高一数学上册10月月试题
- 格式:docx
- 大小:8.91 KB
- 文档页数:3
重庆高2027届高一上期月考数学试题卷(答案在最后)注意事项:1.答卷前,考生务必将自己的姓名、准考证号码填写在答题卡上.2.作答时,务必将答案写在答题卡上.写在本试卷及草稿纸上无效.3.考试结束后,将答题卡交回.一、单项选择题.本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}{}432A B x x =≤=,,则A B = ()A.2163xx ⎧⎫<≤⎨⎬⎩⎭B.{}316x x ≤< C.223xx ⎧⎫<≤⎨⎬⎩⎭D.{}02x x ≤≤2.命题.“230,1x x x ∃<+>”的否定是()A.230,1x x x ∀≥+≤ B.230,1x x x ∀<+≤ C.230,1x x x ∃<+≤ D.230,1x x x ∃≥+≤3.已知函数()2f x +的定义域为()3,4-,则函数()1g x +=的定义域为()A.()4,3- B.()2,5- C.1,33⎛⎫⎪⎝⎭D.1,53⎛⎫ ⎪⎝⎭4.使得“[]21,2,0x x x a ∀∈+-≤”为真命题的一个充分不必要条件是()A.2a ≥ B.2a > C.6a > D.6a ≥5.若正实数,x y 满足3x y +=,且不等式22823m m x y+>-+恒成立,则实数m 的取值范围是()A.{31}m m -<<∣B.{3m m <-∣或1}m >C.{13}m m -<<∣D.{1mm <-∣或3}m >6.函数()()()245,2231,2x a x x f x a x x ⎧-++<⎪=⎨-+≥⎪⎩满足对12,R x x ∀∈且12x x ≠,都有()()()12120f x f x x x --<⎡⎤⎣⎦,则实数a 的取值范围是()A.30,2⎛⎫⎪⎝⎭B.30,2⎡⎫⎪⎢⎣⎭C.()0,1 D.[]0,17.已知,a b 均为正实数,且1a b +=,则下列选项错误的是()A.的B.34aa b++的最小值为7+C.()()11a b ++的最大值为94D.2232a b a b +++的最小值为168.含有有限个元素的数集,定义其“交替和”如下:把集合中的数按从小到大的顺序排列,然后从最大的数开始交替地加减各数,例如{}4,6,9的“交替和”是9647-+=;而{}5的交替和是5,则集合{}Z 54M x x =∈-≤≤∣的所有非空子集的“交替和”的总和为()A.2048B.2024C.1024D.512二、多项选择题.本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知,,a b c ∈R ;则下列不等式一定成立的有()A.若0ab ≠且a b <,则11a b >B.若0a b >>,则20242024b b a a +<+C.若,a b c d >>,则ac bd >D.()221222a b a b ++≥--10.下列说法正确的是()A.若p 是q 的必要不充分条件,p 是r 的充要条件,则q 是r 的充分不必要条件B.若关于x 的不等式2430kx kx k -++≥的解集为R ,则实数k 的取值范围是01k <≤C.若不等式()()30x ax b x c-+≤-的解集为[)[)2,13,∞-⋃+,则不等式2320ax ax b --≥的解集为[]1,4-D.“[]()21,3,2130a ax a x a ∃∈---+-<”为假命题的充要条件为[]51,0,43x ⎡⎤∈-⋃⎢⎥⎣⎦11.已知函数()f x 的定义域为[)0,+∞,且满足当[)0,2x ∈时,()22f x x x =-+,当2x ≥时,恒有()()2f x f x λ=-,且λ为非零常数,则下列说法正确的有()A.()()101320272024f f λ+=B.当12λ=时,反比例函数()1g x x =与()f x 在()0,2024x ∈上的图象有且仅有6个交点C.当0λ<时,()f x 在区间[]2024,2025上单调递减D.当1λ<-时,()f x 在[]()*0,4n n ∈N上的值域为2122,n n λλ--⎡⎤⎣⎦三、填空题.本题共3小题,每小题5分,共15分.12.已知集合{}210A xx =-=∣,则集合A 有__________个子集.13.已知集合[]()(){}1,4,10A B x x a ax ==+-≤∣,若A B B = 且0a ≥,则实数a 的取值范围是__________.14.若正实数x ,y 满足()()332331423x y x y -+-=--,则2346y x x x y++的最小值为__________.四、解答题、本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.已知函数()21,122,1x x f x x x ⎧->-⎪=⎨⎪--≤-⎩.(1)若()01f x =,求0x 的值;(2)若()3f a a <+,求实数a 的取值范围.16.已知函数()f x =A ,集合{}321B xx =->∣.(1)求A B ;(2)集合{}321M xa x a =-≤≤-∣,若M ()RA ð,求实数a 的取值范围.17.已知二次函数()f x 的图象过原点()0,0,且对任意x ∈R ,恒有()26231x f x x --≤≤+.(1)求()1f -的值;(2)求函数()f x 的解析式;(3)记函数()g x m x =-,若对任意(]11,6x ∈,均存在[]26,10x ∈,使得()()12f x g x >,求实数m 的取值范围.18.教材中的基本不等式可以推广到n 阶:n 个正数的算数平均数不小于它们的几何平均数.也即:若12,,,0n a a a >,则有*12,2n a a a n n n+++≥∈≥N ,当且仅当12n a a a === 时取等.利用此结论解决下列问题:(1)若,,0x y z >,求24y z xx y z++的最小值;(2)若10,2x ⎛⎫∈ ⎪⎝⎭,求()312x x -的最大值,并求取得最大值时的x 的值;(3)对任意*k ∈N ,判断11kk ⎛⎫+ ⎪⎝⎭与1111k k +⎛⎫+ ⎪+⎝⎭的大小关系并加以严格证明.19.已知定义在11,,22⎛⎫⎛⎫-∞-⋃+∞ ⎪ ⎪⎝⎭⎝⎭上的函数()f x 同时满足下列四个条件:①512f ⎛⎫=-⎪⎝⎭;②对任意12x >,恒有()()0f x f x -+=;③对任意32x >,恒有()0f x <;④对任意,0a b >,恒有111222f a f b f ab ⎛⎫⎛⎫⎛⎫+++=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.(1)求32f ⎛⎫-⎪⎝⎭的值;(2)判断()f x 在1,2⎛⎫+∞⎪⎝⎭上的单调性,并用定义法证明;(3)若对任意[]1,1t ∈-,恒有()()21232f t k t k -+-+≤,求实数k 的取值范围.重庆高2027届高一上期月考数学试题卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号码填写在答题卡上.2.作答时,务必将答案写在答题卡上.写在本试卷及草稿纸上无效.3.考试结束后,将答题卡交回.一、单项选择题.本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}{}432A B x x =≤=,,则A B = ()A.2163xx ⎧⎫<≤⎨⎬⎩⎭B.{}316x x ≤< C.223xx ⎧⎫<≤⎨⎬⎩⎭D.{}02x x ≤≤【答案】A 【解析】【分析】根据集合的交集运算法则运算即可.【详解】因为{}{}4016A x x =≤=≤≤,{}2323B x x x x ⎧⎫==>⎨⎩⎭,所以A B = 2163x x ⎧⎫<≤⎨⎬⎩⎭.故选:A .2.命题.“230,1x x x ∃<+>”的否定是()A.230,1x x x ∀≥+≤B.230,1x x x ∀<+≤ C.230,1x x x ∃<+≤ D.230,1x x x ∃≥+≤【答案】B 【解析】【分析】利用特称命题的否定形式回答即可.【详解】根据特称命题的否定形式可知命题.“230,1x x x ∃<+>”的否定是“230,1x x x ∀<+≤”.故选:B3.已知函数()2f x +的定义域为()3,4-,则函数()1g x +=的定义域为()A.()4,3- B.()2,5- C.1,33⎛⎫ ⎪⎝⎭D.1,53⎛⎫ ⎪⎝⎭【答案】D 【解析】【分析】根据抽象函数及具体函数的定义域求解即可.【详解】因为函数()2f x +的定义域为()3,4-,所以函数()f x 的定义域为()1,6-,则对于函数()1g x +=,需满足116310x x -<+<⎧⎨->⎩,解得153x <<,即函数()1g x +=的定义域为1,53⎛⎫⎪⎝⎭.故选:D.4.使得“[]21,2,0x x x a ∀∈+-≤”为真命题的一个充分不必要条件是()A.2a ≥B.2a >C.6a > D.6a ≥【答案】C 【解析】【分析】对于全称量词命题2[1,2],0x x x a ∀∈+-≤,我们需要先求出使得该命题为真时a 的取值范围,然后再根据充分不必要条件的定义来判断选项.【详解】令2()f x x x =+,[1,2]x ∈.对于二次函数2y ax bx c =++,其对称轴为122b x a =-=-.因为10a =>,所以函数()f x 在[1,2]上单调递增.那么()f x 在[1,2]上的最大值为2max ()(2)226f x f ==+=.因为2[1,2],0x x x a ∀∈+-≤为真命题,即2a x x ≥+在[1,2]上恒成立,所以max ()6a f x ≥=.A 是B 的充分而不必要条件,即值A B ⇒,B A ¿.当6a >时,一定满足6a ≥,所以6a >是6a ≥的充分不必要条件.而2a >时,不能保证一定满足6a ≥,2a ≥时,也不能保证一定满足6a ≥.故选:C.5.若正实数,x y 满足3x y +=,且不等式22823m m x y+>-+恒成立,则实数m 的取值范围是()A.{31}mm -<<∣ B.{3m m <-∣或1}m > C.{13}m m -<<∣ D.{1mm <-∣或3}m >【答案】C 【解析】【分析】利用基本不等式和常值代换法求得28x y+的最小值,依题得到不等式2236m m -+<,解之即得.【详解】因3x y +=,由28128()()3x y x y x y+=++1281(10)(10633y x x y =++≥+=,当且仅当28y x x y =时取等号,即当1,2x y ==时,28x y+取得最小值6.因不等式22823m m x y+>-+恒成立,故2236m m -+<,即2230m m --<,解得13m -<<.故选:C.6.函数()()()245,2231,2x a x x f x a x x ⎧-++<⎪=⎨-+≥⎪⎩满足对12,R x x ∀∈且12x x ≠,都有()()()12120f x f x x x --<⎡⎤⎣⎦,则实数a 的取值范围是()A.30,2⎛⎫ ⎪⎝⎭B.30,2⎡⎫⎪⎢⎣⎭C.()0,1 D.[]0,1【答案】D 【解析】【分析】根据题意,得到()f x 在定义域R 上为单调递减函数,结合分段函数的单调性的判定方法,列出不等式组,即可求解.【详解】由函数()()()245,2231,2x a x x f x a x x ⎧-++<⎪=⎨-+≥⎪⎩因为函数()y f x =任意12,R x x ∀∈且12x x ≠,都有()()()12120f x f x x x --<⎡⎤⎣⎦,所以函数()f x 在定义域R 上为单调递减函数,则满足()()242223024252321a a a a +⎧≥⎪⎪-<⎨⎪-+⨯+≥-⨯+⎪⎩,即0321a a a ≥⎧⎪⎪<⎨⎪≤⎪⎩,解得01a ≤≤,所以实数a 的取值范围是[]0,1.故选:D.7.已知,a b 均为正实数,且1a b +=,则下列选项错误的是()A.B.34a a b++的最小值为7+C.()()11a b ++的最大值为94D.2232a b a b +++的最小值为16【答案】B 【解析】【分析】利用基本不等式可判断AC 的正误,利用“1”的代换可判断B 的正误,利用换元法结合常数代换可判断D 的正误.【详解】选项A:2112,1a b a b +=+≤++===时取等,+A 对;选项B:3433443577a a b a b a b aa b a b a b+++++=+=++≥+,当且仅当35,22a b -==时取等,故34a a b ++的最小值为7+,故B 错选项C :()()2119111,242a b a b a b +++⎛⎫++≤=== ⎪⎝⎭时取等,故()()11a b ++的最大值为94,故C 对;选项D :换元,令3,2x a y b =+=+,则6x y +=,故()()222232941032x y a b x y a b x y x y--+=+=+-++++94194251413446666x y y x x y x y ⎛⎫⎛⎫+=+⋅-=++-≥-= ⎪ ⎪⎝⎭⎝⎭,当且仅当1812,55x y ==取等号,故2232a b a b +++的最小值为16,故D 正确;故选:B.8.含有有限个元素的数集,定义其“交替和”如下:把集合中的数按从小到大的顺序排列,然后从最大的数开始交替地加减各数,例如{}4,6,9的“交替和”是9647-+=;而{}5的交替和是5,则集合{}Z 54M x x =∈-≤≤∣的所有非空子集的“交替和”的总和为()A.2048B.2024C.1024D.512【答案】A 【解析】【分析】将集合M 的子集两两配对(),A B :使4,4A B ∈∉且{}4B A ⋃=,从而有集合A 与集合B 的交替和之和为4,再利用符合条件的集合对有92个,即可求解.【详解】由题知{}5,4,3,2,1,0,1,2,3,4M =-----,将集合M 的子集两两配对(),A B :使4,4A B ∈∉且{}4B A ⋃=,则符合条件的集合对有92个,又由题设定义有集合A 与集合B 的交替和之和为4,所以交替和的总和为9114222048⨯==.故选:A.二、多项选择题.本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知,,a b c ∈R ;则下列不等式一定成立的有()A.