用树状图计算概率
- 格式:ppt
- 大小:785.00 KB
- 文档页数:19
九年级树状图求概率知识点概率是数学中一个重要的概念,也是生活中经常用到的知识点。
九年级学生需要掌握树状图求概率的方法,通过树状图可以清晰有效地计算事件发生的可能性。
以下是九年级树状图求概率的相关知识点:一、概率的基本概念概率是指某事件发生的可能性大小。
用P(A)表示事件A发生的概率,P(A)介于0和1之间。
当P(A)=0时,表示事件A不可能发生;当P(A)=1时,表示事件A一定会发生。
二、树状图的构造树状图是一种图形工具,用于展示事件发生的可能路径和相应的概率。
构造树状图的步骤如下:1. 从根节点开始,代表起始事件;2. 从根节点延伸出多个分支,代表第一次事件的可能结果;3. 每个分支再延伸出多个分支,代表下一次事件的可能结果,依此类推。
三、树状图求概率的例题以掷骰子为例,假设我们掷一次骰子。
要求:1. 计算掷骰子出现奇数点的概率;2. 计算掷骰子出现小于等于3点的概率。
首先,我们构造树状图:- 掷骰子结果:1 -> 奇数点-> 偶数点2 -> 奇数点-> 偶数点3 -> 奇数点-> 偶数点4 -> 奇数点-> 偶数点5 -> 奇数点-> 偶数点6 -> 奇数点-> 偶数点根据树状图,我们可以看出共有6个基本事件:1奇、1偶、2奇、2偶、3奇、3偶。
掷骰子出现奇数点的概率可以由以下两个基本事件的概率相加得到:1奇和3奇。
P(奇数点) = P(1奇) + P(3奇)= 1/2 + 1/2= 1同理,掷骰子出现小于等于3点的概率可以由以下三个基本事件的概率相加得到:1奇、1偶和2奇。
P(小于等于3点) = P(1奇) + P(1偶) + P(2奇)= 1/2 + 1/2 + 1/2= 3/2= 1在这个例子中,我们可以发现两个概率超过了1。
这是因为在树状图的构造中,我们没有考虑到不可能的情况,即掷骰子出现偶数点。
为了使概率的计算结果准确,我们在构造树状图时,需要包括所有可能的情况。
高中数学概率计算中的树状图应用技巧概率是数学中一个非常重要的概念,它能够帮助我们预测事件发生的可能性。
在高中数学中,概率计算是一个必修的内容,而树状图则是解决概率问题的一种常用工具。
本文将介绍树状图的应用技巧,并通过具体例题进行说明,帮助高中学生更好地理解和应用树状图。
一、树状图的基本概念和构建方法树状图是一种图形化的工具,用于解决多阶段事件的概率计算问题。
它由根节点、分支和叶节点组成,每个节点表示一个事件,分支表示事件之间的关系。
构建树状图的方法是从根节点开始,逐步展开每个节点的可能性,直到到达叶节点。
例如,假设有一个袋子里有3个红球和2个蓝球,现从袋子中连续取两个球,不放回。
我们可以使用树状图来计算取出的两个球的颜色可能性。
首先,我们从根节点开始,表示第一次取球。
根节点下有两个分支,分别表示取出红球和蓝球的可能性。
接下来,对于每个分支,我们再添加一个节点,表示第二次取球。
第二次取球的分支数目与第一次取球的结果有关。
最后,我们到达叶节点,表示两次取球的结果。
二、树状图的考点和解题技巧在高中数学中,树状图常常涉及到的考点有概率计算、条件概率、独立事件等。
下面我们通过几个具体例题来说明树状图的应用技巧。
例题1:从字母A、B、C、D、E中任取两个字母,不放回。
求取出的两个字母中至少有一个元音字母的概率。
解析:首先,我们可以构建一个树状图,根节点表示第一次取字母,第一次取字母的分支数目为5。
接着,对于每个分支,我们再添加一个节点,表示第二次取字母。
最后,我们到达叶节点,表示两次取字母的结果。
在树状图中,我们可以观察到,至少有一个元音字母的情况有3种:第一次取元音字母,第二次取辅音字母;第一次取辅音字母,第二次取元音字母;第一次和第二次都取元音字母。
因此,我们只需计算这三种情况的概率,并求和即可。
例题2:甲、乙、丙三个人参加一次抽奖活动,每人抽一次,共有5个奖品。
已知甲中奖的概率为0.6,乙中奖的概率为0.4,丙中奖的概率为0.3。
