .12.某高二(1)班一次阶段考试数学成绩的茎叶图和频率分布直方图可见部分如图,根据图中的信息,可确定被抽测的人数及分数在内的人数分别为()[]90,100A .20,2B .24,4C .25,2D .25,4二、填空题13.设MP 和OM 分别是角的正弦线和余弦线,则给出的以下不等式:①MP <OM <0;②OM <0<MP ;③OM <MP <0;④MP <0<OM ,其中正确的是 (把所有正确的序号都填上).14.已知点A (2,0),点B (0,3),点C 在圆x 2+y 2=1上,当△ABC 的面积最小时,点C 的坐标为 . 15.已知变量x ,y ,满足,则z=log 4(2x+y+4)的最大值为 .16.某公司对140名新员工进行培训,新员工中男员工有80人,女员工有60人,培训结束后用分层抽样的方法调查培训结果. 已知男员工抽取了16人,则女员工应抽取人数为 .17.定义:[x](x ∈R )表示不超过x 的最大整数.例如[1.5]=1,[﹣0.5]=﹣1.给出下列结论:①函数y=[sinx]是奇函数;②函数y=[sinx]是周期为2π的周期函数;③函数y=[sinx]﹣cosx 不存在零点;④函数y=[sinx]+[cosx]的值域是{﹣2,﹣1,0,1}.其中正确的是 .(填上所有正确命题的编号) 18.如果椭圆+=1弦被点A (1,1)平分,那么这条弦所在的直线方程是 .三、解答题19.(本小题满分12分)已知圆,直线()()22:1225C x y -+-=.()()():211740L m x m y m m R +++--=∈(1)证明: 无论取什么实数,与圆恒交于两点;m LC L(2)求直线被圆截得的弦长最小时的方程.20.已知函数f(x)=lg(x2﹣5x+6)和的定义域分别是集合A、B,(1)求集合A,B;(2)求集合A∪B,A∩B.21.已知三次函数f(x)的导函数f′(x)=3x2﹣3ax,f(0)=b,a、b为实数.(1)若曲线y=f(x)在点(a+1,f(a+1))处切线的斜率为12,求a的值;(2)若f(x)在区间[﹣1,1]上的最小值、最大值分别为﹣2、1,且1<a<2,求函数f(x)的解析式.22.已知p:“直线x+y﹣m=0与圆(x﹣1)2+y2=1相交”;q:“方程x2﹣x+m﹣4=0的两根异号”.若p∨q为真,¬p 为真,求实数m的取值范围.23.在中已知,,试判断的形状.ABC ∆2a b c =+2sin sin sin A B C =ABC ∆24.设函数f (x )=e mx +x 2﹣mx .(1)证明:f (x )在(﹣∞,0)单调递减,在(0,+∞)单调递增;(2)若对于任意x 1,x 2∈,都有|f (x 1)﹣f (x 2)|≤e ﹣1,求m 的取值范围. 富民县民族中学2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1.【答案】A【解析】解:由题意双曲线kx2﹣y2=1的一条渐近线与直线2x+y+1=0垂直,可得渐近线的斜率为,又由于双曲线的渐近线方程为y=±x故=,∴k=,∴可得a=2,b=1,c=,由此得双曲线的离心率为,故选:A.【点评】本题考查直线与圆锥曲线的关系,解题的关键是理解一条渐近线与直线2x+y+1=0垂直,由此关系求k,熟练掌握双曲线的性质是求解本题的知识保证.2.【答案】B【解析】解:∵f(x)=f(x+2),∴函数f(x)为周期为2的周期函数,函数g(x)=,其图象关于点(2,3)对称,如图,函数f(x)的图象也关于点(2,3)对称,函数f(x)与g(x)在[﹣3,7]上的交点也关于(2,3)对称,设A,B,C,D的横坐标分别为a,b,c,d,则a+d=4,b+c=4,由图象知另一交点横坐标为3,故两图象在[﹣3,7]上的交点的横坐标之和为4+4+3=11,即函数y=f(x)﹣g(x)在[﹣3,7]上的所有零点之和为11.故选:B .【点评】本题考查函数的周期性,函数的零点的概念,以及数形结合的思想方法.属于中档题. 3. 【答案】A 【解析】1111]试题分析:.故选A .111]199515539()9215()52a a S a a a S a +===+考点:等差数列的前项和.4. 【答案】D 【解析】考点:简单线性规划.5.【答案】B【解析】解:∵△ABC是锐角三角形,∴A+B>,∴A>﹣B,∴sinA>sin(﹣B)=cosB,∴sinA﹣cosB>0,同理可得sinA﹣cosC>0,∴点P在第二象限.故选:B6.