若0ab ≠且a b <,则11a b >B.若0a b >>,则20242024b b a a +<+C.若,a b c d >>,则ac bd >D.()221222a b a b ++≥--【答案】BD 【解析】【分析】利用特殊值验证AC 是错误的,利用作差法判断B 的真假,利用配方法证明D 是正确的.【详解】对A :令1a =-,1b =,则0ab ≠且a b <,但11a b>不成立,故A 错误;对B :当0a b >>时,()()()20242024202420242024b a a b b b a a a a +-++-=++()()202402024b a a a -=<+,所以20242024b b a a +<+成立,故B 正确;对C :令3a =-,4b =-,0c =,1d =-,则,a b c d >>,但ac bd >不成立,故C 错误;对D :因为()()()222212222144a b a b a b a b ++----++++=()()22120a b =-++≥,所以()221222a b a b ++≥--成立,故D 正确.故选:BD10.下列说法正确的是()A.若p 是q 的必要不充分条件,p 是r 的充要条件,则q 是r 的充分不必要条件B.若关于x 的不等式2430kx kx k -++≥的解集为R ,则实数k 的取值范围是01k <≤C.若不等式()()30x ax b x c-+≤-的解集为[)[)2,13,∞-⋃+,则不等式2320ax ax b --≥的解集为[]1,4-D.“[]()21,3,2130a ax a x a ∃∈---+-<”为假命题的充要条件为[]51,0,43x ⎡⎤∈-⋃⎢⎥⎣⎦【答案】ACD 【解析】【分析】根据充分条件、必要条件的概念判断A ,分类讨论求出k 的范围判断B ,根据数轴穿根法及不等式的解集求出ba及0a <解不等式判断C ,由命题的否定转化为不等式恒成立,看作关于a 的不等式恒成立即可判断D.【详解】对A ,若p 是q 的必要不充分条件,p 是r 的充要条件,则q p r ⇒⇔,但是p 不能推出q ,所以q r ⇒,但是r 不能推出q ,所以q 是r 的充分不必要条件,故A 正确;对B ,当0k =时,原不等式为03≥,恒成立满足题意,当0k ≠时,由题意需满足()2Δ16430k k k k >⎧⎨=-⋅+≤⎩,解得01k <≤,综上,实数k 的取值范围是01k ≤≤,故B 错误;对C ,由不等式()()30x ax b x c-+≤-的解集为[)[)2,13,∞-⋃+,结合数轴穿根法知,1,2bc a==,且0a <,所以不等式2320ax ax b --≥可化为2340x x --≤,解得14x -≤≤,故C 正确;对D ,由题意知[]()21,3,2130a ax a x a ∀∈---+-≥为真命题,则()22130a x x x --++≥在[]1,3a ∈-时恒成立,令()2()213g a a x x x =--++,只需()()2213403350g x x g x x ⎧-=-++≥⎪⎨=-≥⎪⎩,则14503x x x -≤≤⎧⎪⎨≥≤⎪⎩或,解得[]51,0,43x ⎡⎤∈-⋃⎢⎥⎣⎦,故D 正确.故选:ACD11.已知函数()f x 的定义域为[)0,+∞,且满足当[)0,2x ∈时,()22f x x x =-+,当2x ≥时,恒有()()2f x f x λ=-,且λ为非零常数,则下列说法正确的有()A.()()101320272024f f λ+=B.当12λ=时,反比例函数()1g x x =与()f x 在()0,2024x ∈上的图象有且仅有6个交点C.当0λ<时,()f x 在区间[]2024,2025上单调递减D.当1λ<-时,()f x 在[]()*0,4n n ∈N 上的值域为2122,n n λλ--⎡⎤⎣⎦【答案】ABD 【解析】【分析】根据所给函数解析式直接求解判断A ,根据()f x 的性质及(),()g x f x 图象判断B ,归纳出()f x 在[]2024,2025上的解析式判断C ,根据规律,归纳值域特点判断D.【详解】选项A :()()()()()210121013101320272025202331f f f f f λλλλλ====== ,()()()()()210111012202420222020200f f f f f λλλλ====== ,则()()101320272024f f λ+=,所以选项A 正确;选项B :由()()122f x f x =-知,()0,2024x ∈时,()()()()()[)()()[)()()[)210112,0,2124,2,42146,4,62120222024,2022,20242x x x x x x f x x x x x x x ⎧-∈⎪⎪--∈⎪⎪⎪=--∈⎨⎪⎪⎪⎪--∈⎪⎩ ,由于()()()()()()1111111,33,553254g f g f g f ===<==<=,但()()()()31011111177,202320237220232g f g f =>==>= ,作,的图象,如图,结合图象可知()0,6x ∈上有2226++=个交点,在[)6,2024x ∈上无交点,故选项B 正确;选项C :[]2024,2025x ∈时,()()()1012120242026f x x x λ=--,故()f x 在[]2024,2025上单增,故C 错误;选项D :因为1λ<-,所以当[]0,4x ∈时,值域为[],1λ;当[]0,8x ∈时,值域为32,λλ⎡⎤⎣⎦;当[]0,12x ∈时,值域为54,λλ⎡⎤⎣⎦;当[]0,16x ∈时,值域为76,λλ⎡⎤⎣⎦;L 当[]0,4x n ∈时,值域为2122,n n λλ--⎡⎤⎣⎦,故D 正确.故选:ABD.【点睛】关键点点睛:根据所给函数解析式,可知函数类似周期特点,图象形状类似,振幅有规律变化,据此可归纳函数的性质是解题的关键所在.三、填空题.本题共3小题,每小题5分,共15分.12.已知集合{}210A xx =-=∣,则集合A 有__________个子集.【答案】4【解析】【分析】求出集合A ,列举出集合A 的子集即可.【详解】因2{10}{1,1}A x x =-==-∣,故集合A 的子集有,{1},{1},{1,1}∅--共4个.故答案为:4.13.已知集合[]()(){}1,4,10A B x x a ax ==+-≤∣,若A B B = 且0a ≥,则实数a 的取值范围是__________.【答案】10,4⎡⎤⎢⎥⎣⎦【解析】【分析】根据集合的包含关系,讨论0a =和0a >两种情况,求集合B ,再比较端点值,即可求解.【详解】因为A B B = ,所以A B ⊆,因为()(){}10B x x a ax =+-≤∣,且0a ≥:1 当0a =时,[)0,B ∞=+,符合题意;2当0a >时,1,B a a ⎡⎤=-⎢⎥⎣⎦,则11404a a ≥⇒<≤,综上,10,4a ⎡⎤∈⎢⎥⎣⎦.故答案为:10,4⎡⎤⎢⎣⎦14.若正实数x ,y 满足()()332331423x y x y -+-=--,则2346y x x x y++的最小值为__________.【答案】【解析】【分析】根据函数的单调性可知243x y =-,代入可得234386y x y xx x y x y++=+,根据基本不等式可得最值.【详解】由题可知()()()()3323231313x x y y -+-=-+-,因为3,y t y t ==在R 上单调递增,所以()3g t t t =+在R 上单增,所以上式可表示为()()2313g x g y -=-,则2313x y -=-,即243x y =-,因此()22433433866x y y x y y x x x x y x y x y -++=++=+≥=当且仅当38243y x x y x y⎧=⎪⎨⎪=-⎩即25x -=,2415y -=时等号成立,故答案为:.四、解答题、本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.已知函数()21,122,1x x f x x x ⎧->-⎪=⎨⎪--≤-⎩.(1)若()01f x =,求0x 的值;(2)若()3f a a <+,求实数a 的取值范围.【答案】(1)02x =或3-(2)5,42⎛⎫-⎪⎝⎭【解析】【分析】(1)根据分段函数定义分类列方程求解;(2)根据分段函数定义分类列不等式求解.【小问1详解】由()01f x =可得:1∘>−1−1=1⇒0=20=−2舍去)0000123,,23;21x x x x ≤-⎧⇒=-=-⎨--=⎩ 综上或【小问2详解】由()3f a a <+可得:1∘>−11<+3⇒>−12−2−8<0⇒>−1−2<<4⇒∈−1,4;2∘≤−1−−2<+3⇒≤−1>−52⇒∈−52,−1综上可得5,42a ⎛⎫∈-⎪⎝⎭.16.已知函数()f x =A ,集合{}321B xx =->∣.(1)求A B ;(2)集合{}321M xa x a =-≤≤-∣,若M ()RA ð,求实数a 的取值范围.【答案】(1)3{|4A B x x =≤ 或1}x >(2)3,2⎛⎤-∞ ⎥⎝⎦【解析】【分析】(1)根据条件,先求出集合,A B ,再利用集合的运算,即可求解;(2)由(1)可得R 3,24A ⎛⎤= ⎥⎝⎦ð,再根据条件,分M =∅和M 蛊两种情况讨论,即可求解.【小问1详解】由5402x +≥-,即4302x x -≥-,得到2x >或34x ≤,所以3{|4A x x =≤或2}x >,又由321x ->,得到321x -<-或321x ->,即13x <或1x >,所以1{3B x =<或1}x >,所以3{|4A B x x =≤ 或1}x >.【小问2详解】因为3{|4A x x =≤或2}x >,所以R 3,24A ⎛⎤= ⎥⎝⎦ð,①当321a a ->-,即43a <时,此时M =∅()RA ð,所以43a <满足题意,②当43a ≥,即M 蛊时,由题有212334a a -≤⎧⎪⎨->⎪⎩,解得4332a ≤≤,综上,实数a 的取值范围是3,2a ⎛⎤∈-∞ ⎥⎝⎦.17.已知二次函数()f x 的图象过原点()0,0,且对任意x ∈R ,恒有()26231x f x x --≤≤+.(1)求()1f -的值;(2)求函数()f x 的解析式;(3)记函数()g x m x =-,若对任意(]11,6x ∈,均存在[]26,10x ∈,使得()()12f x g x >,求实数m 的取值范围.【答案】(1)4(2)()222f x x x=-(3)(],10-∞【解析】【分析】(1)令1x =-即可求出()1f -.(2)根据条件,先设出二次函数的解析式,再根据()26231x f x x --≤≤+恒成立,可求待定系数.(3)问题转化成()f x 在区间(]1,6的最小值不小于()g x 在[]6,10上的最小值求参数的取值范围.【小问1详解】在不等式()26231x f x x --≤≤+,令()()141414x f f =-⇒≤-≤⇒-=.【小问2详解】因为()f x 为二次函数且图象过原点()0,0,所以可设()()2,0f x ax bx a =+≠,由()1444f a b b a -=⇒-=⇒=-,于是()()24f x ax a x =+-,由题:()()262220,f x x ax a x x ≥--⇔+++≥∈R 恒成立⇔>0Δ≤0⇔>0+22−8=−22≤0⇒=2,=−2⇒=22−2,检验知此时满足()()223110,f x x x x ≤+⇔+≥∈R ,故()222f x x x =-.【小问3详解】函数()222f x x x =-,开口向上,对称轴12x =,所以()222f x x x =-在区间(]1,6上单调递增,因此,(]11,6x ∈时,()()()(11,6f x f f ⎤∈⎦,即()(]10,60f x ∈,而()g x m x =-在[]6,10上单调递减,所以[]26,10x ∈时,()[]210,6g x m m ∈--因为对任意(]11,6x ∈,均存在[]26,10x ∈,使得()()12f x g x >,等价于()()(]110010,10f g m m ∞≥⇒≥-⇒∈-18.教材中的基本不等式可以推广到n 阶:n 个正数的算数平均数不小于它们的几何平均数.也即:若12,,,0n a a a > ,则有*12,2n a a a n n n +++≥∈≥N ,当且仅当12n a a a === 时取等.利用此结论解决下列问题:(1)若,,0x y z >,求24y z x x y z++的最小值;(2)若10,2x ⎛⎫∈ ⎪⎝⎭,求()312x x -的最大值,并求取得最大值时的x 的值;(3)对任意*k ∈N ,判断11kk ⎛⎫+ ⎪⎝⎭与1111k k +⎛⎫+ ⎪+⎝⎭的大小关系并加以严格证明.【答案】(1)6(2)最大值为272048,38x =(3)1*1111,1kk k k k +⎛⎫⎛⎫+<+∈ ⎪ ⎪+⎝⎭⎝⎭N ,证明见解析【解析】【分析】(1)根据三阶基本不等式的内容直接可得解;(2)由()()32722212128333x x xx x x -=⋅⋅⋅⋅-,结合四阶基本不等式可得最值;(3)猜测111111kk k k +⎛⎫⎛⎫+<+ ⎪ ⎪+⎝⎭⎝⎭,*k ∈N 成立,验证1k =不等式成立;结合推广公式证明2k ≥结论成立.【小问1详解】因为,,0x y z >,所以由三阶基本不等式可得:246y z x x y z ++≥,当且仅当24y z xx y z==即2y z x ==时取等号,因此24y z x x y z++的最小值为6;【小问2详解】当10,2x ⎛⎫∈ ⎪⎝⎭时,由四阶基本不等式可得:()()()432221227222272733312128333842048x x x x x x x x x x ⎛⎫+++- ⎪-=⋅⋅⋅⋅-≤= ⎪⎝⎭,当且仅当2123xx =-即310,82x ⎛⎫=∈ ⎪⎝⎭时取等号,因此()312x x -的最大值为272048;【小问3详解】大小关系为111111kk k k +⎛⎫⎛⎫+<+ ⎪ ⎪+⎝⎭⎝⎭,*k ∈N ,证明如下:由条件可知:12,,,0n a a a > 时,*1212,,2nn n a a a a a a n n n +++⎛⎫⋅≤∈≥ ⎪⎝⎭N ,当1k =时,左边11121⎛⎫=+= ⎪⎝⎭,右边219124⎛⎫=+= ⎪⎝⎭,左边<右边,不等式成立;当2k ≥,*k ∈N 时,由1k +阶基本不等式,可知:不等式左边111111111kk k k k ⎛⎫⎛⎫⎛⎫⎛⎫=+=+⋅++⋅ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ ()(1)1111111111(11)11()111k k k k k k k k k k k k k ++++⎛⎫⎛⎫⎛⎫⎛⎫++++++++++ ⎪⎪ ⎪⎪⎛⎫++⎝⎭⎝⎭⎝⎭ ⎪≤== ⎪+++ ⎪⎝⎭⎪⎝⎭个个1111k k +⎛⎫=+ ⎪+⎝⎭而111k ⎛⎫+≠ ⎪⎝⎭,因此上式的不等号取不到等号,于是1111111111kk k k k k k ++++⎛⎫⎛⎫⎛⎫+<=+ ⎪ ⎪ ⎪++⎝⎭⎝⎭⎝⎭,综上,原不等式得证.19.