电路理论基础课后习题答案 陈希有主编 第九章
- 格式:rtf
- 大小:2.63 MB
- 文档页数:9
第1章习题解析一.填空题:1.电路通常由电源、负载和中间环节三个部分组成。
2.电力系统中,电路的功能是对发电厂发出的电能进行传输、分配和转换。
3. 电阻元件只具有单一耗能的电特性,电感元件只具有建立磁场储存磁能的电特性,电容元件只具有建立电场储存电能的电特性,它们都是理想电路元件。
4. 电路理论中,由理想电路元件构成的电路图称为与其相对应的实际电路的电路模型。
5. 电位的高低正负与参考点有关,是相对的量;电压是电路中产生电流的根本原因,其大小仅取决于电路中两点电位的差值,与参考点无关,是绝对的量6.串联电阻越多,串联等效电阻的数值越大,并联电阻越多,并联等效电阻的数值越小。
7.反映元件本身电压、电流约束关系的是欧姆定律;反映电路中任一结点上各电流之间约束关系的是KCL定律;反映电路中任一回路中各电压之间约束关系的是KVL定律。
8.负载上获得最大功率的条件是:负载电阻等于电源内阻。
9.电桥的平衡条件是:对臂电阻的乘积相等。
10.在没有独立源作用的电路中,受控源是无源元件;在受独立源产生的电量控制下,受控源是有源元件。
二.判断说法的正确与错误:1.电力系统的特点是高电压、大电流,电子技术电路的特点是低电压,小电流。
(错)2.理想电阻、理想电感和理想电容是电阻器、电感线圈和电容器的理想化和近似。
(对)3. 当实际电压源的内阻能视为零时,可按理想电压源处理。
(对)4.电压和电流都是既有大小又有方向的电量,因此它们都是矢量。
(错)5.压源模型处于开路状态时,其开路电压数值与它内部理想电压源的数值相等。
(对)6.电功率大的用电器,其消耗的电功也一定比电功率小的用电器多。
(错)7.两个电路等效,说明它们对其内部作用效果完全相同。
(错)8.对电路中的任意结点而言,流入结点的电流与流出该结点的电流必定相同。
(对)9.基尔霍夫电压定律仅适用于闭合回路中各电压之间的约束关系。
(错)10.当电桥电路中对臂电阻的乘积相等时,则该电桥电路的桥支路上电流必为零。
第九章 三相电路(部分习题参考答案)9.1 A m cos 2u U t ω=,,C m cos(2120)u U t ω=−oB m cos(2240)u U t ω=−o9.2 相电压为198V ,相电流为6.10A 9.3 220VAXU &BYUU &AYU &9.4440VU &U &AX&ACU &9.5 (1)ϕ2=120°,ϕ3= −120°;(2) A'B'45A I =o&,B'C'165A I =o&,C'A'75A I =−o&;(3) A 15A I =o&,B 135A I =o&,C105A I =−o& 9.6 (1) ,,; A'N'2053.13V U =∠−o &B'N'20173.13V U =∠−o &C'N'2066.87V U =∠o & (2) ,, AB 34.623.13V U =∠−o &BC 34.6143.13V U =∠−o &CA34.696.87V U =∠o &9.7 , ; A 15.8337.7A I =∠−o &A N202.80.96V U ′′=∠o & , ; B 15.83157.7A I =∠−o &B N202.8119.04V U ′′=∠−o &C 15.8382.3A I =∠o &, C N202.8120.96V U ′′=∠o &9.8 ,,; A 28.1739.8A I =∠−o &B 28.17159.8A I =∠−o &C28.1780.2A I =∠o &A B 16.269.8A I ′′=∠−o &,,; B C 16.26129.8A I ′′=∠−o &C A 16.26110.2A I ′′=∠o &A B312.328.86A U′′=∠o &,, B C312.391.14A U ′′=∠−o &C A312.3148.86A U ′′=∠o &9.9110V9.10 (a) 电流表读数为0, (b) 电流表读数为220A 9.11 l I =9.12 1()R C L += 9.13 电流表A 1的读数为0.591A ,电流表A 2的读数为0.318A , 电流表A 3的读数为0.318A ,电流表A 0的读数为0.364A9.14 (1),(2)A B ''4cos15 3.86A I I ==≈o A '2A I =,B 'I =9.15 ,电源连接方式改变不会影响结果。
