初中知识树形图
- 格式:pdf
- 大小:937.60 KB
- 文档页数:17
第二讲字典排列法与树形图知识点总结1、枚举法:字典排列法、分类枚举、树形图都是枚举法中的一种,使用各种枚举法需要注意有条理、不重复、不遗漏,使人一目了然。
2、字典排列法:从首位开始,按一定的顺序(比如从小到大)枚举第一位,对于每种情况再按从小到大的顺序枚举第二位,依次类推。
3、分类枚举:先有序分类,再有序枚举。
4、树形图:确定起点,按照一定的顺序一一罗列,最后数终点个数。
例题精讲【例1】汤姆、杰瑞和得鲁比都有蛀牙,他们一起去牙医诊所看病,医生发现他们一共有8颗蛀牙,他们三人可能分别有几颗蛀牙?【分析】三人情况:都有蛀牙说明每个人的蛀牙数目不能为0,每人至少有1颗,一共有8颗蛀牙,所以最多的蛀牙数是6。
题中有三个人的名字,所以三个人是有次序的,我们将汤姆看成是首位,杰瑞看成第二位,德鲁比看成第三位,则可以运用字典排列法枚举。
汤姆: 1 1 1 1 1 1 汤姆: 2 2 2 2 2杰瑞: 1 2 3 4 5 6 杰瑞: 1 2 3 4 5得鲁比:6 5 4 3 2 1 得鲁比: 5 4 3 2 1汤姆: 3 3 3 3 汤姆: 4 4 4杰瑞: 1 2 3 4 杰瑞: 1 2 3得鲁比:4 3 2 1 得鲁比:3 2 1汤姆: 5 5 汤姆: 6杰瑞: 1 2 杰瑞: 1 得鲁比:2 1 得鲁比:1总共有6+5+4+3+2+1=21种情况。
【例2】下午茶的时候,老师给同学们准备了苹果,香蕉和橘子三种水果,每种都有足够多个,昊昊想挑3个水果吃,请问:他一共有多少中选择?【分析】分类枚举:先有序分类,再有序枚举。
一种水果:苹苹苹,香香香,橘橘橘两种水果:苹香香,苹苹香,苹橘橘,苹苹橘,香橘橘,香香橘三种水果:苹香橘一共:3+6+1=10(种)【例3】一个人在三个城市A、B、C中游览。
他今天在这个城市,明天就必须到另一个城市。
这个人从A城出发,4天后还回到A城,那么这个人有几种旅游路线?【分析】列出树形图如下,共有6种路线。
常见的计数方法——枚举法(1)字典排列法:从首位开始,按一定的顺序(比如从小到大)枚举第一位,对于每种情况再按从小到大的顺序枚举第二位,依次类推。
(2)分类枚举: 先有序分类,再有序枚举。
(3)树形图:确定起点,按照一定的顺序一一罗列,画出树状图,最后数终点个数。
总结:这三种计数方法都是枚举法中的一种,各种枚举法都需要有条理、不重复、不遗漏,一目了然。
【例1】汤姆、杰瑞和得鲁比都有蛀牙,他们一起去牙医诊所看病,医生发现他们一共有8颗蛀牙,他们三人可能分别有几颗蛀牙?【分析】三人情况:都有蛀牙说明每个人的蛀牙数目不能为0,每人至少有1颗,一共有8颗蛀牙,所以最多的蛀牙数是6。
题中有三个人的名字,所以三个人是有次序的,我们将汤姆看成是首位,杰瑞看成第二位,德鲁比看成第三位,则可以运用字典排列法枚举。
汤姆: 1 1 1 1 1 1 汤姆: 2 2 2 2 2 杰瑞: 1 2 3 4 5 6 杰瑞: 1 2 3 4 5 得鲁比:6 5 4 3 2 1 得鲁比: 5 4 3 2 1汤姆: 3 3 3 3 汤姆: 4 4 4杰瑞: 1 2 3 4 杰瑞: 1 2 3得鲁比:4 3 2 1 得鲁比:3 2 1汤姆: 5 5 汤姆: 6杰瑞: 1 2 杰瑞: 1得鲁比:2 1 得鲁比:1总共有6+5+4+3+2+1=21种情况。
答案: 21知识点拨例题精讲【例2】下午茶的时候,老师给同学们准备了苹果,香蕉和橘子三种水果,每种都有足够多个,昊昊想挑3个水果吃,请问:他一共有多少中选择?【分析】分类枚举:先有序分类,再有序枚举。
一种水果:苹苹苹,香香香,橘橘橘两种水果:苹香香,苹苹香,苹橘橘,苹苹橘,香橘橘,香香橘三种水果:苹香橘一共:3+6+1=10(种)答案: 10【例3】一个人在三个城市A、B、C中游览。
他今天在这个城市,明天就必须到另一个城市。
