高分子化学公式
- 格式:doc
- 大小:531.50 KB
- 文档页数:37
浙江大学材化学院高分子化学公式推导第一章绪论(Introduction)(1)分子量的计算公式:M0:重复单元数的分子量M1:结构单元数的分子量(2)数均分子量:N1,N2…N i分别是分子量为M1,M2…M i的聚合物分子的分子数。
x i表示相应的分子所占的数量分数。
(3)重均分子量:m1,m2…m i分别是分子量为M1,M2…M i的聚合物分子的重量W i表示相应的分子所占的重量分数(4)Z均分子量:(5)粘均分子量:α:高分子稀溶液特性粘度—分子量关系式中的指数,一般在 0.5~0.9之间(6)分布指数:分布指数第二章自由基聚合(Free-Radical Polymerization)(1)引发剂分解动力学:引发剂的分解速率:引发剂的浓度引发剂分解一般属于一级反应,因而分解速率为的一次方。
将上式积分得:进而得到半衰期(引发剂分解至起始浓度一半时所需的时间)对应半衰期时:,由前面的推导有:半衰期(2)自由基聚合微观动力学链引发速率:链增长速率:链终止速率:式中:kd、kp、kt分别为引发、增长及终止速率常数;[M]为体系中单体总浓度;为体系中活性种(自由基)的总浓度;f为引发剂效率。
推导如下:链引发反应由以下两个基元反应组成:式中:为初级自由基;为单体自由基。
若第二步的反应速率远大于第一步反应(一般均满足此假设),有:引入引发剂效率后,得引发速率的计算式如下:一般用单体的消失速率来表示链增长速率,即:链增长反应如下式:引入自由基聚合动力学中的第一个假定:等活性理论,即链自由基的活性与链长基本无关,即各步速率常数相等,kp1=kp2=kp3=…kp x=kp推得:自由基聚合一般以双基终止为主要的终止方式,在不考虑链转移反应的情况下,终止反应方程式如下:偶合终止:歧化终止:终止总速率:式中:Rtc为偶合终止速率;Rtd为歧化终止速率;Rt为总终止速率;ktc、ktd、kt为相应的速率常数。
在以上公式的基础上,引入处理自由基动力学的三个假设,得到以单体消耗速率表示的总聚合速率,其计算公式为:以及单体浓度随时间的变化关系为:若引发剂浓度可视为常数,则上式还原为:以上公式推导如下:自由基浓度较难测定,也很难定量化,因而无实用价值,引入处理自由基动力学的第二个假定——稳态假定,假定体系中自由基浓度在经过一段很短的时间后保持一个恒定值,或者说引发速率和终止速率相等, Ri=Rt即:解出:再引入处理自由基动力学的第三个假定:大分子的聚合度很大,用于引发的单体远少于增长消耗的单体, Ri <<Rp由此,用单体消失速率来表示的聚合总速率就等于链增长速率代入引发速率的表达式得:代入引发剂浓度随时间的变化关系得到:积分得:两边同时变号当引发剂的浓度可看作常数时即:即:此时:可略去高阶无穷小量得:(3)动力学链长及平均聚合度1)不考虑链转移反应自由基聚合过程中双基终止有两种方式,一种为双基偶合终止,另一种为双基歧化终止,二者所占的分率的不同将会引起平均聚合度的改变,但两种终止方式不会改变动力学链长的大小,二者的计算公式为:式中:Rtc为双基偶合终止的反应速率;Rtd为双基歧化终止的反应速率;Rp为链增长速率。
第一章绪论(Introduction)(1)分子量的计算公式:M0:重复单元数的分子量M1:结构单元数的分子量(2)数均分子量:N1,N2…N i分别是分子量为M1,M2…M i的聚合物分子的分子数。
x i表示相应的分子所占的数量分数。
