全国初中物理竞赛决赛试题及答案
- 格式:doc
- 大小:173.50 KB
- 文档页数:11
咨询电话:82618899第26届全国物理竞赛决赛试题理论部分一、填空题(每题5分,共20分)1.某光滑曲面由曲线()y f x =绕竖直y 轴旋转一周形成,一自然半径为a 、质量为m 、劲度系数为k 的弹性圆环置于该曲面之上,能水平静止于任意高度,则曲线方程为 。
2.如图所示的电阻框架为四维空间中的超立方体在三维空间中的投影模型(可视为内外两个立方体框架,对应顶点互相连接起来),若该结构中每条棱均由电阻R 的材料构成,则AB 节点间的等效电阻为 。
3.某种蜜蜂的眼睛能够看到平均波长为500nm 的光,它是由5000个小眼构成的复眼,小眼一个个密集排放在眼睛的整个表面上,小眼构造很精巧,顶部有一个透光的圆形集光装置,叫角膜镜;下面连着圆锥形的透明晶体,使得外部入射的光线汇聚到圆锥顶点连接的感光细胞上(入射进入一个小眼的光线不会透过锥壁进入其他小眼),从而造成一个“影像点”(像素);所有小眼的影像点就拼成了一个完整的像。
若将复眼看作球面圆锥,球面半径 1.5r mm =,则蜜蜂小眼角膜镜的最佳直径d 约为(请给出两位有效数字) 。
4.开路电压0U 与短路电流SC I 是半导体p-n 结光电池的两个重要技术指标,试给出两者之间的关系表达式:0U = ,式中各符号代表的物理量分别为 。
二、(15分)天体或微观系统的运动可借助计算机动态模拟软件直观显示。
这涉及几何尺寸的按比例缩放。
为使显示的运动对缩放后的系统而言是实际可发生的,运动时间也应缩放。
1.在牛顿力学框架中,设质点在力场()F r 中作轨道运动,且有()()k F r F r αα=,k 为常数,r 为位矢。
若几何尺寸按比率α 缩放显示,确定运行时间的缩放率β。
2.由此证明,行星绕太阳轨道运动周期的平方与轨道几何尺寸的立方成正比。
咨询电话:82618899三、(20分)在水平面上有两根垂直相交的内壁光滑的连通细管,管内放置两个质量均为m 、电荷量均为q 的同号带点质点A 和B 。
全国中学生物理竞赛决 赛 试 题一、(30分)近来一种新型的定点起重设备“平衡吊”被广泛应用于几十到几百公斤工件的频繁吊运,其结构的示意图如图决17-1所示。
平衡吊重要由传动、杆系、回转座和立柱组成。
杆系是由ABD 、DEF 、BC 、CE 四杆铰接组成的四连杆机构,DECB 在任何情况下都是一个平行四边形。
杆系的A 处是一水平的转轴,通过电机可控制转轴,使之固定的竖直槽内的不同位置,从而调节挂在绞接于F 处吊钩上的重物的高度。
杆ABD 可绕转轴A 在竖直平面内无摩擦地转动。
杆系的C 点是能在光滑的水平槽上滑动的铰链,杆BC 和EC 都可绕C 点在竖直平面内转动。
绕铰链转动的摩擦均忽略不计。
下面用l 1表达AD 的长度,l 2表达AB 的长度,l 3表达DF 的长度,l 4表达BC 的长度。
(1)若将各杆都视为轻质(无自重)刚体,且无图中配重物时,试论证l 1、l 2、l 3、l 4应满足什么关系才干使平衡吊的吊钩(涉及所吊的重物)位于同一水平面上的不同位置时平衡吊都能处在平衡状态。
(2)若考虑各杆的自重,为使平衡吊的吊钩(涉及所吊的重物)位于同一水平面上不同位置时平衡吊都能处在平衡状态,必须在杆ABD 的另一端P 处加上配重物,P 点距A 轴的距离为l P 。
设配重物受到的重力大小为GP ,杆的AD 段、DF 段、BC 段、CE 段受到的重力的大小分别为G 1、G 3、G 4和G 5,不计杆的AP 段所受的重力。
问当杆长l 1、l 2、l 3、l 4和l P 已知,且取l 1= l 3、l 2=l 4时配重的大小G P 为多少?二、(共30分)太阳风是从太阳大气外层(称为日冕)不断向星际空间发射的稳定的、由相同数目的质子和电子构成的带电粒子流,它使太阳每年减少的质量相对于太阳质量M S 可忽略不计。
观测表白,太阳风的速度的大小v 随着与太阳中心的距离r 的增长而增大。
现提出一简朴的模型来解释太阳风的速度变化的机制:假定日冕中的大量电子可视为抱负气体;日冕中的电子气是等温(温度为T )的、各向同性的,以球对称的速率v (r )(太阳风的速率)向外膨胀;太阳风中质子的定向运动速度比电子的小得多,太阳风的速度其实是电子定向运动的速度,太阳风可解释为日冕中的电子气向外的等温膨胀。
第24届全国中学生物理竞赛决赛试题★ 理论部分一、A ,B ,C 三个刚性小球静止在光滑的水平面上.它们的质量皆为m ,用不可伸长的长度皆为l 的柔软轻线相连,AB 的延长线与BC 的夹角α = π / 3 ,如图所示.在此平面内取正交坐标系Oxy ,原点O 与B 球所在处重合,x 轴正方向和y 轴正方向如图.另一质量也是m 的刚性小球D 位于y 轴上,沿y 轴负方向以速度v 0(如图)与B 球发生弹性正碰,碰撞时间极短.设刚碰完后,连接A ,B ,C 的连线都立即断了.求碰后经多少时间,D 球距A ,B ,C 三球组成的系统的质心最近.二、为了近距离探测太阳并让探测器能回到地球附近,可发射一艘以椭圆轨道绕太阳运行的携带探测器的宇宙飞船,要求其轨道与地球绕太阳的运动轨道在同一平面内,轨道的近日点到太阳的距离为0.01AU (AU 为距离的天文单位,表示太阳和地球之间的平均距离:1AU = 1.495 ×1011 m ),并与地球具有相同的绕日运行周期(为简单计,设地球以圆轨道绕太阳运动).试问从地球表面应以多大的相对于地球的发射速度u 0(发射速度是指在关闭火箭发动机,停止对飞船加速时飞船的速度)发射此飞船,才能使飞船在克服地球引力作用后仍在地球绕太阳运行轨道附近(也就是说克服了地球引力作用的飞船仍可看做在地球轨道上)进入符合要求的椭圆轨道绕日运行?已知地球半径R e = 6.37 ×106 m ,地面处的重力加速度g = 9.80 m / s 2 ,不考虑空气的阻力.三、如图所示,在一个竖直放置的封闭的高为H 、内壁横截面积为S 的绝热气缸内,有一质量为m 的绝热活塞A 把缸内分成上、下两部分.活塞可在缸内贴缸壁无摩擦地上下滑动.缸内顶部与A 之间串联着两个劲度系数分别为k 1和k 2(k 1≠k 2)的轻质弹簧.A 的上方为真空;A 的下方盛有一定质量的理想气体.已知系统处于平衡状态,A所在处的高度(其下表面与yC缸内底部的距离)与两弹簧总共的压缩量相等皆为h 1 = H / 4 .现给电炉丝R 通电流对气体加热,使A 从高度h 1开始上升,停止加热后系统达到平衡时活塞的高度为h 2 = 3H / 4 .求此过程中气体吸收的热量△Q .已知当体积不变时,每摩尔该气体温度每升高1 K 吸收的热量为3R / 2 ,R 为普适气体恒量.在整个过程中假设弹簧始终遵从胡克定律.四、为了减少线路的输电损耗,电力的远距离输送一般采用高电压的交流电传输方式.在传输线路上建造一系列接地的铁塔,把若干绝缘子连成串(称为绝缘子串,见图甲),其上端A 挂在铁塔的横臂上,高压输电线悬挂在其下端B .绝缘子的结构如图乙所示:在半径为R 1的导体球外紧包一层耐高压的半球形陶瓷绝缘介质,介质外是一内半径为R 2的半球形导体球壳.已知当导体球与导体球壳间的电压为U 时,介质中离球心O 的距离为r 处的场强为E =R 1R 2R 2-R 1 Ur2 ,场强方向沿径向.1.已知绝缘子导体球壳的内半径R 2 = 4.6 cm ,陶瓷介质的击穿强度E k = 135 kV / cm .当介质中任一点的场强E >E k 时,介质即被击穿,失去绝缘性能.为使绝缘子所能承受的电压(即加在绝缘子的导体球和导体球壳间的电压)为最大,导体球的半径R 1应取什么数值?此时,对应的交流电压的有效值是多少?AB 图甲半球形导体球壳绝缘层导体球图乙2.一个铁塔下挂有由四个绝缘子组成的绝缘子串(如图甲),每个绝缘子的两导体间有电容C 0 .每个绝缘子的下部导体(即导体球)对于铁塔(即对地)有分布电容C 1(导体球与铁塔相当于电容器的两个导体极板,它们之间有一定的电容,这种电容称为分布电容);每个绝缘子的上部导体(即导体球壳)对高压输电线有分布电容C 2 .若高压输电线对地电压的有效值为U 0 .试画出该系统等效电路图.3.若C 0 = 70 pF = 7 × 10-11F ,C 1 = 5 pF ,C 2 = 1 pF ,试计算该系统所能承受的最大电压(指有效值).五、如图所示,G 为一竖直放置的细长玻璃管,以其底端O 为原点,建立一直角坐标系Oxy ,y 轴与玻璃管的轴线重合.在x 轴上与原点O 的距离为d 处固定放置一电荷量为Q 的正点电荷A ,一个电荷量为q (q >0)的粒子P 位于管内,可沿y 轴无摩擦地运动.设两电荷之间的库仑相互作用力不受玻璃管的影响.1.求放在管内的带电粒子P 的质量m 满足什么条件时,可以在y >0的区域内存在平衡位置.2.上述平衡状态可以是稳定的,也可能是不稳定的;它依赖于粒子的质量m .以y (m )表示质量为m 的粒子P 处于平衡位置时的y 坐标.当粒子P 处于稳定平衡状态时,y (m )的取值区间是_________________;当粒子P 处于不稳定平衡状态时,y (m )的取值区间是_________________(请将填空答案写在答题纸上).3.已知质量为m 1的粒子P 处于稳定平衡位置,其y 坐标为y 1 .现给P 沿y 轴一微小扰动.试证明以后的运动为简谐运动,并求此简谐运动的周期.4.已知质量为m 2的粒子P 的不稳定平衡位置的y 坐标为y 2 ,现设想把P 放在坐标y 3 处,然后从静止开始释放P .求释放后P 能到达玻璃管底部的所有可能的y 3(只要列出y 3满足的关系式,不必求解).六、yG POdAx如图所示,一半径为R 、折射率为n g 的透明球体置于折射率n 0 =1的空气中,其球心位于图中光轴的O 处,左、右球面与光轴的交点为O 1与O 2 .球体右半球面为一球面反射镜,组成球形反射器.光轴上O 1点左侧有一发光物点P ,P 点到球面顶点O 1的距离为s .由P 点发出的光线满足傍轴条件,不考虑在折射面上发生的反射.1.问发光物点P 经此反射器,最后的像点位于何处?2.当P 点沿光轴以大小为v 的速度由左向右匀速运动时,试问最后的像点将以怎样的速度运动?并说明当球体的折射率n g 取何值时像点亦做匀速运动.七、已知钠原子从激发态(记做 P 3 / 2)跃迁到基态(记做 S 1 / 2)所发出的光谱线波长 λ0=588.9965 nm .现有一团钠原子气,其中的钠原子做无规的热运动(钠原子的运动不必考虑相对论效应),被一束沿z 轴负方向传播的波长为 λ = 589.0080 nm 的激光照射.以 θ 表示钠原子运动方向与z 轴正方向之间的夹角(如图所示).问在 30° < θ <45° 角度区间内的钠原子中速率u 在什么范围内能产生共振吸收,从S 1 / 2 态激发到P 3 / 2 态?并求共振吸收前后钠原子速度(矢量)变化的大小.已知钠原子质量为M = 3.79 × 10-26kg ,普朗克常量h = 6.626069 × 10-34J • s ,真空中的光速c = 2.997925 × 108 m • s -1 .第24届全国中学生物理竞赛决赛参考解答一、1.分析刚碰后各球速度的方向.由于D 与B 球发生弹性正碰,所以碰后D球的速度激光束方向仍在y 轴上;设其方向沿y 轴正方向,大小为v .由于线不可伸长,所以在D ,B 两球相碰的过程中,A ,C 两球都将受到线给它们的冲量;又由于线是柔软的,线对A ,C 两球均无垂直于线方向的作用力,因此刚碰后,A 球的速度沿AB 方向,C 球的速度沿CB 方向.用θ表示B 球的速度方向与x 轴的夹角,则各球速度方向将如图所示.因为此时连接A ,B ,C 三球的两根线立即断了,所以此后各球将做匀速直线运动.2.研究碰撞后各球速度的大小.以v 1 ,v 2 ,v 3 分别表示刚碰后A ,B ,C 三球速度的大小,如图所示.因为碰撞过程中动量守恒,所以沿x 方向有mv 1-mv 3 cos α + mv 2 cos θ = 0 ; (1)沿y 方向有-mv 0 = mv - mv 2 sin θ -mv 3 sin α . (2)根据能量守恒有12mv 20 = 12mv 21 + 12mv 22 + 12mv 23 + 12mv 2. (3) 因为碰撞过程中线不可伸长,B ,C 两球沿BC 方向的速度分量相等,A ,B 两球沿AB 方向的速度分量相等,有v 2 cos θ = v 1 , (4) v 2 cos [ π - ( α + θ ) ] = v 3 . (5)将α = π / 3代入,由以上各式可解得v 1 = 312v 0, (6) v 2 = 216v 0, (7) v 3 =33v 0, (8) v = 14v 0 . (9)3.确定刚碰完后,A ,B ,C 三球组成的系统质心的位置和速度.由于碰撞时间极短,刚碰后A ,B ,C 三球组成的系统,其质心位置就是碰撞前质心的位置,以(x c ,y c )表示此时质心的坐标,根据质心的定义,有x c = ml cos α-ml3m , (10)y c =ml sin α3m. (11) 代入数据,得x c = -16l,(12)y c = 36l.(13)根据质心速度的定义,可求得碰后质心速度v c的分量为v c x = mv1 + mv2 cosθ-mv3 cosα3m,(14)v c y = -mv2 sinθ-mv3sinα3m.(15)由(4)~(7)和(14),(15)各式及α值可得v c x = 0 ,(16)v c y =-512v0.(17)4.讨论碰后A,B,C三球组成的系统的质心和D球的运动.刚碰后A,B,C三球组成的系统的质心将从坐标(x c =-l / 6,y c = 3l / 6)处出发,沿y轴负方向以大小为5 v0/ 12的速度做匀速直线运动;而D球则从坐标原点O出发,沿y轴正方向以大小为v0/ 4的速度做匀速直线运动.A,B,C三球组成系统的质心与D球是平行反向运动,只要D球与C球不发生碰撞,则v C,v D不变,质心与D球之间的距离逐渐减少.到y坐标相同处时,它们相距最近.用t表示所求的时间,则有vt = y c+ v c y t(18)将v c y ,v,y c的值代入,得t =3l4v0.(19)此时,D球与A,B,C三球组成系统的质心两者相距l / 6 .在求出(19)式的过程中,假设了在t = 3l / 4v0时间内C球未与D球发生碰撞.下面说明此假设是正确的;因为v3 = 3v0/ 3 ,它在x方向分量的大小为3v0/ 6.经过t时间,它沿x轴负方向经过的距离为l / 8 .而C球的起始位置的x坐标为l / 2 .经t时间后,C球尚未到达y轴,不会与D球相碰.二、从地球表面发射宇宙飞船时,必须给飞船以足够大的动能,使它在克服地球引力作用后,仍具有合适的速度进入绕太阳运行的椭圆轨道.此时,飞船离地球已足够远,但到太阳的Ar sePv距离可视为不变,仍为日地距离.飞船在地球绕太阳运动的轨道上进入它的椭圆轨道,用E 表示两轨道的交点,如图1所示.图中半径为r se 的圆A 是地球绕太阳运行的轨道,太阳S 位于圆心.