这个人从A 城出发,4天后还回到A城,那么这个人有几种旅游路线?【分析】列出树形图如下,共有6种路线。
初一上册数学思维导图一,二单元树形图2021-08-01 04:24:41 2165 人初一上册数学思维导图一,二单元树形图_小学体育身体素质树形思维导图初一上册数学思维导图一,二单元树形图_谈高中英语阅读教学中几种常见的思维导图-精品文档谈高中英语阅读教学中几种常见的思维导图高中英语;思维导图;阅读教学阅读是一系列的信息加工过程,其实质是一系列复杂的思维过程。
?普通高中英语课程标准〔实验〕?指出,阅读教学要完成多元目标,即提高学生适应各类语体、文本的阅读能力,开展阅读过程中的信息提取、思维加工和问题求解能力,形成健全的情感态度和价值观,提升科学与人文素养等。
可见,高中英语阅读教学不仅要完成传授语言知识、开展语言能力的任务,还要重视并进展多层次、高层次的思维训练。
在阅读课教学中,教师积极帮助学生“勾画〞思维导图,不但可以获得很好的篇章梳理效果,使学生在阅读的“读中〞环节,强化对篇章构造的认识,降低阅读的难度,还可以在思维导图中实现“读后〞从读到写和说的过渡,使整节课更加浑然一体。
一、思维导图的根本理论东尼?博赞在经过长期的研究和实践后发现,思维导图对学习者的记忆和学习产生的积极影响有:只记忆相关的词可以节省时间 50%——95%;只阅读相关的词可节省时间 90%;复习思维导图笔记课节省时间90%;集中精力于真正的问题;鼓励思想的不间断和无穷尽的流动。
二、思维导图在高中英语阅读教学中的应用在英语阅读教学中,教师利用思维导图可以让学生通过大脑风暴的形式进展发散式思维,同时还可以帮助学生将文章抽象零碎的信息分类整理成与主题密切相关的块状、条状等图形知识,从而有助于学生深入激活背景知识、把握语篇构造、抓住语篇的关键信息等。
通过思维导图不仅帮助学生提升语篇理解能力,还培养了他们的思维能力,真正实现阅读教学的高层次思维训练的目的。
下面笔者将结合实际教学,和大家分享个人对几种思维导图模式的理解。
〔一〕“实物图示〞思维导图 1.“鱼骨图〞人教版 Module 5 Unit 3 Reading“First Impression〞,主要讲述主人公 Li Qiang 在时空旅行前、时空旅行中及时空旅行后的所见所想,让学生认识现在,展望未来,通过探索、发现和分享,创造美好未来。
第2课时用树状图法求概率前事不忘,后事之师。
《战国策·赵策》原创不容易,【关注】,不迷路!【知识与技能】1.会用画树状图法列举试验的所有结果.2.掌握用树状图求简单事件的概率.【过程与方法】通过生活中简单的例子,掌握画树状图的方法,进而掌握用树状图求概率的一般步骤.【情感态度】通过小组讨论,培养学生合作、探究的意识和品质.【教学重点】用树状图求概率.【教学难点】如何正确地画出树状图.一、情境导入,初步认识活动1:将一枚质地均匀的硬币连掷三次,问:(1)列举出所有可能出现的结果.(2)求结果为一次正面,两次反面的概率.教师问:该问题可以用列表法来解决吗?请试一试看(学生分组讨论).经探究发现,上述问题用列表法不易解决,因为列表法适用于试验只需两步完成的事件,而上述掷硬币需三步完成,所以不易用列表来解决,这就需要一种新的方法来解决——树状图法.二、思考探究,获取新知如何用树状图来解决[活动1]中的问题呢?先让我们一起来画树状图.从所画树状图可知共有正正正,正正反,正反正,正反反,反正正,反正反,反反正,反反反8种结果,而结果为一次正面两次反面的结果,有正反反,反正反,反反正3种,∴P(一次正面,两次反面)=3 8【教学说明】列表法求概率适用的对象是两步完成或涉及两个因素的试验,而树状图法既运用于两步完成的试验,又适用于三步及三步以上较复杂的试验.例1小明和小华做“剪刀、石头、布”的游戏,游戏规则是:若两人出的不同,则石头胜剪刀,剪刀胜布,布胜石头;若两人出的相同,则为平局.(1)怎样表示和列举一次游戏的所有可能结果?(2)用A、B、C表示指定事件:A:“小明胜”B.