【答案】C解析:高三学生队队员指定由5班的6人、16班的8人、33班的10人按分层抽样构成一个12人的篮球队.各个班的人数有5班的3人、16班的4人、33班的5人,首发共有1、2、2;2、1、2;2、2、1类型;所求方案有:++=390.故选:C.7.【答案】B【解析】解:∵A={﹣4,2a﹣1,a2},B={a﹣5,1﹣a,9},且A∩B={9},∴2a﹣1=9或a2=9,当2a﹣1=9时,a=5,A∩B={4,9},不符合题意;当a2=9时,a=±3,若a=3,集合B违背互异性;∴a=﹣3.故选:B.【点评】本题考查了交集及其运算,考查了集合中元素的特性,是基础题.8.【答案】A【解析】考点:几何体的体积与函数的图象.【方法点晴】本题主要考查了空间几何体的体积与函数的图象之间的关系,其中解答中涉及到三棱锥的体积公式、一元二次函数的图象与性质等知识点的考查,本题解答的关键是通过三棱锥的体积公式得出二次函数的解析式,利用二次函数的图象与性质得到函数的图象,着重考查了学生分析问题和解答问题的能力,是一道好题,题目新颖,属于中档试题.9.【答案】A【解析】解:由于椭圆的标准方程为:则c2=132﹣122=25则c=5又∵双曲线的离心率∴a=4,b=3又因为且椭圆的焦点在x轴上,∴双曲线的方程为:故选A【点评】运用待定系数法求椭圆(双曲线)的标准方程,即设法建立关于a ,b 的方程组,先定型、再定量,若位置不确定时,考虑是否两解,有时为了解题需要,椭圆方程可设为mx 2+ny 2=1(m >0,n >0,m ≠n ),双曲线方程可设为mx 2﹣ny 2=1(m >0,n >0,m ≠n ),由题目所给条件求出m ,n 即可. 10.【答案】A【解析】解析:本题考查直线的参数方程、圆的极坐标方程及其直线与圆的位置关系.在直角坐标系中,圆C的方程为,直线的普通方程为,直线过定点,∵22((1)4x y +-=l tan (1)y x α-=-l M ,∴点在圆的内部.当最小时,直线直线,,∴直线的斜率为,∴||2MC <M C ||AB l ⊥MC 1MC k =-l 1,选A .4πα=11.【答案】D 【解析】考点:1.线线,线面,面面平行关系;2.线线,线面,面面垂直关系.【方法点睛】本题考查了立体几何中的命题,属于中档题型,多项选择题是容易出错的一个题,当考察线面平行时,需证明平面外的线与平面内的线平行,则线面平行,一般可构造平行四边形,或是构造三角形的中位线,可证明线线平行,再或是证明面面平行,则线面平行,一般需在选取一点,使直线与直线外一点构成平面证明面面平行,要证明线线垂直,可转化为证明线面垂直,需做辅助线,转化为线面垂直.12.【答案】C 【解析】考点:茎叶图,频率分布直方图.二、填空题13.【答案】 ②【解析】解:由MP,OM分别为角的正弦线、余弦线,如图,∵,∴OM<0<MP.故答案为:②.【点评】本题的考点是三角函数线,考查用作图的方法比较三角函数的大小,本题是直接比较三角函数线的大小,在大多数此种类型的题中都是用三角函数线比较三个函数值的大小.14.【答案】 (,) .【解析】解:设C(a,b).则a2+b2=1,①∵点A(2,0),点B(0,3),∴直线AB的解析式为:3x+2y﹣6=0.如图,过点C作CF⊥AB于点F,欲使△ABC的面积最小,只需线段CF最短.则CF=≥,当且仅当2a=3b时,取“=”,∴a=,②联立①②求得:a=,b=,故点C的坐标为(,).故答案是:(,).【点评】本题考查了圆的标准方程、点到直线的距离公式、三角形的面积计算公式,考查了推理能力与计算能力,属于中档题.15.【答案】 【解析】解:作的可行域如图:易知可行域为一个三角形,验证知在点A(1,2)时,z1=2x+y+4取得最大值8,∴z=log4(2x+y+4)最大是,故答案为:.【点评】本题主要考查了简单的线性规划,以及利用几何意义求最值,属于基础题.16.【答案】12【解析】考点:分层抽样17.【答案】 ②③④ 【解析】解:①函数y=[sinx]是非奇非偶函数;②函数y=[sinx]的周期与y=sinx的周期相同,故是周期为2π的周期函数;③函数y=[sinx]的取值是﹣1,0,1,故y=[sinx]﹣cosx不存在零点;④函数数y=[sinx]、y=[cosx]的取值是﹣1,0,1,故y=[sinx]+[cosx]的值域是{﹣2,﹣1,0,1}.故答案为:②③④.【点评】本题考查命题的真假判断,考查新定义,正确理解新定义是关键.18.【答案】 x+4y﹣5=0 .