循环伏安法原理及应用共68页
- 格式:ppt
- 大小:5.15 MB
- 文档页数:68
循环伏安法及应用摘要:本文主要介绍了电化学研究方法中的循环伏安法实验技术的基本原理及其在电极反应的可逆性、定量分析及电极制备方面的应用。
关键词:电化学;循环伏安法;原理;应用一、循环伏安法的概念及原理循环伏安法(CyclicVoltammetry)是一种常用的电化学研究方法。
该法控制电极电势以不同的速率,随时间以三角波形一次或多次反复扫描,电势范围是使电极上能交替发生不同的还原和氧化反应,并记录电流-电势曲线。
该法除了使用汞电极外,还可以用铂、金、玻璃碳、碳纤维微电极以及化学修饰电极等。
循环伏安法还可以改变电位以得到氧化还原电流方向。
循环伏安法中电压扫描速度可从每秒钟数毫伏到1伏。
若以等腰三角形的脉冲电压加在工作电极上,得到的电流—电压曲线包括两个分支,如果前半部分电位向阴极方向扫描,电活性物质在电极上还原,产生还原波,那么后半部分电位向阳极方向扫描时,还原产物又会重新在电极上氧化,产生氧化波。
因此一次三角波形扫描,完成一个还原和氧化过程的循环,故该法称为循环伏安法,其电流—电压曲线称为循环伏安图。
二、循环伏安法的应用对于一个新的电化学体系,首选的研究方法往往就是循环伏安法,可称之为“电化学的谱图”。
可根据循环伏安图中曲线的形状判断电极反应的可逆程度,中间体、相界吸附或新相形成的可能性,以及偶联化学反应的性质等。
常用来测量电极反应参数,判断其控制步骤和反应机理,并观察整个电势扫描范围内可发生哪些反应,及其性质如何。
(一)、判断电极反应的可逆性循环伏安法中电压的扫描过程包括阴极与阳极两个方向,因此可从所得的循环伏安法图的氧化波和还原波的峰高和对称性中来判断电活性物质在电极表面反应的可逆程度。
如黄可龙等采用循环伏安法对4LiFePO 在水溶液中的电化学行为进行了研究,结果表明,4LiFePO 在饱和3LiNO 溶液中具有良好的电化学可逆性;黄宝美等研究了大豆黄素在玻碳电极的电化学行为,表明大豆黄素的电极过程具有吸附性和不可逆性。
循环伏安法原理及应用小结1 电化学原理1.1 电解池电解池是将电能转化为化学能的一个装置,由外加电源,电解质溶液,阴阳电极构成。
阴极:与电源负极相连的电极(得电子,发生还原反应)阳极:与电源正极相连的电极(失电子,发生氧化反应)电解池中,电流由阳极流向阴极。
1.2 循环伏安法1)若电极反应为O+e-→R,反应前溶液中只含有反应粒子O,且O、R在溶液均可溶,控制扫描起始电势从比体系标准平衡电势(φ平)正得多的起始电势(φi)处开始势作正向电扫描,电流响应曲线则如图0所示。
图0 CV扫描电流响应曲线2)当电极电势逐渐负移到(φ平)附近时,O开始在电极上还原,并有法拉第电流通过。
由于电势越来越负,电极表面反应物O的浓度逐渐下降,因此向电极表面的流量和电流就增加。
当O的表面浓度下降到近于零,电流也增加到最大值Ipc,然后电流逐渐下降。
当电势达到(φr)后,又改为反向扫描。
3)随着电极电势逐渐变正,电极附近可氧化的R粒子的浓度较大,在电势接近并通过(φ平)时,表面上的电化学平衡应当向着越来越有利于生成R的方向发展。
于是R开始被氧化,并且电流增大到峰值氧化电流Ipa,随后又由于R的显著消耗而引起电流衰降。
整个曲线称为“循环伏安曲线”1.3 经典三电极体系经典三电极体系由工作电极(WE)、对电极(CE)、参比电极(RE)组成。
在电化学测试过程中,始终以工作电极为研究电极。
其电路原理如图1,附CV图(图2):扫描范围-0.25-1V,扫描速度50mV/S,起始电位0V。