设椭圆B 是飞船绕日运行的轨道,P 为椭圆轨道的近日点.由于飞船绕日运行的周期与地球绕日运行的周期相等,根据开普勒第三定律,椭圆的半长轴a 应与日地距离r se 相等,即有a = r se (1)根据椭圆的性质,轨道上任一点到椭圆两焦点的距离之和为2a ,由此可以断定,两轨道的交点E 必为椭圆短轴的一个顶点,E 与椭圆长轴和短轴的交点Q (即椭圆的中心)的连线垂直于椭圆的长轴.由△ESQ ,可以求出半短轴b =r 2se - ( a - SP )2 . (2)由(1),(2)两式,并将a = r se = 1AU ,SP = 0.01 AU 代入,得b = 0.141AU . (3)在飞船以椭圆轨道绕太阳运行过程中,若以太阳为参考系,飞船的角动量和机械能是守恒的.设飞船在E 点的速度为v ,在近日点的速度为v p ,飞船的质量为m ,太阳的质量为M s ,则有mva sin θ = mv p SP , (4)式中θ为速度v 的方向与E ,S 两点连线间的夹角:sin θ = ba. (5)由机械能守恒,得12mv 2 -G M s m a = 12mv 2p - GmM s SP. (6) 因地球绕太阳运行的周期T 是已知的(T = 365 d ),若地球的质量为M e ,则有GM s M e a 2 = M e ( 2πT)2a . (7) 解(3)~(7)式,并代入有关数据,得v = 29.8 km / s . (8)(8)式给出的v 是飞船在E 点相对于太阳的速度的大小,即飞船在克服地球引力作用后从E 点进入椭圆轨道时所必须具有的相对于太阳的速度.若在E 点飞船相对地球的速度为u ,因地球相对于太阳的公转速度为v e =2πaT= 29.8 km / s , (9) 方向如图1所示.由速度合成公式,可知v = u + v e , (10)速度合成的矢量图如图2所示,注意到v e 与ES 垂直,有u =v 2 + v 2e -2vv e cos (π2-θ ) , (11) 代入数据,得u = 39.1 km / s . (12)u 是飞船在E 点相对于地球的速度,但不是所要求的发射速度u 0 .为了求得u 0 ,可以从与地心固定连接在一起的参考系来考察飞船的运动.因飞船相对于地球的发射速度为u 0时,飞船离地心的距离等于地球半径R e .当飞船相对于地球的速度为u 时,地球引力作用可以忽略.由能量守恒,有12mu 20 -G M e m R e = 12mu 2 . (13) 地面处的重力加速度为g = GM eR 2e, (14) 解(13),(14)两式,得u 0 = u 2 + 2gR e . (15)由(15)式及有关数据,得u 0 = 40.7 km / s . (16)如果飞船在E 点处以与图示相反的方向进入椭圆轨道,则(11)式要做相应的改变.此时,它应为图2u = v2 + v2e -2vv e cos (π2+ θ) ,(17)相应计算,可得另一解u = 45.0 km / s ,u0 = 46.4 km / s .(18)如果飞船进入椭圆轨道的地点改在E点的对称点处(即地球绕日轨道与飞船绕日轨道的另一个交点上),则计算过程相同,结果不变.三、两个弹簧串联时,作为一个弹簧来看,其劲度系数k =k1k2k1 + k2.(1)设活塞A下面有νmol气体.当A的高度为h1时,气体的压强为p1,温度为T1.由理想气体状态方程和平衡条件,可知p1Sh1 = vRT1,(2)p1S= kh1 + mg.(3)对气体加热后,当A的高度为h2时,设气体压强为p2,温度为T2.由理想气体状态方程和平衡条件,可知p2Sh2 = vRT2,(4)p2S= kh2 + mg.(5)在A从高度h1上升到h2的过程中,气体内能的增量△U= v 32R ( T2-T1 ) .(6)气体对弹簧、活塞系统做的功W等于弹簧弹性势能的增加和活塞重力势能的增加,即W= 12k ( h22-h21) + mg (h2-h1 ) .(7)根据热力学第一定律,有△Q=△U + W.(8)由以上各式及已知数据可求得△Q=k1k2k1 + k2H2 +54mgH.(9)四、1.根据题意,当导体球与导体球壳间的电压为U时,在距球心r(R1<r<R2)处,电场强度的大小为E =R 1R 2R 2-R 1 Ur2 . (1) 在r = R 1 ,即导体球表面处,电场强度最大.以E (R 1)表示此场强,有E ( R 1) =R 2U(R 2-R 1) R 1. (2)因为根据题意,E (R 1)的最大值不得超过E k ,R 2为已知,故(2)式可写为E k =R 2U(R 2-R 1) R 1(3)或U = E k(R 2-R 1) R 1R 2 . (4) 由此可知,选择适当的R 1值,使(R 2-R 1) R 1最大,就可使绝缘子的耐压U 为最大.不难看出,当R 1 =R 22(5) 时,U 便是绝缘子能承受的电压的最大值U k .由(4),(5)两式得U k =E k R 24, (6) 代入有关数据,得U k = 155 kV . (7)当交流电压的峰值等于U k 时,绝缘介质即被击穿.这时,对应的交流电压的有效值U e =U k2110 kV . (8) 2.系统的等效电路如图所示.3.设绝缘子串中间三点的电势分别为U 1 ,U 2 ,U 3 ,如图所示.由等效电路可知,与每个中间点相连的四块电容极板上的电荷量代数和都应为零,即有U 0 C 2C 2 C 2C 2C 1C 1 C 1 C 1C 0 C 0 C 0 C 012011010012230211200223031230032()()()0,()()()0,()()0.U U C U C U U C U U C U U C U C U U C U U C U C U C U U C U U C -+----=⎧⎪-+----=⎨⎪+----=⎩ (9)四个绝缘子上的电压之和应等于U 0 ,即( U 0-U 1 ) + ( U 1-U 2 ) + ( U 2-U 3 ) + U 3 = U 0 . (10)设△U 1 = U 0-U 1 , △U 2 = U 1-U 2 ,△U 3 = U 2-U 3 ,△U 4 = U 3 , (11) 则可由(9)式整理得1012200111220123001101220123012001()0,()()0,()()(2)()0;U C C C U C U C U C C U C C C U C U C U C C C U C C C U C C C U C C ++--=⎧⎪++++--=⎨⎪++++++++-+=⎩△△△△△△△△ 代入数据,得120123012307050,767050,76146750.U U U U U U U U U U U --=⎧⎪+--=⎨⎪++-=⎩76△△6△△△76△△△ (12) 解(12)式,可得△U 1 = 0.298 U 0 , △U 2 = 0.252 U 0 ,△U 3 =0.228 U 0 . (13)由(10)~(12)式可得△U 4 =U 3 = 0.222 U 0 . (14)以上结果表明,各个绝缘子承受的电压不是均匀的;最靠近输电线的绝缘子承受的电压最大,此绝缘子最容易被击穿.当最靠近输电线的绝缘子承受的电压有效值△U 1 =U e (15)时,此绝缘子被击穿,整个绝缘子串损坏.由(8),(13)和(15)三式可知,绝缘子串承受的最大电压U 0 C 2C 2 C 2C 2C 1C 1 C 1 C 1C 0 C 0 C 0 C 0U 1U 2 U 3U 0max =U e0.298= 369 kV . (16) 五、1.如图所示,位于坐标y 处的带电粒子P 受到库仑力F E 为斥力,其y 分量为F Ey = kQq r 2 sin θ = k Qqy( d 2+ y 2)3 / 2, (1) 式中r 为P 到A 的距离,θ为r 与x 轴的夹角.可以看出,F Ey 与y 有关:当y 较小时,(1)式分子中的y 起主要作用,F Ey 随y 的增大而增大;当y 较大时,(1)式分母中的y 起主要作用,F Ey 随y 的增大而减小.可见,F Ey 在随y 由小变大的过程中会出现一个极大值.通过数值计算法,可求得F Ey 随y 变化的情况.令τ= y / d ,得F Ey = kQqd 2 τ( 1 +τ2)3 / 2. (2) 当τ取不同数值时,对应的τ( 1 +τ2)-3 / 2的值不同.经数值计算,整理出的数据如表1所示.表1由表中的数据可知,当τ= 0.707,即y = y 0 = 0.707d (3)时,库仑力的y 分量有极大值,此极大值为F Ey max = 0.385kqQd 2. (4) 由于带电粒子P 在竖直方向除了受到竖直向上的F Ey 作用外,还受到竖直向下的重力mg 作用.只有当重力的大小mg 与库仑力的y 分量相等时,P 才能平衡.当P 所受的重力mg 大于F Ey max 时,P 不可能达到平衡.故质量为m 的粒子存在平衡位置的条件是mg ≤F Ey max .由(4)式得m ≤0.385g k qQ d2 . (5)y GPmgrOdxAF Ey2.y (m )> 0.707d ;0<y (m )≤0.707d .3.根据题意,当粒子P 静止在y = y 1处时,处于稳定平衡位置,故有132221()Qqy kd y -m 1g = 0 . (6)设想给粒子P 沿y 轴的一小扰动△y ,则P 在y 方向所受的合力为F y = F Ey -m 1g = kQq ( y 1 +△y )[ d 2+ ( y 1 +△y )2 ]3 / 2-m 1g . (7)由于△y 为一小量,可进行近似处理,忽略高阶小量,有F y = kQq ( y 1 +△y )[ d 2+ y 21 + 2y 1△y]3 / 2 -m 1g = kQq ( y 1 +△y )(d 2 + y 21 )3 / 2( 1 - 3y 1△yd 2 + y 21)-m 1g = k Qqy 1(d 2 + y 21 )3 / 2 + k Qq △y (d 2 + y 21 )3 / 2 - k 3qQy 21△y (d 2 + y 21 )5 / 2 - m 1g .注意到(6)式,得F y = - m 1g (2y 21-d 2 )(d 2 + y 21) y 1△y . (8)因y = y 1是粒子P 的稳定平衡位置,故y 1>0.707d ,2y 21-d 2>0 .由(8)式可知,粒子P 在y 方向受到合力具有恢复力的性质,故在其稳定平衡位置附近的微小振动是简谐运动;其圆频率为ω=(2y 21-d 2 )(d 2 + y 21) y 1g , (9) 周期为T = 2πω=2π(d 2 + y 21 ) y 1(2y 21-d 2 ) g. (10)4.粒子P 处在重力场中,具有重力势能;它又处在点电荷A 的静电场中,具有静电势能.当P 的坐标为y 时,其重力势能W g = m 2gy ,式中取坐标原点O 处的重力势能为零;静电势能W E = kqQd2 +y2.粒子的总势能W = W g + W E = m2gy + kqQd2 +y2.(11)势能也与P的y坐标有关:当y较小时,静电势能起主要作用,当y较大时,重力势能起主要作用.在P的稳定平衡位置处,势能具有极小值;在P的不稳定平衡位置处,势能具有极大值.根据题意,y = y2处是质量为m2的粒子的不稳定平衡位置,故y = y2处,势能具有极大值,即W ( y2 )= W max= m2gy2 + k qQd2 +y22.(12)当粒子P的坐标为y3时,粒子的势能为W ( y3 )= m2gy3 + k qQd2 +y23.当y3 <y2时,不论y3取何值,粒子从静止释放都能到达管底.若y3 >y2 ,粒子从静止释放能够到达管底,则有W ( y3 ) >W ( y2 ) .所以,y3满足的关系式为y3 <y2;(13)或者y3 >y2 且m2gy3 + k qQd2 +y23>m2gy2 + kqQd2 +y22.(14)附:(1)式可表示为F Ey= k Qqr2sinθ= kQqd2cos2θsinθ,式中θ为P,A之间的连线和x轴的夹角.由上式可知,带电粒子P在θ= 0 ,π/ 2时,F Ey= 0 .在0≤θ≤π/ 2区间,随着θ的增大,sinθ是递增函数,cos2θ是递减函数.在此区间内,F Ey必存在一个极大值F Ey max ;用数值法求解,可求得极大值所对应得角度θ0.经数个计算整理出的数据如表2所示.表2由表中数值可知,当θ= θ0≈0.615 rad(即35.26°)时,F Ey取极大值F Ey max= k Qqd2cos2θsinθ0 = 0.385 kQqd2.带电粒子P在竖直方向上还受到重力G的作用,其方向与F Ey相反.故带电粒子P受到的合力F = F Ey -G = k Qqd2cos2θsinθ-mg .当F = 0 ,即F Ey= G 时,P处于平衡状态.由此可见,当带电粒子的质量m≤F Ey maxg=k ( qQ / d2 ) cos2θ0sinθ0g时,可以在y轴上找到平衡点.六、1.单球面折射成像公式可写成n′s′+ ns=n′-nr,(1)式中s为物距,s′为像距,r为球面半径,n和n′分别为入射光和折射光所在介质的折射率.在本题中,物点P经反射器的成像过程是:先经过左球面折射成像(第一次成像);再经右球面反射成像(第二次成像);最后再经左球面折射成像(第三次成像).(1)第一次成像.令s1和s′1分别表示物距和像距.因s1 = s ,n = n0 = 1,n′ = n g,r = R ,有n gs′1+ 1s1=n g-1R,(2)即s′1 =n g Rs( n g-1 ) s-R.(3)(2)第二次成像.用s2 表示物距,s′2 表示像距,有1 s′2+ 1s2=2r.(4)因s2 = 2R-s′1 ,r= R,由(3),(4)两式得s′2 = ( 2s + 2R-n g s )R3R + 3s-n g s.(5)(3)第三次成像.用s3 表示物距,s′3 表示像距,有s ′3s 3r因s 3 = 2R -s ′2 ,n 0 = 1 ,r = -R ,由(5),(6)两式得s ′3 =( 4s -n g s + 4R )R2n g s -4s + n g R -4R. (7)2.以 v ′ 表示像的速度,则3222[4()()4](44)12()4()4244/.(244)(24)(244)g g g g g g g g g g g g s s n s s R R s n s R R s v t t n s s s s n R R n s s n R R n R s tn s s n R R s n n s s n R R ⎧⎫+-++-+'⎪⎪'==-⎨⎬+-++--+-⎪⎪⎩⎭-=-+-+--+-△△△△△△△△△△ (8)由于△s 很小,分母中含有△s 的项可以略去,因而有v ′ =-n 2g R 2(2n g s-4s +n g R-4R )2△s△t. (9)根据题意,P 从左向右运动,速度大小为 v ,则有v = -△s△t. (10) 由此可得,像的速度v ′ =n 2g R 2v(2n g s -4s + n g R -4R )2. (11)可见,像的速度与 s 有关,一般不做匀速直线运动,而做变速直线运动.