(3)重均分子量:m1,m2…m i分别是分子量为M1,M2…M i的聚合物分子的重量W i表示相应的分子所占的重量分数(4)Z均分子量:(5)粘均分子量:α:高分子稀溶液特性粘度—分子量关系式中的指数,一般在0.5~0.9之间(6)分布指数:分布指数第二章自由基聚合(Free-Radical Polymerization)(1)引发剂分解动力学:引发剂的分解速率:引发剂的浓度引发剂分解一般属于一级反应,因而分解速率为的一次方。
将上式积分得:进而得到半衰期(引发剂分解至起始浓度一半时所需的时间)对应半衰期时:,由前面的推导有:半衰期(2)自由基聚合微观动力学链引发速率:链增长速率:链终止速率:式中:kd、kp、kt分别为引发、增长及终止速率常数;[M]为体系中单体总浓度;为体系中活性种(自由基)的总浓度;f为引发剂效率。
推导如下:链引发反应由以下两个基元反应组成:式中:为初级自由基;为单体自由基。
若第二步的反应速率远大于第一步反应(一般均满足此假设),有:引入引发剂效率后,得引发速率的计算式如下:一般用单体的消失速率来表示链增长速率,即:链增长反应如下式:引入自由基聚合动力学中的第一个假定:等活性理论,即链自由基的活性与链长基本无关,即各步速率常数相等,kp1=kp2=kp3=…kp x=kp推得:自由基聚合一般以双基终止为主要的终止方式,在不考虑链转移反应的情况下,终止反应方程式如下:偶合终止:歧化终止:终止总速率:式中:Rtc为偶合终止速率;Rtd为歧化终止速率;Rt为总终止速率;ktc、ktd、kt为相应的速率常数。
在以上公式的基础上,引入处理自由基动力学的三个假设,得到以单体消耗速率表示的总聚合速率,其计算公式为:以及单体浓度随时间的变化关系为:若引发剂浓度可视为常数,则上式还原为:以上公式推导如下:自由基浓度较难测定,也很难定量化,因而无实用价值,引入处理自由基动力学的第二个假定——稳态假定,假定体系中自由基浓度在经过一段很短的时间后保持一个恒定值,或者说引发速率和终止速率相等,Ri=Rt即:解出:再引入处理自由基动力学的第三个假定:大分子的聚合度很大,用于引发的单体远少于增长消耗的单体,Ri <<Rp由此,用单体消失速率来表示的聚合总速率就等于链增长速率代入引发速率的表达式得:代入引发剂浓度随时间的变化关系得到:积分得:两边同时变号当引发剂的浓度可看作常数时即:即:此时:可略去高阶无穷小量得:(3)动力学链长及平均聚合度1)不考虑链转移反应自由基聚合过程中双基终止有两种方式,一种为双基偶合终止,另一种为双基歧化终止,二者所占的分率的不同将会引起平均聚合度的改变,但两种终止方式不会改变动力学链长的大小,二者的计算公式为:式中:Rtc为双基偶合终止的反应速率;Rtd为双基歧化终止的反应速率;Rp为链增长速率。
高分子聚合反应的聚合速率与聚合度计算高分子聚合反应是一种重要的化学反应过程,通过将单体分子进行聚合,形成高分子链结构。
在聚合反应中,聚合速率和聚合度是两个重要的物理参数,它们对聚合物的性质和应用具有重要影响。
因此,准确地计算聚合速率和聚合度对于高分子聚合反应的理解和工艺控制至关重要。
聚合速率是指单位时间内聚合反应产生的聚合物的数量。
它可以通过以下公式计算:聚合速率 = d[M] / dt其中,d[M]表示单位时间内聚合物产物的量的增加,dt表示时间间隔。
聚合速率可以通过实验方法测定,例如通过监测反应体系中反应物浓度的变化来确定速率。
此外,一些理论模型也可以用来推断聚合速率,例如独立活性位模型(IAP)和独立链段模型(IFP)等。
聚合度是指聚合物链中重复单元的数量。
对于线性聚合物而言,聚合度可以用平均数或者分布的形式表示。