【解析】解:设这条弦与椭圆+=1交于P(x1,y1),Q(x2,y2),由中点坐标公式知x1+x2=2,y1+y2=2,把P(x1,y1),Q(x2,y2)代入x2+4y2=36,得,①﹣②,得2(x1﹣x2)+8(y1﹣y2)=0,∴k==﹣,∴这条弦所在的直线的方程y﹣1=﹣(x﹣1),即为x+4y﹣5=0,由(1,1)在椭圆内,则所求直线方程为x+4y﹣5=0.故答案为:x+4y﹣5=0.【点评】本题考查椭圆的方程的运用,运用点差法和中点坐标和直线的斜率公式是解题的关键. 三、解答题19.【答案】(1)证明见解析;(2).250x y --=【解析】试题分析:(1)的方程整理为,列出方程组,得出直线过圆内一点,即可L ()()4270x y m x y +-++-=证明;(2)由圆心,当截得弦长最小时, 则,利用直线的点斜式方程,即可求解直线的方程.()1,2M L AM ⊥1111](2)圆心,当截得弦长最小时, 则,()1,2M L AM ⊥由得的方程即.12AM k =-L ()123y x -=-250x y --=考点:直线方程;直线与圆的位置关系.20.【答案】【解析】解:(1)由x 2﹣5x+6>0,即(x ﹣2)(x ﹣3)>0,解得:x >3或x <2,即A={x|x >3或x <2},由g (x )=,得到﹣1≥0,当x >0时,整理得:4﹣x ≥0,即x ≤4;当x <0时,整理得:4﹣x ≤0,无解,综上,不等式的解集为0<x ≤4,即B={x|0<x ≤4};(2)∵A={x|x >3或x <2},B={x|0<x ≤4},∴A ∪B=R ,A ∩B={x|0<x <2或3<x ≤4}.【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.21.【答案】【解析】解:(1)由导数的几何意义f ′(a+1)=12∴3(a+1)2﹣3a (a+1)=12∴3a=9∴a=3(2)∵f ′(x )=3x 2﹣3ax ,f (0)=b∴由f ′(x )=3x (x ﹣a )=0得x 1=0,x 2=a∵x ∈[﹣1,1],1<a <2∴当x ∈[﹣1,0)时,f ′(x )>0,f (x )递增;当x ∈(0,1]时,f ′(x )<0,f (x )递减.∴f (x )在区间[﹣1,1]上的最大值为f (0)∵f (0)=b ,∴b=1∵,∴f (﹣1)<f (1)∴f (﹣1)是函数f (x )的最小值,∴∴∴f (x )=x 3﹣2x 2+1【点评】曲线在切点处的导数值为曲线的切线斜率;求函数的最值,一定要注意导数为0的根与定义域的关系.22.【答案】【解析】解:若命题p 是真命题:“直线x+y ﹣m=0与圆(x ﹣1)2+y 2=1相交”,则<1,解得1﹣;若命题q 是真命题:“方程x 2﹣x+m ﹣4=0的两根异号”,则m ﹣4<0,解得m <4.若p ∨q 为真,¬p 为真,则p 为假命题,q 为真命题.∴.∴实数m 的取值范围是或.【点评】本题考查了复合命题真假的判定方法、直线与圆的位置关系、一元二次的实数根与判别式的关系,考查了推理能力与计算能力,属于中档题.23.【答案】为等边三角形.ABC ∆【解析】试题分析:由,根据正弦定理得出,在结合,可推理得到,2sin sin sin A B C =2a bc =2abc =+a b c ==即可可判定三角形的形状.考点:正弦定理;三角形形状的判定.24.【答案】【解析】解:(1)证明:f′(x)=m(e mx﹣1)+2x.若m≥0,则当x∈(﹣∞,0)时,e mx﹣1≤0,f′(x)<0;当x∈(0,+∞)时,e mx﹣1≥0,f′(x)>0.若m<0,则当x∈(﹣∞,0)时,e mx﹣1>0,f′(x)<0;当x∈(0,+∞)时,e mx﹣1<0,f′(x)>0.所以,f(x)在(﹣∞,0)时单调递减,在(0,+∞)单调递增.(2)由(1)知,对任意的m,f(x)在单调递减,在单调递增,故f(x)在x=0处取得最小值.所以对于任意x1,x2∈,|f(x1)﹣f(x2)|≤e﹣1的充要条件是即设函数g(t)=e t﹣t﹣e+1,则g′(t)=e t﹣1.当t<0时,g′(t)<0;当t>0时,g′(t)>0.故g(t)在(﹣∞,0)单调递减,在(0,+∞)单调递增.又g(1)=0,g(﹣1)=e﹣1+2﹣e<0,故当t∈时,g(t)≤0.当m∈时,g(m)≤0,g(﹣m)≤0,即合式成立;当m>1时,由g(t)的单调性,g(m)>0,即e m﹣m>e﹣1.当m<﹣1时,g(﹣m)>0,即e﹣m+m>e﹣1.综上,m的取值范围是。