已知定义在11,,22⎛⎫⎛⎫-∞-⋃+∞ ⎪ ⎪⎝⎭⎝⎭上的函数()f x 同时满足下列四个条件:①512f ⎛⎫=-⎪⎝⎭;②对任意12x >,恒有()()0f x f x -+=;③对任意32x >,恒有()0f x <;④对任意,0a b >,恒有111222f a f b f ab ⎛⎫⎛⎫⎛⎫+++=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.(1)求32f ⎛⎫- ⎪⎝⎭的值;(2)判断()f x 在1,2⎛⎫+∞⎪⎝⎭上的单调性,并用定义法证明;(3)若对任意[]1,1t ∈-,恒有()()21232f t k t k -+-+≤,求实数k 的取值范围.【答案】(1)0(2)()f x 在1,2⎛⎫+∞⎪⎝⎭上单调递减,证明见解析(3)3,4⎡⎫+∞⎪⎢⎣⎭【解析】【分析】(1)令1a b ==可得302f ⎛⎫= ⎪⎝⎭,再由()()0f x f x -+=,即可得出答案;(2)由单调性的定义证明即可;(3)由单调性和奇偶性列出不等式,再结合二次函数的性质求解即可.【小问1详解】在111222f a f b f ab ⎛⎫⎛⎫⎛⎫+++=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭中令333120222a b ff f ⎛⎫⎛⎫⎛⎫==⇒=⇒= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭;(或令53532,102222a b f f f f ⎛⎫⎛⎫⎛⎫⎛⎫==⇒+=⇒=⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭).而()()333000222f x f x f f f ⎛⎫⎛⎫⎛⎫-+=⇒-+=⇒-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.【小问2详解】()f x 在1,2∞⎛⎫+ ⎪⎝⎭上单调递减.下证明:由④知:对任意,0a b >,恒有111222f ab f b f a ⎛⎫⎛⎫⎛⎫+-+=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.证一:任取2112x x >>,于是()()22211111111111122112222222x x f x f x f x f x f x x ⎛⎫⎛⎫-- ⎪ ⎪⎛⎫⎛⎫⎛⎫-=⋅-+--+=+⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ ⎪ ⎪--⎝⎭⎝⎭因为2112x x >>,所以2111022x x ->->221111132********x x x x --⇒>⇒+>--,而对任意32x >时恒有()0f x <,故211120122x f x ⎛⎫- ⎪+<⎪ ⎪-⎝⎭,即()()210f x f x -<,所以()f x 在1,2∞⎛⎫+⎪⎝⎭上单调递减,证毕;证二:任取2112x x >>,设2111,,1,022x mn x n m n =+=+>>()()21111222f x f x f mn f n f m ⎛⎫⎛⎫⎛⎫-=+-+=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,因为131.22m m >+>,所以102f m ⎛⎫+< ⎪⎝⎭,即()()21f x f x <,也即()f x 在1,2∞⎛⎫+⎪⎝⎭单调递减,证毕;【小问3详解】在111222f a f b f ab ⎛⎫⎛⎫⎛⎫+++=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭中:令5599222222a b f f f f ⎛⎫⎛⎫⎛⎫⎛⎫==⇒+=⇒=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,而()()0f x f x -+=,于是922f ⎛⎫-= ⎪⎝⎭令139339,402442242a b f f f f f ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫==⇒+==⇒=-= ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,由(2)知()f x 在1,2∞⎛⎫+ ⎪⎝⎭上单调递减,又()()0f x f x -+=,可得()f x 在1,2∞⎛⎫-- ⎪⎝⎭上也单调递减,如图,可知不等式()()21232f t k t k -+-+≤等价于:对任意[]11t ,∈-,不等式()231234t k t k -+-+≥……①或者()29112322t k t k -≤-+-+<-恒成立,……②法一:令()()[]2123,1,1g t t k t k t =-+-+∈-立,因为()g t 开口向下,由()g t 图像可知:不等式①()()11313204;334144k g k g k ⎧⎧≥-≥⎪⎪⎪⎪⇔⇒⇒≥⎨⎨⎪⎪≥≥⎪⎪⎩⎩对于②,当1t =±时,由()()1391121022919112222k g k g k ∅⎧⎧-≤<-≤-<-⎪⎪⎪⎪⇒⇒∈⎨⎨⎪⎪-≤<--≤<-⎪⎪⎩⎩,即一定不存在k 满足②.综上取并,得3,4k ∞⎡⎫∈+⎪⎢⎣⎭法二:令()()[]()2123,1,1,g t t k t k t g t =-+-+∈-开口向下,对称轴为12t k =-,且()()211152,1,224g k g k g k k k ⎛⎫-=-=-=++ ⎪⎝⎭,1 当112k -<-即32k >时,问题等价于>321≥34或>32−1<−121≥−92,解得32k >;2 当1102k -≤-≤即1322k ≤≤时,等价于()1322314k g ⎧≤≤⎪⎪⎨⎪≥⎪⎩或()13221133,;2242912k g k k g ⎧≤≤⎪⎪⎪⎛⎫⎡⎤-<-⇒∈⎨ ⎪⎢⎥⎝⎭⎣⎦⎪⎪≥-⎪⎩3 当1012k <-≤即1122k -≤<时,问题等价于()1122314k g ⎧-≤<⎪⎪⎨⎪-≥⎪⎩或()11221122912k g k g ⎧-≤<⎪⎪⎪⎛⎫-<-⎨ ⎪⎝⎭⎪⎪-≥-⎪⎩,解得k ∈∅;4 当112k ->即12k <-时,问题等价于()12314k g ⎧<-⎪⎪⎨⎪-≥⎪⎩或()()12112912k g g ⎧<-⎪⎪⎪<-⎨⎪⎪-≥-⎪⎩,解得k ∈∅;综上,3,4k ∞⎡⎫∈+⎪⎢⎣⎭.。
山东省德州市第一中学2024-2025学年高一上学期10月月考数学试题一、单选题1.下列元素的全体能构成集合的是( ) A .某学校个子高的学生 B .巴黎奥运会上受欢迎的运动员 C .2024年参加“两会”的代表D .π的近似值2.集合{}|3,Z A x x x =<∈,{}1,0,2,3B =-,则图中阴影部分所表示的集合为( )A .{}3,2,1--B .{}2,1,3-C .{}1,0,2-D .{}1,0,2,3-3.已知命题p :20,430x x x -∀>+>,则命题p 的否定为( ) A .20,430x x x -∀≤+≤ B .20,430x x x ∀>-+≤ C .20,430x x x -∃≤+≤D .0x ∃>,2430x x -+≤4.下列不等式中,可以作为3x <的一个充分不必要条件的是( ) A .24x <<B .34x <<C .2x <D .4x <5.某年级先后举办了数学、历史、化学讲座,其中有70人听了数学讲座,62人听了历史讲座,58人听了化学讲座,记{|A x x =是听了数学讲座的学生},{|B x x =是听了历史讲座的学生},{|C x x =是听了化学讲座的学生}.用()card M 来表示有限集合M 中元素的个数,若()card 17A B =I ,()card 13A C =I ,()card 5B C =I ,A B C =∅I I ,则( ) A .()card 35A B C =I I B .()card 115A B =U C .()card 120B C =UD .()card 190A B C =U U6.若22A x x =-+,64B x =+,则A 与B 的关系是( )A .AB ≤ B .B A ≤C .B A =D .与x 的值有关7.已知不等式0ax b +>的解集为13x x ⎧⎫<⎨⎬⎩⎭,则不等式01ax b x -<+的解集为( ) A .113x x ⎧⎫-<<⎨⎬⎩⎭ B .113x x ⎧⎫-<<-⎨⎬⎩⎭C .{}31x x x -或D .113x x x ⎧⎫--⎨⎬⎩⎭或8.已知0m n >≥且631m n m n+=+-,则3m n +的最小值为( )A .12B .C .27D .二、多选题9.已知0a b c >>>,则下列不等式一定成立的是( ) A .22ac bc >B .11a b< C .a a cb b c+<+ D .11a b a b->- 10.下列说法正确的是( )A .若集合{}1,0,1M =-,则满足条件M N M ⋃=的集合N 的个数为8B .若命题:p x 和y 都是有理数,命题:q x y +是有理数,则p 是q 的必要不充分条件C .若不等式250ax x b ++<的解集为{}41x x -<<-,则4ab =D .若集合{}10A x ax =+=,{}1,1B =-且A B ⊆,则1a =± 11.已知,x y 为正实数,4x y +=,则( )A .xy 的最大值为4BC .4y x y+的最小值3 D .22(1)(1)x y ++的最小值为16三、填空题12.已知R a ∈,R b ∈,若集合{}2,1,1A a =-,{},,1B a b =,A B ⊆且B A ⊆,则a b +的值为.13.若“R x ∀∈,2260ax ax -+>”是假命题,则a 的取值范围是.14.定义集合{|}P x a x b =≤≤的“长度”是b a -,其中,R a b ∈.已知集合{|1}M x m x m =≤≤+,6{|}5N x n x n =-≤≤,且M ,N 都是集合4|}2{x x ≤≤的子集,则集合M N ⋂的“长度”的最小值是;若125m =,集合M N ⋃的“长度”大于65,则n 的取值范围是.四、解答题15.已知R 为全集,集合{}12A x x =-≤,{}25B x x =<<,{}C x x k =<. (1)求集合A B ⋂,A B U ;(2)若R C A C =I ð,求实数k 的取值范围.16.已知集合211,1x M xx x ⎧⎫-=<∈⎨⎬+⎩⎭R ,{}31N x k x k =<<-. (1)若“命题:,p x M x N ∃∈∈”是真命题,求实数k 的取值范围;(2)若命题:q x N ∈是命题:r x M ∈的充分不必要条件,求实数k 的取值范围.17.某蛋糕店今年年初用18万元购进一台新设备.已知使用x 年()*N x ∈所需的总维护费用为2(2)x x +万元,经估算该设备每年可为蛋糕店创造收入16万元.设该设备使用x 年的盈利总额为()w x 万元(盈利总额=总收入-成本-总维护费用). (1)该店从第几年开始盈利?(2)若干年后蛋糕店想在年平均盈利达到最大值时,以11万元的价格卖出设备,请问最终获利为多少?18.已知函数2()2(2)1f x mx m x =-++()m ∈R .(1)若不等式()1f x m ≥--在R 上恒成立,求实数m 的取值范围; (2)若0m ≥,解关于x 的不等式()0f x <.19.已知{}()1,2,,3n S n n =≥L ,{}()12,,,2k A a a a k =≥L 是n S 的子集,定义集合{}*,i j i j i j A a a a a A a a =-∈>且,若{}*n A n S =U ,则称集合A 是n S 的恰当子集.用A 表示有限集合A 的元素个数.(1)若4n =,{}1,3,4A =,求*A 并判断集合A 是否为4S 的恰当子集; (2)已知{}1,,,9,10A a b =()a b <是10S 的恰当子集,求,a b 的值并说明理由; (3)若存在A 是n S 的恰当子集,并且5A =,求n 的最大值.。
2024级“贵百河—武鸣高中”10月高一年级新高考月考测试数 学(考试时间:120分钟 满分:150分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。
3.回答非选择题时,将答案写在答题卡上,写在试卷上无效。
一、单选题:本题共8小题,每小题5分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.已知集合,集合,则图中阴影部分表示的集合为()A . B.C .D .2.已知命题,则是( )A .B .C .D .3.已知集合,则“”是“集合M 仅有1个真子集”的( )A .必要不充分条件B .充分不必要条件C .充要条件D .既不充分又不必要条件4.已知函数的对应关系如下表,函数的图象如图,则的值为()A .3B .0C .1D .25.给出下列结论:①两个实数a ,b 之间,有且只有a ﹥b ,a =b ,a <b 三种关系中的一种;②若,则a ﹥b ;③若,;④已知,则.其中正确结论的个数为( )A .1B .2C .3D .4x123230{32}A x x =-<<{05}B x x =<<{35}x x -<<{02}x x <<{30}x x -<≤{3025}x x x -<≤≤<或2:1,1p x x ∀<->p ⌝21,1x x ∃≤-≤21,1x x ∃<-≤21,1x x ∀<->21,1x x ∀≥->{}()210R M x ax x a =-+=∈14a =)(x f y =)(x g y =()1f g ⎡⎤⎣⎦1>ab0a b >>0a bc d d c >>⇒>0ab >11a b a b>⇔<()f x6.已知函数的定义域是,则的定义域为()A .B .C .D .7.已知函数,若对于任意的实数与至少有一个为正数,则实数m 的取值范围是( )A .B .C .D .8.已知正实数a ,b ,记,则M 的最小值为()AB .2C .1D .二、多选题:本题共3小题,每小题6分,共18分。