《电路理论基础》(第三版--陈希有)习题答案第一章答案1.1解:图示电路电流的参考方向是从a 指向b 。
当时间t <2s 时电流从a 流向b,与参考方向相同,电流为正值;当t >2s 时电流从b 流向a ,与参考方向相反,电流为负值。
所以电流i 的数学表达式为2A 2s -3A 2s t i t <⎧=⎨>⎩答案1.2解:当0=t 时0(0)(59e )V 4V u =-=-<0其真实极性与参考方向相反,即b 为高电位端,a 为低电位端;当∞→t 时()(59e )V 5V u -∞∞=-=>0其真实极性与参考方向相同,即a 为高电位端,b 为低电位端。
答案1.3解:(a)元件A 电压和电流为关联参考方向。
元件A 消耗的功率为A A A p u i =则A A A 10W 5V 2Ap u i === 真实方向与参考方向相同。
(b) 元件B 电压和电流为关联参考方向。
元件B 消耗的功率为B B B p u i =则B B B 10W 1A 10Vp i u -===- 真实方向与参考方向相反。
(c) 元件C 电压和电流为非关联参考方向。
元件C 发出的功率为C C C p u i =则节点④:231A 0i i =--=若已知电流减少一个,不能求出全部未知电流。
(2)由KVL 方程得回路1l :1412233419V u u u u =++=回路2l :15144519V-7V=12V u u u =+=回路3l :52511212V+5V=-7V u u u =+=-回路4l :5354437V 8V 1V u u u =+=-=-若已知支路电压减少一个,不能求出全部未知电压。
答案1.6解:各元件电压电流的参考方向如图所示。
元件1消耗功率为:11110V 2A 20W p u i =-=-⨯=-对回路l 列KVL 方程得21410V-5V 5V u u u =+==元件2消耗功率为:2215V 2A 10W p u i ==⨯=元件3消耗功率为:333435V (3)A 15W p u i u i ===-⨯-=对节点①列KCL 方程4131A i i i =--=元件4消耗功率为:4445W p u i ==-答案1.7解:对节点列KCL 方程节点①:35A 7A 2A i =-+=节点③:47A 3A 10A i =+=节点②:5348A i i i =-+=对回路列KVL 方程得:回路1l :13510844V u i i =-⨯Ω+⨯Ω=回路2l :245158214V u i i =⨯Ω+⨯Ω=答案1.8解:由欧姆定律得130V 0.5A 60i ==Ω对节点①列KCL 方程10.3A 0.8A i i =+=对回路l 列KVL 方程1600.3A 5015V u i =-⨯Ω+⨯Ω=-因为电压源、电流源的电压、电流参考方向为非关联,所以电源发出的功率分别为S 30V 30V 0.8A 24W u P i =⨯=⨯=S 0.3A 15V 0.3A 4.5W i P u =⨯=-⨯=-即吸收4.5W 功率。
电路理论基础习题答案第一章1-1. (a)、(b)吸收10W ;(c)、(d)发出10W. 1-2. –1A; –10V; –1A; – 4mW.1-3. –0.5A; –6V; –15e –t V; 1.75cos2t A; 3Ω; 1.8cos 22t W.1-4. u =104 i ; u = -104 i ; u =2000i ; u = -104 i ;1-8. 2F; 4 C; 0; 4 J. 1-9. 9.6V,0.192W, 1.152mJ; 16V , 0, 3.2mJ.1-10. 1– e -106t A , t >0 取s .1-11. 3H, 6(1– t )2 J; 3mH, 6(1–1000 t ) 2 mJ;1-12. 0.4F, 0 .1-13. 供12W; 吸40W;吸2W; (2V)供26W, (5A)吸10W. 1-14. –40V , –1mA; –50V, –1mA; 50V , 1mA. 1-15. 0.5A,1W; 2A,4W; –1A, –2W; 1A,2W. 1-16. 