当n =2 (12)时,(11)式分母括号中的头两项相消,v ′ 将与 s 无关.这表明像也将做匀速直线运动;而且(11)式变为 v ′ = v ,即像的速度和P 的速度大小相等.七、解法一.根据已知条件,射向钠原子的激光的频率v =cλ. (1) 对运动方向与 z 轴正方向的夹角为 θ 、速率为 u 的钠原子,由于多普勒效应,它接收的激光频率v ′ = v ( 1 +uccos θ ); (2) 改用波长表示,有1 + uc cosθ发生共振吸收时,应有λ′ = λ0 ,即λ1 + uc cosθ= λ0 .(4)解(4)式,得u cosθ= c λ-λ0λ0;(5)代入有关数据,得u cosθ= 5.85 × 103 m •s-1 .(6)由(6)式,对θ=30°的钠原子,其速率u1= 6.76 × 103 m •s-1 ;对θ= 45°的钠原子,其速率u2= 8.28 × 103 m •s-1 .运动方向与z 轴的夹角在30°~45°区域内的原子中,能发生共振吸收的钠原子的速率范围为6.76 × 103 m •s-1 <u<8.28 × 103 m •s-1 .(7)共振吸收前后,动量守恒.设钠原子的反冲速率为V ,则有Mu-hλe z= MV .(8)其中e z 为z 轴方向的单位矢量.由(8)式得u-V =hMλe z.(9)钠原子速度(矢量)变化的大小为| u-V |=hMλ;(10)代入数据,得| u-V |= 2.9 × 10-2 m •s-1.(11)解法二.根据已知条件,钠原子从激发态P3 / 2 跃迁到基态S1 / 2 发出的光谱线的频率v0 = cλ0;(1)入射激光的频率v =cλ. (2) 考查运动方向与 z 轴的正方向成 θ 角的某个钠原子.它在共振吸收过程中动量守恒,能量守恒.以 u 表示该钠原子在共振吸收前的速度,V 表示该钠原子共振吸收后的速度,则有Mu -hvc e z= MV , (3) 12Mu 2 + hv = 12MV 2 + hv 0 . (4)把(3)式写成分量形式,并注意到共振吸收前后钠原子在垂直于 z 轴方向的动量不变,有Mu sin θ = MV sin θ′ , (5) Mu cos θ -hvc= MV cos θ′ , (6) 式中θ′ 为激发态钠原子速度方向与 z 轴正方向的夹角.从(5),(6)两式中消去θ′ ,得M 2u 2 -M 2V 2 = - ( hv c ) 2 + 2Mu hvccos θ . (7)由(4),(7)两式可得2hv 0 -2hv = -1 M ( hv c )2 + 2hv u ccos θ . (8) 注意到( hv / c )2M ,得 v 0 = v ( 1 +uccos θ ); (9) 改用波长表示,有λ0 =λ1 + u ccos θ. (10)解(10)式,得u cos θ = cλ-λ0λ0; (11)代入有关数据,得u cos θ = 5.85 × 103 m • s-1. (12)由(12)式,对 θ =30° 的钠原子,其速率u 1 = 6.76 × 103 m • s-1;对 θ = 45° 的钠原子,其速率u 2 = 8.28 × 103 m • s-1 .运动方向与z 轴的夹角在30°~45°区域内的原子中,能发生共振吸收的钠原子的速率范围为6.76 × 103 m •s-1 <u<8.28 × 103 m •s-1 .(13)由(3)式可知,钠原子共振吸收前后速度(矢量)的变化为u-V =hMλe z,(14)速度(矢量)大小的变化为| u-V |=hMλ;(15)代入数据,得| u-V |= 2.9 × 10-2 m •s-1.(16)。
第 21 届全国中学生物理竞赛决赛试卷一、(20分)有一光光导纤维,光芯折射率n=1.500 的透明度极好的介质,其截面半径为r ;光芯外面包层的折射率n =1.400。
有一半导体激光器S,位于光纤轴线的延长上,发出半角宽为30o的光束。
为便于使此光束全部进入光纤,在光纤端面处烧结了一个其材料与光芯相同的、半径为 R 的球冠 QAQ ',端面附近的结构如图所示(包层未画出),S可看作点光源,光纤放在空气中,空气的折射率 n0按 1.000计算。
1、若要半导体激光器发出的光能够全部射到球冠上,则光源 S 离 A 的距离 x 应满足什么条件?2、如果 R=1.8r, 光源S与A 的距离为R,入射与轴的夹角用α表示,则α角分别为α1=30o、α2 =25o和α3=20o的三根光线能否经过全反射在光纤中传播?.二、(20分)试从相对论能量和动量的角度分析论证1、一个光子与真空中处于静止状态的自由电子碰碰撞时,光子的能量不可能完全被电子吸收。
光子射到金属表面时,其能量有可能完全被吸收被使电子逸出金属表面,产生光电效应。
三、(25)如图所示,一质量 M=30.0Kg 的楔形木块 OABC 静止在水平地面上,其斜面段 AB 的倾角,BC 段的倾角α =45o, AB 段与 BC 段连接处( B )为一非常短的光滑圆弧,现将一质量的 m=4.00Kg小物块(可视为质点),放在斜面上离地面高h1=2.80m 的 A 处,然后放手,令小物块从静止开始斜面下滑,已知小物块与斜面之间无摩擦,木块与地面间的最大静摩擦系数和滑动摩擦系数为μ=6.00*10-2,B 处离桌面的高度h2 =2.00m ,如果不计小物块经过处 B 时(β=60o )物块及木块速度大小的改变,求小物块从斜面上 A 处滑动到斜面底部 C 处整个过程中小物块对木块所做的功(取重力加速度 g=10.0ms-2)四、(25 分)由如图所示的电路,其中 E 为内阻可以忽略的电源的电动势,R 为电阻的阻值;K 为开关;A 、 B 右边是如图所标的 8 个完全相同的容量均为 C 的理想电容器组成的电路,问从合上 K 到各电容器充电完毕,电阻 R 上发热消耗的能量是多少?(在解题时,要求在图上标出你所设定的各个电容器极板上电荷的正负)五、(25 分)如图所示, K 为一带电粒子发生器,从中可以不断地射出各种不同速率的带电粒子,它们都带正电,电量为q,质量为m ,速度的方向都沿图中的虚线,D 1、 D2为两块档板,可定时开启和关闭。
全国初中物理竞赛试题专项(焦耳定律的综合应用)精编(2024版) 一、单选题1.如图甲所示,电源电压保持不变,小灯泡的额定电压为10V,电压表量程为0~15V,电流表量程为0~0.6A。
在保证电路各元件安全的前提下,先只闭合开关S、S1,将滑片P从最右端b向左最大范围移动到a点。
再断开开关S1,闭合开关S2,将滑片P从a点向右移动到最右端。
图乙是这两次实验过程中绘制的电流表与电压表示数的关系图像。
下列说法正确的是( )A.电源电压为10VB.滑动变阻器的最大阻值为40ΩC.只闭合开关S、S2,滑片P在a点时,定值电阻R2在10s内产生的热量为8JD.只闭合开关S、S1,灯泡L的功率变化范围为1W~5W2.如图所示电路,电源电压保持不变。
闭合开关S,当滑片P置于变阻器的中点时,电压表的示数为4V;当滑片P置于变阻器的b端时,电压表的示数变化了2V,在10s内定值电阻R1产生的热量为36J。
则下列结果正确的是( )A.电路中的最大电流为1AB.滑片P在中点时,10s内滑动变阻器R消粍的电能为60JC.滑动变阻器R先后两次消耗的电功率之比为8:1D.R1先后两次消耗的电功率之比为16:93.如图所示电路,电源电压为6V且保持不变。
闭合开关S,当滑片P置于变阻器的中点时,电压表的示数为2V;当滑片P置于变阻器的b端时,电压表的示数变化了1V,在10s内定值电阻R1产生的热量为30J。
则下列结果正确的是( )A.电路中的最小电流为0.5 AB.滑片P在中点时,9s内滑动变阻器R消耗的电能为30 JC.R1先后两次消耗的电功率之比为4:3D.R先后两次消耗的电功率之比为8:94.如下图所示,当滑动变阻器的滑片P滑至a端时,定值电阻R产生热量Q用时是9min;当滑片P滑至b端时,定值电阻R产生相同热量Q的用时是36min,当滑片P滑至ab的中点时,若定值电阻R再产生热量Q的用时是()A.20.5min B.20.05min C.20.25min D.22.25min二、多选题5.如图甲所示电路中,电源电压不变,灯泡L的规格为“6V 2.4W”,忽略温度对小灯泡电阻的影响。
全国初中物理竞赛试题及答案doc一、单项选择题(每题3分,共30分)1. 光在真空中的传播速度是()A. 3×10^5 km/s B. 3×10^8 m/sC. 3×10^8 km/sD. 3×10^5 m/s答案:B2. 以下哪种物质的密度最小?()A. 空气 B. 水银 C. 铁 D. 木头答案:A3. 一个物体在水平面上受到的摩擦力大小与()成正比。
A. 物体的质量 B. 物体的速度 C. 物体的加速度 D. 物体所受的正压力答案:D4. 电流通过导体产生的热量与()有关。
A. 电流的平方 B. 导体的电阻 C. 通电时间 D. 以上都是答案:D5. 以下哪种物质是半导体?()A. 铜 B. 石墨 C. 硅 D. 铝答案:C6. 以下哪种现象不属于光的折射?()A. 海市蜃楼 B. 凸透镜成像 C. 影子 D. 彩虹答案:C7. 物体的内能与()有关。
A. 物体的质量 B. 物体的温度 C. 物体的体积 D. 以上都是答案:D8. 以下哪种物质的导电性最好?()A. 玻璃 B. 橡胶 C. 铜 D.陶瓷答案:C9. 机械波的传播需要()。
A. 介质 B. 真空 C. 光 D. 声波答案:A10. 以下哪种力属于非保守力?()A. 重力 B. 弹力 C. 摩擦力 D. 以上都是答案:C二、填空题(每题2分,共20分)11. 声音在空气中的传播速度大约是340 m/s。
12. 1千瓦时等于3.6×10^6焦耳。
13. 物质的比热容是指单位质量的物质温度升高1摄氏度所需吸收的热量。
14. 欧姆定律表明,导体中的电流与导体两端的电压成正比,与导体的电阻成反比。
15. 光的三原色是红、绿、蓝。
16. 电磁波谱包括无线电波、微波、红外线、可见光、紫外线、X射线和伽马射线。
17. 物体的惯性与其质量成正比。
18. 热机的效率是指用来做有用功的能量与燃料完全燃烧放出的能量之比。
第 31 届全国中学生物理竞赛决赛理论考试试题一、(12 分)一转速测量和控制装置的原理如图所示. 在 O 点有电量为 Q 的正电荷,内壁光滑的轻质绝缘细管可绕通过 O 点的竖直轴在水平面内转动,在管内距离 O 为 L 处有一光电触发控制开关 A ,在 O 端固定有一自由长度为 L/4 的轻质绝缘弹簧,弹簧另一端与一质量为m 、带有正电荷q 的小球相连接.开始时,系统处于静态平衡.细管在外力矩作用下,作定轴转动,小球可在细管内运动. 当细管转速ω逐渐变大时,小球到达细管的 A 处刚好相对于细管径向平衡,并触发控制开关,外力矩瞬时变为零,从而限制转速过大;同时 O 点的电荷变为等量负电荷-Q.通过测量此后小球相对于细管径向平衡点的位置 B ,可测定转速.若测得 OB 的距离为 L/2,求 (1)弹簧系数0k 及小球在 B 处时细管的转速;(2)试问小球在平衡点 B 附近是否存在相对于细管的径向微振动?如果存在,求出该微振动的周期.二、(14 分)多弹头攻击系统是破解导弹防御体系的有效手段.如图所示,假设沿某海岸有两个军事目标 W 和 N ,两者相距 L ,一艘潜艇沿平行于该海岸线的航线游弋,并监视这两个目标,其航线离海岸线的距离为d .潜艇接到攻击命令后浮出海面发射一颗可分裂成多弹头的母弹,发射速度为0v (其大小远大于潜艇在海里游弋速度的大小),假设母弹到达最高点时分裂成三个分弹头,每个分弹头的质量相等,分裂时相对原母弹的速度大小均为v ,且分布在同一水平面内,分弹头 1、2 为实弹,分弹头 3 迷惑对方雷达探测的假弹头.如果两个实弹能够分别击中军事目标 W 和 N ,试求潜艇发射母弹时的位置与发射方向,并给出相应的实现条件.三、(14 分)如图所示,某绝热熔器被两块装有阀门 K 1和 K 2的固定绝热隔板分割成相等体积0V 的三室 A 、B 、C ,0A B C V V V V ===.容器左端用绝热活塞 H 封闭,左侧 A 室装有11ν=摩尔单原子分子气体,处在压强为 P 0、温度为 T 0的平衡态;中段 B 室为真空;右侧 C 室装有ν2=2 摩尔双原子分子气体,测得其平衡态温度为Tc=0.50T 0.初始时刻 K 1和 K 2都处在关闭状态.然后系统依次经历如下与外界无热量交换的热力学过程:(1)打开 K 1,让V A 中的气体自由膨胀到中段真空V B 中;等待气体达到平衡态时,缓慢推动活塞 H 压缩气体,使得 A 室体积减小了 30%(AV '=0.70V 0).求压缩过程前后,该部分气体的平衡态温度及压强;(2)保持 K 1开放,打开 K 2,让容器中的两种气体自由混合后共同达到平衡态.求此时混合气体的温度和压强;AV ''=V 0. 求此时混合气体的温度和压强. 提示:上述所有过程中,气体均可视为理想气体,计算结果可含数值的指数式或分式;根据热力学第二定律,当一种理想气体构成的热力学系统从初态(p i ,T i ,V i )经过一个绝热可逆过程(准静态绝热过程)到达终态(p f ,T f ,V f )时,其状态参数满足方程:111()ln()ln()0f f if V iiT T S C R T T νν∆=+= (Ⅰ)其中,ν1为该气体的摩尔数,C V1为它的定容摩尔热容量,R 为普适气体常量.当热力学系统由两种理想气体组成,则方程(I )需修改为12()()0if if S S ∆+∆= (Ⅱ)四、(20 分)光纤光栅是一种介质折射率周期性变化的光学器件.设一光纤光栅的纤芯基体材料折射率为n 1=1.51;在光纤中周期性地改变纤芯材料的折射率,其改变了的部分的材料折射率为n 2=1.55;折射率分别为n 2和n 1、厚度分别为d 2和d 1的介质层相间排布,总层数为 N ,其纵向剖面图如图(a)所示.在该器件设计过程中,一般只考虑每层界面的单次反射,忽略光在介质传播过程中的吸收损耗.假设入射光在真空中的波长为λ=1.06μm ,当反射光相干叠加加强时,则每层的厚度d 1和d 2最小应分别为多少?若要求器件反射率达到 8%,则总层数 N 至少为多少?提示:如图(b)所示,当光从折射率n 1介质垂直入射到n 2介质时,界面上产生反射和透射,有:1212n n n n -=+反射光电场强度入射光电场强度,1122n n n =+透射光电场强度入射光电场强度,2=反射光电场强度反射率入射光电场强度,五、(20 分)中性粒子分析器(Neutral-Particle Analyser )是核聚变研究中测量快离子温度及其能量分布的重要设备.其基本原理如图所示,通过对高能量(200eV~30KeV )中性原子(它们容易穿透探测区中的电磁区域)的能量和动量的测量,可诊断曾与这些中性原子充分碰撞过的粒子的性质.