2024-2025学年四川省成都市第七中学高一上学期10月月考数学试题一、单选题:本题共8小题,每小题5分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.已知集合A ={1,2},B ={1,3,4},则A ∪B =( )A. {1}B. {1,3,4}C. {1,2}D. {1,2,3,4}2.已知0<x <3,0<y <5,则3x−2y 的取值范围是( )A. (−1,0)B. (−10,9)C. (0,4)D. (0,9)3.对于实数x ,“2+x 2−x ≥0”是“|x |≤2”的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件4.下列命题中真命题的个数是( )①命题“∀x ∈R ,|x|+x 2≥0”的否定为“∃x ∈R ,|x|+x 2<0”;②“a 2+(b−1)2=0”是“a(b−1)=0”的充要条件;③集合A ={y|y = x 2+1},B ={x|y = x 2+1}表示同一集合.A. 0B. 1C. 2D. 35.已知实数x,y 满足4x 2+4xy +y +6=0,则y 的取值范围是( )A. {y|−3≤y ≤2}B. {y|−2≤y ≤3}C. {y|y ≤−2}∪{y|y ≥3}D. {y|y ≤−3}∪{y|y ≥2}6.已知正实数a,b 满足2a +b =1.则5a +b a 2+ab 的最小值为( )A. 3B. 9C. 4D. 87.关于x 的不等式(ax−1)2<x 2恰有2个整数解,则实数a 的取值范围是( )A. (−32,−1)∪(1,32) B. (−32,−43]∪[43,32)C. (−32,−1]∪[1,32) D. (−32,−43)∪(43,32)8.已知函数f (x )={4x 2−2x +3,x ≤122x +1x ,x >12,设a ∈R ,若关于x 的不等式f (x )≥|x−a 2|在R 上恒成立,则a 的取值范围是( )A. [−398,478]B. [−4,478]C. [−4,4 3]D. [−398,4 3]二、多选题:本题共3小题,共18分。
辽宁省朝阳市2024-2025学年高一上学期10月月考数学试题一、单选题1.已知集合{}{}21,0,1,21A B x x ,=-=≤,则A B =IA .{}1,0,1-B .{}0,1C .{}1,1-D .{}0,1,22.命题“0x ∃∈R ,2001x x +<”的否定是( )A .x ∀∈R ,2||1x x +>B .0x ∃∈R ,2001x x +>C .x ∀∈R ,2||1x x +≥D .0x ∃∈R ,2001x x +≥3.如图所示,圆柱形水槽内放了一个圆柱形烧杯,向放在水槽底部的烧杯注水(流量一定),注满烧杯后,继续注水,直至注满水槽,水槽中水面上升高度h 与注水时间t 之间的函数关系,大致是( )A .B .C .D .4.已知x ∈R ,则“()()230x x --≤成立”是“3|21|x x +-=-成立”的( )条件. A .充分不必要 B .必要不充分 C .充分必要D .既不充分也不必要5.下列各组函数是同一组函数的是( ) A .11y x =-与211x y x +=- B .|1|||y x x =++与21,01,1021,1x x y x x x +>⎧⎪=-≤<⎨⎪--<-⎩C .y x =与y D .y x =与2y = 6.下列说法正确的是( ). A .若a b >,则22a b >B .若0a b >>,0c d <<,则a b d c> C .若a b >,c d <,则a c b d +>+D .若0a b >>,0c <,则b c ba c a->- 7.已知函数()f x =R ,则m 的取值范围是( ) A .04m <≤B .04m ≤<C .4≥mD .04m ≤≤8.两个正实数x ,y 满足141x y +=,若不等式234yx m m +<+有解,则实数m 的取值范围是( ) A .(1,4)-B .(4,1)-C .(,4)(1,)∞∞--⋃+D .(,3)(0,)∞∞--⋃+二、多选题9.下列命题中,真命题有( )A .2210mx x +-=是关于x 的一元二次方程B .抛物线221y ax x =+-与x 轴至少有一个交点C .互相包含的两个集合相等D .空集是任何集合的子集10.给定命题:p x m ∀>,都有28x >.若命题p 为假命题,则实数m 可以是( )A .1B .2C .3D .411.下列说法正确的是( )A.=yy =B .函数(21)f x -的定义域为(1,2)-则函数(1)f x -的定义域为(2,4)-C .关于x 的不等式23208kx kx +-<,使该不等式恒成立的实数k 的取值范围是(3,0)-D .已知关于x 的不等式20ax bx c ++>的解集为(,2)(3,)-∞-⋃+∞,则不等式20cx bx a -+<的解集为11,,32∞∞⎛⎫⎛⎫--⋃+ ⎪ ⎪⎝⎭⎝⎭三、填空题12.不等式组230,340.x x x ->⎧⎨-->⎩的解集为.13.设函数1,0()0x x f x x --⎧⎪=>…,若0()1f x >,则0x 的取值范围是.14.若22110m m n n =+--=,且m n ≠,则22m n +的值是.四、解答题15.已知210,340x x +≥⎧⎨-≥⎩的解集为集合A ,不等式||1()x a a -≥∈R 的解集为集合B .(1)求集合A 和集合B ;(2)已知“x A ∈”是“x B ∈”的充分不必要条件,求实数a 的取值范围.16.已知函数()21243f x x x +=++(1)求函数()f x 的解析式;(2)求关于x 的不等式()21f x ax a x ->+-解集.(其中a ∈R )17.(1)不等式2210mx mx -+>,对任意实数x 都成立,求m 的取值范围;(2)求关于x 的不等式()2110(0)ax a x a -++<>的解集.18.已知不等式24216k x k k +≤++(),其中x ,k ∈R . (1)若x =4,解上述关于k 的不等式;(2)若不等式对任意k ∈R 恒成立,求x 的最大值.19.(1)已知)1fx =+()f x ;(2)已知()f x 为二次函数,且()()21124f x f x x x ++-=-,求()f x ;(3)已知函数()f x 对于任意的x 都有()()120f f x x x x ⎛⎫+=≠ ⎪⎝⎭,求()f x .。
重庆市第一中学2024-2025学年高一上学期10月月考数学试题一、单选题1.已知集合{}{}432A B x x ==,,则A B =I ( )A .2163x x ⎧⎫<≤⎨⎬⎩⎭ B .{}316x x ≤<C .223x x ⎧⎫<≤⎨⎬⎩⎭D .{}02x x ≤≤2.命题.“230,1x x x ∃<+>”的否定是( ) A .230,1x x x ∀≥+≤ B .230,1x x x ∀<+≤ C .230,1x x x ∃<+≤D .230,1x x x ∃≥+≤3.已知函数()2f x +的定义域为()3,4-,则函数()1f xg x +的定义域为( )A .()4,3-B .()2,5-C .1,33⎛⎫⎪⎝⎭D .1,53⎛⎫ ⎪⎝⎭4.使得“[]21,2,0x x x a ∀∈+-≤”为真命题的一个充分不必要条件是( )A .2a ≥B .2a >C .6a >D .6a ≥5.若正实数,x y 满足3x y +=,且不等式22823m m x y+>-+恒成立,则实数m 的取值范围是( )A .{31}mm -<<∣ B .{3m m <-∣或1}m > C .{13}mm -<<∣D .{1mm <-∣或3}m > 6.函数()()()245,2231,2x a x x f x a x x ⎧-++<⎪=⎨-+≥⎪⎩满足对12,R x x ∀∈且12x x ≠,都有()()()12120f x f x x x --<⎡⎤⎣⎦,则实数a 的取值范围是( ) A .30,2⎛⎫⎪⎝⎭B .30,2⎡⎫⎪⎢⎣⎭C .()0,1D .[]0,17.已知,a b 均为正实数,且1a b +=,则下列选项错误的是( )AB .34a a b ++的最小值为7+C .()()11a b ++的最大值为94D .2232a b a b +++的最小值为16 8.含有有限个元素的数集,定义其“交替和”如下:把集合中的数按从小到大的顺序排列,然后从最大的数开始交替地加减各数,例如{}4,6,9的“交替和”是9647-+=;而{}5的交替和是5,则集合{}Z 54M x x =∈-≤≤∣的所有非空子集的“交替和”的总和为( ) A .2048B .2024C .1024D .512二、多选题9.已知,,a b c ∈R ;则下列不等式一定成立的有( ) A .若0ab ≠且a b <,则11a b> B .若0a b >>,则20242024b b a a +<+ C .若,a bcd >>,则ac bd >D .()221222a b a b ++≥--10.下列说法正确的是( )A .若p 是q 的必要不充分条件,p 是r 的充要条件,则q 是r 的充分不必要条件B .若关于x 的不等式2430kx kx k -++≥的解集为R ,则实数k 的取值范围是01k <≤C .若不等式()()30x ax b x c-+≤-的解集为[)[)2,13,∞-⋃+,则不等式2320ax ax b --≥的解集为[]1,4-D .“[]()21,3,2130a ax a x a ∃∈---+-<”为假命题的充要条件为[]51,0,43x ⎡⎤∈-⋃⎢⎥⎣⎦11.已知函数()f x 的定义域为[)0,+∞,且满足当[)0,2x ∈时,()22f x x x =-+,当2x ≥时,恒有()()2f x f x λ=-,且λ为非零常数,则下列说法正确的有( )A .()()101320272024f f λ+=B .当12λ=时,反比例函数()1g x x =与()f x 在()0,2024x ∈上的图象有且仅有6个交点C .当0λ<时,()f x 在区间[]2024,2025上单调递减D .当1λ<-时,()f x 在[]()*0,4n n ∈N 上的值域为2122,n n λλ--⎡⎤⎣⎦三、填空题12.已知集合{}210A xx =-=∣,则集合A 有个子集. 13.已知集合[]()(){}1,4,10A B xx a ax ==+-≤∣,若A B B =U 且0a ≥,则实数a 的取值范围是.14.若正实数x ,y 满足()()332331423x y x y -+-=--,则2346y x x x y++的最小值为.四、解答题15.已知函数()21,122,1x x f x x x ⎧->-⎪=⎨⎪--≤-⎩.(1)若()01f x =,求0x 的值;(2)若()3f a a <+,求实数a 的取值范围. 16.已知函数()f x =A ,集合{}321B xx =->∣. (1)求A B U ;(2)集合{}321M xa x a =-≤≤-∣,若M ()R A ð,求实数a 的取值范围. 17.已知二次函数()f x 的图象过原点()0,0,且对任意x ∈R ,恒有()26231x f x x --≤≤+.(1)求()1f -的值; (2)求函数()f x 的解析式;(3)记函数()g x m x =-,若对任意(]11,6x ∈,均存在[]26,10x ∈,使得()()12f x g x >,求实数m 的取值范围.18.教材中的基本不等式可以推广到n 阶:n 个正数的算数平均数不小于它们的几何平均数.也即:若12,,,0n a a a >L,则有*12,2n a a a n n n+++∈≥N L ,当且仅当12n a a a ===L 时取等.利用此结论解决下列问题:(1)若,,0x y z >,求24y z x x y z++的最小值;(2)若10,2x ⎛⎫∈ ⎪⎝⎭,求()312x x -的最大值,并求取得最大值时的x 的值;(3)对任意*k ∈N ,判断11k k ⎛⎫+ ⎪⎝⎭与1111k k +⎛⎫+ ⎪+⎝⎭的大小关系并加以严格证明.19.已知定义在11,,22⎛⎫⎛⎫-∞-⋃+∞ ⎪ ⎪⎝⎭⎝⎭上的函数()f x 同时满足下列四个条件:①512f ⎛⎫=- ⎪⎝⎭;②对任意12x >,恒有()()0f x f x -+=; ③对任意32x >,恒有()0f x <; ④对任意,0a b >,恒有111222f a f b f ab ⎛⎫⎛⎫⎛⎫+++=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.(1)求32f ⎛⎫- ⎪⎝⎭的值;(2)判断()f x 在1,2⎛⎫+∞ ⎪⎝⎭上的单调性,并用定义法证明;(3)若对任意[]1,1t ∈-,恒有()()21232f t k t k -+-+≤,求实数k 的取值范围.。