10V ,50W;50V ,250W;–3V ,–15W;2V ,10W. 1-17. (a)2V;R 耗4/3W;U S : –2/3W, I S : 2W; (b) –3V; R 耗3W; U S : –2W, I S :5W; (c)2V ,–3V; R 耗4W;3W;U S :2W, I S :5W; 1-18. 24V , 发72W; 3A, 吸15W;24V 电压源; 3A ↓电流源或5/3Ω电阻. 1-19. 0,U S /R L ,U S ;U S /R 1 ,U S /R 1 , –U S R f /R 1 . 1-20. 6A, 4A, 2A, 1A, 4A; 8V, –10V , 18V . 1-21. K 打开:(a)0, 0, 0; (b)10V, 0, 10V; (c)10V,10V ,0; K 闭合: (a)10V ,4V ,6V; (b)4V ,4V ,0; (c)4V ,0,4V; 1-22. 2V; 7V; 3.25V; 2V. 1-23. 10Ω.1-24. 14V .1-25. –2.333V , 1.333A; 0.4V , 0.8A. 1-26. 80V . ※第二章2-1. 2.5Ω; 1.6R ; 8/3Ω; 0.5R ; 4Ω; 1.448Ω; . R /8; 1.5Ω; 1.269Ω; 40Ω; 14Ω.2-2. W P 484=低,W P 4484⨯=高. 2-3. 1.618Ω.2-4. 400V;363.6V;I A =.5A, 电流表及滑线电阻损坏. 2-6. 5k Ω. 2-7. 0.75Ω.2-8.R 1=38K Ω,R 2=10/3K Ω 2-9. 10/3A,1.2Ω;–5V,3Ω; 8V ,4Ω; 0.5A,30/11Ω. 2-10. 1A,2Ω; 5V ,2Ω; 2A; 2A; 2A,6Ω. 2-11. –75mA; –0.5A. 2-12. 6Ω; 7.5Ω; 0; 2.1Ω. 2-13. 4Ω; 1.5Ω; 2k Ω. 2-14.1.6V ,-24V 2-15. (a) (b) –2 A ↓, 吸20W. 2-16. 2-17. 3A. 2-18. 7.33V . 2-19. 86.76W. 2-20. 1V, 4W. 2-21. 64W.2-22.电压源发50W ,电流源发1050W 2-232-24. 7V, 3A; 8V ,1A. 2-25. 4V, 2.5V, 2V. 2-26.2Ω 2-27. 60V . 2-28. 4.5V. 2-29. –18V .2-30. 原构成无解的矛盾方程组; (改后)4V,10V . 2-312-32.2.5A2-33. 3.33 k , 50 k .2-34 加法运算 )(3210i i i u u u u ++-= 2-35. R 3 (R 1 +R 2 ) i S /R 1 . 2-36. 可证明 I L =- u S /R 3 . 2-37. –2 ; 4 . ※第三章3-1. 44V;–1+9=8V; 6+9=15V; sin t +0.2 e – t V.3-2. 155V.3-3. 190mA.3-4. 1.8倍.3-5. 左供52W, 右供78W.3-6. 1 ; 1A; 0.75A.3-7. 3A; 1.33mA; 1.5mA; 2/3A; 2A.3-8. 20V, –75.38V.3-9. –1A; 2A; 1A.3-10. 5V, 20 ; –2V, 4 .3-12. 4.6 .3-13. 2V; 0.5A.3-14. 10V, 5k .3-15.3-16.22.5V3-17. 4/3 , 75W; 4/3 , 4.69W.3-18. 3 , 529/12W.; 1 , 2.25W.3-193-20. 50 .3-21. 0.2A.3-22. 1A.3-23. 1.6V.3-24. 4A;3-25. 23.6V; 5A,10V.3-26.3-27 4V3-28. ※第四章4-1. 141.1V, 100V, 50Hz, 0.02s,0o, –120o; 120 o. 4-2. 7. o A, 1/–45 o A, 18.75/–40.9 o A.4-3. U, 7.75mA .4-4. 10/53.13A, 10/126.87o A, 10/–126.87o A, 10/–53.13o A;各瞬时表达式略。
