差动放大电路(
- 格式:doc
- 大小:210.00 KB
- 文档页数:11
差动放大电路工作原理差动放大电路是一种常见的电路,它常常被用于放大微小信号。
本文将介绍差动放大电路的工作原理、应用场景以及常见问题解决方法。
一、差动放大电路的工作原理差动放大电路由两个输入端和一个输出端组成。
当两个输入端的电压不同时,输出端就会输出一个差分电压。
差分电压的大小与两个输入端的电压差有关,电压差越大,则差分电压也越大。
差动放大电路的主要作用是将微小信号放大到可以被其他电路处理的程度。
差动放大电路通常由两个晶体管组成。
其中,一个晶体管的发射极连接到一个恒流源,另一个晶体管的发射极连接到另一个恒流源。
两个晶体管的集电极通过一个电阻连接在一起,形成一个共射放大电路。
两个输入端的信号分别连接到两个晶体管的基极上,输出端连接到两个晶体管的集电极上。
差动放大电路的工作原理可以用以下公式表示:Vout = (V1-V2) * (Rc / Re)其中,V1和V2分别是两个输入端的电压,Vout是输出端的电压,Rc是两个晶体管的集电极电阻,Re是两个晶体管的发射极电阻。
二、差动放大电路的应用场景差动放大电路广泛应用于音频放大器、电视机、电脑等电子产品中。
它可以将微弱的音频信号放大到可以被扬声器播放的程度。
此外,差动放大电路还可以用于测量仪器中,例如电压表、电流表等。
三、差动放大电路的常见问题解决方法1. 电路失真:差动放大电路有时会出现电路失真的情况,这可能是由于电容电压过高或者晶体管的工作状态不稳定造成的。
要解决这个问题,可以适当减小电容电压或者更换晶体管。
2. 电源噪声:电源噪声对差动放大电路的影响非常大,会导致输出信号的失真。
为了解决这个问题,可以采用滤波器来滤除电源噪声。
3. 温度漂移:温度漂移是指电路在不同温度下输出信号的变化。
要解决这个问题,可以采用温度补偿电路来进行调整。
总之,差动放大电路是一种常见的电路,它可以将微弱的信号放大到可以被其他电路处理的程度。
通过了解差动放大电路的工作原理和应用场景,我们可以更好地理解它的作用和意义。
差动放大电路和差分放大电路
差动放大电路和差分放大电路都是常见的放大电路类型,它们在信号处理、仪器测量等领域得到广泛应用。
差动放大电路是一种针对微小信号放大的电路,通过对两个输入信号的差值进行放大,可以有效抑制共模干扰,提高信号质量,常用于音频放大、信号测量等方面。
而差分放大电路则是一种针对大信号放大的电路,通过对两个输入信号的和差进行放大,可以实现高增益放大,常用于射频信号放大、功率放大等方面。
差动放大电路和差分放大电路的实现方式也有一些不同,差动放大电路通常采用差动放大器作为核心部件,而差分放大电路则常常采用差分对作为核心部件。
在实际应用中,差动放大电路和差分放大电路都需要根据具体需求来选择电路设计方案,以实现最佳的信号放大效果。
同时,在电路的设计和实现过程中,还需要考虑如何降低噪声、提高稳定性等问题,以确保电路的可靠性和性能。
- 1 -。
差动放大电路的原理
差动放大器的原理是利用两个对称输入信号进行放大,输出信号为两个输入信号的差值。
差动放大电路一般由一个差动放大器和一个负反馈电路组成。
差动放大器由两个输入端,分别接收两个对称的输入信号。
这两个输入信号经过放大器的放大作用后,输出两个放大的信号。
差动放大器的输出取决于两个输入信号的差异大小。
负反馈电路将差动放大器的输出信号与输入信号进行比较,并将差异信号放大器的输入端,实现对输出信号的修正。
通过不断修正差动放大器的输出,使得输入和输出之间的差异趋近于零,实现对输入信号的放大。
差动放大电路的原理可以简单概括为:通过抑制两个输入端之间的差异信号,只放大两个输入信号之间的差异部分,从而实现对差异信号的放大。