嘉兴2024学年第一学期10月阶段性测试高一年级数学试卷(答案在最后)命题人:高一数学组审核人:高一数学组本试题卷共6页,满分150分,考试时间120分钟.考生注意:1.答题前,请务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填写在试题卷和答题纸上规定的位置.2.答题时,请按照答题纸上“注意事项”的要求,在答题纸上的相应位置规范作答,在本试题卷上的作答一律无效.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.集合{13}A x x =-<≤∣,{}24B x x =<,那么集合A B = ()A.{22}xx -<<∣ B.{12}x x -<<∣ C.{23}x x -<≤∣ D.{13}xx -<<∣【答案】C 【解析】【分析】解出集合B ,再利用交集含义即可得到答案.【详解】{}{}2422B x x x x =<=-<<,则{12}A B xx =-<< ∣.故选:C.2.已知命题():1,p x ∀∈+∞,20x x ->,则()A.命题p 的否定为“()1,x ∃∈+∞,20x x ->”B.命题p 的否定为“(],1x ∃∈-∞,20x x -≤”C.命题p 的否定为“()1,x ∃∈+∞,20x x -≤”D.命题p 的否定为“(],1x ∀∈-∞,20x x ->”【答案】C 【解析】【分析】根据全称命题的否定即可得到答案.【详解】根据全称命题的否定得命题p 的否定为“()1,x ∃∈+∞,20x x -≤”.故选:C .3.设命题“2x >”是命题“240x -≤”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【答案】A 【解析】【分析】解出不等式,再根据充分不必要条件判断即可.【详解】∵240x -≤,∴2x ≤-或2x ≥,∴命题“2x >”是命题“240x -≤”的充分不必要条件.故选:A .4.设函数()221,036,0x x x f x x x ⎧++<=⎨+≥⎩,则不等式()()1f x f >的解集是()A.()(),41,-∞-+∞U B.()(),21,-∞-+∞ C.()(),42,-∞-+∞ D.()(),22,∞∞--⋃+【答案】A 【解析】【分析】根据题意,分段建立方程,可得临界点,作图,可得答案.【详解】由题意()1369f =+=,令2219x x ++=,解得4x =-或2,3691x x +=⇒=,则作图如下:由图可得不等式()()1f x f >的解集是()(),41,∞∞--⋃+.故选:A.5.设a ,b ,R c ∈,则下列命题正确的是()A.若a b >,则a b> B.若0a b c >>>,则a a cb b c+<+C.若a b >,则11a b< D.若0a b c >>>,则b ca b a c>--【答案】D 【解析】【分析】举例说明判断AC ;作差比较大小判断B ;利用不等式性质判断D.【详解】对于AC ,取1,1a b ==-,满足a b >,而11||1||,11a b a b===>-=,AC 错误;对于B ,0a b c >>>,则()()()0()()a a c abc b a c a b cb bc b b c b b c ++-+--==>+++,B 错误;对于D ,由0a b c >>>,得0a c a b ->->,则110a b a c >>--,b ca b a c>--,D 正确.故选:D 6.不等式1122x x x x --->-++的解集为()A.{2x x <-或>1B.{|2}x x <- C.{}1x x > D.{}21x x -<<【答案】D 【解析】【分析】根据题意结合绝对值性质可得102x x -<+,再结合分式不等式运算求解.【详解】因为1122x x x x --->-++,即1122x x x x -->++,可得102x x -<+,等价于()()120x x -+<,解得21x -<<,所以不等式的解集为{}21x x -<<.故选:D .7.设0m >,若2420mx x -+=有两个不相等的根1x ,2x ,则12x x +的取值范围是()A.()0,2 B.(]0,2 C.()2,+∞ D.[)2,+∞【答案】C 【解析】【分析】根据判别式得到02m <<,再根据韦达定理即可得到答案.【详解】 关于x 的方程2420mx x -+=有两个不相等的实数根,20Δ(4)420m m >⎧∴⎨=--⨯>⎩,解得:02m <<,则()1242,x x m=∈++∞.故选:C.8.对于实数a 和b 定义运算“⋅”:⋅a b =22,,a ab a bb ab a b ⎧-≤⎨->⎩,设()(21)(2)f x x x =-⋅-,如果关于x 的方程()()f x m m R =∈恰有三个互不相等的实数根123x x x ,,,则m 的取值范围()A.9,4⎛⎤-∞ ⎥⎝⎦B.90,4⎡⎤⎢⎥⎣⎦C.9(0,4D.φ【答案】C 【解析】【分析】由定义的运算求出()f x 的解析式,然后利用数形结合的方法知当()()f x m m R =∈恰有三个互不相等的实数根123x x x ,,时,y m =与()y f x =图像恰有三个不同的交点,即可得出答案.【详解】解:由已知a •b =22,,a ab a b b ab a b ⎧-≤⎨->⎩得2221,1()(21)(2)2,1x x x f x x x x x x ⎧+-≤-=-⋅-=⎨-++>-⎩,其图象如下:因为()f x m =恰有三个互不相等实根,则y m =与()y f x =图像恰有三个不同的交点,所以904m <<,故选:C .【点睛】本题主要考查一次函数和二次函数和函数的表示方法,考查数形结合和运算求解能力,属于基础题型.二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得6分,部分选对得部分分,有选错得0分.9.下列各组函数是同一个函数的是()A.()221f x x x =--与()221g s s s =--B.()f x =与()g x =-.C.()xf x x=与()g x =D.()f x x =与()g x =【答案】ABC 【解析】【分析】分别求出函数的定义域,化简其对应关系,判断其定义域和对应关系是否相同即可.【详解】对于选项A :()221f x x x =--的定义域为R ,()221g s s s =--的定义域为R ,定义域相同,对应关系也相同,是同一个函数,故A 正确;对于选项B :()f x ==-{}|0≤x x ,()g x =-的定义域为{}|0≤x x ,定义域相同对应关系相同,是同一个函数,故B 正确;对于选项C :()1xf x x==的定义域{}|0x x ≠,()1g x ==的定义域{}|0x x ≠,定义域相同,对应关系也相同,是同一个函数,故C 正确;对于选项D :()f x x =的定义域为R ,()g x x ==的定义域为R ,定义域相同对应关系不同,不是同一个函数,故D 错误.故选:ABC.10.已知集合{}22M y y x ==-,{N x y ==,则()A.M N M ⋂=B.M N M ⋃=C.()N M ⋂=∅Rð D.()M N ⋂=∅Rð【答案】AC 【解析】【分析】求出集合,M N ,得到两者的包含关系,再根据集合的交并补即可.【详解】{{}5N xy x x ===≤∣∣,222y x =-≤,则{}|2M y y =≤,M N ∴⊆,则M N M ⋂=,M N N ⋃=,选项A 正确,B 错误;∁R =U >5,则()N M ⋂=∅R ð,选项C 正确;∁R =b >2,∁R ∩=b2<≤5,选项D 错误.故选:AC11.已知2()2f x x x a =-+.若方程()0f x =有两个根12,x x ,且12x x <,则下列说法正确的有()A.1>0x ,20x >B.1a <C.若120x x ≠,则121211x x x x ++的最小值为D.,R m n ∀∈,都有()()()22f m f n m nf ++≥【答案】BD 【解析】【分析】举例说明判断AC ;利用一元二次方程判别式判断B ;作差变形比较大小判断D.【详解】对于AC ,取3a =-,由2230x x --=,解得1210,3x x =-<=,1212110113x x x x =-+<+,AC 错误;对于B ,方程()0f x =有两个不等实根,则440a ∆=->,解得1a <,B 正确;对于D ,222()()22()()()2222f m f n m n m m a n n a m n f m n a++-++-++-=-++-2222()()0244m n m n m n ++-=-=≥,()()(22f m f n m n f ++≥恒成立,D 正确.故选:BD三、填空题:本题共3小题,每小题5分,共15分.12.设集合{}21,,45A t t t =-+,若2A ∈,则实数t 的值为______.【答案】3【解析】【分析】由题意分情况讨论,建立方程,可得答案.【详解】当2t =时,则2454851t t -+=-+=,故不符合题意;当2452t t -+=时,则2430t t -+=,化简可得()()310t t --=,3t =(1不合题意舍去);故答案为:3.13.已知不等式()()22240a x a x -+--≥解集是∅,则实数a 的取值范围是______.【答案】(2,2]-【解析】【分析】利用命题的否定去判断.分情况讨论当,2a =时不等式即为40-<,对一切恒成立,当2a ≠时利用二次函数的性质列出a 满足的条件并计算,最后两部分的合并即为所求范围.【详解】解:不等式()()22240a x a x -+--≥解集是∅等价于:不等式()()22240a x a x -+--<解集是R ,①当20,2a a -==时,不等式即为40-<,对一切x R ∈恒成立,②当2a ≠时,则须2204(2)16(2)0a a a -<⎧⎨∆=-+-<⎩,即222a a <⎧⎨-<<⎩,22a -<<,由①②得实数a 的取值范围是(2,2]-.故答案为(2,2]-【点睛】本题考查不等式恒成立的参数取值范围,考查二次函数的性质.注意对二次项系数是否为0进行讨论.14.已知a ,b ,0c >满足4a b c ++=,则11ab bc+的最小值为________.【答案】1【解析】【分析】根据给定条件,利用基本不等式“1”的妙用求出最小值.【详解】正数,,a b c ,4a b c ++=,则1111111121112()()()()444c a a b c ab bc ab bc a c b ab bc a c b +=+++=++++≥+++1141141144()()())161614b a c a b c a b c a c b a b c a b a c c b ++=++++=++++=1(6116≥+=,当且仅当222b a c ===时取等号,所以11ab bc+的最小值为1.故答案为:1【点睛】思路点睛:在运用基本不等式时,要特别注意“拆”、“拼”、“凑”等技巧,使用其满足基本不等式的“一正”、“二定”、“三相等”的条件.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.已知全集为R ,集合{}22A x x x =+<,{124}B xx a =-<+<∣.(1)当1a =时,求R ()A B ⋃ð;(2)若A B B = ,求实数a 的取值范围.【答案】(1)3{|1}2x x x <≥或;(2)23a ≤≤.【解析】【分析】(1)解不等式化简集合,A B ,再利用补集、并集的定义求解即得.(2)根据给定条件,利用交集的结果,结合集合的包含关系求出a 的范围【小问1详解】解不等式22x x +<,即220x x +-<,得2<<1x -,则{|21}A x x =-<<,当1a =时,3{1214}{|1}2B xx x x =-<+<=-<<∣,R 3{|1}2B x x x =≤-≥或ð,所以R 3(){|1}2A B x x x =<≥ ð或.【小问2详解】依题意,14{|}22a aB x x ---=<<,B ≠∅,由A B B = ,得B A ⊆,因此122412aa --⎧≥-⎪⎪⎨-⎪≤⎪⎩,解得23a ≤≤,所以实数a 的取值范围是23a ≤≤.16.设函数2()(1)2(R)f x ax a x a a =+-+-∈(1)若不等式()2f x ≥-对一切实数x 恒成立,求a 的取值范围;(2)解关于x 的不等式:()1f x a <-.【答案】(1)1[,)3+∞(2)答案见解析【解析】【分析】(1)对a 是否为零进行讨论,再结合二次函数的性质即可求解.(2)不等式化简为2(1)10ax a x +--<,根据一元二次不等式的解法,分类讨论即可求解.【小问1详解】()2f x ≥-对一切实数x 恒成立,等价于2R,(1)0x ax a x a ∀∈+-+≥恒成立.当0a =时,不等式可化为0x ≥,不满足题意.当0a ≠,有0Δ0a >⎧⎨≤⎩,即203210a a a >⎧⎨+-≥⎩,解得13a ≥所以a 的取值范围是1[,)3+∞.【小问2详解】依题意,()1f x a <-等价于2(1)10ax a x +--<,当0a =时,不等式可化为1x <,所以不等式的解集为{|1}<x x .当0a >时,不等式化为(1)(1)0ax x +-<,此时11a-<,所以不等式的解集为1{|1}x x a -<<.当0a <时,不等式化为(1)(1)0ax x +-<,①当1a =-时,11a -=,不等式的解集为{|1}x x ≠;②当10a -<<时,11a->,不等式的解集为1{|1}x x x a >-<或;③当1a <-时,11a-<,不等式的解集为1{|1}x x x a ><-或;综上,当1a <-时,原不等式的解集为1{|1}x x x a><-或;当1a =-时,原不等式的解集为{|1}x x ≠;当10a -<<时,原不等式的解集为1{|1}x x x a>-<或;当0a =时,原不等式的解集为{|1}<x x ;当0a >时,原不等式的解集为1{|1}x x a-<<.17.设a 为实数,函数()f x =.(1)求函数()f x 的定义域;(2)设t =()f x 表示为t 的函数()h t ,并写出定义域;(3)若0a <,求()f x 的最大值【答案】(1)[]1,1-;(2)()212h t at t a =+-,定义域为2⎤⎦;(3)答案见解析【解析】【分析】(1)根据函数特征得到不等式,求出定义域;(2)0t =两边平方得到[]2110,12t =-∈2t ≤≤,得到函数解析式和定义域;(3)在(2)的基础上结合对称轴,分10a <-<和12a ≤-≤和12a->三种情况,得到函数最大值.