聚合度的计算可以通过以下公式得到:聚合度 = M_n / M_0其中,M_n表示聚合物的平均分子量,M_0表示单体的摩尔质量。
聚合度也可以通过实验测定,例如利用凝胶渗透色谱(GPC)来测定聚合物的分子量分布,然后计算平均聚合度。
在高分子聚合反应中,聚合速率和聚合度是相互关联的。
通常情况下,较高的聚合速率会导致较低的聚合度,反之亦然。
这是因为聚合速率取决于反应条件和反应物浓度,而聚合度则取决于聚合速率和反应时间。
通过调节反应条件,可以在一定程度上调控聚合速率和聚合度,从而得到不同性质和应用的高分子材料。
为了更准确地计算高分子聚合反应的聚合速率和聚合度,还需要考虑其他因素,如反应机理、反应条件、单体结构和催化剂等。
反应机理的理解对于建立准确的数学模型和计算方法至关重要。
反应条件的选择会影响聚合速率和聚合度的控制范围,例如温度、催化剂浓度和溶剂选择等。
单体结构的选择会影响聚合反应的速率和聚合度分布。
催化剂的选择和浓度也是影响聚合速率和聚合度的重要因素。
综上所述,高分子聚合反应的聚合速率和聚合度是通过实验测定和理论模型计算得出的。
高分子化学公式推导浙江大学
第一章绪论(Introduction)(1)分子量的计算公式:
M0:重复单元数的分子量,DP为重复单元数
M1:结构单元数的分子量, Xn为结构单元数
(2)数均分子量:定义为某体系的总质量m被分子总数所平均.
N1,N2…N i分别是分子量为M1,M2…M i的聚合物分子的分子数。
x i表示相应的分子所占的数量分数。
(3)重均分子量:i聚体的分子量乘以其重量分数的加和.
m1,m2…m i分别是分子量为M1,M2…M i的聚合物分子的重量
W i表示相应的分子所占的重量分数
(6)分布指数
:分布指数
第二章自由基聚合(Free-Radical Polymerization)(1)引发剂分解动力学
:引发剂的分解速率:引发剂的浓度
引发剂分解一般属于一级反应,因而分解速率为的一次方。
将上式积分得:
进而得到半衰期(引发剂分解至起始浓度一半时所需的时间)
对应半衰期时:,由前面的推导有:
半衰期
(2)自由基聚合微观动力学
链引发速率:
链增长速率:
链终止速率:
式中:kd、kp、kt分别为引发、增长及终止速率常数;[M]为体系中单体总浓度;为体系中活性种(自由基)的总浓度;f为引发剂效率。
推导如下:
链引发反应由以下两个基元反应组成:
式中:为初级自由基;为单体自由基。
若第二步的反应速率远大于第一步反应(一般均满足此假设),有:。
第一章绪论(Introduction)(1)分子量得计算公式:M0:重复单元数得分子量M1:结构单元数得分子量(2)数均分子量:N1,N2…Ni分别就是分子量为M1,M2…M i得聚合物分子得分子数.xi表示相应得分子所占得数量分数。
(3)重均分子量:m1,m2…m i分别就是分子量为M1,M2…M i得聚合物分子得重量W i表示相应得分子所占得重量分数(4)Z均分子量:(5)粘均分子量:α:高分子稀溶液特性粘度-分子量关系式中得指数,一般在0、5~0、9之间(6)分布指数:分布指数第二章自由基聚合(Free-Radical Polymerization)(1)引发剂分解动力学:引发剂得分解速率:引发剂得浓度引发剂分解一般属于一级反应,因而分解速率为得一次方.将上式积分得:进而得到半衰期(引发剂分解至起始浓度一半时所需得时间)对应半衰期时:,由前面得推导有:半衰期(2)自由基聚合微观动力学链引发速率:链增长速率:链终止速率:式中:kd、kp、kt分别为引发、增长及终止速率常数;[M]为体系中单体总浓度;为体系中活性种(自由基)得总浓度;f为引发剂效率。