图1 原理图图2 CBZ的循环伏安扫描图图2所示CV扫描结果为研究电极上产生的电流随电位变化情况图。
1)横坐标Potential applied(电位)为图1中电压表所测,即Potential applied=P(WE)-P(RE)所有的电位数值都是相对于氢离子的电位值,规定在标准情况下,氢离子的电位为0。
当恒电位仪向工作电极提供负的电位时,其电源连接情况如图1所示,即工作电极与电源的负极相连,作为阴极工作发生还原反应;反之则作为阳极发生氧化反应。
循环伏安法及应用电池反应实际上是一个氧化还原反应。
反应粒子在电极表面上进行的氧化(失去电子)反应叫阳极反应;相应的还原(获得电子)反应叫阴极反应。
电极电位可表示氧化还原反应的难易程度。
由左图可知,电极反应速度一般由以下几个因素来控制:(1)物质传递;(2)吸附与脱附过程;(3)电子传递过程电极表面电化学反应示意图电荷移动速度k和物质传输速度m对电流电位曲线的影响反应慢,具有足够的传输能力为了使反应加速必须加电压反应快,受到传输能力限制为了增加传输能力必须增加反应物浓度或进行搅拌循环伏安法三角波电位进行扫描,所获得的电流响应与电位信号的关系,称为循环伏安扫描曲线。
开始扫描,工作电极电位电位不断变负,物质在负极还原;反向扫描时,物质在电极发生氧化反应。
因此,在一个三角波扫描中可完成个还原氧化过程的循环。
原理:在电极上施加一个线性扫描电压,以恒定的变化速度扫描,当达到某设定的终止电位时,再反向回归至某一设定的起始电位,循环伏安法电位与时间的关系(见图)循环伏安法若电极反应为O+e→R,反应前溶液中只含有反应粒子O、且O、R在溶液均可溶,控制扫描起始电势从比体系标准平衡电势正得多的起始电势φ处开始势作正向电扫描,电流响i应曲线则如右图所示。
当电极电势逐渐负移到φ0附近时,O开始在电极上还原,并有法拉第电流通过。
平由于电势越来越负,电极表面反应物O的浓度逐渐下降,因此向电极表面的流量和电,然后电流逐渐下流就增加。
当O的表面浓度下降到近于零,电流也增加到最大值Ipc降。
当电势达到φ后,又改为反向扫描。
r随着电极电势逐渐变正,电极附近可氧化的R粒子的浓度较大,在电势接近并通时,表面上的电化学平衡应当向着越来越有利于生成O的方向发展。
于是R开过φ0平,随后又由于R的显著消耗而引起电流衰始被氧化,并且电流增大到峰值氧化电流Ipa降。
整个曲线称为“循环伏安曲线”。
循环伏安法的特征1、Ipc 与反应物O的本体浓度成正比,与扫描速率v的平方根(即v1/2)成正比。
循环伏安法原理及结果分析循环伏安法(cyclic voltammetry)是电化学分析技术中常用的手段之一,它通过对电极表面施加一定的电位范围,并观察电流随时间的变化,来研究电极的电化学反应动力学过程及物质的电化学性质。
本文将介绍循环伏安法的原理和结果分析。
一、循环伏安法原理循环伏安法是利用三电极体系或两电极体系,在电解液中施加一系列连续的电位变化,从而观察被测物质的电极过程和电分析过程。
其原理可以概括如下:1. 电位扫描循环伏安法通过对电极施加一定电位的扫描,看电流随着电位变化的趋势,了解电极上电化学反应的特性。
该扫描通常为正弦形状的波形,可以从一个起始电位逐渐扫描到反向电位,然后再返回起始电位。
2. 反应过程在电位扫描过程中,当电极达到某一特定电位时,电极上的溶液中的物质会发生氧化还原反应。
在电位的正向扫描中,电极吸附或生成物质发生氧化反应;在电位的反向扫描中,电极吸附或生成物质发生还原反应。