为了测量中性原子的能量分布,首先让中性原子电离然后让离子束以θ角入射到间距为d 、电压为V 的平行板电极组成的区域,经电场偏转后离开电场区域,在保证所测量离子不碰到上极板的前提下,通过测量入射孔 A 和出射孔 B 间平行于极板方向的距离l 来决定离子的能量.设 A 与下极板的距离为h 1,B 与下极板的距离为h 2,已知离子所带电荷为q .(1)推导离子能量E 与l 的关系,并给出离子在极板内垂直于极板方向的最大飞行距离. (2)被测离子束一般具有发散角Δα(Δα<<θ).为了提高测量的精度,要求具有相同能量E , 但入射方向在Δα范围内变化的离子在同一小孔 B 处射出,求h 2的表达式;并给出此时能量E 与l 的关系.(3)为了提高离子能量的分辨率,要求具有量程上限能量的离子刚好落在设备允许的l 的最大值l max 处,同时为了减小设备的体积,在满足测量要求的基础上,要求极板间距d 尽可能小,利用上述第(2)问的结果,求d 的表达式;若θ=30°,结果如何?(4)为了区分这些离子的质量,请设计后续装置,给出相应的原理图和离子质量表达式.六、(20 分)超导体的一个重要应用是绕制强磁场磁体,其使用的超导线材属于第二类超导体.如果将这类超导体置于磁感应强度为a B 的外磁场中,其磁力线将以磁通量子(或称为磁通漩涡线)的形式穿透超导体,从而在超导体中形成正三角形的磁通格子,如图 1 所示. 所谓的磁通量子,如图 2 所示,其中心是半径为ξ的正常态(电阻不为零)区域,而其周围处于超导态(电阻为零),存在超导电流,所携带的磁通量为150 2.07102hWb eφ-==⨯(磁通量的最小单位)(1)若2510T a B -=⨯,求此时磁通涡旋线之间距离a .(2)随着a B 的增大,磁通漩涡线密度不断增加,当a B 达到某一临界值B c2时,整块超导体都变为正常态, 假设磁通漩涡线芯的半径为ξ=5×10-9m ,求所对应的临界磁场B c2;(3)对于理想的第二类超导体,当有电流I 通过超导带材时,在安培力的驱动下,磁通漩涡线将会粘滞流动,在超导带内产生电阻(也称为磁通流阻),从而产生焦耳损耗,不利于超导磁体的运行.磁通漩涡线稳定粘滞流动的速度v 与单位体积磁通漩涡线所受到的驱动力f A 和a B 的关系为0aA B f v ηφ=, 其中η为比例系数.外加磁场、电流方向,以及超导带材的尺寸如图 3 所示, 请指出磁通漩涡线流动的方向,并求出磁通漩涡线流动所产生的电阻率(用a B ,Φ0,η,超导体尺寸b ,c ,d )表示;(4)要使超导材料真正实用化,消除这种磁通流阻成了技术的关键,请给出你的解决方案.七、(20 分)如图,两个质量均为m 的小球 A 和 B (均可视为质点)固定在中心位于C 、长为 2l 的刚性轻质细杆的两端,构成一质点系.在竖直面内建立Oxy 坐标,Ox 方向沿水平向右,Oy 方向竖直向上.初始时质点系中心 C 位于原点 O ,并以初速度v 0竖直上抛,上抛过程中, A 、C 、B 三点连线始终水平.风速大小恒定为u 、方向沿x 轴正向,小球在运动中所受空气阻力f 的大小与相对于空气运动速度v 的大小成正比,方向相反,即f kv =-, k 为正的常量.当C 点升至最高点时,恰好有一沿y 轴正向运动、质量为m 1、速度大小为u 1的小石块(视为质点)与小球 A 发生竖直方向的碰撞,设碰撞是完全弹性的,时间极短.此后 C 点回落到上抛开始时的同一水平高度,此时它在Ox 方向上的位置记为s ,将从上抛到落回的整个过程所用时间记为T ,质点系旋转的圈数记为n .求质点系(1)转动的初始角速度ω0,以及回落到s 点时角速度ωs 与n 的关系;(2)从开始上抛到落回到s 点为止的过程中,空气阻力做的功W f 与n 、s 、T 的关系.八、(20 分)太阳是我们赖以生存的恒星.它的主要成分是氢元素,在自身引力的作用下收缩而导致升温,当温度高到一定程度时,中性原子将电离成质子和电子组成的等离子体,并在其核心区域达到约 1.05×107K 的高温和 1.6×105kg/m 3以上的高密度,产生热核聚变而放出巨大能量,从而抗衡自身的引力收缩达到平衡,而成为恒星.太阳内部主要核反应过程为1H+1H→D+e++νe(I)D+1H→3He+x (II)3He+3He→4He+1H+1H (III)其中第一个反应的概率由弱相互作用主导,概率很低这恰好可以使得能量缓慢释放.反应产物正电子e+会与电子e-湮灭为γ射线,即e++e-→γ+γ(IV)已知:质子(1H)、氘(D)、氦-3(3He)和电子的质量分别为938.27、1875.61、2808.38、3727.36 和0.51(MeV/c2)(误差为0.01MeV/c2),c为真空中的光速,中微子νe的质量小于3eV/c2.普朗克常量h=6.626×10-34J·s,c=3.0×108m/s,玻尔兹曼常量k=1.381×10-23J/K.电子电量e=1.602×10-19C.(1)试用理想气体模型估算处于热平衡状态的各种粒子的平均动能及太阳核心区的压强(请分别用eV和atm为单位);(2)反应式(II)中的x 是什么粒子(α、β、γ、p和n之一)?请计算该粒子的动能和动量的大小,是否可以找到一个参照系,使得x 粒子的动能为零?(3)给出反应式(I)中各反应产物的动能的范围;第31 届全国中学生物理竞赛决赛参考答案第一题第二题第七题第八题。
全国中学生物理竞赛决赛试题北京★ 理论部分一、足球比赛,一攻方队员在图中所示旳 A 处沿 Ax 方向传球,球在草地上以速度 v 匀速滚动,守方有一队员在图中 B 处,以 d 表达 A ,B 间旳距离,以 θ 表达 AB 与Ax 之间旳夹角,已知 θ<90° .设在球离开 A 处旳同步,位于 B 处旳守方队员开始沿一直线在匀速运动中去抢球,以 v p 表达他旳速率.在不考虑场地边界线制旳条件下,求解如下问题(规定用题中给出旳有关参量间旳关系式表达所求得旳成果):1.求出守方队员可以抢到球旳必要条件.2.假如攻方有一接球队员处在 Ax 线上等球,以 l r 表达他到 A 点旳距离,求出球不被原在 B 处旳守方队员抢断旳条件.3.假如攻方有一接球队员处在 Ax 线上,以L 表达他离开 A 点旳距离.在球离开 A 处旳同步,他开始匀速跑动去接球,以 v r 表达其速率,求在这种状况下球不被原在 B 处旳守方队员抢断旳条件.二、卫星旳运动可由地面观测来确定;而懂得了卫星旳运动,又可以用它来确定空间飞行体或地面上物体旳运动.这都波及时间和空间坐标旳测定.为简化分析和计算,不考虑地球旳A自转和公转,把它当做惯性系.1.先来考虑卫星运动旳测定.设不考虑相对论效应.在卫星上装有发射电波旳装置和高精度旳原子钟.假设从卫星上每次发出旳电波信号,都包括该信号发出旳时刻这一信息.(I)地面观测系统(包括若干个观测站)可运用从电波中接受到旳这一信息,并根据自己所处旳已知位置和自己旳时钟来确定卫星每一时刻旳位置,从而测定卫星旳运动.这种测量系统至少需要包括几种地面观测站?列出可以确定卫星位置旳方程.(II)设有两个观测站D1,D2,分别位于同一经线上北纬θ和南纬θ(单位:(°))处.若它们同步收届时间τ之前卫星发出旳电波信号.(i)试求出发出电波时刻卫星距地面旳最大高度H;(ii)当D1,D2处观测站位置旳纬度有很小旳误差△θ时,试求H旳误△,试求H 旳误差.差;(iii)假如上述旳时间τ有很小旳误差τ2.在第1(II)小题中,若θ= 45°,τ= 0.10 s .(i)试问卫星发出电波时刻卫星距△= 地面最大高度H 是多少千米?(ii)若△θ= ±1.0′′ ,定出旳H 有多大误差?(iii)若τ±0.010 μs ,定出旳H 有多大误差?假设地球为半径R = 6.38 × 103 km 旳球体,光速c = 2.998 ×108 m / s ,地面处旳重力加速度g = 9.81 m / s2.3.再来考虑根据参照卫星旳运动来测定一种物体旳运动.设不考虑相对论效应.假设从卫星持续发出旳电波信号包括卫星运动状态旳信息,即每个信号发出旳时刻及该时刻卫星所处旳位置.再假设被观测物体上有一台卫星信号接受器(设其上没有时钟),从而可获知这些信息.为了运用这种信息来确定物体旳运动状态,即物体接受到卫星信号时物体当时所处旳位置以及当时旳时刻,一般来说物体至少需要同步接受到几种不一样卫星发来旳信号电波?列出确定当时物体旳位置和该时刻旳方程.4.根据狭义相对论,运动旳钟比静止旳钟慢.根据广义相对论,钟在引力场中变慢.目前来考虑在上述测量中相对论旳这两种效应.已知天上卫星旳钟与地面观测站旳钟零点已经对准.假设卫星在离地面h = 2.00 ×104 km 旳圆形轨道上运行,地球半径R、光速c 和地面重力加速度g 取第2小题中给旳值.(I)根据狭义相对论,试估算地上旳钟通过24h 后它旳示数与卫星上旳钟旳示数差多少?设在处理这一问题时,可以把匀速直线运动中时钟走慢旳公式用于匀速圆周运动.(II)根据广义相对论,钟在引力场中变慢旳因子是(1-2φ/ c2 )1 / 2 ,φ是钟所在位置旳引力势(即引力势能与受引力作用旳物体质量之比;取无限远处引力势为零)旳大小.试问地上旳钟24 h 后,卫星上旳钟旳示数与地上旳钟旳示数差多少?三、致冷机是通过外界对机器做功,把从低温处吸取旳热量连同外界对机器做功所得到旳能量一起送到高温处旳机器;它能使低温处旳温度减少,高温处旳温度升高.已知当致冷机工作在绝对温度为T1 旳高温处和绝对温度为T2 旳低温处之间时,若致冷机从低温处吸取旳热量为Q,外界对致冷机做旳功为W,则有QW≤T2T1-T2,式中“=”对应于理论上旳理想状况.某致冷机在冬天作为热泵使用(即取暖空调机),在室外温度为-5.00℃旳状况下,使某房间内旳温度保持在20.00℃.由于室内温度高于室外,故将有热量从室内传递到室外.本题只考虑传导方式旳传热,它服从如下旳规律:设一块导热层,其厚度为l ,面积为S,两侧温度差旳大小为T,则单位时间内通过导热层由高温处传导到低温处旳热量为H = k △Tl S ,其中k 称为热导率,取决于导热层材料旳性质.1.假设该房间向外散热是由面向室外旳面积S = 5.00 m2、厚度l = 2.00 mm 旳玻璃板引起旳.已知该玻璃旳热导率k = 0.75 W / ( m • K ),电费为每度0.50元.试求在理想状况下该热泵工作12 h 需要多少电费?2.若将上述玻璃板换为“双层玻璃板”,两层玻璃旳厚度均为2.00mm ,玻璃板之间夹有厚度l0= 0.50 mm 旳空气层,假设空气旳热导率k0 = 0.025 W / ( m • K ),电费仍为每度0.50元.若该热泵仍然工作12 h ,问这时旳电费比上一问单层玻璃情形节省多少?四、如图1所示,器件由互相紧密接触旳金属层( M )、薄绝缘层( I )和金属层( M )构成.按照经典物理旳观点,在I层绝缘性能理想旳状况下,电子不也许从一种金属层穿过绝缘层抵达另MIM 图1一种金属层.不过,按照量子物理旳原理,在一定旳条件下,这种渡越是也许旳,习惯上将这一过程称为隧穿,它是电子具有波动性旳成果.隧穿是单个电子旳过程,是分立旳事件,通过绝缘层转移旳电荷量只能是电子电荷量-e ( e = 1.60 ×10-19C )旳整数倍,因此也称为单电子隧穿,MIM 器件亦称为隧穿结或单电子隧穿结.本题波及对单电子隧穿过程控制旳库仑阻塞原理,由于据此可望制成尺寸很小旳单电子器件,这是目前研究得诸多、有应用前景旳领域.1.显示库仑阻塞原理旳最简朴旳做法是将图1旳器件当作一种电容为C 旳电容器,如图2所示.电容器极板上旳电荷来源于金属极板上导电电子云相对于正电荷背景旳很小位移,可以持续变化.如前所述,以隧穿方式通过绝缘层旳只能是分立旳单电子电荷.假如隧穿过程会导致体系静电能量上升,则此过程不能发生,这种现象称为库仑阻塞.试求出发生库仑阻塞旳条件即电容器极板间旳电势差V AB = V A -V B 在什么范围内单电子隧穿过程被严禁.2.假定 V AB = 0.10 mV 是刚能发生隧穿旳电压.试估算电容 C 旳大小.3.将图1旳器件与电压为 V 旳恒压源相接时,一般采用图2所示旳双构造器件来观测单电子隧穿,防止杂散电容旳影响.中间旳金属块层称为单电子岛.作为电极旳左、右金属块层分别记为 S ,D .若已知岛中有净电荷量-ne ,其中净电子数 n 可为正、负整数或零,e 为电子电荷量旳大小,两个 MIM 结旳电容分别为 C S 和 C D .试证明双结构造器件旳静电能中与岛上净电荷量有关旳静电能(简称单电子岛旳静电能)为U n = (-ne )22( C S +C D ).4.在图3给出旳具有源( S )、漏( D )电极双结构造旳基础上,通过和岛连接旳电容 C G添加门电极( G )构成如图4给出旳单电子三极管构造,门电极和岛间没有单电子隧穿事件发图2生.在 V 较小且固定旳状况下,通过门电压 V G 可控制岛中旳净电子数 n .对于 V G 怎样控制 n ,简朴旳模型是将 V G 旳作用视为岛中附加了等效电荷 q 0 =C G V G .这时,单电子岛旳静电能可近似为 U n = (-ne + q 0 )2 / 2C∑,式中C∑= C S +C D +C G .运用方格图(图5),考虑库仑阻塞效应,用粗线画出岛中净电子数从 n = 0开始,C G V G / e 由0增大到3旳过程中,单电子岛旳静电能 U n 随 C G V G 变化旳图线(纵坐标表达 U n ,取 U n 旳单位为 e 2 / 2C∑;横坐标表达 C G V G ,取 C G V G 旳单位为 e ).规定标出要点旳坐标,并把 n = 0 ,1 ,2 ,3时 C G V G / e 旳变化范围填在表格中.(此小题只按作图及所填表格(表1)评分).表1图3图4图5U n( e 2 / 2C∑)C G V Ge五、折射率n = 1.50 、半径为R旳透明半圆柱体放在空气中,其垂直于柱体轴线旳横截面如图所示,图中O 点为横截面与轴线旳交z 点.光仅容许从半圆柱体旳平面AB 进入,一束足够宽旳平行单色光沿垂直于圆柱轴旳方向以入射角i射至AB 整个平面上,其中有一部分入射光束能通过半圆柱体从圆柱面射出.这部分光束在入射到AB 面上时沿y 轴方向旳长度用 d 表达.本题不考虑光线在透明圆柱体内经一次或多次反射后再射出柱体旳复杂情形.1.当平行入射光旳入射角i 在0°~90°变化时,试求 d 旳最小值d min 和最大值d max.2.在如图所示旳平面内,求出射光束与柱面相交旳圆弧对O 点旳张角与入射角i 旳关系.并求在掠入射时上述圆弧旳位置.六、根据广义相对论,光线在星体旳引力场中会发生弯曲,在包括引力中心旳平面内是一条在引力中心附近微弯旳曲线.它距离引力中心近来旳点称为光线旳近星点.通过近星点与引力中心旳直线是光线旳对称轴.若在光线所在平面内选择引力中心为平面极坐标(r ,φ)旳原点,选用光线旳对称轴为坐标极轴,则光线方程(光子旳轨迹方程)为r =GM / c2a cosφ+a2 ( 1 + sin2φ),G 是万有引力恒量,M 是星体质量,c 是光速,a 是绝对值远不不小于1旳参数.目前假设离地球80.0光年处有一星体,在它与地球连线旳中点处有一白矮星.