【小问1详解】由题意得2101010x x x ⎧-≥⎪+≥⎨⎪-≥⎩,解得11x -≤≤,故定义域为[]1,1-;【小问2详解】0t =两边平方得22t =+,[]2110,12t =-∈2t ≤≤,故()212h t at t a =+-,定义域为2⎤⎦;【小问3详解】由(2)知,()()221111222f x h t at t a a t a a a⎛⎫==+-=+-- ⎪⎝⎭,定义域为2⎤⎦,0a <,若10a <-<,即2a <-时,当t =时,()()f x h t =取得最大值,最大值为h=;12a ≤-≤,即122a -≤≤-时,()()f x h t =在对称轴处取得最大值,最大值为12a a --;若12a ->,即102a -<<时,当2t =时,()()f x h t =取得最大值,最大值为()222h a t a a =+-=+;综上,当22a <-当2122a -≤≤-时,最大值为12a a --,当102a -<<时,最大值为2a +.18.已知x ,0y >满足6x y +=.(1)求22x y +的最小值;(2)求3y x y+的最小值;(3)若()2244x y m x y +≥+恒成立,求m 的取值范围.【答案】(1)18;(2)12+;(3)83m ≤.【解析】【分析】(1)配方变形求出最小值.(2)根据给定条件,利用基本不等式“1”的妙用求出最小值.(3)对给定不等式分离参数,消元配凑变形,再利用基本不等式求出最小值即可.【小问1详解】由0,0x y >>,6x y +=,得22222()()1()1822x y x y x y x y ++-+=≥+=,当且仅当3x y ==时取等号,所以当3x y ==时,22x y +取得最小值18.【小问2详解】23321121113(1()(1(3)122y y x y x x y x y x y x y x y x y++=+-=+-=++-=++-11(3122≥+-=+2y x x y =,即x =时取等号,由6x x y ⎧=⎪⎨+=⎪⎩,得6(21)x y =-=,所以当6(21)x y ==-时,3y x y +取得最小值12+.【小问3详解】由0,0x y >>,6x y +=,得6,06x y y =-<<,不等式224(4)x y m x y +≥+恒成立,即2244x y m x y +≤+恒成立,2222224(6)4512365(2)32(2)804363(2)3(2)x y y y y y y y x y y y y +-+-++-++===++++516325328[(2)]323333y y =++-≥⋅=+,当且仅当1622y y +=+,即2y =时取等号,因此当4,2x y ==时,2244x y x y++取得最小值83,则83m ≤,所以m 的取值范围83m ≤.19.已知二次函数()()1f x ax x =-,()0,4a ∈,()0,1x ∈.若有()00f x x =,我们就称0x 为函数()f x 的一阶不动点;若有()()00f f x x =,我们就称0x 为函数()f x 的二阶不动点.(1)求证:()01f x <<;(2)若函数()f x 具有一阶不动点,求a 的取值范围;(3)若函数()f x 具有二阶不动点,求a 的取值范围.【答案】(1)证明见解析(2)14a <<(3)14a <<【解析】【分析】(1)利用基本不等式以及不等式的性质证明即可;(2)利用不动点的性质求解即可;(3)根据(2)可知当14a <<时,符合题意,再对(]0,1a ∈分析判断即可.【小问1详解】由题可知()0,4a ∈,()0,1x ∈,所以()()()211010101124x x x x x x ax x +-⎛⎫<-≤⇒<-≤⇒<-< ⎪⎝⎭故()01f x <<.【小问2详解】由题可知()0000111ax x x a x -=⇒=-因为()00,1x ∈,()0,4a ∈所以14a <<.【小问3详解】若14a <<,由(2)可知:函数()f x 具有一阶不动点,即存在()00,1x ∈,使得()00f x x =,则()()()000ff x f x x ==,所以函数()f x 具有二阶不动点,若(]0,1a ∈,由(2)可知函数()f x 不具有一阶不动点,可知对任意()0,1x ∈,且()f x 连续不断,可知()f x x >或()f x x <恒成立,若()f x x >,则()()()ff x f x x >>,此时函数()f x 不具有二阶不动点;若()f x x <,则()()()f f x f x x <<,此时函数()f x 不具有二阶不动点;即(]0,1a ∈时,函数()f x 不具有二阶不动点;综上所述:a 的取值范围为14a <<.【点睛】关键点点睛:对于复合函数我们经常令某一个函数()f x t =,然后换元计算.。
重庆市巴蜀中学2024-2025学年高一上学期10月月考数学试题一、单选题1.命题“[)30,,0x x x ∀∈∞+≥+”的否定是( )A .()3,0,0x x x ∀∈-∞+<B .()3000,0,0x x x ∃∈-∞+< C .[)30000,,0x x x ∞∃∈++<D .[)30000,,0x x x ∃∈+∞+≥2.已知()21f x x -=,则()()2f f =( )A .9B .100C .1D .03.若集合{}{}1,2,3,4,5,7,1A B x x A ==-∈,则A B =I ( ) A .{}1,2,3,4,5B .{}2,3,4,5C .{}1,2,3,4D .{}0,1,2,3,4,64.若实数1x <,则221x x +-的最大值为( ) A .2-B .4-C .4D .65.设集合{}{}02,02M x x N y y =≤≤=≤≤,则如下的4个图形中能表示定义域为M ,值域为N 的严格单调函数的是( )A .B .C .D .6.已知集合{}{}14,32,A x x B x m x m B =≤≤=-+≤≤不是空集,若x B ∈是x A ∈的充分不必要条件,则实数m 的取值范围为( ) A .{}2m m <B .{}2m m ≤C .{}12m m ≤<D .{}12m m ≤≤7.设集合A 为非空实数集,集合{,B xy x y A =∈且}x y ≠,称集合B 为集合A 的积集,则下列结论正确的是( )A .当{}1,2,3,4A =时,集合A 的积集{}2,3,4,8,12B =B .若A 是由5个正实数构成的集合,其积集B 中元素个数最多为8个C .若A 是由5个正实数构成的集合,其积集B 中元素个数最少为7个D .存在4个正实数构成的集合A ,使其积集{}2,4,5,8,10,16B =8.已知,a b R ∈,不等式22122x ax bx x ++<++在x R ∈上恒成立,则( ) A .0a <B .0b <C .02ab <<D .04ab <<二、多选题9.下列命题是真命题的为( ) A .若0a b c d >>>>,则ab cd > B .若22ac bc >,则a b > C .若0a b >>且0c <,则22c c a b > D .若a b >且11a b>,则0ab < 10.下列说法不正确的是( )A .函数()1f x x =+与()2g x =是同一个函数B .若函数()f x 的定义域为(]0,1,则函数()()21f x f x --的定义域为()0,1C .函数()f x =112x x ⎧⎫≤≤⎨⎬⎩⎭D .若函数()f x =的定义域为R ,则实数k 的取值范围是()0,411.已知220,0,1a b a b ab >>+-=,则( )A .112a b+≥B .2a b +≥C .222a b +≥D .332a b +≤三、填空题12.集合6x x ⎧⎫∈⎨⎬⎩⎭N 的非空子集的个数是.13.若()()2324,15,1x a x x f x x a x ⎧-+--<=⎨+≥⎩在R 上单调递增,则实数a 的取值范围为.14.高一某班共有54人,每名学生要从物理、化学、生物、历史、地理、政治这六门课程中选择3门进行学习.已知选择物理的有36人,选择化学的有24人,选择生物的有20人,其中选择了物理和化学的有18人,选择了化学和生物的有10人,选择了物理和生物的有16人.那么班上选择物理或化学或生物的学生最多有人.四、解答题15.已知{}12A x x =-≤≤,{}23B x x a =-<. (1)若3a =,求B A ⋃R ð;(2)若A B B =I ,求实数a 的取值范围.16.已知关于x 的不等式()223130kx k x k -++<(其中k ∈R ).(1)若不等式的解集为{}13x x <<,求k 的值; (2)若0k ≤,试求该不等式的解集. 17.已知命题p :对任意0,0x y >>且11134x y +=,不等式23093a a x y +≤+恒成立;命题2:,23q x x x a ∃∈--<R .(1)若命题p 为真命题,求实数a 的取值范围;(2)若命题p 和命题q 中至少有一个为真命题,求实数a 的取值范围.18.设函数()y f x =的定义域为M ,且区间I M ⊆.若函数()y f x x =+在区间I 上单调递增,则称函数()f x 在区间I 上具有性质A ;若函数()y f x x =-在区间I 上单调递增,则称函数()f x 在区间I 上具有性质B .(1)试证明:“函数()f x 在区间I 上具有性质B ”是“函数()f x 位区间I 上单调递增”的充分不必要条件; (2)若函数()kf x x=在区间[)2,+∞上具有性质A ,求实数k 的取值范围; (3)若函数()32f x x x=+在区间[],1a a +上同时具有性质A 和性质B ,求实数a 的取值范围.19.对于在平面直角坐标系第一象限内的两点()()1122,,,A x y B x y 作如下定义:若2121y y x x ≥,则称点B 领先于点A .(1)试判断点(P是否领先于点(Q ,并说明理由;(2)若点()22,B x y 领先于点()11,A x y ,试证明:点B 领先于点()1212,C x x y y ++.(3)对{}{}1,2,3,2024,k m m m m *∀∈∃∈≥∈N ,点()3,2027m +领先于点(),k n ,且点(),k n 领先于点(),2024m ,求符合条件的正整数n 组成的集合中元素的个数.。
2024-2025学年北京市海淀区八一学校高一上学期10月月考数学试题一、单选题:本题共10小题,每小题5分,共50分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.已知集合A={−1,0,1,2},B={x|0<x<3},则A∩B=().A. {−1,0,1}B. {0,1}C. {−1,1,2}D. {1,2}2.数集A={x|x=(2n+1)π,n∈Z},B={x|x=(4k±1)π,k∈Z},则A,B之间的关系是( )A. ABB. BAC. A=BD. A≠B3.命题p“∃x∈R,使得x2+x+1=0”下列说法正确的是( )A. ¬p:“∀x∉R,x2+x+1≠0”是假命题B. ¬p:“∀x∈R,x2+x+1≠0”是假命题C. ¬p:“∀x∉R,x2+x+1≠0”是真命题D. ¬p:“∀x∈R,x2+x+1≠0”是真命题4.已知−2<x<2,1<y<3,则x−2y的取值范围是( )A. (−8,0)B. (−8,2)C. (−4,2)D. (−10,−2)5.“a2+b2>0”是“ab>0”的( )A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件6.关于x的方程(x−a)2=1的解集可能是( )A. 空集B. 单元素集合C. {1,−1}D. {2,6}7.已知集合A={x∣x2−5x+6=0},B={x∣0<x<6,x∈N},则满足A⊆C⊆B的集合C的个数为( )A. 4B. 8C. 7D. 16<x+1的解集是( )8.不等式1x−1A. {x|x>−2}B. {x|x>2或−2<x<1}C. {x|−2<x<1}D. {x|43<x<22}9.已知命题p:∃x∈R,(m+1)(x2+1)≤0,命题q:∀x∈R,x2−mx+1>0恒成立.若p和q至多有一个为真命题,则实数m的取值范围为( )A. [2,+∞)B. (−1,2]C. (−∞,−2]∪[2,+∞)D. (−∞,−2]∪(−1,+∞)10.刘老师沿着某公园的环形道(周长大于1km)按逆时针方向跑步,他从起点出发、并用软件记录了运动轨迹,他每跑1km,软件会在运动轨迹上标注出相应的里程数.已知刘老师共跑了11km,恰好回到起点,前5km的记录数据如图所示,则刘老师总共跑的圈数为( )A. 7B. 8C. 9D. 10二、填空题:本题共5小题,每小题5分,共25分。