3. 极化曲线根据电流与电位之间的关系绘制出的曲线被称为循环伏安曲线(cyclic voltammogram)。
循环伏安曲线可以提供丰富的电化学信息,如峰电位、峰电流、反应速率等,通过分析这些参数可以了解被测物质的电化学性质。
二、循环伏安法结果分析循环伏安法作为一种定量分析技术,可以提供丰富的信息用于研究和分析。
下面是对循环伏安法结果的常见分析方法:1. 峰电位循环伏安曲线中的峰电位是指氧化还原反应发生的特定电位,它可以提供物质的氧化还原能力和反应速率信息。
通过比较不同物质的峰电位可以实现物质的定性分析。
2. 峰电流峰电流是循环伏安曲线中峰值对应的电流值,它可以反映物质的浓度和反应速率。
通过比较不同物质的峰电流可以实现物质的定量分析。
3. 氧化还原峰循环伏安曲线中的氧化峰和还原峰是氧化还原反应的关键指标。
通过对氧化峰和还原峰的面积进行定量分析,可以得到物质的电化学反应速率以及反应机理。
4. 电化学反应动力学循环伏安法还可通过对不同扫描速率下的曲线进行分析,得到电化学反应的动力学参数,比如转移系数、速率常数等。
循环伏安法及应用摘要:本文主要介绍了电化学研究方法中的循环伏安法实验技术的基本原理及其在电极反应的可逆性、定量分析及电极制备方面的应用。
关键词:电化学;循环伏安法;原理;应用一、循环伏安法的概念及原理循环伏安法(CyclicV oltamm etry)是一种常用的电化学研究方法。
该法控制电极电势以不同的速率,随时间以三角波形一次或多次反复扫描,电势范围是使电极上能交替发生不同的还原和氧化反应,并记录电流-电势曲线。
该法除了使用汞电极外,还可以用铂、金、玻璃碳、碳纤维微电极以及化学修饰电极等。
循环伏安法还可以改变电位以得到氧化还原电流方向。
循环伏安法中电压扫描速度可从每秒钟数毫伏到1伏。
若以等腰三角形的脉冲电压加在工作电极上,得到的电流—电压曲线包括两个分支,如果前半部分电位向阴极方向扫描,电活性物质在电极上还原,产生还原波,那么后半部分电位向阳极方向扫描时,还原产物又会重新在电极上氧化,产生氧化波。
因此一次三角波形扫描,完成一个还原和氧化过程的循环,故该法称为循环伏安法,其电流—电压曲线称为循环伏安图。
二、循环伏安法的应用对于一个新的电化学体系,首选的研究方法往往就是循环伏安法,可称之为“电化学的谱图”。
可根据循环伏安图中曲线的形状判断电极反应的可逆程度,中间体、相界吸附或新相形成的可能性,以及偶联化学反应的性质等。
常用来测量电极反应参数,判断其控制步骤和反应机理,并观察整个电势扫描范围内可发生哪些反应,及其性质如何。
(一)、判断电极反应的可逆性循环伏安法中电压的扫描过程包括阴极与阳极两个方向,因此可从所得的循环伏安法图的氧化波和还原波的峰高和对称性中来判断电活性物质在电极表面反应的可逆程度。
如黄可龙等采用循环伏安法对在水溶液中4LiFePO 的电化学行为进行了研究,结果表明,4LiFePO 在饱和溶液中3LiNO 具有良好的电化学可逆性;黄宝美等研究了大豆黄素在玻碳电极的电化学行为,表明大豆黄素的电极过程具有吸附性和不可逆性。
循环伏安法的原理和应用1. 循环伏安法的原理循环伏安法(Cyclic Voltammetry, CV)是一种电化学分析技术,通过在电极上施加一定的电位扫描,通过测量电流来研究溶液中的电化学反应。
其原理基于电极电势与电流之间的关系,可以提供有关反应的动力学、电荷传递和电催化性能的信息。
循环伏安法的主要原理如下:1.电位扫描:从一个初始电位开始,电位逐渐变化到另一个电位,并返回到起始电位,形成一个完整的循环。