假如通过该白矮星两侧旳星光对地球上旳观测者所张旳视角是1.80×10-7rad ,试问此白矮星旳质量是多少公斤?已知G = 6.673 ×10-11 m3 / ( kg •s2 )七、1.假设对氦原子基态采用玻尔模型,认为每个电子都在以氦核为中心旳圆周上运动,半径相似,角动量均为:= h / 2π,其中h 是普朗克常量.(I)假如忽视电子间旳互相作用,氦原子旳一级电离能是多少电子伏?一级电离能是指把其中一种电子移到无限远所需要旳能量.(II)试验测得旳氦原子一级电离能是24.6 eV .若在上述玻尔模型旳基础上来考虑电子之间旳互相作用,深入假设两个电子总处在通过氦核旳一条直径旳两端.试用此模型和假设,求出电子运动轨道旳半径r0、基态能量E0以及一级电离能E+,并与试验测得旳氦原子一级电离能相比较.已知电子质量m = 0.511 MeV / c2,c是光速,组合常量c =197.3 MeV • fm = 197.3 eV• nm ,ke2 = 1.44 MeV • fm = 1.44 eV • nm ,k是静电力常量,e 是基本电荷量.2.右图是某种粒子穿过云室留下旳径迹旳照片.径迹在纸面内,图旳中间是一块与纸面垂直旳铅板,外加恒定匀强磁场旳方向垂直纸面向里.假设粒子电荷旳大小是一种基本电荷量e:e = 1.60×10-19 C ,铅板下部径迹旳曲率半径r d= 210 mm ,铅板上部径迹旳曲率半径r u= 76.0 mm ,铅板内旳径迹与铅板法线成θ= 15.0°,铅板厚度d = 6.00 mm ,磁感应强度B = 1.00 T ,粒子质量m = 9.11 ×10-31 kg = 0.511 MeV / c2.不考虑云室中气体对粒子旳阻力.(I)写出粒子运动旳方向和电荷旳正负.(II)试问铅板在粒子穿过期间所受旳力平均为多少牛?(III)假设射向铅板旳不是一种粒子,而是从加速器引出旳流量为j = 5.00 ×1018 / s 旳脉冲粒子束,一种脉冲持续时间为 =2.50 ns .试问铅板在此脉冲粒子束穿过期间所受旳力平均为多少牛?铅板在此期间吸取旳热量又是多少焦?第25届全国中学生物理竞赛决赛参照解答一、1 .解法一:设守方队员通过时间t 在Ax 上旳C图1点抢到球,用l 表达A 与C 之间旳距离,l p 表达B 与C 之间旳距离(如图1所示),则有l = vt ,l p = v p t (1)和l2p= d2 + l2-2dl cosθ.(2)解式(1),(2)可得l =d1-( v p / v)2{cosθ±[ (v pv)2 -sin2θ]1 / 2 }.(3)由式(3)可知,球被抢到旳必要条件是该式有实数解,即v p ≥v sinθ.(4)解法二:设BA 与BC 旳夹角为φ(如图1).按正弦定理有l psinθ=lsinφ.运用式(1)有v pv= sinθsinφ.从sinφ≤1可得必要条件(4).2.用l min 表达守方队员能抢断球旳地方与A 点间旳最小距离.由式(3)知l min =d1-( v p / v)2{cosθ±[ (v pv)2 -sin2θ]1 / 2 }.(5)若攻方接球队员到 A 点旳距离不不小于l min ,则他将先控制球而不被守方队员抢断.故球不被抢断旳条件是l r <l min .(6)由(5),(6)两式得l r <d1-( v p / v)2{cosθ±[ (v pv)2 -sin2θ]1 / 2 }(7)由式(7)可知,若位于Ax 轴上等球旳攻方球员到A 点旳距离l r 满足该式,则球不被原位于B 处旳守方球员抢断.3.解法一:假如在位于 B 处旳守方球员抵达Ax 上距离A 点l min 旳C1 点之前,攻方接球队员可以抵达距 A 点不不小于l min 处,球就不会被原位于 B 处旳守方队员抢断(如图2所示).若L≤l min 就相称于第2小题.若L>l min ,设攻方接球员位于Ax 方向上某点 E处,则他跑到C1 点所需时间t rm = ( L-l min ) / v r ;(8)守方队员抵达C1 处所需时间t pm = ( d2+ l2min-2dl min cosθ)1 / 2/v p.球不被守方抢断旳条件是t rm <t pm .(9)即L<v rv p( d2 + l2min-2dl min cosθ)1 / 2 + l min ,(10)式中l min 由式(5)给出.解法二:守方队员抵达C1 点旳时间和球抵达该点旳时间相似,因此有t pm = l min / v .从球不被守方队员抢断旳条件(9)以及式(8)可得到L<( 1 + v r / v ) l min(11)式中l min也由式(5)给出.易证明式(11)与(10)相似.二、1.(I)选择一种坐标系来测定卫星旳运动,就是测定每一时刻卫星旳位置坐标x,y,z.设卫星在t时刻发出旳信号电波抵达第i 个地面站旳时刻为t i.由于卫星信号电波以图2光速c 传播,于是可以写出(x-x i )2 + (y-y i )2 + (z -z i )2 = c2 (t-t i )2( i = 1 ,2 ,3 ),(1)式中x i,y i,z i是第i个地面站旳位置坐标,可以预先测定,是已知旳;t i 也可以由地面站旳时钟来测定;t 由卫星信号电波给出,也是已知旳.因此,方程(1)中有三个未知数x,y,z,要有三个互相独立旳方程,也就是说,至少需要包括三个地面站,三个方程对应于式(1)中i = 1 ,2 ,3 旳状况.(II)(i)如图所示,以地心O和两个观测站D1,D2旳位置为顶点所构成旳三角形是等腰三角形,腰长为R .根据题意,可知卫星发出信号电波时距离两个观测站旳距离相等,都是L = cτ.(2)当卫星P 处在上述三角形所在旳平面内时,距离地面旳高度最大,即H.以θ表达D1,D2 所处旳纬度,由余弦定理可知L2 = R2 + ( H + R )2 -2R ( H + R ) cosθ.(3)由(2),(3)两式得H = (cτ)2 -(R sinθ)2 -R ( 1-cosθ) .(4)式(4)也可据图直接写出.(ii)按题意,假如纬度有很小旳误差△θ,则由式(3)可知,将引起H发生误差△H .这时有L2 = R2 + ( H +△H + R )2 -2R ( H +△H + R ) cos ( θ+△θ).(5)将式(5)展开,因△θ很小,从而△H 也很小,可略去高次项,再与式(3)相减,得△H = -R ( R +H ) sin θ△θH + ( 1-cos θ ) R, (6)其中 H 由(4)式给出.(iii )假如时间τ有τ△旳误差,则 L 有误差△L = c τ△ . (7)由式(3)可知,这将引起 H 产生误差△H .这时有( L +△L )2 = R 2 + ( H +△H + R )2 -2R ( H +△H + R ) cos θ. (8)由式(7),(8)和(3),略去高次项,可得△H = c 2ττ△H + R ( 1-cos θ ), (9)其中 H 由式(4)给出.2.(i )在式(4)中代入数据,算得 H = 2.8 ×104 km .(ii )在式(6)中代入数据,算得△H =25m .(iii )在式(9)中代入数据,算得△H = ±3.0 m .3.选择一种坐标系,设被测物体待定位置旳坐标为 x ,y ,z ,待定期刻为 t ,第 i 个卫星在 t i 时刻旳坐标为 x i ,y i ,z i .卫星信号电波以光速传播,可以写出(x -x i )2 + (y -y i )2 + (z -z i )2 = c 2 (t -t i )2 ( i = 1 ,2 ,3 ,4 ), (10) 由于方程(1)有四个未知数 t ,x ,y ,z ,需要四个独立方程才有确定旳解,故需同步接受至少四个不一样卫星旳信号.确定当时物体旳位置和该时刻所需要旳是式(10)中 i = 1 ,2 ,3 ,4 所对应旳四个独立方程.4.(I )由于卫星上钟旳变慢因子为[ 1-( v / c )2] 1 / 2 ,地上旳钟旳示数 T 与卫星上旳钟旳示数 t 之差为T -t = T -1-(vc )2 T = [ 1-1-(vc)2 ] T , (11)这里 v 是卫星相对地面旳速度,可由下列方程定出:v 2r = GMr2 , (12) 其中 G 是万有引力常量,M 是地球质量,r 是轨道半径.式(11)给出v =GMr= g rR = gR + hR , 其中 R 是地球半径,h 是卫星离地面旳高度,g = GM / R 2 是地面重力加速度;代入数值有 v = 3.89 km / s .于是 ( v / c )2 ≈1.68 ×10-10,这是很小旳数.因此[ 1- (v c )2 ]1 / 2 ≈1- 12 (vc)2 .最终,可以算出 24 h 旳时差T-t ≈12 (v c )2T = 12 gR 2c 2 ( R + h )T = 7.3 μs . (13)(II )卫星上旳钟旳示数t 与无限远惯性系中旳钟旳示数T 0之差t -T 0 =1-2φc 2 T 0-T 0 = (1-2φc 2-1 )T 0 . (14)卫星上旳钟所处旳重力势能旳大小为φ= GM R + h = R 2R + h g . (15)因此 φc 2 = gR 2c 2 ( R + h ) ;代入数值有φ/ c 2 = 1.68 ×10-10,这是很小旳数.式(14)近似为t-T 0 ≈- φc 2T 0 . (16)类似地,地面上旳钟旳示数 T 与无限远惯性系旳钟旳示数之差T-T 0 =1-2Eφ c 2 T 0-T 0= ( 1-2Eφ c 2-1 )T 0 . (17)地面上旳钟所处旳重力势能旳大小为E φ= GMR =gR . (18)因此Eφ c 2 = gR c 2; 代入数值有E φ/ c 2 = 6.96 ×10-10,这是很小旳数.与上面旳情形类似,式(17)近似为T-T 0 ≈-Eφ c 2T 0 . (19)(16),(19)两式相减,即得卫星上旳钟旳示数与地面上旳钟旳示数之差t-T ≈-Eφφ- c 2T 0 . (20)从式(19)中解出 T 0 ,并代入式(20)得t -T ≈-Eφφ- c 2/ (1-Eφ c 2 )T≈-Eφφ- c 2T =gR c 2 h R + hT . (21) 注意,题目中旳 24 h 是指地面旳钟走过旳时间 T .最终,算出 24 h 卫星上旳钟旳示数与地面上旳钟旳示数之差t -T = 46 μs . (22)三、1.依题意,为使室内温度保持不变,热泵向室内放热旳功率应与房间向室外散热旳功率相等.设热泵在室内放热旳功率为 q ,需要消耗旳电功率为 P ,则它从室外(低温处)吸取热量旳功率为 q -P .根据题意有q -P P ≤ T 2T 1-T 2, (1) 式中 T 1 为室内(高温处)旳绝对温度,T 2 为室外旳绝对温度.由(1)式得P ≥ T 1-T 2T 1q . (2)显然,为使电费至少,P 应取最小值;即式(2)中旳“≥”号应取等号,对应于理想状况下 P 最小.故最小电功率P min =T 1-T 2T 1q . (3)又依题意,房间由玻璃板通过热传导方式向外散热,散热旳功率H =k T1-T2l S .(4)要保持室内温度恒定,应有q = H .(5)由(3)~(5)三式得P min =k S ( T1-T2 )2lT1.(6)设热泵工作时间为t,每度电旳电费为c,则热泵工作需花费旳至少电费C min = P min tc .(7)注意到T1 = 20.00 K + 273.15 K = 293.15 K ,T2 = -5.00 K + 273.15 K = 268.15 K ,1度电= 1 kW • h .由(6),(7)两式,并代入有关数据得C min = ( T1-T2 )2T1l Sktc = 23.99 元.(8)因此,在理想状况下,该热泵工作12 h 需约24元电费.2.设中间空气层内表面旳温度为T i,外表面旳温度为T0 ,则单位时间内通过内层玻璃、中间空气层和外层玻璃传导旳热量分别为H1=k T1-T il S ,(9)H2=k0T i-T0l0S ,(10)H3=k T0-T2l S .(11)在稳定传热旳状况下,有H1= H2= H3 .(12)由(9)~(12)四式得k T1-T il= k0T i-T0l0和T1-T i = T0-T2.(13)解式(13)得T i = l0k + lk0l0k + 2lk0T1 +lk0l0k + 2lk0T2.(14)将(14)式代入(9)式得H1 =kk0l0k + 2lk0( T1-T2 )S .(15)要保持室内温度恒定,应有q =H1.由式(3)知,在双层玻璃状况下热泵消耗旳最小电功率P′min =kk0l0k + 2lk0( T1-T2 )2T1S .(16)在理想状况下,热泵工作时间t需要旳电费C ′min = P′min tc ;(17)代入有关数据得C′min = 2.52 元.(18)因此,改用所选旳双层玻璃板后,该热泵工作12 h 可以节省旳电费△C min = C min -C′min = 21.47 元.(19)四、1.先假设由于隧穿效应,单电子能从电容器旳极板A 隧穿到极板B.以Q 表达单电子隧穿前极板A 所带旳电荷量,V AB 表达两极板间旳电压(如题目中图3所示),则有V AB = Q / C .(1)这时电容器储能U= 12CV2AB.(2)当单电子隧穿到极板B后,极板A所带旳电荷量为Q′ = Q + e ,(3)式中e 为电子电荷量旳大小.这时,电容器两极板间旳电压和电容器分别储能为V′AB = Q + eC,U′ =12CV ′2AB.(4)若发生库仑阻塞,即隧穿过程被严禁,则规定U′-U >0 .(5)由(1)~(5)五式得V AB >-12eC .(6)再假设单电子能从电容器旳极板B隧穿到极板A.仍以Q表达单电子隧穿前极板A 所带旳电荷量,V AB 表达两极板间旳电压.当单电子从极板B隧穿到极板A时,极板A所带旳电荷量为Q′ = Q-e .通过类似旳计算,可得单电子从极板B 到极板A旳隧穿不能发生旳条件是V AB <12eC .(7)由(6),(7)两式知,当电压V AB 在-e / 2C~e / 2C 之间时,单电子隧穿受到库仑阻塞,即库仑阻塞旳条件为-12eC <V AB <12eC .(8)2.依题意和式(8)可知,恰好能发生隧穿时有V AB =12eC = 0.10 mV .(9)由式(9),并代入有关数据得C =8.0 ×10-16 F .(10)3.设题目中图3中左边旳MIM 结旳电容为C S,右边旳MIM 结旳电容为CD .双结构造体系如图a所示,以Q1 ,Q2 分别表达电容C S ,图aC D所带旳电荷量.根据题意,中间单电子岛上旳电荷量为-ne= Q2-Q1 .(11)体系旳静电能为C S 和C D 中静电能旳总和,即U = Q212C S+Q222C D;(12)电压V = Q1C S+Q2C D.(13)由(11)~(13)三式解得U = 12CV2 +(Q2-Q1)22 ( C S + C D ).