“小华胜”C.“平局”分别求出事件A、B、C的概率.【教学说明】本例为教材P129“动脑筋”,教师要求学生先小组讨论,后独立完成,再以小组交流的方法去完成,过程见P130.例2教材P130例2【教学说明】用列表法或画树状图法都可以不重不漏地列举出试验所有可能出现的结果,只是适用的范围不同,一般来讲,可用列表法解决的问题都可以用树状图来解决,反过来,就不一定.画树状图时,一定要看清题意,注意试验是几步完成,一般来讲试验几步完成.树状就“分枝”几次;树状图可以横着画,也可以竖着画.四、运用新知,深化理解1.要从小强、小红和小华三人中随机选取两人作为旗手,则小强和小红同时入选的概率是()2.小红上学要经过三个十字路口,每个路口遇到红、绿灯的机会都相同,小红希望上学时经过的每个路口都是绿灯,但实际这样的机会是()3.一套书共有上、中、下三册,将他们任意摆放到书架的同一层上,这三册书从左到右恰好成上、中、下顺序的概率为________.4.三个同学同一天生日,他们做了一个游戏:买来了三张相同的贺卡各自在其中一张内写上祝福的话,然后放在一起,每人随机拿一张,则他们拿到的贺卡都不是自己所写的概率是________.5.一家医院某天出生了3个婴儿,假设生男生女的机会相同,那么这3个婴儿中,出现1个男婴、2个女婴的概率是多少?【教学说明】学生自主完成,加深对新知识的掌握.【答案】1.B2.B3.164.135.解:画树形图如下:P(1个男婴,2个女婴)=38.四、师生互动,课堂小结1.师生共同回顾用树状图求概率的方法,特别要注意树状图的画法.2.通过这节课的学习,你掌握了哪些新知识,还有哪些疑问,请与同学们交流.1.教材P131第1、2题.2.完成同步练习册中本课时的练习.本节课由次掷硬币引出用树状图概率,与上节课“两次掷硬币”用列表法求概率相比较,让同学们学会比较、观察、探究问题的能力,加深对求概率知识的掌握.【素材积累】司马迁写《史记》汉朝司马迁继承父业,立志著述史书。
初三概率题树状图练习题在初三数学的概率题中,使用树状图是一种常见的解题方法。
树状图可以帮助我们清晰地展示事件之间的关系,并计算复杂问题的概率。
下面将通过几个例题来练习树状图的运用。
例题1:小明有一副标有数字1至6的普通骰子。
若小明连续掷三次骰子,请根据树状图计算以下事件的概率:事件A:三次掷骰子的和大于10。
事件B:至少两次掷骰子的结果是偶数。
解答:首先,我们可以画出三层的树状图,表示三次掷骰子的结果。
1,2,3,4,5,6/ / / / \ \1,2,3,4,5,6 1,2,3,4,5,6然后根据题目要求,我们计算事件A的概率。
根据树状图,我们可以得到超过10的组合有(4,6),(5,5),(5,6),(6,4),(6,5),(6,6),共6种。
而每次掷骰子的结果有6种可能性,所以总共的组合数为6*6*6=216。
因此,事件A的概率为6/216=1/36。
接下来计算事件B的概率。
根据树状图,我们可以得到至少两次掷骰子结果为偶数的组合有(2,2,1),(2,2,3),(2,2,4),(2,2,5),(2,2,6),共5种。
同样地,每次掷骰子的结果有6种可能性,所以总共的组合数为6*6*6=216。
因此,事件B的概率为5/216。
例题2:某班级有4个男生和5个女生。
班主任任选3名学生参加全校知识竞赛,求以下事件的概率:事件C:3名学生全为男生。
事件D:至少有一名女生参加比赛。
解答:通过树状图计算事件C的概率。
首先,从4名男生中选出3名,有C(4,3) = 4种可能性;从5名女生中一人都不选出,有C(5,0) = 1种可能性。
所以事件C的概率为4/(C(9,3))= 4/84 = 1/21。
通过树状图计算事件D的概率。
首先,从4名男生和5名女生中选出3名,有C(9,3) = 84种可能性。
然后,我们计算全部为男生的情况,即C(4,3) = 4种可能性;计算全部为女生的情况,即C(5,3) = 10种可能性。