这样可以有效抑制共模干扰,提高信号的抗干扰能力,提高放大器的稳定性。
差动放大电路广泛应用于各种信号放大和处理电路中。
§5、1差动放大电路(第三页)这一页我们来学习另一种差动放大电路和差动放大电路的四种接法
一:恒流源差动放大电路
我们知道长尾式差动电路,由于接入Re,提
高了共模信号的抑制能力,且Re越大,抑制能
力越强,但Re增大,使得Re上的直流压降增
大,要使管子能正常工作,必须提高U
EE
的值,
这样做是很不划算的。
因此我们用恒流源代替
Re,它的电路图如右图所示:
恒流源差动放大电路的指标运算,与长尾式完全一样,只需用r
o3
代替Re即可
二:差动放大电路的四种接法
差动放大电路有两个输入端和两个输出端,因此信号的输入、输出方式有四种情况。
(1)双端输入、双端输出
它的电路的接法如图(1)所示:
差模电压的放大倍数为:
共模电压的放大倍数为:
共模抑制比为:CMRR→∞
(2)双端输入、单端输出
它的电路接法如图(2)所示:
差模电压的放大倍数为:
共模电压的放大倍数为:
共模抑制比为:
(3)单端输入、双端输出
它的电路接法如图(3)所示:
这种放大电路忽略共模信号的放
大作用时,它就等效为双端输入的情
况。
双端输入的结论均适用单端输入、
双端输出。
(4)单端输入、双端输出
它的电路的接法如图(4)所示:
它等效于双端输入、单端输出。
这种接法的特点是:它比单管基本放
大电路的抑制零漂的能力强,还可根
据不同的输出端,得到同相或反相关
系。
三:总结
由以上我们可以看出:差动放大电路电压放大倍数仅与输出形式有关,只要是双端输出,它的差模电压放大倍数与单管基本的放大电路相同;如为单端输出,它的差模电压放大倍数是单管基本电压放大倍数的一半,输入电阻都相同。
下一节返回
§5、2集成运算放大器
集成运放是一种高放大倍数、高输入电阻、低输出电阻的直接耦合放大电路
一:集成运放的组成
它有四部分组成:1、偏置电路;
2、输入级:为了抑制零漂,采用差动放
大电路
3、中间级:为了提高放大倍数,一般采用有源负载的共射放大电路。
4、输出级:为了提高电路驱动负载的能力,一般采用互补对称输出级电路
二:集成运放的性能指标(扼要介绍)
1、开环差模电压放大倍数 Aod
它是指集成运放在无外加反馈回路的情况下的差模电压的放大倍数。
2、最大输出电压 Uop-p
它是指一定电压下,集成运放的最大不失真输出电压的峰--峰值。
3、差模输入电阻r
id
它的大小反映了集成运放输入端向差模输入信号源索取电流的大小。
要求它愈大愈好。
4、输出电阻 r
O
它的大小反映了集成运放在小信号输出时的负载能力。
5、共模抑制比 CMRR
它放映了集成运放对共模输入信号的抑制能力,其定义同差动放大电路。
CMRR 越大越好。
下一节返回
§6、2运算电路(第一页)
这一节我们学习对信号进行比例、加、减、乘、除等运算的电路。
此时集成运放工作在线性区。
一:比例运算电路
定义:将输入信号按比例放大的电路,称为比例运算电路。
分类:反向比例电路、同相比例电路、差动比例电路。
(按输入信号加入不同的输入端分)
比例放大电路是集成运算放大电路的三种主要放大形式(1)反向比例电路
输入信号加入反相输入端,电路如图(1)所示:
输出特性:因为:,
所以:
从上式我们可以看出:Uo与Ui 是比例关系,改变比例系数,即可改变Uo 的数值。
负号表示输出电压与输入电压极性相反。
反向比例电路的特点:
(1)反向比例电路由于存在"虚地",因此它的共模输入电压为零.即:它对集成运放的共模抑制比要求低
(2)输入电阻低:r
i =R
1
.因此对输入信号的负载能力有一定的要求.