答案10.1解:0<t时,电容处于开路,故V 20k 2m A 10)0(=Ω⨯=-C u由换路定律得:V 20)0()0(==-+C C u u换路后一瞬间,两电阻为串联,总电压为)0(+C u 。
所以m A 5k )22()0()0(1=Ω+=++C u i再由节点①的KCL 方程得:m A5m A )510()0(m A 10)0(1=-=-=++i i C答案10.2解:0<t时电容处于开路,电感处于短路,Ω3电阻与Ω6电阻相并联,所以A3)363685(V45)0(=Ω+⨯++=-i,A 2)0(366)0(=⨯+=--i i LV 24)0(8)0(=⨯=--i u C由换路定律得:V24)0()0(==-+C C u u ,A 2)0()0(==-+L L i i由KVL 得开关电压:V8V )2824()0(8)0()0(-=⨯+-=⨯+-=+++L C i u u答案10.3解:0<t 时电容处于开路,0=i ,受控源源电压04=i ,所以V 6.0V 5.1)69(6)0()0()0(1=⨯Ω+Ω===--+u u u C C>t 时,求等效电阻的电路如图(b)所示。
等效电阻Ω=++-==5)36(4i ii i i u R 时间常数s 1.0i ==C R τ0>t 后电路为零输入响应,故电容电压为:V e 6.0e )0()(10/t t C C u t u --+==τΩ6电阻电压为:V e 72.0)d d (66)(101t Ctu Ci t u -=-⨯Ω-=⨯Ω-=)0(>t答案10.4 解:<t 时电感处于短路,故A 3A 9363)0(=⨯+=-L i ,由换路定律得: A 3)0()0(==-+L L i i求等效电阻的电路如图(b)所示。
(b)等效电阻Ω=+⨯+=836366i R ,时间常数s 5.0/i ==R L τ 0>t 后电路为零输入响应,故电感电流为 A e 3e )0()(2/t t L L i t i --+==τ)0(≥t电感电压V e 24d d )(21t Lti Lt u --==)0(>t Ω3电阻电流为A e 23632133t L u i u i --=Ω+⨯Ω=Ω=Ω3电阻消耗的能量为:W3]e 25.0[1212304040233=-==Ω=∞-∞-∞Ω⎰⎰t t dt e dt i W答案10.5解:由换路定律得0)0()0(==-+L L i i ,达到稳态时电感处于短路,故A 54/20)(==∞L i求等效电阻的电路如图(b)所示。
电路理论基础第二版答案【篇一:潘双来版电路理论基础答案】>第一章1-1. (a)、(b)吸收10w;(c)、(d)发出10w.1-2. –1a; –10v; –1a; – 4mw.1.8cos22t w.1-4. u =104 i ; u = -104 i ; u =2000i ; u = -104 i ;1-5.1-6. 0.1a.1-7.1-8. 2?f; 4?c; 0; 4?j.1-9. 9.6v,0.192w, 1.152mj;16v, 0, 3.2mj.1-10. 1– e-106 ta , t 0 取s .1-11. 3h, 6(1– t )2 j; 3mh,6(1–1000 t ) 2 mj;1-12. 0.4f, 0 .1-13. 供12w; 吸40w;吸2w; (2v)供26w, (5a)吸10w.1-14. –40v, –1ma; –50v, –1ma; 50v, 1ma.1-15. 0.5a,1w; 2a,4w; –1a, –2w; 1a,2w.1-16. 10v,50w;50v,250w;–3v,–15w;2v,10w.1-17. (a)2v;r耗4/3w;us : –2/3w, is : 2w;(b) –3v; r耗3w; us : –2w, is :5w;(c)2v,–3v; r耗4w;3w;us :2w, is :5w;1-18. 24v, 发72w; 3a, 吸15w;1-19. 0,us/rl ,us ;us/r1 ,us/r1 , –us rf /r1 .1-20. 6a, 4a, 2a, 1a, 4a; 8v, –10v, 18v.1-21. k打开:(a)0, 0, 0; (b)10v, 0, 10v;(c)10v,10v,0; k闭合: (a)10v,4v,6v;(b)4v,4v,0; (c)4v,0,4v;1-22. 2v; 7v; 3.25v; 2v.1-24. 