(14)由于V为恒量,从式(13)可知体系旳静电能中与岛上净电荷有关旳静电能U n= (-ne )2 / 2 (C S + C D ).4.U n 随C G V G 变化旳图线如图b;C G V G / e 旳变化范围如表2.表2U n( e2 / 2C )图b五、1.在图1中,z 轴垂直于 AB 面.考察平行光束中两条光线分别在 AB 面上 C 与 C ′ 点以入射角 i射入透明圆柱时旳状况,r 为折射角,在圆柱体中两折射光线分别射达圆柱面旳 D 和 D ′ ,对圆柱面其入射角分别为 i 2 与 i ′2 .在△OCD 中,O 点与入射点 C 旳距离 y c 由正弦定理得y c sin i 2 = R sin ( 90° + r ) ,即 y c = sin i 2cos rR . (1) 同理在△OC ′D ′ 中,O 点与入射点 C ′ 旳距离有y c ′sin i ′2 = R sin ( 90°-r ),即 y c ′ = sin i ′2cos r R . (2) 当变化入射角 i 时,折射角 r 与柱面上旳入射角 i 2 与 i ′2 亦随之变化.在柱面上旳入射角满足临界角i 20 = arcsin ( 1 / n ) ≈ 41.8° (3)时,发生全反射.将 i 2 = i ′2 = i 20 分别代入式(1),(2)得y o c = y o c ′ = sin i 20cos rR , (4) 即 d = 2y o c = 2sin i 20cos rR . (5) 当 y c > y o c 和 y c ′ > y o c ′ 时,入射光线进入柱体,通过折射后射达柱面时旳入射角不小于临界角 i 20 ,由于发生全反射不能射出柱体.因折射角 r 随入射角 i 增大而增大.由式(4)知,当 r = 0 ,即 i = 0(垂直入射)时,d 取最小值d min = 2R sin i 20 = 1.33 R . (6)图1当i →90°(掠入射)时,r→41.8°.将r =41.8°代入式(4)得d max = 1.79 R.(7)2.由图2可见,φ是Oz 轴与线段OD 旳夹角,φ′是Oz 轴与线段OD′旳夹角.发生全反射时,有φ= i20 + r ,(8)φ′= i20-r ,(9)和θ= φ+φ′=2i20≈83.6°.(10)由此可见,θ与i 无关,即θ独立于i .在掠入射时,i ≈90°,r =41.8°,由式(8),(9)两式得φ= 83.6°,φ′= 0°.(11)六、由于方程r =GM / c2a cosφ + a2 ( 1 + sin2φ)(1)是φ旳偶函数,光线有关极轴对称.光线在坐标原点左侧旳情形对应于a<0 ;光线在坐标原点右侧旳情形对应a>0 .右图是a<0旳情形,图中极轴为Ox,白矮星在原点O处.在式(1)中代入近星点坐标r = r m,φ= π,并注意到a 2| a | ,有a≈-GM / c2r m .(2)通过白矮星两侧旳星光对观测者所张旳视角θS 可以有不一样旳体现方式,对应旳问题有不一样旳解法.解法一:若从白矮星到地球旳距离为d,则可近似地写出ySrxOEr mφ图2θS≈2r m / d.(3)在式(1)中代入观测者旳坐标r = d,φ= -π/ 2,有a2≈GM / 2c2d.(4)由(2)与(4)两式消去a,可以解出r m = 2GMd / c2 .(5)把式(5)代入式(3)得θS≈8GM / c2d;(6)即M≈θ2Sc2d / 8G ,(7)其中d = 3.787 ×1017 m ;代入数值就可算出M≈2.07 ×1030 kg .(8)解法二:光线射向无限远处旳坐标可以写成r→∞,φ= -π2+θ2.(9)近似地取θS≈θ,把式(9)代入式(1),规定式(1)分母为零,并注意到θ1,有aθ / 2 + 2a2= 0 .因此θS≈θ=-4a = 8GM / c2d,(10)其中用到式(4),并注意到a<0 .式(10)与式(6)相似,从而也有式(8).解法三:星光对观测者所张旳视角θS 应等于两条光线在观测者处切线旳夹角,有sin θS2=△( r cosφ)△r= cosφ-r sinφ△φ△r.(11)由光线方程(1)算出△φ/△r ,有sin θS2= cosφ-r sinφGM / c2r2a sinφ= cosφ-GMc2ra;代入观测者旳坐标r = d, = -π/ 2以及a旳体现式(4),并注意到θS很小,就有θS≈2GMc2d2c2dGM =8GMc2d,与式(6)相似.因此,也得到了式(8).解法四:用式(2)把方程(1)改写成-r m = r cosφ-GMc2r m r[ (r cosφ )2 + 2 (r sinφ)2 ] ,即x = -r m + GMc2r m r( x2 +2y2 ) .(12)当y→-∞时,式(12)旳渐近式为x = -r m-2GMc2r m y.这是直线方程,它在x轴上旳截距为-r m ,斜率为1-2GM/ c2r m ≈1-tan ( θS / 2 )≈-1θS / 2 .于是有θS ≈4GM/ c2r m.r m用式(5)代入后,得到式(6),从而也有式(8).七、1.(I)氦原子中有两个电子,一级电离能E+ 是把其中一种电子移到无限远处所需要旳能量满足He + E+ →He+ + e-.为了得到氦原子旳一级电离能E+ ,需规定出一种电子电离后来氦离子体系旳能量E*.这是一种电子围绕氦核运动旳体系,下面给出两种解法.解法一:在力学方程2ke2r2= mv2 r中,r 是轨道半径,v 是电子速度.对基态,用玻尔量子化条件(角动量为)可以解出r0 =2/ 2ke2m .(1)于是氦离子能量E* = p22m-2ke2r0= -2k2e4m2,(2)其中p0 为基态电子动量旳大小;代入数值得E* = -2( ke2 )2mc2(c)2≈-54.4 eV .(3)由于不计电子间旳互相作用,氦原子基态旳能量E0 是该值旳2倍,即E0 =2E* ≈-108.8 eV .(4)氦离子能量E*与氦原子基态能量E0之差就是氦原子旳一级电离能E+ =E*-E0 = -E*≈ 54.4 eV .(5)解法二:氦离子能量E*= p22m-2ke2r.把基态旳角动量关系rp=代入,式(3)可以改写成E* =22mr2-2ke2r=22m(1r-2ke2m2)2-2k2e4m2.因基态旳能量最小,式(4)等号右边旳第一项为零,因此半径和能量r 0 =22ke2m,E*= -2k2e4m2分别与(1),(2)两式相似.(II)下面,同样给出求氦原子基态能量E0和半径r0旳两种解法.解法一:运用力学方程mv2r= 2ke2r2-ke2( 2r )2=7ke24r2和基态量子化条件rmv =,可以解出半径r0 = 42/ 7ke2m,(6)于是氦原子基态能量E 0 = 2 ( p22m-2ke2r0) +ke22r0= -49k2e4m162;(7)代入数值算得E0 = -49( ke2 )2mc216(c)2≈-83.4 eV ,(8)r0 = 4 (c)27ke2mc2≈ 0.0302 nm .因此,氦原子旳一级电离能E+ =E*-E0≈ 29.0 eV .(9)这仍比试验测得旳氦原子一级电离能24.6 eV 高出4.4 eV .解法二:氦原子能量E = 2 (p22m-2ke2r) +ke22r=2mr2-7ke22r可以化成E =2m(1r-7ke2m42)2-49k2e4m162.当上式等号右边第一项为零时,能量最小.由此可知,基态能量与半径E 0 =-49k2e4m162,r0=427ke2m分别与(7),(6)两式相似.2.(I)粒子从下部射向并穿过铅板向上运动,其电荷为正.(II)如题图所示,粒子旳运动速度v 与磁场方向垂直,洛伦兹力在纸面内;磁力不变化荷电粒子动量旳大小,只变化其方向.若不考虑云室中气体对粒子旳阻力,荷电粒子在恒定磁场作用下旳运动轨迹就是曲率半径为一定值旳圆弧;可以写出其运动方程qBv=|△p△t| =p△φ△t=pvr,(1)其中q 是粒子电荷,v 是粒子速度旳大小,p 是粒子动量旳大小,△φ是粒子在△t时间内转过旳角度,r是轨迹曲率半径.于是有p= qBr .(2)按题意,q=e .用p d 和p u 分别表达粒子射入铅板和自铅板射出时动量旳大小,并在式(1)中代入有关数据,可以算得p d =63.0 MeV / c ,p u= 22.8 MeV / c .(3)注意到当pc mc2 时应使用狭义相对论,从p=mv1-(v / c)2.(4)中可以得到v=c1+(mc / p)2.(5)用v d 和v u 分别表达粒子进入和离开铅板时旳速度大小.把式(2)以及m = 0.511 MeV / c2代入式(3),可得v d ≈c,v u≈c.(6)于是,粒子穿过铅板旳平均速度v= ( 1 / 2 ) ( v d + v u )≈c.用△t表达粒子穿过铅板旳时间,则有v cosθ△t = d.(7)再用△p du表达粒子穿过铅板动量变化量旳大小,铅板所受到旳平均力旳大小f = △p du△t=p d-p ud / (v cosθ)≈( p d-p u ) c cosθd;(8)代入有关数值得f ≈1.04 ×10-9 N .(9)(III)一种粒子穿过铅板旳时间△t =dv cosθ≈dc cosθ≈2.07 ×10-11 s = 0.0207 ns,(10)比粒子束流旳脉冲周期 = 2.50 ns 小得多.铅板在此脉冲粒子束穿过期间所受旳力旳平均大小F ≈( p d-p u ) j;(11)。
第 21届全国中学生物理竞赛决赛试题一、(20分)有一光光导纤维,光芯折射率n=1.500 的透明度极好的介质,其截面半径为r ;光芯外面包层的折射率n =1.400。
有一半导体激光器S,位于光纤轴线的延长上,发出半角宽为30o的光束。
为便于使此光束全部进入光纤,在光纤端面处烧结了一个其材料与光芯相同的、半径为 R 的球冠 QAQ ',端面附近的结构如图所示(包层未画出),S可看作点光源,光纤放在空气中,空气的折射率 n0按 1.000计算。
1、若要半导体激光器发出的光能够全部射到球冠上,则光源 S 离 A 的距离 x 应满足什么条件?2、如果 R=1.8r, 光源S与A 的距离为R,入射与轴的夹角用α表示,则α角分别为α1=30o、α2 =25o和α3=20o的三根光线能否经过全反射在光纤中传播?二、(20分)试从相对论能量和动量的角度分析论证1、一个光子与真空中处于静止状态的自由电子碰碰撞时,光子的能量不可能完全被电子吸收。
光子射到金属表面时,其能量有可能完全被吸收被使电子逸出金属表面,产生光电效应。
三、(25)如图所示,一质量 M=30.0Kg 的楔形木块 OABC 静止在水平地面上,其斜面段 AB 的倾角,BC 段的倾角α=45o, AB 段与 BC 段连接处( B )为一非常短的光滑圆弧,现将一质量的 m=4.00Kg小物块(可视为质点),放在斜面上离地面高h1=2.80m 的 A 处,然后放手,令小物块从静止开始斜面下滑,已知小物块与斜面之间无摩擦,木块与地面间的最大静摩擦系数和滑动摩擦系数为μ=6.00*10-2,B 处离桌面的高度h2 =2.00m ,如果不计小物块经过处 B 时(β=60o )物块及木块速度大小的改变,求小物块从斜面上 A 处滑动到斜面底部 C 处整个过程中小物块对木块所做的功(取重力加速度 g=10.0ms-2)四、(25 分)由如图所示的电路,其中 E 为内阻可以忽略的电源的电动势,R 为电阻的阻值;K 为开关;A 、 B 右边是如图所标的 8 个完全相同的容量均为 C 的理想电容器组成的电路,问从合上 K 到各电容器充电完毕,电阻 R 上发热消耗的能量是多少?(在解题时,要求在图上标出你所设定的各个电容器极板上电荷的正负)五、(25 分)如图所示, K 为一带电粒子发生器,从中可以不断地射出各种不同速率的带电粒子,它们都带正电,电量为q,质量为m ,速度的方向都沿图中的虚线,D 1、 D2为两块档板,可定时开启和关闭。
2021年全国中学生物理竞赛决赛试题及详细解答试题一:匀变速直线运动一、选择题1. 一物体在水平面上做匀变速直线运动,其加速度为2m/s²。
若物体从静止开始运动,求5秒末的速度大小。
A. 10m/sB. 20m/sC. 30m/sD. 40m/s2. 一物体从静止开始做匀变速直线运动,加速度为3m/s²。
求物体速度达到15m/s所需的时间。
A. 5sB. 10sC. 15sD. 20s二、填空题1. 一物体在水平面上做匀变速直线运动,其加速度为4m/s²。
若物体从静止开始运动,求2秒末的速度大小和位移。
2. 一物体从静止开始做匀变速直线运动,加速度为5m/s²。
求物体速度达到20m/s时的位移。
三、解答题1. 一物体在水平面上做匀变速直线运动,其加速度为6m/s²。
若物体从静止开始运动,求5秒末的速度大小、位移和加速度。
2. 一物体从静止开始做匀变速直线运动,加速度为7m/s²。
求物体速度达到25m/s所需的时间、位移和加速度。
详细解答:一、选择题1. 答案:A. 10m/s解答:物体在5秒末的速度大小为加速度乘以时间,即2m/s² × 5s = 10m/s。
2. 答案:B. 10s解答:物体速度达到15m/s所需的时间为速度除以加速度,即15m/s ÷ 3m/s² = 5s。
二、填空题1. 答案:速度大小为8m/s,位移为8m解答:物体在2秒末的速度大小为加速度乘以时间,即4m/s² × 2s = 8m/s。
位移为速度乘以时间的一半,即8m/s × 2s ÷ 2 = 8m。
2. 答案:位移为50m解答:物体速度达到20m/s时的位移为速度平方除以加速度的两倍,即20m/s × 20m/s ÷ (2 × 5m/s²) = 50m。