(2)同相比例电路
输入信号加入同相输入端,电路如图(2)所示:
输出特性:因为:(虚短但不是虚地);
;
所以:
改变R
f /R
1
即可改变Uo的值,输入、输出电压的极性
相同
同相比例电路的特点:
(1)输入电阻高;(2)由于(电路的共模输入信号高),因此集成运放的共模抑制比要求高
(3)差动比例电路
输入信号分别加之反相输入端和同相输入端,电路图如图
(3)所示:
它的输出电压为:
由此我们可以看出它实际完成的是:对输入两信号的差运算。
下一页返回
§6、2运算电路(第二页)
二:和、差电路
(1)反相求和电路
它的电路图如图(1)所示:(输入端
的个数可根据需要进行调整)其中电
阻R'为:
它的输出电压与输入电压的关系为:
它可以模拟方程:。
它的特点与反相比例电路相同。
它可十分方便的某一电路的输入电阻,来改变电路的比例关系,而不影响其它路的比例关系。
(2)同相求和电路
它的电路图如图(2)所示:(输
入端的个数可根据需要进行调整)
它的输出电压与输入电压的关系为:。
它的调节不如反
相求和电路,而且它的共模输入信号大,因此它的应用不很广泛。
(3)和差电路
它的电路图如图(3)所示:
此电路的功能是对U
i1、U
i2
进行反
相求和,对U
i3、U
i4
进行同相求和,
然后进行的叠加即得和差结果。
它的输入输出电压的关系是:。
由于该电路用一只集成运放,它的电阻计算和电路调整均不方便,因此我们常用二级集成运放组成和差电路。
它的电路图如图(4)所示
它的输入输出电压的关系是:
它的后级对前级没有影响(采用的是
理想的集成运放),它的计算十分方
便。
下一页返回
§6、2运算电路(第三页)
三:积分电路和微分电路
(1)积分电路
它可实现积分运算及产生三角波形等。
积分运算是:输出电压与输入电压呈积分关
系。
它的电路图如图(1)所示:它是利用电容
的充放电来实现积分运算
它的输入、输出电压的关系为:其中:表示电容两端的初始电压值.
如果电路输入的电压波形是方形,则产生三角波形输出。
(2)微分电路
微分是积分的逆运算,它的输出电压与输
入电压呈微分关系。
电路图如图(2)所示:
它的输入、输出电压的关系为:
四:对数和指数运算电路
(1)对数运算电路
对数运算电路就是是输出电压与输入电压
用二极
呈对数函数。
我们把反相比例电路中R
f
管或三级管代替级组成了对数运算电路。
电路
图如图(3)所示:
它的输入、输出电压的关系为:(也可以用三级管代替二极管)(2)指数运算电路
指数运算电路是对数运算的逆运算,将指数运
算电路的二极管(三级管)与电阻R 对换即可。
电路图如(4)所示
它的输入、输出电压的关系为:
利用对数和指数运算以及比例,和差运算电路,可组成乘法或除法运算电路和其它非线性运算电路
下一节这一节我们来学习关于滤波电路和电压比较器的一些知识
一:滤波电路的基础知识
滤波电路的作用:允许规定范围内的信号通过;而使规定范围之外的信号不能通过。
滤波电路的分类:(按工作频率的不同)
低通滤波器:允许低频率的信号通过,将高频信号衰减。
高通滤波器:允许高频信号通过,将低频信号衰减。
带通滤波器:允许一定频带范围内的信号通过,将此频带外的信号衰减。
带阻滤波器:阻止某一频带范围内的信号通过,而允许此频带以外的信号衰减。
我们在电路分析课程中已学习了,利用电阻、电容等无源器件构成的滤波电路,但它有很大的缺陷如:电路增益小;驱动负载能力差等。
为此我们要学习有源滤波电路。
二:有源滤波电路
(1)低通滤波电路
它的电路图如图(1)所示:(我们以无源滤波
网络RC接至集成运放的同相输入端为例)
它的幅频特性如图(2)所示:
它的传输函数为:
其中:Aup 为通带电压放大被数,;通带截止角频率
对于低有源滤波电路,我们可以通过改变电阻Rf和R1的阻值来调节通带电压的放大被数。
(2)高通滤波电路
它的电路图如图(3)所示:(我们以无源滤波
网络接至集成运放的反相输入端为例)
同样我们可以得到它的幅频特定如图(4)所
示:
它的传输函数
为:
其中:(通带电压放大被数);(通带截止角频率)
(3)带通滤波电路和带阻滤波电路
将低通滤波电路和高通滤波电路进行不同组合,即可的获得带通滤波电路和带阻滤波电路,它们的电路图分别为:如图(5)所示带通滤波电路;如图(6)所示带阻滤波电路:
下一页返回。