2024-2025学年河北省唐山市高一上学期10月月考数学质量检测试题考生注意:1.本试卷分第I 卷和第Ⅱ卷两部分,共120分.考试时间90分钟.2.将第I 卷答案用2B 铅笔涂在答题卡上,第Ⅱ卷用蓝黑钢笔或圆珠笔答在答题卡上.第I 卷(选择题共58分)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求.1. 集合,,则( ){1,4,5}A ={21,Z}B xx n n ==+∈∣A B = A. B. C. D. {1,5}{1,4,5}{4}{1}2. 命题“”的否定是2,220x x x ∃∈++≤R A.B.2,220x x x ∀∈++>R 2,220x R x x ∀∈++≤C.D.2,220x x x ∃∈++>R 2,220x x x ∃∈++≥R 3. 使 “”成立的必要不充分条件是()2101x x +≥-A .B. 112x -≤≤112x -≤<C.或 D.或12x ≤-1x ≥12x ≤-1x >4. 下列说法正确的为()A.12x x+≥B. 函数4y =C. 若则最大值为10,x >(2)x x -D. 已知时,,当且仅当即时,取得3a >43+≥-a a 43=-a a 4a =43+-a a 最小值85. 已知,则下列说法正确的是( )()0,,a b c a b c >>->∈R A. B. ac bc>c c a b <C.D. a c ab c b +>+a b b c a c<--6. 已知实数m ,n ,p 满足,且,则下列说法正确的是244m n m p ++=+210m n ++=()A.B.C. D. n p m≥>p n m≥>n p m >>p n m>>7. 设,集合.则“”是“”的( ),R a b ∈{}{}22,1,,1A a a B b b =+=+A B =a b =A. 充分不必要条件 B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件8. 已知不等式对满足的所有正实数a ,b 都成立,则22211612xx a b +≥+-()410a b a +-=正数x 的最小值为()A. B. 1C. D. 21232二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9. 如图,全集为U,集合A ,B 是U 的两个子集,则阴影部分可表示为()A. B. ()()U A B A B ⋂⋃⋃ð()()U A B A B ⋃⋂⋂ðC .D.()()()U U A B A B ⎡⎤⋂⋃⋂⎣⎦ðð()()()U U A B A B ⎡⎤⋃⋂⋃⎣⎦ðð10. 对于给定的实数,关于实数的一元二次不等式的解集可能为(a x ()()10a x a x -+>)A. B.∅{}1-C. D. ,或{1}xa x <<-∣{1xx <-∣}x a >11. 若关于的不等式的解集为,则x ()2020ax bx c a ≤++≤>{x |−1≤x ≤3}的值可以是( )32a b c ++A. B. C. 2 D. 11232第II 卷三、填空题:本题共3小题,每小题5分,共15分.12. 已知集合或,,若B A ,则实数a 的取值范围是{|1A x x =≥2}x £-{}|B x x a =≥________.13. 若关于的方程至少有一个负实根,则实数的取值范围是x 2220mx x ++=m ________.14.对于任意正实数x 、y成立,则k 的范围为______.≤四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15. 已知,或.{}3A x a x a =≤≤-+∣{1B xx =<-∣5}x >(1)若,求的取值范围;A B =∅ a (2)若,求的取值范围.A B =R a 16. 已知正数满足.,a b 2a b ab +=(1)求的最小值;ab (2)求的最小值;a b +(3)求的最小值.2821a ba b +--17. 设函数.()21f x mx mx =--(1)若命题:是假命题,求的取值范围;()R,0x f x ∃∈>m (2)若存在成立,求实数的取值范围.()()()24,0,13x f x m x ∈-≥++m18. 某蛋糕店推出两款新品蛋糕,分别为薄脆百香果蛋糕和朱古力蜂果蛋糕,已知薄脆百香果蛋糕单价为x 元,朱古力蜂果蛋糕单位为y 元,现有两种购买方案:方案一:薄脆百香果蛋糕购买数量为a 个,朱古力蜂果蛋糕购买数量为b 个,花费记为;1S 方案二:薄脆百香果蛋糕购买数量为b 个,朱古力蜂果蛋糕购买数量为a 个,花费记为.2S (其中)4,4y x b a >>>>(1)试问哪种购买方案花费更少?请说明理由;(2)若a ,b ,x ,y 同时满足关系,求这两种购买方案花4224y x b a a =-=+-费的差值S 最小值(注:差值花费较大值-花费较小值).S =19. 已知集合,,,若,,或{}12,,,n A x x x = *N n ∈3n ≥x A ∈y A Îx y A +∈,则称集合A 具有“包容”性.x y A -∈(1)判断集合和集合是否具有“包容”性;{}1,1,2,3-{}1,0,1,2-(2)若集合具有“包容”性,求的值;{}1,,B a b =22a b +(3)若集合C 具有“包容”性,且集合C 的子集有64个,,试确定集合C .1C ∈2024-2025学年河北省唐山市高一上学期10月月考数学质量检测试题考生注意:1.本试卷分第I 卷和第Ⅱ卷两部分,共120分.考试时间90分钟.2.将第I 卷答案用2B 铅笔涂在答题卡上,第Ⅱ卷用蓝黑钢笔或圆珠笔答在答题卡上.第I 卷(选择题共58分)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求.1. 集合,,则( ){1,4,5}A ={21,Z}B xx n n ==+∈∣A B = A. B. C. D. {1,5}{1,4,5}{4}{1}【正确答案】A【分析】根据集合的含义以及交集的概念即可得到答案.B 【详解】集合,其表示所有的奇数,{21,Z}B xx n n ==+∈∣则.{1,5}A B = 故选:A.2. 命题“”的否定是2,220x x x ∃∈++≤R A.B.2,220x x x ∀∈++>R 2,220x R x x ∀∈++≤C. D.2,220x x x ∃∈++>R 2,220x x x ∃∈++≥R 【正确答案】A【分析】根据特称命题的否定是全称命题的知识,选出正确选项.【详解】特称命题的否定是全称命题,注意到要否定结论,故A 选项正确.故选A.本小题主要考查全称命题与特称命题的否定,属于基础题.3. 使 “”成立的必要不充分条件是()2101x x +≥-A. B. 112x -≤≤112x -≤<C. 或 D.或12x ≤-1x ≥12x ≤-1x >【正确答案】A【分析】解不等式,求得,根据必要不充分条件的定义即可得出结果.2101x x +≥-112x -≤<【详解】不等式可化为解得2101x x +≥-(1)(21)0,10,x x x -+≤⎧⎨-≠⎩11.2x -≤<则成立,反之不可以.112x -≤<⇒112x -≤≤所以是成立的必要不充分条件.112x -≤≤2101x x +≥-故选:A4. 下列说法正确的为()A.12x x+≥B. 函数4y =C. 若则最大值为10,x >(2)x x -D. 已知时,,当且仅当即时,取得3a >43+≥-a a 43=-a a 4a =43+-a a最小值8【正确答案】C【分析】利用基本不等式及其对勾函数的性质分别判断即可.【详解】对于选项,只有当时,才满足基本不等式的使用条件,则不正确;A 0x >A 对于选项,,By ===+(t t =≥即在上单调递增,则最小值为,(22y t t t =+≥)+∞min y ==则不正确;B 对于选项,,则正确;C ()()22(2)211111x x x x x -=--++=--+≤C 对于选项,当时,,当且仅当D 3a >44333733a a a a +=-++≥=--时,即,等号成立,则不正确.433a a -=-5a =D 故选.C 5. 已知,则下列说法正确的是( )()0,,a b c a b c >>->∈R A. B.ac bc>c c a b <C.D. a c ab c b +>+a bb c a c<--【正确答案】C【分析】对于AB :根据不等式性质分析判断;对于CD :利用作差法分析判断.【详解】对于选项A :因为,则,所以,故A 错()0,,a b c a b c >>->∈R 0c <ac bc <误;对于选项B :因为,且,()0,,a b c a b c >>->∈R 0c <可得,所以,故B 错误;11a b <c c a b >对于选项C :因为,()()()b a ca c a ab bc ab ac b c b b c b b c b-++---==+++且,,则,()0,,a b c a b c >>->∈R 0c <0,0b a b c -<+>可得,所以,故C 正确;()()0b a ca c abc b b c b-+-=>++a c ab c b +>+对于选项D :因为,()()()()()()22a b a b c a b a ac b bc b c a c b c a c b c a c -+---+-==------且,,则,()0,,a b c a b c >>->∈R 0c <0,0,0,0a b a b c b c a c ->+->->->可得,即,故D 错误;()()()()0a b a b c a bb c a c b c a c -+--=>----a bb c a c >--故选:C.6. 已知实数m ,n ,p 满足,且,则下列说法正确的是244m n m p ++=+210m n ++=()A.B.C. D. n p m≥>p n m≥>n p m >>p n m>>【正确答案】D【分析】根据题意,将所给等式变形,得到,推导出,然后利用作差法2(2)0p n m -=->p n >比较大小,结合二次函数的性质证出,从而得出正确结论.n m >【详解】由,得,210m n ++=211m n =--≤-因为,244m n m p ++=+移项得,244m m p n -+=-所以,2(2)0p n m -=->可得,p n >由,得,210m n ++=21m n =--可得,()2221311024n m n n n n n ⎛⎫-=---=++=++> ⎪⎝⎭可得.n m >综上所述,不等式成立,p n m >>故选:D.7. 设,集合.则“”是“”的( ),R a b ∈{}{}22,1,,1A a a B b b =+=+A B =a b =A. 充分不必要条件 B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件【正确答案】C【分析】利用集合相等的定义得到关于的方程组,推得充分性成立;再简单证得必要性,a b 也成立即可得解.【详解】因为,{}{}22,1,,1A a a B b b =+=+当时,则有,或,A B =2211a ba b =⎧⎨+=+⎩2211a b a b ⎧=+⎨+=⎩若,显然解得;2211a ba b =⎧⎨+=+⎩a b =若,则,整理得,2211a b a b⎧=+⎨+=⎩()2211b b ++=()()22012b b b b -+++=因为,,22131024b b b ⎛⎫+=-+ ⎝⎭->⎪22172024b b b ⎛⎫+=++ ⎝⎭+>⎪所以无解;()()22012bb b b -+++=综上,,即充分性成立;a b =当时,显然,即必要性成立;a b =A B =所以“”是“”的充分必要条件.A B =a b =故选:C.8. 已知不等式对满足的所有正实数a ,b 都成立,则22211612x x a b +≥+-()410a b a +-=正数x 的最小值为()A. B. 1C. D. 21232【正确答案】B【分析】先利用基本不等式证得(此公式也可背诵下来),从而由题()()2222m n m n +≥+设条件证得,结合题意得到,利用二次不等式的解法解之即可得2211612a b +≥21212xx ≥+-到正数的最小值.x 【详解】因为()()()22222222222m n m n m n m n mn +-+=+-++,当且仅当时,等号成立,()22220m n mn m n =+-=-≥m n =所以,()()2222m n m n +≥+因为为正实数,所以由得,即,,a b ()410a b a +-=4a b ab +=411b a +=所以,222221161441221a b a b b a ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫+=+≥+=⎢⎥ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦当且仅当,且,即时,等号成立,41b a =4a b ab +=2,8a b ==所以,即,2211621a b ⎛⎫+≥ ⎪⎝⎭2211612a b +≥因为对满足的所有正实数a ,b 都成立,22211612x x a b +≥+-()410a b a +-=所以,即,整理得,2n 2mi 211612x x a b ⎛⎫ ⎪⎝⎭+≥+-21212x x ≥+-2021x x --≥解得或,由为正数得,1x ≥12x ≤-x 1x ≥所以正数的最小值为.x 1故选:B.二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9. 如图,全集为U ,集合A ,B 是U 的两个子集,则阴影部分可表示为()A. B. ()()U A B A B ⋂⋃⋃ð()()U A B A B ⋃⋂⋂ðC.D.()()()U U A B A B ⎡⎤⋂⋃⋂⎣⎦ðð()()()U U A B A B ⎡⎤⋃⋂⋃⎣⎦ðð【正确答案】AC【分析】由已知韦恩图分析出了阴影部分所表示的集合的元素满足的条件,进而根据集合运算的定义可得答案.【详解】根据图中阴影可知,符合题意,()()U A B A B ð又,∴也符合题意.()()()U U U A B A B ⋃=⋂ððð()A B ()()U U A B ⎡⎤⎣⎦ ðð故选:AC10. 对于给定的实数,关于实数的一元二次不等式的解集可能为(a x ()()10a x a x -+>)A .B.∅{}1-C. D. ,或{1}xa x <<-∣{1xx <-∣}x a >【正确答案】ACD【分析】根据二次方程根的大小分类讨论,即可求解二次不等式的解集.【详解】对于一元二次不等式,则;()()10a x a x -+>0a ≠当时,函数开口向上,与轴的交点为,0a >()()1y a x a x =-+x ,1a -故不等式的解集为,故D 正确;()(),1,x a ∈-∞-+∞ 当时,函数开口向下,若,不等式解集为,故A 正确;0a <()()1y a x a x =-+1a =-∅若,不等式的解集为,10a -<<()1,a -若,不等式的解集为,故C 正确.1a <-(),1a -故选:ACD11. 若关于的不等式的解集为,则x ()2020ax bx c a ≤++≤>{x |−1≤x ≤3}的值可以是( )32a b c ++A. B. C. 2 D. 11232【正确答案】BC【分析】先根据一元二次不等式的解集得到对称轴,然后根据端点得到两个等式和一个不等式,求出的取值范围,最后都表示成的形式即可.a 32a b c ++a 【详解】因为不等式的解集为,()2020ax bx c a ≤++≤>{x |−1≤x ≤3}所以二次函数的对称轴为直线,()2f x ax bx c=++1x =且需满足,即,解得,()()()123210f f f ⎧-=⎪=⎨⎪≥⎩29320a b c a b c a b c -+=⎧⎪++=⎨⎪++≥⎩232b ac a =-⎧⎨=-+⎩所以,所以,123202a b c a a a a ++=--+≥⇒≤10,2a ⎛⎤∈ ⎥⎝⎦所以,故的值可以是和,332326445,42a b c a a a a ⎡⎫++=--+=-∈⎪⎢⎣⎭32a b c ++322故选:BC关键点睛:一元二次不等式的解决关键是转化为二次函数问题,求出对称轴和端点的值,继而用同一个变量来表示求解.