这个电位变化过程可以是线性的(即线性扫描)或非线性的(即脉冲扫描)。
2.电流测量:在电位扫描的同时,通过电极与溶液中的电化学反应产生的电流进行测量,并记录下随时间变化的电流。
3.法拉第定律:循环伏安法基于法拉第定律,即在恒定温度下,电流与电位之间符合一定的线性关系,即法拉第方程。
4.反应机理研究:通过分析电位扫描过程中的电流曲线,可以推断出溶液中的电化学反应机理,例如电荷传递机理、电催化剂的性能等。
2. 循环伏安法的应用循环伏安法在电化学领域有广泛的应用,以下列举了一些主要的应用领域:2.1 电化学催化循环伏安法可以用于研究电催化剂在电化学反应中的性能。
通过扫描电位的变化,可以得到电催化剂的吸附、解吸附动力学信息,评估其催化活性和稳定性。
2.2 腐蚀研究循环伏安法可以用于腐蚀研究,通过扫描电位的变化,可以测量材料在不同电位下的腐蚀电流,评估材料的耐蚀性能。
这对于材料的选用和防腐蚀措施的制定具有重要意义。
2.3 锂离子电池研究循环伏安法可以用于研究锂离子电池中的电化学过程,如锂离子的插入/脱出过程、电极材料的催化剂活性等。
这有助于改进锂离子电池的性能和寿命。
2.4 水质分析循环伏安法可用于水质分析,通过扫描电位测量溶液中的化学物质的浓度。
这种方法广泛应用于环境监测、水处理和食品安全等领域。
2.5 药物分析循环伏安法可用于药物分析。
通过扫描电位测量药物溶液的电流响应,可以确定药物的浓度、纯度和电化学性质,对药物的质量控制和药物代谢研究具有重要意义。
循环伏安法测定铁氰化钾的电极反应过程一、实验原理 1.循环伏安法循环伏安法是将循环变化的电压施加于工作电极和对电极之间,记录工作电极上得到的电流与施加电压的关系曲线。
此方法也称为三角波线性电位扫描方法。
图1-1表明了施加电压的变化方式。
选定电位扫描范围E1~E2 和扫描速率, 从起始电位E1开始扫描到达E2 , 然后连续反向在扫描从E2回到E1。
由图1-2 可见,循环伏安图有两个峰电流和两个峰电位。
i pc 和 i pa 分别表示阴极峰值电流和阳极峰值电流,对应的阴极峰值电位与阳极峰值电位分别为E pc 和E pa 。
图1-1 循环伏安法的典型激发信号 图1-2 K3Fe(CN)6在KCL 溶液中的循环伏安图2.判断电极可逆性根据Nernst 方程,在实验测定温度为298K 时,计算得出 △Ep = Epa- Epc≈59/n mV (1-1) 阳极峰电流ipa 和阴极峰电流ipc 满足以下关系: ipc/ipa ≈1 (1-2)同时满足以上两式,即可认为电极反应是可逆过程。
如果从循环伏安图得出的 △Ep/mv = 55/n ~65/n 范围,也可认为电极反应是可逆的。
3.计算原理铁氰化钾离子-亚铁氰化钾离子氧化还原电对的标准电极电位 [Fe(CN)6]3- + e - = [ Fe(CN)6]4- Φ=0.36v 电极电位与电极表面活度的Nernst 方程:峰电流与电极表面活度的Randles-Savcik 方程: i p = 2.69×105n 3/2ACD 1/2v 1/2 二、实验仪器与试剂0'Ox pa RedC RTIn F C ϕϕ∆=+E / Vt / s阳极 i / μA 阴极ϕ / v仪器: CHI660电化学工作站,电解池铂盘工作电极铂丝辅助电极Ag/AgCl参比电极。
试剂:铁氰化钾溶液:0.1mol/L;硝酸钾溶液:1.0mol/L三、实验步骤1.Pt工作电极预处理不同粒度的α-Al2O3粉,抛光,洗去表面污物,再超声水浴中清洗,每次2-3分钟,重复三次,得到平滑光洁和新鲜的电极表面。