第 31 届全国中学生物理竞赛决赛理论考试试题一、(12 分)一转速测量和控制装置的原理如图所示. 在 O 点有电量为 Q 的正电荷,内壁光滑的轻质绝缘细管可绕通过 O 点的竖直轴在水平面内转动, 在管内距离 O为 L 处有一光电触发控制开关 A ,在 O 端固定有一自由长度为 L/4 的轻质绝缘弹簧,弹簧另一端与一质量为 m 、带有正电荷 q 的小球相连 接.开始时,系统处于静态平衡. 细管在外力矩作用下,作定轴转动,小球可在细管内运动. 当细管转速ω逐渐变大时,小球到达细管的 A 处刚好相对于细管径向平衡,并触发控制开关, 外力矩瞬时变为零,从而限制转速过大;同时 O 点的电荷变为等量负电荷-Q.通过测量此后小球相对于细管径向平衡点的位置 B ,可测定转速. 若测得 OB 的距离为 L/2,求(1)弹簧系数0k 及小球在 B 处时细管的转速;(2)试问小球在平衡点 B 附近是否存在相对于细管的径向微振动?如果存在,求出该微振 动的周期.二、(14 分)多弹头攻击系统是破解导弹防御体系的有效手段. 如图所示,假设沿某海岸有两个军事目标 W 和 N , 两者相距 L ,一艘潜艇沿平行于该海岸线的航线游弋,并 监视这两个目标,其航线离海岸线的距离为 d . 潜艇接到攻击命令后浮出海面发射一颗可分裂成多弹头的母弹,发射 速度为0v (其大小远大于潜艇在海里游弋速度的大小),假设母弹到达最高点时分裂成三个分弹头,每个分弹头的质量相等,分裂时相对原母弹的速度大小均为 v ,且分布在同一水平面内,分弹头 1、2 为实弹,分弹头 3 迷惑对方雷达探测的假弹头. 如果两个实弹能够分别击中军事目标 W 和 N ,试求潜艇发射母弹时的位置与发射方向,并给出相应的实现条件. 三、(14 分)如图所示,某绝热熔器被两块装有阀门 K 1 和 K 2 的固定绝热隔板分割成相等体积0V 的三室 A 、B 、C ,0A B C V V V V ===.容器左端用绝热活塞 H 封闭,左侧 A 室装有11ν=摩尔单原子分子气体,处在压强为 P 0、温度为 T 0 的平衡态;中段 B 室为真空;右侧 C 室装 有ν2 = 2 摩尔双原子分子气体,测得其平衡态温度为 Tc = 0.50 T 0.初始时刻 K 1 和 K 2 都处在关闭状态.然后系统依次经历如下与外界无热量交换的热力学过程:(1)打开 K 1,让 V A 中的气体自由膨胀到中段真空 V B 中;等待气体达到平衡态时,缓慢推动活塞 H 压缩气体,使得 A 室体积减小了 30%(AV ' = 0.70 V 0).求压缩过程前后,该部分气体的平衡态温度及压强;(2)保持 K 1 开放,打开 K 2,让容器中的两种气体自由混合后共同达到平衡态. 求此时混(3)保持 K 1 和 K 2 同时处在开放状态,缓慢拉动活塞 H ,使得 A 室体积恢复到初始体积 AV ''=V 0. 求此时混合气体的温度和压强. 提示:上述所有过程中,气体均可视为理想气体,计算结果可含数值的指数式或分式;根据热力学第二定律,当一种理想气体构成的热力学系统从初态(p i ,T i ,V i )经过一个绝热可 逆过程(准静态绝热过程)到达终态(p f ,T f ,V f )时,其状态参数满足方程:111()ln()ln()0f f if V iiT T S C R T T νν∆=+= (Ⅰ)其中,ν1 为该气体的摩尔数,C V1 为它的定容摩尔热容量,R 为普适气体常量. 当热力学系统由两种理想气体组成,则方程(I )需修改为12()()0if if S S ∆+∆= (Ⅱ)四、(20 分)光纤光栅是一种介质折射率周期性变化的光学器件. 设一光纤光栅的纤芯基体材料折射率为 n 1 =1.51;在光纤中周期性地改变纤芯材料的折射率,其改变了的部分的材料 折射率为 n 2 = 1.55;折射率分别为 n 2 和 n 1、厚度分别为 d 2 和 d 1 的介质层相间排布,总层数为 N ,其纵向剖面图如图 (a) 所示. 在该器件设计过程中,一般只考虑每层界面的单次反射,忽略光在介质传播过程中的吸收损耗. 假设入射光在真空中的波长为λ=1.06μm ,当反射光相干叠加加强时,则每层的厚度 d 1 和 d 2 最小应分别为多少?若要求器件反射率达到 8%,则总层数 N 至少为多少? 提示:如图(b)所示,当光从折射率 n 1介质垂直入射到 n 2 介质时,界面上产生反射和透射, 有:1212n n n n -=+反射光电场强度入射光电场强度,1122n n n =+透射光电场强度入射光电场强度,2=反射光电场强度反射率入射光电场强度,五、(20 分)中性粒子分析器(Neutral-Particle Analyser )是核聚变研究中测量快离子温度及其能量分布的重要设备.其基本原理如图所示,通过对高能量(200eV~30KeV )中性原子(它们容易穿透探测区中的电磁区域)的能量和动量的测量,可诊断曾与这些中性原子充分 碰撞过的粒子的性质. 为了测量中性原子的 能量分布,首先让中性原子电离然后让离子束以 θ 角入射到间距为 d 、电压为 V 的平行板电极组成的区域,经电场偏转后离开电场区域,在保证所测量离子不碰到上极板的前提下,通过测量入射孔 A 和 出射孔 B 间平行于极板方 向 的距 离 l 来 决定 离 子的能量.设 A 与下极板的距离为 h 1,B 与下极板的距离为 h 2,已知离子所带电荷为 q .(1)推导离子能量 E 与 l 的关系,并给出离子在极板内垂直于极板方向的最大飞行距离. (2)被测离子束一般具有发散角Δα(Δα<<θ).为了提高测量的精度,要求具有相同能量 E , 但入射方向在Δα范围内变化的离子在同一小孔 B 处射出,求 h 2 的表达式;并给出此时能量E 与 l 的关系.(3)为了提高离子能量的分辨率,要求具有量程上限能量的离子刚好落在设备允许的 l 的最大值 l max 处,同时为了减小设备的体积,在满足测量要求的基础上,要求极板间距 d 尽可 能小,利用上述第(2)问的结果,求 d 的表达式;若θ = 30°,结果如何?(4)为了区分这些离子的质量,请设计后续装置,给出相应的原理图和离子质量表达式.六、(20 分)超导体的一个重要应用是绕制强磁场磁体,其使用的超导线材属于第二类超导体.如果将这类超导体置于磁感应强度为 a B 的外磁场中,其磁力线将以磁通量子(或称为磁通漩涡线)的形式穿透超导体,从而在超导体中形成正三角形的磁通格子,如图 1 所示. 所谓的磁通量子,如图 2 所示,其中心是半径为ξ的正常态(电阻不为零)区域,而其周围处于超导态(电阻为零),存在超导电流,所携带的磁通量为150 2.07102hWb eφ-==⨯(磁通量的最小单位)(1)若2510T a B -=⨯,求此时磁通涡旋线之间距离 a .(2)随着 a B 的增大,磁通漩涡线密度不断增加,当 a B 达到某一临界值 B c2 时,整块超导体 都变为正常态, 假设磁通漩涡线芯的半径为ξ = 5×10-9 m ,求所对应的临界磁场 B c2; (3)对于理想的第二类超导体,当有电流 I 通过超导带材时,在安培力的驱动下,磁通漩涡线将会粘滞流动,在超导带内产生电阻(也称为磁通流阻),从而产生焦耳损耗,不利于超导磁体的运行. 磁通漩涡线稳定粘滞流动的速度 v 与单位体积磁通漩涡线所受到的驱动力f A 和a B 的关系为0aA B f v ηφ=, 其中η为比例系数. 外加磁场、电流方向,以及超导带材的尺寸如图 3 所示, 请指出磁通漩涡线流动的方向,并求出磁通漩涡线流动所产生的电阻率(用a B ,Φ0,η,超导体尺寸 b ,c ,d )表示;(4)要使超导材料真正实用化,消除这种磁通流阻成了技术的关键,请给出你的解决方案. 七、(20 分)如图,两个质量均为 m 的小球 A 和 B (均可视为质点)固定在中心位于C 、长为 2l 的刚性轻质细杆的两端,构成一质点系. 在 竖直面内建立Oxy 坐标,Ox 方向沿水平向右,Oy 方向竖直向上. 初始 时质点系中心 C 位于原点 O ,并以初速度 v 0 竖直上抛,上抛过程中, A 、C 、B 三点连线始终水平. 风速大小恒定为 u 、方向沿 x 轴正向,小球在运动中所受空气阻力 f 的大小与相对于空气运动速度v 的大小成正比,方向相反,即f kv =-, k 为正的常量.当C 点升至最高点时,恰好有一沿y 轴正向运动、质量为 m 1、速度大小为 u 1 的小石块(视为质点)与小球 A 发生竖直方向的碰撞,设碰撞是完全弹性的,时间极短. 此后 C 点回落到上抛开始时的同一水平高度,此时它在 Ox 方向上的位置记为 s ,将从上抛到落回的整个过程所用时间记为 T ,质点系旋转的圈数记为 n . 求质点系(1)转动的初始角速度ω0,以及回落到s 点时角速度ωs 与n 的关系;(2)从开始上抛到落回到s 点为止的过程中,空气阻力做的功 W f 与 n 、s 、T 的关系.八、(20 分)太阳是我们赖以生存的恒星. 它的主要成分是氢元素,在自身引力的作用下收 缩而导致升温,当温度高到一定程度时,中性原子将电离成质子和电子组成的等离子体,并 在其核心区域达到约 1.05×107 K 的高温和 1.6×105kg/m 3 以上的高密度,产生热核聚变而放出巨大能量,从而抗衡自身的引力收缩达到平衡,而成为恒星.太阳内部主要核反应过程为1H+1H→D+e ++νe (I )D+1H→3He+x(II )3He+3He→4He+1H+1H(III )其中第一个反应的概率由弱相互作用主导,概率很低这恰好可以使得能量缓慢释放. 反应产 物正电子 e +会与电子 e -湮灭为γ射线,即 e ++e -→γ+γ (IV )已知:质子(1H)、氘(D)、氦-3(3He)和电子的质量分别为938.27、1875.61、2808.38、3727.36 和0.51(MeV/c2)(误差为0.01 MeV/c2),c为真空中的光速,中微子νe的质量小于3eV/c2. 普朗克常量h = 6.626×10-34J·s,c =3.0×108 m/s,玻尔兹曼常量k=1.381×10-23J/K.电子电量e = 1.602×10-19 C.(1)试用理想气体模型估算处于热平衡状态的各种粒子的平均动能及太阳核心区的压强(请分别用eV 和atm 为单位);(2)反应式(II)中的x 是什么粒子(α、β、γ、p和n之一)?请计算该粒子的动能和动量的大小,是否可以找到一个参照系,使得x 粒子的动能为零?(3)给出反应式(I)中各反应产物的动能的范围;第一题第二题第七题第八题。
全国初中物理竞赛试题专项(热学综合)精编(2024版)一、单选题1.将盛水的烧瓶加热,水沸腾后把烧瓶从火焰上拿开,并迅速塞上瓶塞,再把烧瓶倒置后向瓶底浇上冷水,如图所示。
关于烧瓶内的水,下列分析正确的是( )A.一直沸腾,浇上冷水时,水面气压增大,水会停止沸腾B.先停止沸腾,浇上冷水时,水面气压增大,水会再次沸腾C.因没有继续加热,浇上冷水时,水的温度降低,不会沸腾D.先停止沸腾,浇上冷水时,水面气压减小,水会再次沸腾2.小牛同学用一个功率为1000W的电加热器给lkg冰加热,研究不同状态的水的吸热能力。
图中,甲乙丙三条图线中的一条,是他依据实验数据绘制而成。
若相同时间内水和冰吸收的热量相同。
已知c水=4.2×103J/(kg ℃),c冰<c水下列说法正确的是( )A.小牛绘制的是甲图线B.冰熔化过程中加热器消耗的电能为2000JC.0~1min冰吸收的热量是6×104JD.3~5nin时间内,电加热器的热效率为35%3.下列事实中,能说明物质吸收热量的本领跟物质的种类有关的是().A.体积相等的两瓶水,温度都升高了10 ℃,它们吸收的热量相等B.质量不同的两块铁,温度都升高了10 ℃,它们吸收的热量不相等C.体积相等的水和酒精,温度都升高了10 ℃,它们吸收的热量不相等D.质量相等的水和酒精,温度都升高了10 ℃,它们吸收的热量不相等二、多选题4.有一支温度计,刻度均匀但读数不准,将它放在1标准大气压下的冰水混合物中,示数为4℃;将它放在1标准大气压下的沸水中,示数为94℃,下列说法正确的是( )A.将其放在1标准大气压下的沸水中,实际温度应为100℃B.将它放在某房间内,其示数为22℃,该房间的实际温度应为20℃C.在40℃附近,该温度计读数最准确D.在温度大于50℃时,该温度计显示的温度比实际温度要大5.小明在探究“水蒸发快慢与水上方空气流速、水与空气的接触面积和水的温度是否有关”实验中。
全国中学生物理竞赛决赛试题panxinw 整顿一、(15分)如图,竖直旳光滑墙面上有A 和B 两个钉子,两者处在同一水平高度,间距为l ,有一原长为l 、劲度系数为k 旳轻橡皮筋,一端由A 钉固定,另一端系有一质量为m=g kl4旳小球,其中g 为重力加速度.钉子和小球都可视为质点,小球和任何物体碰撞都是完全非弹性碰撞并且不发生粘连.现将小球水平向右拉伸到与A 钉距离为2l 旳C 点,B 钉正好处在橡皮筋下面并始终与之光滑接触.初始时刻小球获得大小为20glv 、方向竖直向下旳速度,试拟定此后小球沿竖直方向旳速度为零旳时刻.二、(20分)如图所示,三个质量均为m旳小球固定于由刚性轻质杆构成旳丁字形架旳三个顶点A、B和C处.AD ⊥BC,且AD=BD=CD=a,小球可视为质点,整个杆球体系置于水平桌面上,三个小球和桌面接触,轻质杆架悬空.桌面和三小球之间旳静摩擦和滑动摩擦因数均为μ,在AD杆上距A点a/4和3a/4两处分别施加一垂直于此杆旳推力,且两推力大小相等、方向相反.1.试论证在上述推力作用下,杆球体系处在由静止转变为运动旳临界状态时,三球所受桌面旳摩擦力都达到最大静摩擦力;2.如果在AD杆上有一转轴,随推力由零逐渐增长,整个装置将从静止开始绕该转轴转动.问转轴在AD杆上什么位置时,推动该体系所需旳推力最小,并求出该推力旳大小.三、(20分)不光滑水平地面上有一质量为m旳刚性柱体,两者之间旳摩擦因数记为μ.柱体正视图如图所示,正视图下部为一高度为h旳矩形,上部为一半径为R旳半圆形.柱体上表面静置一质量同为m旳均匀柔软旳链条,链条两端距地面旳高度均为h/2,链条和柱体表面始终光滑接触.初始时,链条受到微小扰动而沿柱体右侧面下滑.试求在链条开始下滑直至其右端接触地面之前旳过程中,当题中所给参数满足什么关系时,1.柱体能在地面上滑动;2.柱体能向一侧倾倒;3.在前两条件满足旳情形下,柱体滑动先于倾倒发生.四、(20分)如图所示,在一光滑水平圆桌面上有两个质量、电荷都均匀分布旳介质球,两球半径均为a,A球质量为m,所带电荷量为Q,B球质量为4m,所带电荷量为-4Q.在初始时刻,两球球心距为4a,各有一定旳初速度,以使得两球在后来旳运动过程中不发生碰撞,且都不会从圆桌面掉落.现规定在此前提下尽量减小桌面面积,试求1.两球初速度旳方向和大小;2.圆桌面旳最小半径.假设两球在运动过程中,其所带电荷量始终保持均匀分布:桌面也不发生极化效应.已知两个均匀带电球之间旳静电互相作用力,等于电荷集中在球心旳两个点电荷之间旳互相作用力;静电力常量为k e.五、(20分)如图所示,一半径为R 旳轻质绝缘塑料薄圆盘水平放置,可绕过圆盘中心旳竖直固定轴无摩擦地自由转动.一半径为a 旳轻质小圆线圈(a<<R)固定在盘面上,圆线圈与圆盘共轴.在盘边沿处等间隔地固定4个质量均为m 旳带正电旳金属小球,每个小球所带电荷量均为q .此装置处在一磁感应强度大小为B 0、方向竖直向上旳均匀强磁场中.初始时圆盘静止,圆线圈中通有恒定电流I .方向沿顺时针方向(从上往下看).若切断圆线圈中旳电流,则圆盘将发生转动.求薄圆盘稳定转动后,圆盘在水平方向对每个金属球小旳作用力旳大小.假设金属小球可视为质点,不计小圆线圈旳自感和带电金属小球因运动所产生旳磁场.已知固定在圆盘面上旳半径为a 、通有电流I 旳圆线圈在圆盘面内、距线圈圆心旳距离为r 处(r>>a)产生旳磁场旳磁感应强度旳大小为B=322r I a k m ,式中k m 为已知常量,当线圈中旳电流沿顺时针方向时,磁场方向垂直于圆盘平面且竖直向上.静电力常量为k e .六、(15分)如图,一水平放置旳刚性密闭气缸,缸壁是绝热旳,活塞把气缸内空间分为两个体积相似旳密闭室A 和B .活塞由一层热容量很小(略去其影响)、导热良好旳材料(与气缸壁有摩擦)和一薄层绝热材料(与气缸壁没有摩擦)压制而成,绝热层在A 室一侧.初始时,A 室和B 室充有绝对温度均为T 0旳同种多原子分子抱负气体,A 室气体压强是B 室气体压强旳4倍.现释放活塞,活塞由于其导热部分与汽缸壁之间存在摩擦而运动缓慢,最后停止在平衡位置(此时活塞与缸壁间无静摩擦).