14v.1-25. –2.333v, 1.333a; 0.4v, 0.8a.1-26. 80v.※第二章2-2. , .2-4. 400v;363.6v;ia=.5a, 电流表及滑线电阻损坏. 2-11. –75ma; –0.5a.2-14.1.6v,-24v2-15. (a) (b) –2 a↓, 吸20w.2-16.2-17. 3a.2-18. 7.33v.2-19. 86.76w.2-20. 1v, 4w.2-21. 64w.2-22.电压源发50w,电流源发1050w2-232-24. 7v, 3a; 8v,1a.2-25. 4v, 2.5v, 2v.2-27. 60v.2-28. 4.5v.2-29. –18v.2-30. 原构成无解的矛盾方程组; (改后)4v,10v.2-312-32.2.5a2-33. 3.33 k?, 50 k?.2-34 加法运算2-35. r3 (r1 +r2 ) is /r1 .2-36. 可证明 i l =- us /r3 .2-37. –2 ; 4 . ※第三章3-1. 44v;–1+9=8v; 6+9=15v; sin t +0.2 e – t v. 3-2. 155v.3-3. 190ma.3-4. 1.8倍.3-5. 左供52w, 右供78w.3-6. 1?; 1a; 0.75a.3-7. 3a; 1.33ma; 1.5ma; 2/3a; 2a.3-8. 20v, –75.38v.3-9. –1a; 2a; 1a.3-10. 5v, 20?; –2v, 4?.3-12. 4.6?.3-14. 10v, 5k?.3-15.3-16.22.5v3-17. 4/3?, 75w; 4/3?, 4.69w.3-18. 3?, 529/12w.; 1?, 2.25w.3-193-20. 50?.3-21. 0.2a.3-22. 1a.3-23. 1.6v.3-24. 4a;3-25. 23.6v; 5a,10v.3-26.3-27 4v3-28. ※第四章4-1. 141.1v, 100v, 50hz, 0.02s,0o, –120o; 120 o. 4-2. 7.07/0 o a, 1/–45 o a, 18.75/–40.9 o a.4-3., 7.75ma .4-4. 10/53.13oa, 10/126.87oa, 10/–126.87oa,10/–53.13oa;各瞬时表达式略。
第九章习题9.1 输电线路所用的传输线,测得其分布电路参数为00.08/R km =Ω,00.4/L km ω=Ω,0 2.8/C S km ωμ=,0G 忽略不计,求该传输线的特征阻抗0Z 和传播常数k 。
解:0380.1437.608Z j ==-0)0.00110.0001k j ==- 9.2 传输线的特征阻抗050Z =Ω,负载阻抗(7575)L Z j =+Ω,求: (1)负载处的反射系数 (2)驻波系数 解:(1)000.41180.3529L L L Z Z j Z Z -Γ==++(2)m ax m in1|| 3.36991||L L U U ρ+Γ===-Γ9.3 电缆参数为07/R km =Ω,-300.310/L H km =⨯,00.2/C F km μ=,600.510/G S km -=⨯,电源频率800f H z =。
(1)计算特征阻抗0Z 和传播常数k 。
(2)如电缆长20km ,终端接阻抗10030L Z =∠-Ω ,始端电压150U V =,求始端电流1I 及终端电压2U ,终端电流2I 。
解:(1)084.238.9Z ==∠-Ω1(0.066210.0534)k j km-==-(2)取始端电压1U作为参考相量,即1500V U =∠1.0680.0662kl j =+11(),()22klklklklchrl eeshrl ee--=+=-22LU I Z =012022()LZ U U chrl Z I shrl U chrl shrl Z =+=+21220()L U Z I I chrl shrl I chrl shrl Z Z =+=+得出22118.7,0.187,0.597U V I A I A ===9.4 一条无损传输线的长度为1.5m ,频率为200MHz ,波速是光速,特征阻抗是400Ω,末端接负载与之匹配,求此线的输入阻抗;又如负载为800Ω时,求输入阻抗。