第II 卷三、填空题:本题共3小题,每小题5分,共15分.12. 已知集合或,,若B A ,则实数a 的取值范围是{|1A x x =≥2}x £-{}|B x x a =≥________.【正确答案】[)1,+∞【分析】由为的真子集,列出关于的不等式,求出不等式的解集即可.B A a 【详解】因为B A ,所以.1a ≥故[)1,+∞13. 若关于的方程至少有一个负实根,则实数的取值范围是x 2220mx x ++=m ________.【正确答案】1,2⎛⎤-∞⎥⎝⎦【分析】对和分类讨论求解,结合一元二次方程的根与系数的关系即可求解.0m =0m ≠【详解】当时,方程为,有一个负根,0m =220x +=当时,为一元二次方程,0m ≠2220mx x ++=关于的方程至少有一个负根,设根为,,x 2220mx x ++=1x 2x 当时,即时,方程为,解得,满足题意,480m ∆=-=12m =212202x x ++=2x =-当,即时,且时,480m ∆=->12m <0m ≠若有一个负根,则,解得,1220=<x x m 0m <若有两个负根,则,解得,12122020x x m x x m ⎧+=-<⎪⎪⎨⎪=>⎪⎩102m <<综上所述,则实数的取值范围是,,m (-∞1]2故,.(-∞1214.对于任意正实数x 、y 成立,则k 的范围为______.≤【正确答案】⎫+∞⎪⎪⎭≤2k ≥最大值即可.【详解】易知,,k>k≤.2k ∴≥令,分式上下同除y ,0t =>则,则即可,222221141121221t t t k t t +++⎛⎫≥=+ ⎪++⎝⎭22max 1411221t k t +⎛⎫≥+ ⎪+⎝⎭令,则.411u t =+>14u t -=可转化为:,24121t t ++()28829292u s u u u u u ==≤-++-于是,.()21411311222122t t +⎛⎫+≤+= ⎪+⎝⎭∴,即时,不等式恒成立(当时等号成立).232k ≥k ≥40x y =>故⎫+∞⎪⎪⎭四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15. 已知,或.{}3A x a x a =≤≤-+∣{1B xx =<-∣5}x >(1)若,求的取值范围;A B =∅ a (2)若,求的取值范围.A B =R a 【正确答案】(1)[)1,-+∞(2)(],2-∞-【分析】(1)分和两种情况讨论求解即可;A =∅A ≠∅(2)由题意得,从而可求出的取值范围.351a a -+≥⎧⎨≤-⎩a 【小问1详解】①当时,,∴,∴.A =∅AB =∅ 3a a >-+32a >②当时,要使,必须满足,解得.A ≠∅A B =∅ 32351a a a ⎧≤⎪⎪-+≤⎨⎪≥-⎪⎩312a -≤≤综上所述,的取值范围是.a [)1,-+∞【小问2详解】∵,,或,A B =R {}3A x a x a =≤≤-+∣{1B xx =<-∣5}x >∴,解得,351a a -+≥⎧⎨≤-⎩2a ≤-故所求的取值范围为.a (],2-∞-16. 已知正数满足.,ab 2a b ab +=(1)求的最小值;ab (2)求的最小值;a b +(3)求的最小值.2821a ba b +--【正确答案】(1)8 (2)3+(3)18【分析】(1)根据题意直接利用基本不等式即可得最值;(2)由题意可得,利用乘“1”法结合基本不等式运算求解;211a b +=(3)由题意可得,化简整理结合基本不等式运算求解.()()212a b --=【小问1详解】因为,且,0,0a b >>2a b ab +=则.2ab a b =+≥8ab ≥≥当且仅当,即时等号成立,24a b ==4,2a b ==所以的最小值为8.ab 【小问2详解】因为,且,则,0,0a b >>2a bab +=211a b +=可得,()2122133b a a b a b a b a b ⎛⎫+=++=+++≥+=+ ⎪⎝⎭当且仅当,即,即时等号成立,2b aa b =a=21a b =+=+所以的最小值为.a b +3+【小问3详解】因为,且,所以,0,0a b >>2a b ab +=()()212a b --=可得,()()2248182848101018212121a b a b a b a b a b -+-++=+=++≥+=------当且仅当,即时等号成立,4821a b =--3a b ==所以的最小值为18.2821a ba b +--17. 设函数.()21f x mx mx =--(1)若命题:是假命题,求的取值范围;()R,0x f x ∃∈>m (2)若存在成立,求实数的取值范围.()()()24,0,13x f x m x ∈-≥++m 【正确答案】(1)[]4,0-(2)4≥m 【分析】(1)依题意可得是真命题,分和两种情况讨论;()R,0x f x ∀∈≤0m =0m ≠(2)依题意参变分离可得存在使得成立,则只需,()4,0x ∈-4m x x ≥--min 4m x x ⎛⎫≥-- ⎪⎝⎭,利用基本不等式求出即可得解.()4,0x ∈-min 4x x ⎛⎫-- ⎪⎝⎭【小问1详解】若命题:是假命题,则是真命题,()R,0x f x ∃∈>()R,0x f x ∀∈≤即在上恒成立,210mxmx -≤-R 当时,,符合题意;0m =10-<当时,需满足,解得;0m ≠20Δ40m m m <⎧⎨=+≤⎩40m -≤<综上所述,的取值范围为.m []4,0-【小问2详解】若存在成立,()()()24,0,13x f x m x ∈-≥++即存在使得成立,故只需,,()4,0x ∈-4m x x ≥--min 4m x x ⎛⎫≥-- ⎪⎝⎭()4,0x ∈-因为,所以,则,()4,0x ∈-()0,4x -∈()444x x x x--=-+≥=-当且仅当,即时取等号,4x x -=-2x =-所以,所以.min44x x ⎛⎫- ⎪⎝⎭=-4≥m 18. 某蛋糕店推出两款新品蛋糕,分别为薄脆百香果蛋糕和朱古力蜂果蛋糕,已知薄脆百香果蛋糕单价为x 元,朱古力蜂果蛋糕单位为y 元,现有两种购买方案:方案一:薄脆百香果蛋糕购买数量为a 个,朱古力蜂果蛋糕购买数量为b 个,花费记为;1S 方案二:薄脆百香果蛋糕购买数量为b 个,朱古力蜂果蛋糕购买数量为a 个,花费记为.2S (其中)4,4y x b a >>>>(1)试问哪种购买方案花费更少?请说明理由;(2)若a ,b ,x ,y 同时满足关系,求这两种购买方案花4224y x b a a =-=+-费的差值S 最小值(注:差值花费较大值-花费较小值).S =【正确答案】(1)采用方案二;理由见解析 (2)24【分析】(1)列出两种方案的总费用的表达式,作差比较,即可求解;(2)根据题意,得到,利用换元法和基本不等式,即可214((4S S x a a -=-⋅+-求解.【小问1详解】解:方案一的总费用为(元);1S ax by =+方案二的总费用为(元),2S bx ay =+由,21()()()()()S S bx ay ax by a y x b x y y x a b -=+-+=-+-=--因为,可得,所以,4,4y x b a >>>>0,0y x a b ->-<()()0y x a b --<即,所以,所以采用方案二,花费更少.210S S -<21S S <【小问2详解】解:由(1)可知,()()(1244S S y x b a x a a ⎛⎫-=--=-⋅+ ⎪-⎝⎭令,t =24x t =+所以,当时,即时,等号成立,2224(1)33x t t t -=-+=-+≥1t =5x =又因为,可得,4a >40a ->所以,44(4)44844a a a a +=-++≥=--当且仅当时,即时,等号成立,444a a -=-6,14a b ==所以差的最小值为,当且仅当时,等号成立,S 2483=⨯5,8,6,14x y a b ====所以两种方案花费的差值最小为24元.S 19. 已知集合,,,若,,或{}12,,,n A x x x = *N n ∈3n ≥x A ∈y A Îx y A +∈,则称集合A 具有“包容”性.x y A -∈(1)判断集合和集合是否具有“包容”性;{}1,1,2,3-{}1,0,1,2-(2)若集合具有“包容”性,求的值;{}1,,B a b =22a b +(3)若集合C 具有“包容”性,且集合C 的子集有64个,,试确定集合C .1C ∈【正确答案】(1)集合不具有“包容”性,集合具有“包容”性{}1,1,2,3-{}1,0,1,2-(2)1(3),,,{}2,1,0,1,2,3--1131,,0,,1,222⎧⎫--⎨⎬⎩⎭2112,,0,,,13333⎧⎫--⎨⎬⎩⎭或.{}3,2,1,0,1,2---311,1,,0,,1222⎧⎫---⎨⎬⎩⎭【分析】(1)根据“包容”性的定义,逐一判断即可;(2)根据“包容”性的定义,能得到,分类讨论,得出a 和b 的值,即可得出结{}01,,a b ∈果;(3)由集合C 的子集有64个,推出集合C 中共有6个元素,且,再由条件,推0C ∈1C ∈出集合中有正数也有负数,将这几个元素设出来,再通过对正数负数个数的讨论,即可求出结果.【小问1详解】(Ⅰ)集合中的,,{}1,1,2,3-{}3361,1,2,3+=∉-{}3301,1,2,3-=∉-所以集合不具有“包容”性.{}1,1,2,3-集合中的任何两个相同或不同的元素,相加或相减,得到的两数中至少有一个属{}1,0,1,2-于集合,所以集合具有“包容”性.{}1,0,1,2-{}1,0,1,2-【小问2详解】(Ⅱ)已知集合具有“包容”性,记,则,{}1,,B a b ={}max 1,,m a b =1m ≥易得,从而必有,{}21,,m a b ∉{}01,,a b ∈不妨令,则,且,0a ={}1,0,B b =0b ≠1b ≠则,{}{}1,11,0,b b b +-⋂≠∅且,{}{}1,11,0,b b b +-⋂≠∅①当时,若,得,此时具有包容性;{}11,0,b b +∈10b +=1b =-{}1,0,1B =-若,得,舍去;若,无解;11b +=0b =1b b +=②当时,则,由且,可知b 无解,{}11,0,b b +∉{}{}1,11,0,b b b --⊆0b ≠1b ≠故.{}1,0,1B =-综上,.221a b +=【小问3详解】(Ⅲ)因为集合C 的子集有64个,所以集合C 中共有6个元素,且,又,且C 0C ∈1C ∈中既有正数也有负数,不妨设,{}1112,,,,0,,,,k k l C b b b a a a ---- 其中,,,5k l +=10l a a <<< 10k b b <<<L 根据题意,1111{,,}{,,,}l l l k k a a a a b b b ----⊆---L L且,1112112{,,,}{,,,}k k l b b b b b b a a a ----⊆L L 从而或.()(),2,3k l =()3,2①当时,,()(),3,2k l ={}{}313212,,b b b b a a --=并且由,得,由,得,313212{,}{,}b b b b b b -+-+=--312b b b =+2112{,}a a a a -∈212a a =由上可得,并且,2131322111(,)(,)(,)(2,)b b b b b b a a a a =--==31213b b b a =+=综上可知;{}111113,2,,0,,2C a a a a a =---②当时,同理可得.()(),2,3k l =11111{2,,0,,2,3}C a a a a a =--综上,C 中有6个元素,且时,符合条件的集合C 有5个,1C ∈分别是,,,{}2,1,0,1,2,3--1131,,0,,1,222⎧⎫--⎨⎬⎩⎭2112,,0,,,13333⎧⎫--⎨⎬⎩⎭或.{}3,2,1,0,1,2---311,1,,0,,1222⎧⎫---⎨⎬⎩⎭关键点点睛:本题是新定义题型,对于此类问题,要先弄清楚新定义的性质,按照其要求,严格“照章办事”,逐条分析验证。
2019高一数学上册10 月月试题高中是重要的一年,大家一定要好好把握高中,查字典数学网小编为大家整理了高一数学上册10 月月试题,希望大家喜欢。
一. 选择题(每小题5分,共60 分).
1. 满足条件的所有集合的个数为( )
A. 2
B.3
C.4
D.8
2. 若集合,下列关系式中成立的为( )
A. B. C. D.
3. 下列函数中是偶函数,且在上为单调递减的函数是( )
A. B. C. D.
4. 已知集合,,则( )
A. B. C. D.
5. 函数的值域是( )
A. B. C. D.
6. 设函数,则的表达式是( )
A. B. C. D.
7. 已知集合至多有一个元素,则的取值范围是( )
A. B. 或C. 或D.
8. 求函数零点的个数为( )
A. B. C. D.
9. 若偶函数在上是减函数,则下列关系式中成立的是( )
A. B.
C. D.
10. 用表示两个数中的较小值. 设,则的最大值为( )
A. B.1 C.0 D. 不存在
11. 已知函数f(x)是R上的增函数,A(0 , -1)、B(3 , 1)是其图象上的两点,那么不等式
|f(x+1)|1 的解集的补集是( )
A.(-1 ,2)
B.(1 ,4)
C.(- ,-1)[4 ,+)
D.(- ,- 1][2 ,+)
12. 已知2
则f(x)( )
A. 在(-1 ,1) 上单调递减
B. 在(-1 ,1) 上单调递增
C. 在(-1 , 0)上单调递减,在(0 , 1)上单调递增
D. 在(-1 , 0)上单调递增,在(0 , 1)上单调递减
二. 填空题( 每小题 5 分,共20 分).
13. 若函数,则=
14. 设函数是上的奇函数,且当时,,则= .
15. 函数的值域为__________________
16. 下列四个命题:(1) 函数在时是增函数,也是增函数,所以是增函数;(2) 若函数与轴没有交点,则且;(3) 的递增区间为;(4) 和表示相同函数。
其中正确命题的个数是在高中复习阶段,大家一定要多练习题,掌握考题的规律,掌握常考的知识,这样有助于提高大家的分数。
查字典数学网为大家整理了高一数学上册10 月月试题,供大家参考。