已知气缸中旳气体具有如下特性:在温度高于某个临界温度T d (>T 0)时,部分多原子气体分子将发生分解,一种多原子分子可以分解为此外两个相似旳多原子分子.被分解旳气体摩尔数与发生分解前气体总摩尔数之比a 满足关系a=)(d T T -β,其中β=2.00T 0-1.分解过程是可逆旳,分解1摩尔分子所需能量φ=CT 0/l0,1摩尔气体旳内能与绝对温度T 旳关系为u=CT(C 是与气体旳种类无关旳常量).已知当压强为P 、体积为V 旳这种气体绝热缓慢膨胀时,PV γ=常量,其中γ=4/3.1.对于具有上述特性旳某种气体,若实验测得在上述过程结束时没有任何分子发生了分解,求这种分子发生分解旳临界温度T d 旳也许值;2.对于具有上述特性旳另一种气体,若实验测得在上述过程结束时有a=l0.0%旳分子分解了,求这种分子发生分解旳临界温度T d .七、(15分)如图一所示旳光学系统是由平行光管、载物台和望远镜构成.已知望远镜物镜L0旳焦距为l6.OOcm.在L0旳焦平面P处,放置带十字叉丝线旳分划板和亮十字物,如图二所示.在载物台上放置双面平行旳平面镜M,通过望远镜旳目镜Le观测时,能同步清晰地看到分划板上旳十字叉丝线和十字物通过L0折射、M反射、再经L0折射后在分划板上所成旳十字像,十字像位于A点,与上十字叉丝线旳距离为5.2mm.绕载物台转轴(沿竖直方向)转动载物台,使平面镜转l80°,此时十字像位于B点,与上十字叉丝线旳距离为18.8mm.根据以上状况和数据可计算出,此时望远镜光轴与水平面旳夹角为 rad;据此成果,调节望返镜,使其光轴与载物台旳转轴垂直.平行光管是由十字缝S和凸透镜L构成.去掉光学系统中旳平面镜M,并用钠光灯照亮S.沿水平方向移动S,当S到平行光管中旳透镜L距离为8.25cm时,通过望远镜目镜能清晰地看到十字缝旳像正好成在分划板中心十字叉丝线上,由此可以推知,L旳焦距等于 cm.将载物台平面调至与载物台旳转轴垂直,在载物台上放置长、宽、高均为3.OOcm、折射率为1.52旳分束棱镜abed(分束棱镜是由两块直角三棱镜密接而成,接触面既能透光又能反光)和待测凹球面镜0,0到L旳距离为l5.OOcm,并保证分束棱镜旳ab面与图三中旳XX′轴垂直、凹球面镜旳光轴与图三中旳XX′轴重叠;再将望远镜绕载物台旳中心轴转90°,如图三所示。
全国中学生物理竞赛决 赛 试 题一、(15分)图决18-1中A 是一带有竖直立柱的木块,总质量为M ,位于水平地面上。
B 是一质量为m 的小球,通过一不可伸长的轻绳挂于立柱的顶端。
现拉动小球使绳伸直并处于水平位置。
然后让小球从静止状态下摆。
如在小球与立柱发生碰撞前,木块A 始终未发生移动,则木块与地面之间的静摩擦因数至少为多大?(设A 不会发生转动)二、(15分)圆形线圈C 轴线z 沿水平方向。
有一用钕铁硼材料制成的圆柱形强磁体M ,其圆形端面分别为N 极和S 极,将磁体M 与线圈C 共轴放置。
磁体的对称中心置于z 轴的原点O 。
Q 点是线圈C 对称截面的圆心,当Q 点位于z 轴不同位置时,用实验的方法测得穿过线圈C 的总磁通ψ。
由此测得的ψ值沿z 轴的分布函数图线如图决18-2(a )所示。
图中横轴上z 值是Q 点的坐标。
现令强磁体M 沿线圈的轴线方向穿过该线圈C ,将C 两端接一电阻,其阻值R=1000Ω,远大于线圈的电阻阻值。
将接在电阻R 两端的电压信号通过计算机实时处理[如图决18-2(b )所示],可在计算机屏幕上显示出线圈C 两端的电压信号如图决18-2(c )所示,信号轨迹近似看作三角波形。
1.试估算强磁体M 通过线圈时的速度。
(不计线圈中的感应电流对运动磁体的影响。
) 2.试求图(c )中,1t 至3t 期间流过电阻R 的电量。
三、(20分)有一薄透镜如图决18-3,S 面是旋转椭球面(椭圆图决18-1绕长轴旋转而成的曲面),其焦点为F 1和F 2;S 2面是球面,其球心C 与F 2重合。
已知此透镜放在空气中时能使从无穷远处位于椭球长轴的物点射来的全部入射光线(不限于傍轴光线)会聚于一个像点上,椭圆的偏心率为e 。
(1)求此透镜材料的折射率n (要论证);(2)如果将此透镜置于折射率为n '的介质中,并能达到上述的同样的要求,椭圆应满足什么条件?四、(20分)空间有半径为R 长度L 很短的圆柱形的磁场区域,圆柱的轴线为z 轴,磁场中任一点的磁感应强度的方向沿以z 轴为对称轴的圆的切线,大小与该点离z 轴的距离r 成正比,B=K r ,K 为常数,如图决18-4中“· ”与 “×”所示。
2010年第二十届全国初中应用物理竞赛复赛试题注意事项:l.请在密封线内填写所在地区、学校、姓名和考号。
2.用蓝色或黑色钢笔、圆珠笔书写。
3.本试卷共有六个大题,满分为100分。
4.答卷时间:2010年4月18日(星期日)上午9: 30~11: 10。
题号一二三四五六总分分数复核人一、(16分)干簧管(也叫干簧继电器)比一般机械开关结构简单、体积小、速度高、工作寿命长;而与电子开关相比,它又有抗负载冲击能力强的特点,工作可靠性很高。
如图1甲所示为干簧管的结构简图,其中磁簧片是一种有弹性的薄铁片,被固定于玻璃管上。
1.当将一个条形磁铁与干簧管平行放置时,如图1乙,干簧管的磁簧片触点就会闭合,将电路接通:当条形磁铁远离干簧管时,触点就会断开。
请简述其原理。
2.某同学设想用干簧管制作水位自动报警器,图2是他设计的一部分情况,请帮助他完成其余部分的设计:(1)设永久磁铁所受的重力为3N,浮球的体积为200cm3,不计滑轮处的摩擦。
则要想让此装置能正常工作,浮球的质量应满足什么条件(取g =10N/kg)?(2)他手边还有开关、红灯、绿灯和电铃各一个,导线若干,请在图中的虚线方框内画出报警电路,要求:水位到达A处时,红灯亮,电铃报警;水位到达B处时,绿灯亮,电铃报警。
第1页共6页二、(16分)小明同学为实验室设计了一个多挡位电加热器,其工作原理图如图3所示。
其中R1、R 2、R3为发热电阻。
三个灯泡为上述发热电阻相应的的工作指示灯,其所消耗的电功率可忽略不计。
小明设想通过开关的组合,使电加热器能有200W、300W、……、900W共七挡功率。
为此他还设计了下面这份简单的表格,表中的“√”表示对应的开关闭合,相应的指示灯亮;“×”表示对应的开关断开,相应的指示灯熄灭。
功率栏给出了相应状态时电加热器的功率值。
1.按照他的设想,帮他计算出R1、R2,R3的阻值各为多少?2.补齐表中其余挡位的空格。
第2页共6页三、(16分)如图4为过去邮局里用来称量邮件质量的双杆台秤的主要结构简图,这种台秤的两条秤杆是固定在一起的,两条秤杆分别装有秤锤A、B,其中秤锤A只能处于其所在秤杆上有槽的特定位置处,秤锤B则可停在其所在秤杆上的任意位置。
1.这个台秤的量程和分度值分别是多少?2.写出用这种秤测量一个邮包的质量时的操作步骤(包括校零的具体步骤)。
3.若用调整好的台秤称量一个邮包的质量时,秤杆水平平衡后,秤锤东B所处的位置如图4所示,则这个邮包的质量为多少?4.由图中的信息推导出A、B两秤锤m A和m B的关系。
第3页共6页四、(16分)小华家买了新房,准备改装客厅顶灯的电路时,他发现爸爸拿来一幅如图5所示电路图,他很好奇,看了一会儿之后,发现这幅图有些眼熟,但又和过去所看的图不同,他拿着图去问爸爸:S3是什么开关,爸爸告诉他这叫“双刀双掷”开关,相当于两个单刀双掷开关“联动”。
爸爸还告诉他要将这三个开关分别装在三个与客厅相连的房间的门旁边。
这是为什么?这样装有什么好处呢?小华决定仔细研究一下。
1.小华准备首先用列表的方法分析开关的状态与灯泡亮灭的关系。
为此他设计了如下的表格,并用“1”和“2”表示开关接通的位置,用“1”和“0”表示灯泡的“亮”和“灭”。
请你也参与到他的研究中来,并帮他在表格中记录下三个开关所有可能的组合对灯的控制S1S3S2灯的亮灭2.根据列表的结果总结出这个电路的好处。
3.弄懂了这个电路和双刀双掷开关的特点之后,他又有了新的想法:还可以在图5的电路中再增加一个双刀双掷开关S4并使它和其他的开关作用相同。
请把他的设计画在图6中。
第4页共6页五、(18分)单位质量的某种液体变为同温度的气体所需要吸收的热量,叫做这种液体的汽化热。
通常情况下,同种液体在不同温度下的汽化热是不同的。
某课外活动小组设计了如图7所示的装置,可以用来测定100℃时水的汽化热。
该装置的测量原理是:用电压可调的电加热器使玻璃容器内的水沸腾,用电子天平分别测量沸腾一段时间前后水的质量,同时测量所用的时间及在该段时间内电加热器的电压和电流,根据相关的数据和能量守恒关系即可求出水的汽化热λ。
由于这个装置工作时的散热损失是不可忽略的,该组同学实验时测电压/V电流/A时间/s水的初质量/g水的末质量/g第一组2013007068第二组40230070601.试简单说明该装置的散热功率是否随加热功率的改变而改变。
2.根据以上数据,求水的汽化热λ3.针对此实验提出一些减少实验误差的措施。
第5页共6页六、(18分)小亮家有一辆家用轿车,爸爸在给他说车的性能时,总是说“2.0的排量”,却很少说“功率”,为此小亮特地从网上查到了排量的定义:活塞从上止点移动到下止点所通过的空间容积称为汽缸排量。
如果发动机有若干个气缸,所有气缸工作容积之和称为发动机排量。
从说明书上查到:小亮家的汽车采用的是LFX直列四缸发动机,排量为2.0L;从网上查找到了其输出特性曲线(如图8所示);小亮又向爸爸询问了一些实测数据:由于汽车行驶的路况很好,所以平均车速为90km/h,此时发动机转速为2000r/min,平均行驶百公里油耗为9L;从物理书上查得汽油的热值为4.6× l 07J/kg,密度为0.71×103kg/m3。
1.由这台发动机输出特性曲线可以看出,在发动机转速为1000-5000 r/min范围内,它的输出功率与转速大致有什么关系?2.试通过公式推导出在其他参数相同时,发动机的输出功率与其排量的关系。
3.这辆汽车以90km/h行驶时,发动机的效率约为多少?每个做功冲程汽缸内的平均压强约为多少?第6页共6页2010年第二十届全国初中应用物理竞赛复赛试题参考解答与评分标准说明:1.提供的参考解答除选择题外,不一定都是惟一正确的。
对于那些与此解答不同的解答,正确的,同样得分。
2.评分标准只是按一种思路与方法给出的。
在阅卷过程中会出现各种不同情况,可按照本评分标准的精神定出具体处理办法,但不要与本评分标准有较大偏离。
3.问答题或计算题是按照分步方法给分的。
在评分标准中常常写出(1)式几分,(2)式几分……这里的式子是用来代表步骤的。
若考生并未写出这个式子,而在文字表达或以后的解题过程中反映了这一步骤,同样得分。
没有写出任何式子或文字说明,只给出最后结果的,不能得分。
4.参考解答中的数字结果是按照有效数字的运算要求给出的,但对考生不做要求。
不要因为有效数字的错误而扣分。
5.在最后定奖时,如果得分相同的人数超过获奖名额,因而难于选拔时,可对待选试卷进行加分评判。
加分评判的基本依据是:(1)所用方法或原理不是课本所讲的,具有创新性,应加分;(2)方法简便,应加分;(3)提出多种正确解法,应加分;(4)试卷表达规范,条理清楚,能充分利用数学工具,应加分。
上述各项的执行都需由竞赛领导小组做出规定(省统一分配奖励名额的由省决定,地、市分配奖励名额的由地、市决定)。
一、(16分)参考答案1.当将一个条形磁铁与干簧管平行放置时,干簧管的磁簧片就会被磁化,且靠近的那两个端点会被磁化成异名磁极而相互吸引,触点就会闭合,将电路接通;当条形磁铁远离干簧管时,磁簧片的磁性消失,在弹力的作用下触点就会断开。
……4分2.浮球浸没入水中时受到的浮力为F浮=ρ水gV排=1.0×103kg/m3× 10N/kg×2×10一4m3=2N ……3分设浮球刚好浸没入水中,浮球必须上浮,则必须满足G浮球<F浮十G磁铁=2N+3N=5N设浮球刚好离开水面时,浮球必须下降,则必须满足G浮球>G磁铁=3N因此要想让此装置能正常工作,此浮球所受的重力应满足:5N>G浮球>3N…...2分由公式G=mg可以算出浮球的质量应满足:0.5kg>m浮球>0.3kg……1分3.如图1所示:............6分全部正确给6分,不画开关扣2分,不标出红、绿灯或标错扣2分二、(16分)参考答案1.由题意可知:当开关S1闭合时,电加热器的功率为电阻R1的功率,所以 1分当开关S2闭合时,电加热器的功率为电阻R2的功率,所以1分当开关都闭合时,电路的总功率应该为最大,即所以P3=400W.............…...3分2.如下表所示(每行2分,共10分)……10分三、(16分)参考答案1.由图可知,这台秤的量程是2.0kg,分度值是lg。
(4)分2.如图2(可不画)...……5分①将台秤放在水平台面上。
②将秤锤A、B均置零③调节平衡螺母,直至秤杆水平平衡为止。
④将所要测量的邮包放在载物台上。
⑤先逐槽移动秤锤A,直至若再向大刻度方向移动一个槽,就会导致杠杆左端下沉时为止;而后移动秤锤B,直至秤杆再次水平平衡。
⑥将称锤A、B所对的刻度值相加即为邮包的质量。
3.这个邮包的质量为723g.....3分4.当向载物台放质量为100g (0.lkg)的重物时,为使台秤平衡,可以将A秤锤向左移动一格,也可以将B秤锤向左移动至左端,此时其移动的距离为A秤锤移动距离的20倍。
因为二者是等效的,所以可以得到m A=20m B…...4分四、(16分)参考答案1S1S3S2灯的亮灭111111201210122121102121221122202.种位置,每一个开关都可以独立地控制灯的亮、灭,因而从任何一个房门走进或离开客厅时都可以方便地开或关客厅的灯,也节约电能。
.......4分3.如图3所示.…...4分五、(18分)参考答案1.该装置的散热功率不随加热功率的改变而改变。
...…...2分因为加热功率发生改变后,水温并不会改变,与周围环境的温度差也就不变,而其他的条件也都未发生变化,所以散热功率不会变化。
……3分2.由能量守恒定律可知:3分根据题意可得:代入数据,解得……6分3.增大加热功率(或电压)、增大汽化水的质量、换用更保温的容器(减少散热功率)、适当增大环境温度、减小测量时间、多测几组数取平均值等。
..…...4分六、(18分)参考答案1.由这台发动机输出特性曲线可以看出在发动机转速为1000-5000r/min范围内,它的输出功率与转速大致成正比................2分2.设做功冲程燃气对活塞的平均压强为p0,发动机排量为V排,做功冲程燃气对一个活塞的平均压力:F=p0S每个做功冲程燃气对一个活塞做的功:…...2分发动机转速为n时燃气对活塞做功的功率:……2分所以,在发动机转速n、做功冲程汽缸平均压强p0大致相同时,燃气对活塞做功的功率P 与发动机排量V排成正比。
…...2分3.由发动机输出特性曲线可知:发动机转速为2000r/min时,其输出功率约为37kW (取值在35-39kW范围内均可).....................................2分(注:素材和资料部分来自网络,供参考。