推导如下:链引发反应由以下两个基元反应组成:式中:为初级自由基;为单体自由基。
若第二步得反应速率远大于第一步反应(一般均满足此假设),有:引入引发剂效率后,得引发速率得计算式如下:一般用单体得消失速率来表示链增长速率,即:链增长反应如下式:引入自由基聚合动力学中得第一个假定:等活性理论,即链自由基得活性与链长基本无关,即各步速率常数相等, kp1=kp2=kp3=…kp x=kp推得:自由基聚合一般以双基终止为主要得终止方式,在不考虑链转移反应得情况下,终止反应方程式如下:偶合终止:歧化终止:终止总速率:式中:Rtc为偶合终止速率;Rtd为歧化终止速率;Rt为总终止速率;ktc、ktd、kt为相应得速率常数。
在以上公式得基础上,引入处理自由基动力学得三个假设,得到以单体消耗速率表示得总聚合速率,其计算公式为:以及单体浓度随时间得变化关系为:若引发剂浓度可视为常数,则上式还原为:以上公式推导如下:自由基浓度较难测定,也很难定量化,因而无实用价值,引入处理自由基动力学得第二个假定-—稳态假定,假定体系中自由基浓度在经过一段很短得时间后保持一个恒定值,或者说引发速率与终止速率相等,Ri=Rt即:解出:再引入处理自由基动力学得第三个假定:大分子得聚合度很大,用于引发得单体远少于增长消耗得单体,Ri<<Rp由此,用单体消失速率来表示得聚合总速率就等于链增长速率代入引发速率得表达式得:代入引发剂浓度随时间得变化关系得到: 积分得:两边同时变号当引发剂得浓度可瞧作常数时即:即:此时:可略去高阶无穷小量得:(3)动力学链长及平均聚合度1)不考虑链转移反应自由基聚合过程中双基终止有两种方式,一种为双基偶合终止,另一种为双基歧化终止,二者所占得分率得不同将会引起平均聚合度得改变,但两种终止方式不会改变动力学链长得大小,二者得计算公式为:式中:Rtc为双基偶合终止得反应速率;Rtd为双基歧化终止得反应速率;Rp为链增长速率.V:动力学链长而若已知二者所占得分率时,如偶合终止所上分率为C,歧化终止所占分率为D,则有平均聚合度得计算公式为:以上三个公式就是建立在双基终止为唯一得终止方式,及三个假设得基础上得。
高分子化学一、填空题1.由聚合物制成的三大合成材料是指:合成塑料、合成纤维和合成橡胶。
2.多分散系数是表征聚合物的多分散程度,也叫分子量分布,其计算公式为:重均分子量/数均分子量(dMw)。
Mn3.聚合物分类多种多样,根据单体与其生成的聚合物之间在分子组成与结构上的变化把聚合反应分为加聚反应和缩聚反应;根据反应机理和动力学性质的不同,分为连锁聚合反应和逐步聚合反应。
4.自由基聚合反应的实施方法主要有:溶液聚合、本体聚合、悬浮聚合和乳液聚合。
而逐步聚合实施方法主要有熔融聚合、溶液聚合、界面缩聚、固相缩聚。
5.自由基聚合的机理的特征为慢引发、快增长、有终止。
阳离子聚合机理的特点可以总结为:快引发、快增长、易转移、难终止。
阴离子聚合机理的特点是快引发、慢增长、无终止。
6.根据统计学方法的不同,有多种不同的平均分子量,常用的有:数均分子量、重均分子量和粘均分子量。
7.在均聚反应中,聚合速率、平均分子量、分子量分布是要研究的重要内容。
在共聚合中,共聚物的组成和分布成为首要问题。
8.聚合物的平均分子量的可以用数均分子量、重均分子量、粘均分子量等表示,而分子量分布可以则可以用分子量分布指数或分子量分布曲线表示。
9.聚合物按主链元素的组成可以分为碳链聚合物、杂链聚合物和元素有机(半有机)聚合物三类。