用列表法、树状图法求概率有招刘琛概率问题是中考中的热点问题,与概率有关的题目形式多样,但其中最主要的是考查利用列表法或树状图法求随即事件的概率.而利用列表法或树状图法求随即事件的概率,关键要注意以下三点:(1)注意各种情况出现的可能性务必相同;(2)其中某一事件发生的概率=各种情况出现的次数某一事件发生的次数;(3)在考察各种情况出现的次数和某一事件发生的次数时不能重复也不能遗漏.(4)用列表法或树状图法求得概率是理论概率,而实验估计值是频率,它通常受到实验次数的影响而产生波动,因此两者不一定一致,实验次数较多时,频率稳定于概率,但并不完全等于概率.例1田忌赛马是一个为人熟知的故事,传说战国时期,齐王与田忌各有上、中、下三匹马,同等级的马中,齐王的马比田忌的马强.有一天,齐王要与田忌赛一次,赢得两局者为胜,看样子田忌似乎没有什么胜的希望,但是田忌的谋士了解到主人的上、中等马分别比齐王的中、下等马要强.(1).如果齐王将马按上中下的顺序出阵比赛,那么田忌的马如何出阵,田忌才能取胜?(2). 如果齐王将马按上中下的顺序出阵,而田忌的马随机出阵比赛,田忌获胜的概率是多少?(要求写出双方对阵的所有情况)分析:正确理解题意,将齐王和田忌的马正确排列,而后恰当列表.解:(1)由于田忌的上、中等马分别比齐王的中、下等马强,当齐王的马按上、中、下顺序出阵时,田忌的马按下、上、中的顺序出阵,田忌才能取胜.(2).当田忌的马随机出阵时,双方马的对阵情况如下表:齐王的马上中下上中下上中下上中下上中下上中下田忌的马上中下上下中中上下中下上下上中下中上1.双方马的对阵中,只有一种对阵情况田忌能赢,所以田忌获胜的概率P=6例 2 “石头、剪刀、布”是广为流传的游戏,游戏时甲、乙双方每次出“石头”、“剪刀”、“布”三种手势中一种,规定“石头”胜“剪刀”、“剪刀”胜“布”、“布”胜“石头”,同样手势不分胜负,假定甲、乙两人每次都是等可能地出这三种手势,用画树状图或列表的方法分别求出一次游戏中两人同种手势的概率和甲获胜的概率.(提示:为书写方便,解答时可以用S表示“石头”,用J表示“剪刀”,用B表示“布”)解析:解法一:一次游戏、甲、乙两人随机出手势的所有可能的结果如下图:所有可能出的结果:(S,S)(S,J)(S,B)(J,S)(J,J)(J,B)(B,S)(B,J)(B,B)从上面的树状图可以看出,一次游戏可能出现的结果共有9种,而且每种结果出现的可能性相同.所以,P (出同种手势)=93=31P (甲获胜)=93=31解法二:一次游戏,甲、乙两人随机出手势的所有可能的结果如下表:S J BS (S ,S )(S ,J )(S ,B )J (J ,S )(J ,J )(J ,B )B (B ,S )(B ,J )(B ,B )以下同解法一评注:(1)利用列表法、树状图法求概率必须是等可能事件.(2)对各种可能出现的情况不能遗漏或重复某种可能.例3.有两个可以自由转动的均匀转盘A 、B ,都被分成了3等份,并在每份内均标有数字,如图所示,规则如下:①分别转动转盘A、B;②两个转盘停止后,将两个指针所指份内的数字相乘(若指针停止在等分线上,那么重转一次,直到指针指向某一份为止).(1).用列表法(或树状图)分别求出数字之积为3的倍数和数字之积为5的倍数的概率;(2).小亮和小芸想用这两个转盘做游戏,他们规定:数字之积为3的倍数时,小亮得2分;数字之积为5的倍数时,小芸得3分,这个游戏对双方公平吗?请说明理由;认为不公平的,试修改得分规定,使游戏对双方公平.解析:(1)每次游戏可能出现的所有结果列表如下:456 14562810123121518表格中共有9种等可能的结果,其中数字之积为3的倍数的有五种,数字之积为5的倍数的有三种,所以P (3的倍数)=95;P (5的倍数)93.(2)这个游戏对双方不公平∵小亮平均每次得分为2×95=910(分),小芸平均每次得分为3×93=99=1(分).∵910≠1,∴游戏对双方不公平.修改得分规定为:若数字之积为3的倍数时,小亮得3分;若数字之积为5的倍数时,小芸得5分即可.。