10.按聚合物在反应前后聚合度的变化情况,聚合物的化学反应可以分聚合度相似的转变、聚合度增加的转变和聚合度减少的转变三类。
聚合度变大的如:嵌段、交联、接枝、扩链;集合度变小的如:降解、解聚。
11.连锁聚合反应包括自由基聚合、阴离子聚合、阳离子聚合和配位聚合等。
12.按聚合物的分子链结构,逐步聚合反应可分为线型逐步聚合和非线型逐步聚合反应。
13.单体结构与竞聚率之间有着密切的关系,单体对某一自由基反应的活性大小是由取代基的共轭效应和极性效应两者共同决定的。
14.1947年Alfrey和Price首次提出了半定量地计算不同单体对r(竞聚率)值Q-e方程:k12=P1Q2e某p(-e1e2),式中e代表单体和自由基的极性,与极性效应有关;Q值代表单体的活性,它与单体和自由基的共轭效应有关。
第一章绪论(Introduction)(1)分子量的计算公式:
M0:重复单元数的分子量
M1:结构单元数的分子量
(2)数均分子量:
N1,N2…N i分别是分子量为M1,M2…M i的聚合物分子的分子数。
x i表示相应的分子所占的数量分数。
(3)重均分子量:
m1,m2…m i分别是分子量为M1,M2…M i的聚合物分子的重量
W i表示相应的分子所占的重量分数
(4)Z均分子量:
(5)粘均分子量:
α:高分子稀溶液特性粘度—分子量关系式中的指数,一般在 0.5~0.9之间(6)分布指数
:分布指数
第二章自由基聚合(Free-Radical Polymerization)(1)引发剂分解动力学
:引发剂的分解速率
:引发剂的浓度
引发剂分解一般属于一级反应,因而分解速率为的一次方。
将上式积分得:
进而得到半衰期(引发剂分解至起始浓度一半时所需的时间)对应半衰期时:,由前面的推导有:
半衰期
(2)自由基聚合微观动力学
链引发速率:
链增长速率:
链终止速率:
式中:kd、kp、kt分别为引发、增长及终止速率常数;[M]为体系中单体总浓度;为体系中活性种(自由基)的总浓度;f为引发剂效率。
推导如下:
链引发反应由以下两个基元反应组成:
式中:为初级自由基;为单体自由基。
若第二步的反应速率远大于第一步反应(一般均满足此假设),有:
引入引发剂效率后,得引发速率的计算式如下:
一般用单体的消失速率来表示链增长速率,即:
链增长反应如下式:
引入自由基聚合动力学中的第一个假定:等活性理论,即链自由基的活性与链长基本无关,即各步速率常数相等, kp1=kp2=kp3=…kp x=kp
推得:
自由基聚合一般以双基终止为主要的终止方式,在不考虑链转移反应的情况下,终止反应方程式如下:
偶合终止:
歧化终止:
终止总速率:
式中:Rtc为偶合终止速率;Rtd为歧化终止速率;Rt为总终止速率;ktc、ktd、kt为相应的速率
常数。
在以上公式的基础上,引入处理自由基动力学的三个假设,得到以单体消耗速率表示的总聚合速率,其计算公式为:
以及单体浓度随时间的变化关系为:
若引发剂浓度可视为常数,则上式还原为:
以上公式推导如下:
自由基浓度较难测定,也很难定量化,因而无实用价值,引入处理自由基动力学的第二个假定——稳态假定,假定体系中自由基浓度在经过一段很短的时间后保持一个恒定值,或者说引发速率和终止速率相等, Ri=Rt
即:
解出:
再引入处理自由基动力学的第三个假定:大分子的聚合度很大,用于引发的单体远少于增长消耗的单体, Ri <<Rp
由此,用单体消失速率来表示的聚合总速率就等于链增长速率
代入引发速率的表达式得:
代入引发剂浓度随时间的变化关系得到:
积分得:
两边同时变号
当引发剂的浓度可看作常数时即:
即:。